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Abstract. Predicting future changes in ecosystem services

is not only highly desirable but is also becoming feasible as

several forces (e.g., available big data, developed data assim-

ilation (DA) techniques, and advanced cyber-infrastructure)

are converging to transform ecological research into quan-

titative forecasting. To realize ecological forecasting, we

have developed an Ecological Platform for Assimilating Data

(EcoPAD, v1.0) into models. EcoPAD (v1.0) is a web-based

software system that automates data transfer and processing

from sensor networks to ecological forecasting through data

management, model simulation, data assimilation, forecast-

ing, and visualization. It facilitates interactive data–model

integration from which the model is recursively improved

through updated data while data are systematically refined

under the guidance of model. EcoPAD (v1.0) relies on data

from observations, process-oriented models, DA techniques,

and the web-based workflow.

We applied EcoPAD (v1.0) to the Spruce and Peat-

land Responses Under Climatic and Environmental change

(SPRUCE) experiment in northern Minnesota. The EcoPAD-

SPRUCE realizes fully automated data transfer, feeds mete-

orological data to drive model simulations, assimilates both

manually measured and automated sensor data into the Ter-

restrial ECOsystem (TECO) model, and recursively fore-

casts the responses of various biophysical and biogeochemi-

cal processes to five temperature and two CO2 treatments in

near-real time (weekly). Forecasting with EcoPAD-SPRUCE

has revealed that mismatches in forecasting carbon pool dy-

namics are more related to model (e.g., model structure, pa-

rameter, and initial value) than forcing variables, opposite

to forecasting flux variables. EcoPAD-SPRUCE quantified

acclimations of methane production in response to warm-

ing treatments through shifted posterior distributions of the

CH4 : CO2 ratio and the temperature sensitivity (Q10) of

methane production towards lower values. Different case

studies indicated that realistic forecasting of carbon dynam-

ics relies on appropriate model structure, correct parameter-

ization, and accurate external forcing. Moreover, EcoPAD-

SPRUCE stimulated active feedbacks between experimenters

and modelers to identify model components to be improved
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and additional measurements to be taken. It has become an

interactive model–experiment (ModEx) system and opens a

novel avenue for interactive dialogue between modelers and

experimenters. Altogether, EcoPAD (v1.0) acts to integrate

multiple sources of information and knowledge to best in-

form ecological forecasting.

1 Introduction

One ambitious goal of ecology as a science discipline is to

forecast states and services of ecological systems. Forecast-

ing in ecology is not only desirable for scientific advances

in this discipline but also has practical values to guide re-

source management and decision-making towards a sustain-

able planet Earth. The practical need for ecological fore-

casting is particularly urgent in this rapidly changing world,

which is experiencing unprecedented natural resource deple-

tion, increasing food demand, serious biodiversity crisis, ac-

celerated climate changes, and widespread pollution in the

air, waters, and soils (Clark et al., 2001; Mouquet et al.,

2015). As a result, a growing number of studies have re-

ported forecasting of, e.g., phenology (Diez et al., 2012), car-

bon dynamics (Luo et al., 2016; Gao et al., 2011; Thomas et

al., 2017), species dynamics (Clark et al., 2003; Kearney et

al., 2010), pollinator performance (Corbet et al., 1995), epi-

demics (Ong et al., 2010), fishery (Hare et al., 2010), algal

bloom (Stumpf et al., 2009), crop yield (Bastiaanssen and

Ali, 2003), biodiversity (Botkin et al., 2007), plant extinction

risk (Fordham et al., 2012), and ecosystem service (Craft et

al., 2009) in the last several decades. Despite its broad appli-

cations, ecological forecasting is still sporadically practiced

and lags far behind demand due to the lack of infrastructure

that enables timely integration of models with data. This pa-

per introduces a fully interactive infrastructure, the Ecologi-

cal Platform for Assimilating Data (EcoPAD, v1.0) into mod-

els, to inform near-time ecological forecasting with iterative

data–model integration.

Ecological forecasting relies on both models and data.

However, currently the ecology research community has

not yet adequately integrated observations with models to

best inform forecasts. Forecasts generated from scenario ap-

proaches are qualitative and scenarios are often not based

on ecological knowledge (Coreau et al., 2009, 2010). Data-

driven forecasts using statistical methods are generally lim-

ited for extrapolation and sometimes contaminated by con-

founding factors (Schindler and Hilborn, 2015). The recent

emergent mechanism-free nonparametric approach, which

depends on the statistical pattern extracted from data, is re-

ported to be promising for short-term forecast (Ward et al.,

2014; Perretti et al., 2013; Sugihara et al., 2012) but has lim-

ited capability in long-term prediction due to the lack of rel-

evant ecological mechanisms. Process-based models provide

capacity in long-term prediction and flexibility in capturing

short-term dynamics on the basis of a mechanistic under-

standing (Coreau et al., 2009; Purves et al., 2013). Wide ap-

plications of process-based models are limited by their often

complicated numerical structure and sometimes unrealistic

parameterization (Moorcroft, 2006). The complex and uncer-

tain nature of ecology precludes the practice of incorporating

as many processes as possible into mechanistic models. Our

current incomplete knowledge about ecological systems and

unrepresented processes under novel conditions is partly re-

flected in model parameters associated with large uncertain-

ties. Good forecasting therefore requires effective communi-

cation between process-based models and data to estimate re-

alistic model parameters and capture context-dependent eco-

logical phenomena.

Data–model fusion, or data–model integration, is an im-

portant step to combine models with data. But previous data–

model integration activities have mostly been done in an ad

hoc manner instead of being interactive. For example, data

from a network of eddy covariance flux tower sites across the

United States and Canada were compared with gross primary

productivity (GPP) estimated from different models (Schae-

fer et al., 2012). Luo and Reynolds (1999) used a model to

examine ecosystem responses to gradual, as in the real world,

vs. step increases in CO2 concentration as in elevated CO2

experiments. Parton et al. (2007) parameterized CO2 impacts

in an ecosystem model with data from a CO2 experiment in

Colorado. Such model–experiment interactions encounter a

few issues: (1) models are not always calibrated for individ-

ual sites and therefore not accurate; (2) it is not very effective

because it is usually a one-time practice without many itera-

tive processes between experimenters and modelers (Dietze

et al., 2013; Lebauer et al., 2013); (3) it is usually unidirec-

tional as data are normally used to train models, while the

guidance of the model for efficient data collection is lim-

ited; and (4) it is not streamlined and could not be dissem-

inated with common practices among the research commu-

nity (Lebauer et al., 2013; Dietze et al., 2013; Walker et al.,

2014).

A few research groups have developed data assimilation

systems to facilitate data–model integration in a systematic

way. For example, data–model integration systems, such as

the Data Assimilation Research Testbed – DART (Anderson

et al., 2009) – and the Carbon Cycle Data Assimilation Sys-

tems – CCDAS (Scholze et al., 2007; Peylin et al., 2016),

combine various data streams (e.g., FLUXNET data, satellite

data, and inventory data) with process-based models through

data assimilation algorithms such as the Kalman filter (An-

derson et al., 2009) and variational methods (Peylin et al.,

2016). These data assimilation systems automate model pa-

rameterization and provide an avenue to systematically im-

prove models by combining as much data as possible. Data-

informed model improvements normally happen after the end

of a field experiment, and interactive data–model integration

is limited as feedbacks from models to ongoing experimental

studies are not adequately realized. In addition, wide appli-
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cations of these data assimilation systems in ecological fore-

casting are constrained by limited user interactions with a

steep learning curve to understand these systems, especially

for experimenters who have limited training in modeling.

Web-based technology facilitates interactions. Web-based

modeling, which provides user-friendly interfaces to run

models in the background, is usually supported by the sci-

entific workflow, a sequence of processes through which

a piece of work passes from initiation to completion. For

example, TreeWatch.Net (https://treewatch.net, last access:

January 2019) has recently been developed to make use of

high-precision individual tree-monitoring data to parameter-

ize process-based tree models in real time and to assess in-

stant tree hydraulics and carbon status with online result vi-

sualization (Steppe et al., 2016). Although the web portal of

TreeWatch.Net is currently limited to the purpose of visual-

ization, it broadens the application of data–model integration

and strengthens the interaction between modeling research

and the general public. The Predictive Ecosystem Analyzer

(PEcAn) is a scientific workflow that wraps around differ-

ent ecosystem models and manages the flows of informa-

tion coming in and out of the model (Lebauer et al., 2013).

PEcAn enables web-based model simulations. Such a work-

flow has advantages, for example making ecological model-

ing and analysis convenient, transparent, reproducible, and

adaptable to new questions (Lebauer et al., 2013) and en-

couraging user–model interactions. PEcAn uses the Bayesian

meta-analysis to synthesize plant trait data to estimate model

parameters and associated uncertainties, i.e., the prior in-

formation for process-based models. Parameter uncertain-

ties are propagated to model uncertainties and displayed as

outputs. It is still not fully interactive in that states are not

updated iteratively according to observations and the web-

based data assimilation and ecological forecasting have not

yet been fully realized.

Iterative model–data integration provides an approach to

constantly improve ecological forecasting and is an impor-

tant step, especially in realizing near-real-time ecological

forecasting. Instead of projecting into the future by assimilat-

ing observations only once, iterative forecasting constantly

updates forecasting along with ongoing new data streams

and/or improved models. Forecasting is likely to be im-

proved unidirectionally so that either only models are up-

dated through observations, or only data collections and field

experimentations are improved according to theoretical and

model information, but not both. Ecological forecasting can

also be bidirectionally improved so that both models and field

experimentations are optimized hand-in-hand over time. Al-

though the bidirectional case is rare in ecological forecast-

ing, unidirectional iterative forecasting has been reported.

One excellent example of forecasting by dynamically and

repeatedly integrating data with models is from infectious

disease studies (Niu et al., 2014; Ong et al., 2010). The dy-

namics of infectious diseases are traditionally captured by

susceptible–infected–removed (SIR) models. In the forecast-

ing of the Singapore H1N1-2009 infections, SIR model pa-

rameters and the number of individuals in each state were

updated daily, combining data renewed from local clinical

reports. The evolution of epidemic-related parameters and

states was captured by iteratively assimilating observations

to inform forecasting. As a result, the model correctly fore-

casted the timing of the peak and decline of the infection

ahead of time. Iterative forecasting dynamically integrates

data with models and makes the best use of both data and

theoretical understandings of ecological processes.

The aim of this paper is to present a fully interactive plat-

form, the web-based EcoPAD (v1.0), to best inform ecolog-

ical forecasting. The interactive feature of EcoPAD (v1.0) is

reflected in iterative model updating and forecasting by dy-

namically integrating models with new observations, bidirec-

tional feedbacks between experimenters and modelers, and

flexible user–model communication through web-based sim-

ulation, data assimilation, and forecasting. Such an interac-

tive platform provides the infrastructure to effectively inte-

grate available resources from models and data, modelers and

experimenters, and scientists and the general public to im-

prove scientific understanding of ecological processes, boost

ecological forecasting practice, and transform ecology to-

wards quantitative forecasting.

In the following sections, we first describe the system de-

sign and major components of EcoPAD (v1.0). We then use

the Spruce and Peatland Responses Under Climatic and En-

vironmental change (SPRUCE) experiment (Hanson et al.,

2017) as a test bed to elaborate the functionality and new

opportunities brought by the platform. We finally discuss the

implications of EcoPAD (v1.0) for better ecological forecast-

ing.

2 EcoPAD (v1.0): system design and components

2.1 General description: web-based data assimilation

and forecast

EcoPAD (v1.0) (https://ecolab.nau.edu/ecopad_portal/, last

access: January 2019) focuses on linking ecological exper-

iments and data with models and allows for easily acces-

sible and reproducible data–model integration with interac-

tive web-based simulation, data assimilation, and forecast

capabilities. Specifically, EcoPAD (v1.0) enables automated

near-time ecological forecasting that works hand-in-hand

between modelers and experimenters and updates periodi-

cally in a manner similar to weather forecasting. The system

is designed to streamline web request–response, data man-

agement, modeling, prediction, and visualization to boost

the overall throughput of observational data, promote data–

model communication, inform ecological forecasting, and

improve scientific understanding of ecological processes (see

the Supplement for detailed functionalities of EcoPAD v1.0).

www.geosci-model-dev.net/12/1119/2019/ Geosci. Model Dev., 12, 1119–1137, 2019
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To realize such data-informed ecological forecasting, the

essential components of EcoPAD (v1.0) include experi-

ments and data, process-based models, data assimilation

techniques, and the scientific workflow (Figs. 1–3). The sci-

entific workflow of EcoPAD (v1.0) that wraps around eco-

logical models and data assimilation algorithms acts to move

datasets in and out of structured and cataloged data collec-

tions (metadata catalog), while leaving the logic of the eco-

logical models and data assimilation algorithms untouched

(Figs. 1, 3). Once a user makes a request through the web

browser or command line utilities, the scientific workflow

takes charge of triggering and executing corresponding tasks,

be it pulling data from a remote server, running a particu-

lar ecological model, automating forecasting, or making the

result easily understandable to users (Figs. 1, 3). With the

workflow, the system is agnostic to operation system, envi-

ronment, and programming language and is built to horizon-

tally scale to meet the demands of the model and the end-user

community.

2.2 Components

2.2.1 Data

Data are an important component of EcoPAD (v1.0) and Eco-

PAD (v1.0) offers systematic data management to digest di-

verse data streams. The “big data” ecology generates a large

volume of very different datasets across various scales (Mou-

quet et al., 2015; Hampton et al., 2013). These datasets might

have high temporal resolutions, such as those from real-time

ecological sensors, or the display of spatial information from

remote sensing sources and data stored in the geographic in-

formation system (GIS). These datasets may also include,

but are not limited to, inventory data, laboratory measure-

ments, FLUXNET databases, or data from long-term ecolog-

ical networks (Baldocchi et al., 2001; Johnson et al., 2010;

Robertson et al., 2012). Such data contain information re-

lated to environmental forcing (e.g., precipitation, temper-

ature, and radiative forcing), site characteristics (e.g., soil

texture and species composition), and biogeochemical com-

position. Datasets in EcoPAD (v1.0) are derived from other

research projects in comma-separated value files or other

loosely structured data formats. These datasets are first de-

scribed and stored with appropriate metadata via either man-

ual operation or scheduled automation from sensors. Each

project has a separate folder where data are stored. Data

are generally separated into two categories. One is used as

boundary conditions for modeling and the other category is

related to observations that are used for data assimilation.

Scheduled sensor data are appended to existing data files

with prescribed frequency. Attention is then given to how the

particular dataset varies over space (x, y) and time (t). When

the spatiotemporal variability is understood, it is then placed

in metadata records that allow for query through its scientific

workflow.

Figure 1. Schema of approaches to forecast future ecological re-

sponses from common practice (a) and the Ecological Platform

for Assimilation of Data (EcoPAD, v1.0) (b). The common prac-

tice makes use of observations to develop or calibrate models to

make predictions, while the EcoPAD (v1.0) approach advances the

common practice through its fully interactive platform. EcoPAD

(v1.0) consists of four major components: experiment and data,

model, data assimilation, and the scientific workflow (green ar-

rows or lines). Data and model are iteratively integrated through

its data assimilation systems to improve forecasting. Its near-real-

time forecasting results are shared among research groups through

its web interface to guide new data collections. The scientific work-

flow enables web-based data transfer from sensors, model simula-

tion, data assimilation, forecasting, result analysis, visualization,

and reporting, encouraging broad user–model interactions, espe-

cially for experimenters and the general public with a limited back-

ground in modeling. Images from the SPRUCE field experiments

(https://mnspruce.ornl.gov/, last access: January 2019) are used to

represent the data collection and the flowchart of the TECO model

is used to delegate ecological models.

2.2.2 Ecological models

A process-based ecological model is another essential com-

ponent of EcoPAD (Fig. 1). In this paper, the Terrestrial

ECOsystem (TECO) model is applied as a general ecologi-

cal model for demonstration purposes since the workflow and

data assimilation system of EcoPAD (v1.0) are relatively in-

dependent of the specific ecological model. Linkages among

the workflow, data assimilation system, and ecological model

are based on messaging. For example, the data assimilation

system generates parameters that are passed to ecological

models. The state variables simulated from ecological mod-

els are passed back to the data assimilation system. Models

may have different formulations. As long as they take in the

same parameters and generate the same state variables, they

are functionally identical from the “eye” of the data assimi-

lation system.

TECO simulates ecosystem carbon, nitrogen, water, and

energy dynamics (Weng and Luo, 2008; Shi et al., 2016). The

Geosci. Model Dev., 12, 1119–1137, 2019 www.geosci-model-dev.net/12/1119/2019/
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original TECO model has four major submodules (canopy,

soil water, vegetation dynamics, and soil carbon and nitro-

gen) and is further extended to incorporate methane biogeo-

chemistry and snow dynamics (Huang et al., 2017; Ma et al.,

2017). As in the global land surface model CABLE (Wang et

al., 2010; Wang and Leuning, 1998), canopy photosynthesis

that couples surface energy and water and carbon fluxes is

based on a two-big-leaf model (Wang and Leuning, 1998).

Leaf photosynthesis and stomatal conductance are based on

the common scheme from Farquhar et al. (1980) and Ball

et al. (1987), respectively. Transpiration and associated la-

tent heat losses are controlled by stomatal conductance, soil

water content, and the rooting profile. Evaporation losses of

water are balanced between the soil water supply and the at-

mospheric demand based on the difference between satura-

tion vapor pressure and the actual atmospheric vapor pres-

sure. Soil moisture in different soil layers is regulated by

water influxes (e.g., precipitation and percolation) and ef-

fluxes (e.g., transpiration and runoff). Vegetation dynamic

tracks processes such as growth, allocation, and phenology.

The soil carbon and nitrogen module tracks carbon and ni-

trogen through processes such as litterfall, soil organic mat-

ter (SOM) decomposition, and mineralization. SOM decom-

position modeling follows the general form of the Century

model (Parton et al., 1988) as in most Earth system models.

SOM is divided into pools with different turnover times (the

inverse of decomposition rates), which are modified by envi-

ronmental factors such as the soil temperature and moisture.

2.2.3 Data assimilation

Data assimilation is growing in importance as process-based

ecological models, despite largely simplifying the real sys-

tems, need to be complex enough to address sophisticated

ecological issues. These ecological issues are composed of

an enormous number of biotic and abiotic factors interact-

ing with each other. Data assimilation techniques provide a

framework to combine models with data to estimate model

parameters (Shi et al., 2016), test alternative ecological hy-

potheses through different model structures (Liang et al.,

2015), assess the information content of datasets (Weng and

Luo, 2011), quantify uncertainties (Zhou et al., 2012; Weng

et al., 2011; Keenan et al., 2012), derive emergent ecological

relationships (Bloom et al., 2016), identify model errors, and

improve ecological predictions (Luo et al., 2011b) (Fig. 2).

Under the Bayesian paradigm, data assimilation techniques

treat the model structure and the initial and parameter val-

ues as priors that represent our current understanding of the

system. As new information from observations or data be-

comes available, model parameters and state variables can

be updated accordingly. The posterior distributions of esti-

mated parameters or state variables are imprinted with infor-

mation from the model, observations, and data as the chosen

parameters act to reduce mismatches between observations

and model simulations. Future predictions benefit from such

Figure 2. The data assimilation system inside the Ecological Plat-

form for Assimilation of Data (EcoPAD, v1.0) towards better fore-

casting of terrestrial carbon dynamics.

constrained posterior distributions through forward model-

ing (Fig. S1 in the Supplement). As a result, the probability

density function of predicted future states through data as-

similation normally has a narrower spread than that without

data assimilation when everything else is equal (Niu et al.,

2014; Luo et al., 2011b; Weng and Luo, 2011).

EcoPAD (v1.0) is open to different data assimilation tech-

niques since the scientific workflow of EcoPAD (v1.0) is in-

dependent of the specific data assimilation algorithm. For

demonstration, Markov chain Monte Carlo (MCMC) (Xu et

al., 2006) is described in this study.

MCMC is a class of sampling algorithms to draw samples

from a probability distribution obtained through constructed

Markov chains to approximate the equilibrium distribution.

The Bayesian-based MCMC method takes into account var-

ious uncertainty sources that are crucial in interpreting and

delivering forecasting results (Clark et al., 2001). In the ap-

plication of MCMC, the posterior distribution of a parame-

ter for given observations is proportional to the prior distri-

bution of that parameter and the likelihood function linked

to the fit or match (or cost function) between model simu-

lations and observations. EcoPAD (v1.0) currently adopts a

batch mode; that is, the cost function is treated as a single

function to be minimized and different observations are stan-

dardized by their corresponding standard deviations (Xu et

al., 2006). For simplicity, we assume uniform distributions

in priors and Gaussian or multivariate Gaussian distributions

in observational errors, which can be operationally expanded

to other specific distribution forms depending on the avail-

able information. A detailed description is available in Xu et

al. (2006).

www.geosci-model-dev.net/12/1119/2019/ Geosci. Model Dev., 12, 1119–1137, 2019
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2.2.4 Scientific workflow

EcoPAD (v1.0) relies on its scientific workflow to interface

with ecological models and data assimilation algorithms,

manage diverse data streams, and automate iterative ecologi-

cal forecasting in response to various user requests. Work-

flow is a relatively new concept in the ecology literature

but is essential to realize real- or near-real-time forecasting.

Thus, we describe it in detail below. The essential compo-

nents of the scientific workflow of EcoPAD (v1.0) include

the metadata catalog, web application-programming inter-

face (API), the asynchronous task or job queue (Celery),

and the container-based virtualization platform (docker). The

workflow system of EcoPAD (v1.0) also provides structured

result access and visualization.

Metadata catalog and data management

Datasets can be placed and queried in EcoPAD (v1.0) via a

common metadata catalog, which allows for effective man-

agement of diverse data streams. Calls for good management

of current large and heterogeneous ecological datasets are

common (Vitolo et al., 2015; Michener and Jones, 2012; Elli-

son, 2010). Kepler (Ludascher et al., 2006) and the Analytic

Web (Osterweil et al., 2010) are two example systems that

endeavor to provide efficient data management through the

storage of metadata, including clear documentation of data

provenance. Similarly to these systems, EcoPAD (v1.0) takes

advantage of modern information technology, especially the

metadata catalog, to manage diverse data streams. The Eco-

PAD (v1.0) metadata scheme includes a description of the

data product, security, access pattern, and time stamp of last

metadata update. We use MongoDB (https://www.mongodb.

com/, last access: January 2019), a NoSQL database technol-

ogy, to manage heterogeneous datasets to make documenta-

tion, query, and storage fast and convenient. Through Mon-

goDB, measured datasets can be easily fed into ecological

models for various purposes such as to initialize the model,

calibrate model parameters, evaluate model structure, and

drive model forecasts. For datasets from real-time ecologi-

cal sensors that are constantly updating, EcoPAD (v1.0) is

set to automatically fetch new data streams with adjustable

frequency according to research needs.

Web API, asynchronous task queue, and docker

The representational state transfer (RESTful) API can de-

liver data to a wide variety of applications is the gateway

of EcoPAD (v1.0) and enables a wide array of user inter-

faces and data dissemination activities. Once a user makes

a request, such as through clicking on relevant buttons from

a web browser, the request is passed through the RESTful

API to trigger specific tasks. The RESTful API bridges the

talk between the client (e.g., a web browser or command line

terminal) and the server (Fig. 3). The API exploits the full

functionality and flexibility of the HyperText Transfer Proto-

col (HTTP) such that data can be retrieved and ingested from

EcoPAD (v1.0) through the use of simple HTTP headers and

verbs (e.g., GET, PUT, POST, etc.). Hence, a user can in-

corporate summary data from EcoPAD (v1.0) into a website

with a single line of html code. Users will also be able to ac-

cess data directly through programming environments like R,

Python, and MATLAB. Simplicity, ease of use, and interop-

erability are among the main advantages of this API, which

enables web-based modeling.

Celery (https://github.com/celery/celery, last access: Jan-

uary 2019) is an asynchronous task or job queue that runs

in the background (Fig. 3). The task queue (i.e., Celery) is

a mechanism used to distribute work across work units such

as threads or machines. Celery communicates through mes-

sages, and EcoPAD (v1.0) takes advantage of the RabbitMQ

(https://www.rabbitmq.com/, last access: January 2019) to

manage messaging. After the user submits a command, the

request or message is passed to Celery via the RESTful API.

These messages may trigger different tasks, which include

but are not limited to pulling data from a remote server where

original measurements are located, accessing data through

a metadata catalog, running model simulations with user-

specified parameters, conducting data assimilation that recur-

sively updates model parameters, forecasting future ecosys-

tem status, and post-processing model results for visualiza-

tion. The broker inside Celery receives task messages and

handles out tasks to available Celery workers that perform

the actual tasks (Fig. 3). Celery workers are in charge of

receiving messages from the broker, executing tasks, and

returning task results. The worker can be a local or re-

mote computation resource (e.g., the cloud) that has con-

nectivity to the metadata catalog. Workers can be distributed

into different information technology (IT) infrastructures,

which makes the EcoPAD (v1.0) workflow expandable. Each

worker can perform different tasks depending on the tools in-

stalled in each worker. One task can also be distributed to dif-

ferent workers. In such a way, the EcoPAD (v1.0) workflow

enables the parallelization and distributed computation of ac-

tual modeling tasks across various IT infrastructures and is

flexible in implementing additional computational resources

by connecting additional workers.

Another key feature that makes EcoPAD (v1.0) easily

portable and scalable among different operation systems is

the utilization of a container-based virtualization platform,

the docker (https://www.docker.com/, last access: January

2019). The docker can run many applications that rely on

different libraries and environments on a single kernel with

its lightweight containerization. Tasks that execute TECO in

different ways are wrapped inside different docker contain-

ers that can “talk” with each other. Each docker container

embeds the ecosystem model into a complete file system

that contains everything needed to run an ecosystem model:

the source code, model input, run time, system tools, and li-

braries. Docker containers are both hardware-agnostic and
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Figure 3. The scientific workflow of EcoPAD (v1.0). The workflow wraps ecological models and data assimilation algorithms with the

docker containerization platform. Users trigger different tasks through the representational state transfer (RESTful) application-programming

interface (API). Tasks are managed through the asynchronous task queue, Celery. Tasks can be executed concurrently on a single or more

worker servers across different scalable IT infrastructures. MongoDB is a database software that takes charge of data management in EcoPAD

(v1.0), and RabbitMQ is a message broker.

platform-agnostic, and they are not confined to a particu-

lar language, framework, or packaging system. Docker con-

tainers can be run from a laptop, workstation, virtual ma-

chine, or any cloud compute instance. This is done to support

the widely varied number of ecological models running in

various languages (e.g., MATLAB, Python, Fortran, C, and

C++) and environments. In addition to wrapping the ecosys-

tem model into a docker container, software applied in the

workflow, such as Celery, RabbitMQ, and MongoDB, are all

lightweight and portable encapsulations through docker con-

tainers. Therefore, EcoPAD (v1.0) is readily portable and ap-

plicable in different environments.

Structured result access and visualization

EcoPAD (v1.0) enables structured result storage, access, and

visualization to track and analyze data–model fusion prac-

tice. Upon the completion of the model task, the model wrap-

per code calls a post-processing callback function. This call-

back function allows model-specific data requirements to be

added to the model result repository. Each task is associated

with a unique task ID and model results are stored within

the local repository that can be queried by the unique task

ID. The storage and query of model results are realized via

the MongoDB and RESTful API (Fig. 3). Researchers are

authorized to review and download model results and param-

eters submitted for each model run through a web-accessible

URL (link). The EcoPAD (v1.0) web page also displays a

list of historical tasks (with URL) performed by each user.

All current and historical model inputs and outputs are avail-

able to download, including the aggregated results produced

for graphical web applications. In addition, EcoPAD (v1.0)

also provides a task report that contains an all-inclusive re-

cap of submitted parameters, task status, and model outputs

with links to all data and graphical results for each task. Such

structured result storage and access make sharing, tracking,

and referring to modeling studies instantaneous and clear.

3 EcoPAD (v1.0) performance at test bed – SPRUCE

3.1 SPRUCE project overview

EcoPAD (v1.0) is being applied to the SPRUCE experiment

located at the USDA Forest Service Marcell Experimental

Forest (MEF; 47◦30.476′ N, 93◦27.162′ W) in northern Min-

nesota (Kolka et al., 2011). SPRUCE is an ongoing project

that focuses on long-term responses of northern peatland to

climate warming and increased atmospheric CO2 concentra-

tion (Hanson et al., 2017). At SPRUCE, ecologists measure

various aspects of responses of organisms (from microbes to

trees) and ecological functions (carbon, nutrient, and water

cycles) to a warming climate. One of the key features of the
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SPRUCE experiments is manipulative deep soil–peat heat-

ing (0–3 m) and whole-ecosystem warming treatments (peat

+ air warmings), which include tall trees (> 4 m) (Hanson

et al., 2017). Together with elevated atmospheric CO2 treat-

ments, SPRUCE provides a platform for exploring mech-

anisms controlling the vulnerability of organisms, biogeo-

chemical processes, and ecosystems in response to future

novel climatic conditions. The SPRUCE peatland is espe-

cially sensitive to future climate change and also plays an im-

portant role in feeding back to future climate change through

greenhouse gas emissions as it stores a large amount of soil

organic carbon. Vegetation in the SPRUCE site is dominated

by Picea mariana (black spruce) and Sphagnum spp. (peat

moss). The studied peatland also has an understory that in-

cludes ericaceous and woody shrubs. There are also a limited

number of herbaceous species. The whole-ecosystem warm-

ing treatments include a large range of both aboveground

and belowground temperature manipulations (ambient, con-

trol plots of +0, +2.25, +4.5, +6.75, and +9 ◦C) in large

115 m2 open-topped enclosures with elevated CO2 manipu-

lations (+0 or +500 ppm). The difference between ambient

and +0 ◦C treatment plots is the open-topped and controlled-

environment enclosures.

The SPRUCE project generates a large variety of ob-

servational datasets that reflect ecosystem dynamics from

different scales and are available from the project web

page (https://mnspruce.ornl.gov/, last access: January 2019)

and file transfer protocol (FTP) site (ftp://sprucedata.ornl.

gov/, last access: January 2019). These datasets come

from multiple sources, including half-hourly automated sen-

sor records, species surveys, laboratory measurements, and

laser-scanning images. The involvement of both modeling

and experimental studies in the SPRUCE project creates

the opportunity for data–model communication. Datasets are

pulled from SPRUCE archives and stored in the EcoPAD

(v1.0) metadata catalog for running the TECO model and

conducting data–model fusion or forecasting. The TECO

model has been applied to simulate and forecast carbon dy-

namics with productions of CO2 and CH4 from different

carbon pools, soil temperature response, snow depth, and

freeze–thaw cycles at the SPRUCE site (Jiang et al., 2018;

Huang et al., 2017; Ma et al., 2017).

3.2 EcoPAD-SPRUCE web portal

We assimilate multiple streams of data from the SPRUCE

experiment to the TECO model using the MCMC algorithm

and forecast ecosystem dynamics in both near time and for

the next 10 years. Our forecasting system for SPRUCE is

available at https://ecolab.nau.edu/ecopad_portal/ (last ac-

cess: January 2019). From the web portal, users can check

our current near- and long-term forecasting results, conduct

model simulation, data assimilation, and forecasting runs,

and analyze and visualize model results. Detailed informa-

Figure 4. Schema of interactive communication between model-

ers and experimenters through the prediction–question–discussion–

adjustment–prediction cycle to improve ecological forecasting. The

schema is inspired by an episode of experimenter–modeler com-

munication stimulated by the EcoPAD-SPRUCE platform. The ini-

tial methane model constrained by static-chamber methane mea-

surements was used to predict the relative contributions of three

methane emission pathways (i.e., ebullition, plant-mediated trans-

portation (PMT), and diffusion) to the overall methane fluxes un-

der different warming treatments (+0, +2.25, +4.5, +6.75, and

+9 ◦C). The initial results indicated a dominant contribution from

ebullition, especially under +9 ◦C, which was doubted by experi-

menters. The discrepancy stimulated communication between mod-

elers and experimenters, with detailed information listed in Table 1.

After extensive discussion, the model structure was adjusted and

field observations were reevaluated. A second round of forecasting

yielded more reliable predictions.

tion about the interactive web portal is provided in the Sup-

plement.

3.3 Near-time ecosystem forecasting and feedback to

experimenters

As part of the forecasting functionality, EcoPAD-SPRUCE

automates near-time (weekly) forecasting with continuously

updated observations from SPRUCE experiments (Fig. 4).

We set up the system to automatically pull new data streams

every Sunday from the SPRUCE FTP site that holds obser-

vational data and update the forecasting results based on new

data streams. Updated forecasting results for the next week

are customized for the SPRUCE experiments with differ-

ent manipulative treatments and displayed in the EcoPAD-

SPRUCE portal. At the same time, these results are sent back

to SPRUCE communities and displayed together with near-

term observations for experimenter reference.
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3.4 New approaches to ecological studies towards

better forecasting

3.4.1 Case 1: interactive communications among

modelers and experimenters

EcoPAD-SPRUCE provides a platform to stimulate in-

teractive communication between modelers and experi-

menters through the loop of prediction–question–discussion–

adjustment–prediction (Fig. 4). We illustrate how the

prediction–question–discussion–adjustment–prediction cy-

cle and stimulation of modeler–experimenter communica-

tion improve ecological predictions through one episode dur-

ing the study of the relative contribution of different path-

ways to methane emissions. An initial methane model was

built upon information (e.g., site characteristics and envi-

ronmental conditions) provided by SPRUCE field scientists,

taking into account important processes in methane dynam-

ics, such as production, oxidation, and emissions, through

three pathways (i.e., diffusion, ebullition, and plant-mediated

transportation). The model was used to predict the relative

contributions of different pathways to overall methane emis-

sions under different warming treatments after being con-

strained by measured surface methane fluxes. Initial fore-

casting results, which indicated a strong contribution from

ebullition under high warming treatments, were sent back to

the SPRUCE group. Experimenters doubted such a high con-

tribution from the ebullition pathway and a discussion was

stimulated. It is difficult to accurately distinguish the three

pathways from field measurements. Field experimenters pro-

vided potential avenues to extract measurement information

related to these pathways, while modelers examined model

structure and parameters that may not be well constrained by

available field information. A detailed discussion is provided

in Table 1. After extensive discussion, several adjustments

were adopted as a first step to move forward. For example,

the three-porosity model that was used to simulate the diffu-

sion process was replaced by the Millington–Quirk model to

more realistically represent methane diffusions in peat soil;

the measured static-chamber methane fluxes were also ques-

tioned and scrutinized more carefully to clarify that they

did not capture the episodic ebullition events. Measurements

such as these related to pore water gas data may provide ad-

ditional inference related to ebullition. The updated forecast-

ing is more reasonable than the initial results, although more

studies are in need to ultimately quantify methane fluxes

from different pathways.

3.4.2 Case 2: acclimation of ecosystem carbon cycling

to experimental manipulations

As a first step, CH4 static-chamber flux measurements were

assimilated into TECO to assess potential acclimation phe-

nomena during methane production under five warming

treatments (+0, +2.25, +4.5, +6.75, +9 ◦C). Initial results

Figure 5. Posterior distribution of the ratio of CH4 : CO2 (a) and the

temperature sensitivity of methane production (Q10_CH4
, b) under

five warming treatments.

indicated a reduction in both the CH4 : CO2 ratio and the

temperature sensitivity of methane production based on their

posterior distributions (Fig. 5). The mean CH4 : CO2 ratio

decreased from 0.675 (+0 ◦C treatment) to 0.505 (+9 ◦C),

while the temperature sensitivity (Q10) for CH4 production

decreased from 3.33 (+0 ◦C) to 1.22 (+9 ◦C treatment). Such

shifts quantify the potential acclimation of methane produc-

tion to warming, and future climate warming is likely to have

a smaller impact on emissions than most current predictions

that do not take account of acclimation.

Despite the fact that these results are preliminary, as more

relevant datasets are under collection with current ongo-

ing warming manipulations and measurements, assimilating

observations through EcoPAD (v1.0) provides a quantita-

tive approach to assess acclimation through time. Melillo et

al. (2017) revealed that the thermal acclimation of soil res-

piration in Harvard Forest is likely to be phase (time) de-

pendent during their 26-year soil warming experiment. Eco-

PAD (v1.0) provides the possibility to trace the temporal path

of acclimation with its streamlined structure and archive ca-

pacity. Shi et al. (2015) assimilated carbon-related measure-

ments in a tallgrass prairie into the TECO model to study

acclimation after 9-year warming treatments. They revealed

a reduction in the allocation of GPP to shoot, the turnover

rates of the shoot and root carbon pools, and an increase in

litter and fast carbon turnovers in response to warming treat-

ments. Similarly, as time goes on, the SPRUCE experiment

will generate more carbon-cycling-related datasets under dif-

ferent warming and CO2 treatments, which can be mounted

to EcoPAD (v1.0) to systematically quantify acclimations in

carbon cycling through time in the future.

3.4.3 Case 3: partitioning of uncertainty sources

Uncertainties in ecological studies can come from observa-

tions (including the forcing that drives the model), different

model structures to represent the real world, and the specified

model parameters (Luo et al., 2016). Previous studies tended

to focus on one aspect of the uncertainty sources instead
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Table 1. Discussion stimulated by EcoPAD-SPRUCE forecasting among modelers and experimenters on how to improve predictions of the

relative contribution of different pathways of methane emissions.

Discussion

1 No strong bubbles are noted in the field, and a non-observation-constrained modeling study at a similar site from another project

concluded minor ebullition contribution, which is at odds with the TECO result.

2 CH4 : CO2 ratio might explain the discrepancy. The other modeling study assumed that decomposed C is mainly turned into

CO2 and a smaller fraction is turned into CH4. The large CH4 : CO2 ratio at this site may result in higher CH4 flux. It seems that

the most “flexible” term is ebullition because any “excess” (above saturation) CH4 is immediately released to ebullition, while

the plant transport term is constrained by vegetation data.

3 Experimental research on the relative contribution to methane emissions from three different pathways is rare.

4 Current available observations include the net surface flux of methane from the large collars, incubation data that should

represent methane sources within the profile, and gas–DOC profile data that can indicate active zones within the peat profile.

What additional data are needed to constrain the relative contribution of different pathways?

5 It is commonly believed that peatlands do not bubble much, but supersensitive GPS measurements found movement of the

surface of the glacial Lake Agassiz peatland (GLAP) consistent with degassing events, and subsurface radar images showed

layers that were interpreted as bubble layers.

6 Pore water gas data, perhaps N2 or Ar, may shed some light on the relative importance of ebullition.

7 It is difficult to accurately distinguish the three pathways and relies on multiple approaches. Particularly for the SPRUCE site,

the vegetation cover varies, and vegetation species vary. Does the number of channels each species has affect the transport?

Meanwhile, the presence of plants (including nonvascular plants) will lead to more gas transport, but as bubbles rather than

plant-mediated transport.

8 Simulating diffusion, vascular processes, and ebullition depends on model structure and algorithms. Most models assume a

threshold to allow ebullition. Diffusion is treated in similar ways as ebullition in some models (most one-layer or two-layer

models). For multiple-layers models, diffusion occurs from bottom to top millimeter by millimeter, layer by layer; therefore,

gas diffusion from the top layer to the atmosphere is considered the diffusion flux. If that is the case, the time step, wind

speed, and pressure matter (most models do not consider wind and pressure impacts). Plant transport is really dependent on the

parameters for plant species, aerenchyma, etc. The gas transportability of plants is associated with biomass, NPP, root biomass,

and the seasonality of plant growth in models. All these differences might cause biases in the final flux.

9 With only the CH4 emission data, we cannot constrain the relative contribution of the three pathways. Concentration data in

different soil layers may help constrain them.

10 The diffusion coefficient calculation in TECO adopts the three-porosity model, which is ideal for mineral soil, but may not fit

for organic soil. The Millington–Quirk model is a better choice for peat soil.

11 The boundary condition should be taken into account, but it brings in more uncertainties, including wind speed and piston

velocity.

12 CH4 emissions captured in static chambers do not include episodic ebullition events. So (1) the static chambers underestimate

the total methane emissions and (2) it might be necessary to exclude the ebullition pathway when using observational data to

constrain CH4 emissions. This point seems not to have been taken into account in other models.

of disentangling the contribution from different sources. For

example, model intercomparison projects (MIPs), such as

TRENDY, focus on uncertainty caused by different model

structures with prescribed external forcing (Sitch et al.,

2008). Keenan et al. (2012) used data assimilation to con-

strain parameter uncertainties in projecting Harvard Forest

carbon dynamics. Ahlstrom et al. (2012) forced one partic-

ular vegetation model by 18 sets of forcings from climate

models of the Coupled Model Intercomparison Project Phase

5 (CMIP5), while the parameter or model structure uncer-

tainty is not taken into account.

EcoPAD (v1.0) is designed to provide a thorough pic-

ture of uncertainties from multiple sources, especially in car-

bon cycling studies. By focusing on multiple instead of one

source of uncertainty, ecologists can allocate resources to ar-

eas that cause relatively high uncertainty. The attribution of

uncertainties in EcoPAD (v1.0) will rely on an ensemble of

ecosystem models, the data assimilation system, and climate

forcing with quantified uncertainty. Jiang et al. (2018) fo-

cused specifically on the relative contribution of parameter

uncertainty vs. climate forcing uncertainty in forecasting car-

bon dynamics at the SPRUCE site. By assimilating pretreat-
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ment measurements (2011–2014) from the SPRUCE exper-

iment, Jiang et al. (2018) estimated uncertainties in key pa-

rameters that regulate peatland carbon dynamics. Combined

with the stochastically generated climate forcing (e.g., pre-

cipitation and temperature), Jiang et al. (2018) found that

external forcing resulted in higher uncertainty than param-

eters in forecasting carbon fluxes, but caused lower uncer-

tainty than parameters in forecasting carbon pools. There-

fore, more efforts are required to improve forcing measure-

ments for studies that focus on carbon fluxes (e.g., GPP),

while reductions in parameter uncertainties are more impor-

tant for studies in carbon pool dynamics. Despite the fact

that Jiang et al. (2018) do not quantify model structure un-

certainty, incorporating multiple models into EcoPAD (v1.0)

is in progress, and future uncertainty assessment will benefit

from EcoPAD (v1.0) with its systematically archived model

simulation, data assimilation, and forecasting.

3.4.4 Case 4: improving biophysical estimation for

better ecological prediction

Carbon cycling studies can also benefit from EcoPAD (v1.0)

through improvements in biophysical estimation. The soil

environmental condition is an important regulator of below-

ground biological activities and also feeds back to above-

ground vegetation growth. Biophysical variables, such as soil

temperature, soil moisture, ice content, and snow depth, are

key predictors of ecosystem dynamics. After constraining

the biophysical module by detailed monitoring data from the

SPRUCE experiment through the data assimilation compo-

nent of EcoPAD (v1.0), Huang et al. (2017) forecasted soil

thermal dynamics under future conditions and studied the re-

sponses of soil temperature to hypothetical air warming. This

study emphasized the importance of accurate climate forcing

in providing robust thermal forecasts. In addition, Huang et

al. (2017) revealed nonuniform responses of soil temperature

to air warming. Soil temperature responded more strongly to

air warming during summer compared to winter. Soil tem-

perature increased more in shallow soil layers compared to

deep soils in summer in response to air warming. Therefore,

extrapolating manipulative experiments based on air warm-

ing alone may not reflect the real temperature sensitivity of

SOM if soil temperature is not monitored. As a robust quan-

tification of environmental conditions is known to be a first

step towards a better understanding of ecological process,

improvement in soil thermal predictions through the Eco-

PAD (v1.0) data assimilation system is helpful in telling apart

biogeochemical responses from environmental uncertainties

and also in providing field ecologists with key environmental

conditions beforehand.

3.4.5 Case 5: how do the updated model and data

contribute to reliable forecasting?

Through constantly adjusted model and external forcing ac-

cording to observations and weekly archived model parame-

ter, model structure, external forcing, and forecasting results,

the contribution of model and data updates can be tracked by

comparing forecasted vs. realized simulations. For example,

Fig. 6 illustrates how updated external forcing (compared

to stochastically generated forcing) and shifts in ecosys-

tem state variables shape ecological predictions. “Updated”

means the real meteorological forcing monitored from the

weather station. We use stochastically generated forcing to

represent future meteorological conditions. Future precipita-

tion and air temperature were generated by vector autoregres-

sion using a historical dataset (1961–2014) monitored by the

weather station. Photosynthetically active radiation (PAR),

relative humidity, and wind speed were randomly sampled

from the joint frequency distribution at a given hour each

month. Detailed information on weather forcing is available

in Jiang et al. (2018). Similarly as in other EcoPAD-SPRUCE

case studies, TECO is trained through data assimilation with

observations from 2011–2014 and used to forecast GPP and

total soil organic carbon content at the beginning of 2015.

For demonstrating purposes, Fig. 6 only shows three series

of forecasting results instead of updates from every week.

Series 1 (S1) records forecasted GPP and soil carbon with

stochastically generated weather forcing from January 2015–

December 2024 (Fig. 6a, b, cyan). Series 2 (S2) records sim-

ulated GPP and soil carbon with observed (updated) climate

forcing from January 2015 to July 2016 and forecasted GPP

and soil carbon with stochastically generated forcing from

August 2016–December 2024 (Fig. 6a, b, red). Similarly, the

stochastically generated forcing in Series 3 (S3) starts from

January 2017 (Fig. 6a, b, blue). For each series, predictions

were conducted with randomly sampled parameters from the

posterior distributions and stochastically generated forcing.

We displayed 100 mean values (across an ensemble of fore-

casts with different parameters) corresponding to 100 fore-

casts with stochastically generated forcing.

GPP is highly sensitive to climate forcing. The differ-

ences between the updated (S2, 3) and initial forecasts (S1)

reach almost 800 gC m−2 yr−1 (Fig. 6c). The discrepancy is

strongly dampened in the following 1–2 years. The impact of

updated forecasts is close to 0 after approximately 5 years.

However, the soil carbon pool shows a different pattern. The

soil carbon pool is increased by less than 150 gC m−2, which

is relatively small compared to the carbon pool size of ca.

62 000 gC m−2. The impact of updated forecasts grows with

time and is highest at the end of the simulation year 2024.

GPP is sensitive to the immediate change in climate forcing,

while the updated ecosystem status (or initial value) has a

minimum impact on the long-term forecast of GPP. The im-

pact of updated climate forcing is relatively small for soil car-

bon forecasts during our study period. Soil carbon is less sen-
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Figure 6. Updated vs. un-updated forecasting of gross primary production (GPP; panels a, c) and soil organic C content (SoilC; panels b,

d). The upper panels show three series of forecasting with updated vs. stochastically generated weather forcing. “Updated” means the real

meteorology forcing monitored from field weather stations. Cyan indicates forecasting with 100 stochastically generated weather forcings

from January 2015 to December 2024 (S1); red corresponds to updated forecasting with two stages, which is updating with measured weather

forcing from January 2015 to July 2016, followed by forecasting with 100 stochastically generated weather forcings from August 2016 to

December 2024 (S2); and blue shows updated forecasting with measured weather forcing from January 2015 to December 2016, followed

by forecasting with 100 stochastically generated weather forcings from January 2017 to December 2024 (S3). Panels (c) and (d) display

mismatches between updated forecasting (S2, 3) and the original un-updated forecasting (S1). Red displays the difference between S2

and S1 (S2–S1), and blue shows the discrepancy between S3 and S1 (S3–S1). Dashed green lines indicate the start of forecasting with

stochastically generated weather forcing. Note that panels (a) and (c) are plotted on a yearly timescale and panels (b) and (d) show results

on a monthly timescale.

sitive to the immediate change in climate compared to GPP.

However, the alteration of system status affects the soil car-

bon forecast, especially on a longer timescale.

Since we are archiving updated forecasts every week, we

can track the relative contribution of ecosystem status, forc-

ing uncertainty, and parameter distributions to the overall

forecasting patterns of different ecological variables and how

these patterns evolve in time. In addition, as more observa-

tions of ecological variables (e.g., carbon fluxes and pool

sizes) become available, it is feasible to diagnose key factors

that promote robust ecological forecasting by comparing the

archived forecasts vs. observations and analyzing archives of

model parameters, initial values, and climate forcing.

4 Discussion

4.1 The necessity of interactive infrastructure to realize

ecological forecasting

Interactions enable the exchange and extension of informa-

tion to benefit from collective knowledge. For example, ma-

nipulative studies will have a much broader impact if the im-

plications of their results can be extended from the regression

between environmental variables and ecosystem response,

such as being integrated into an ecosystem model through

model–data communication. Such an approach will allow

us to gain information about the processes responsible for

ecosystem response, constraining models, and making more

reliable predictions. Going beyond the common practice of

model–data assimilation, in which model updating lags far

behind observations, EcoPAD (v1.0) enables iterative model

updating and forecasting by dynamically integrating mod-

els with new observations in near-real time. This near-real-

time interactive capacity relies on its scientific workflow that

automates data management, model simulation, data simula-

tion, and result visualization. The system design encourages

thorough interactions between experimenters and modelers.

Forecasting results from SPRUCE were shared among re-

search groups with different backgrounds through the web

interface. Expertise from different research groups was in-

tegrated to improve a second round of forecasting. Again,

thanks to the workflow, new information or adjustments are

incorporated into forecasting efficiently, making the forecast-

ing system fully interactive.

We also benefit from the interactive EcoPAD (v1.0) plat-

form to broaden user–model interactions and to broadcast
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forecasting results. Learning about ecosystem models and

data–model fusion techniques may undermine one’s produc-

tivity and even discourage researchers from learning model-

ing techniques because of their complexity and long learn-

ing curve. Because EcoPAD (v1.0) can be accessed from

a web browser and does not require any coding from the

user’s side, the time lag between learning the model struc-

ture and obtaining model-based results for one’s study is

minimal, which opens the door for non-modeler groups to

“talk” with models. The online storage of one’s results low-

ers the risk of data loss. The results of each model run can

be easily tracked and shared with a unique ID and web ad-

dress. In addition, the web-based workflow also saves time

for experts with automated model running, data assimila-

tion, forecasting, structured result access, and instantaneous

graphic outputs, bringing the possibility for a thorough ex-

ploration of more essential parts of the system. The simplic-

ity in use of EcoPAD (v1.0) at the same time may limit ac-

cess to the code and lower flexibility. Flexibility for users

with higher demands, for example those who want to test al-

ternative data assimilation methods, use a different carbon

cycle model, change the number of calibrated parameters, or

include observations for other variables, is provided through

the GitHub repository (https://github.com/ou-ecolab, last ac-

cess: January 2019). This GitHub repository contains code

and instructions for installing, configuring, and controlling

the whole system; users can adapt the workflow to wrap their

own model based on their needs. On the one hand, the open-

source web-based system broadens the user community. On

the other hand, it increases the risk of misuse and misinter-

pretation. We encourage users to be critical and consult sys-

tem developers to avoid inappropriate application of the sys-

tem.

4.2 Implications for better ecological forecasting

Specific to the reliable forecasting of carbon dynamics, our

initial exploration from EcoPAD-SPRUCE indicates that re-

alistic model structure, correct parameterization, and accu-

rate external environmental conditions are essential. The

model structure captures important mechanisms that regu-

late ecosystem carbon dynamics. Adjustment in the model

structure is critical to our improvement of methane forecast-

ing. Model parameters may vary between observation sites

and change with time or environmental conditions (Medlyn

et al., 1999; Luo et al., 2001). A static or wrong parameteri-

zation misses important mechanisms (e.g., acclimation and

adaptation) that regulate future carbon dynamics. Parame-

ters that are not well constrained, for example caused by a

lack of information from observational data, contribute to

high forecasting uncertainty and low reliability in forecasting

results. Correct parameterization is especially important for

long-term carbon pool predictions as parameter uncertainty

resulted in high forecasting uncertainty in our case study

(Jiang et al., 2018). Parameter values derived under ambient

conditions were not applicable to the warming treatment in

our methane case due to acclimation. The external environ-

mental condition is another important factor in carbon pre-

dictions. The external environmental condition includes both

the external climatic forcing that is used to drive ecosystem

models and also the environmental condition that is simu-

lated by ecosystem models. As we showed that air warming

may not proportionally transfer to soil warming, realistic soil

environmental information needs to be appropriately repre-

sented to predict soil carbon dynamics (Huang et al., 2017).

The impact of external forcing is especially obvious in short-

term carbon flux predictions. Forcing uncertainty resulted in

higher forecasting uncertainty in carbon flux compared to

that from parameter uncertainty (Jiang et al., 2018). Mis-

matches in forecasted vs. realized forcing greatly increased

simulated GPP and the discrepancy diminished in the long

run. A reliable external environmental condition, to some ex-

tent, reduces the complexity in diagnosing modeled carbon

dynamics.

Pool-based vs. flux-based predictions are regulated differ-

ently by external forcing and initial states, which indicates

that differentiated efforts are required to improve short- vs.

long-term predictions. External forcing, which has not been

well emphasized in previous carbon studies, has a strong im-

pact on short-term forecasting. The large response of GPP

to forecasted vs. realized forcing, as well as the stronger

forcing-caused uncertainty in GPP predictions, indicates that

correct forcing information is a key step in short-term flux

predictions. In this study, we stochastically generated the

climate forcing based on local climatic conditions (1961–

2014), which is not sufficient to capture local short-term cli-

mate variability. As a result, updated GPP went outside our

ensemble forecasting. On the other hand, parameters and his-

torical information about pool status are more important in

long-term pool predictions. Therefore, improvement in long-

term pool size predictions cannot be achieved with accurate

climatic information alone. Instead, it requires accumulation

in knowledge related to site history and processes that regu-

late pool dynamics.

Furthermore, reliable forecasting requires an understand-

ing of uncertainty sources in addition to future mean states.

Uncertainty and complexity are major factors that lead to

the belief in “computationally irreducible” and low intrinsic

predictability of ecological systems (Beckage et al., 2011;

Coreau et al., 2010; Schindler and Hilborn, 2015). Recent

advances in computational statistical methods offer a way to

formally account for various uncertainty sources in ecology

(Clark et al., 2001; Cressie et al., 2009). The Bayesian ap-

proach embedded in EcoPAD (v1.0) brings the opportunity

to understand and communicate forecasting uncertainty. Our

case study revealed that forcing uncertainty is more impor-

tant in flux-based predictions, while parameter uncertainty is

more critical in pool-based predictions. Actually, how fore-

casting uncertainty changes with time, what the dominate

contributors of forecasting uncertainty are (e.g., parameter,
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initial condition, model structure, observation errors, forcing,

etc.), how uncertainty sources interact among different com-

ponents, and to what extent unconstrained parameters affect

forecasting uncertainty are all valuable questions that can be

explored through EcoPAD (v1.0).

4.3 Applications of EcoPAD (v1.0) to manipulative

experiments and observation sites

Broadly speaking, data–model integration stands to increase

the overall precision and accuracy of model-based experi-

mentation (Luo et al., 2011b; Niu et al., 2014). Systems for

which data have been collected in the field and that are well

represented by ecological models therefore have the capac-

ity to receive the highest benefits from EcoPAD (v1.0) to

improve forecasts. In a global change context, experimen-

tal manipulations, including ecosystem responses to changes

in precipitation regimes, carbon dioxide concentrations, tem-

peratures, season lengths, and species compositional shifts,

can now be assimilated into ecosystem models (Shi et al.,

2016; Xu et al., 2006; Gao et al., 2011; Lebauer et al., 2013).

The impacts of these global change factors on carbon cycling

and ecosystem functioning can now be measured in a sci-

entifically transparent and verifiable manner. This leads to

ecosystem modeling of systems and processes that can ob-

tain levels of confidence that lend credibility (from the pub-

lic point of view) to the forward progress of science toward

forecasting and predicting (Clark et al., 2001). These are the

strengths of a widely available interface devoted to data–

model integration towards better forecasting.

The data–model integration framework of EcoPAD (v1.0)

creates a smart interactive model–experiment (ModEx) sys-

tem. ModEx has the capacity to form a feedback loop in

which field experiments guide modeling and modeling in-

fluences experimental focus (Luo et al., 2011a). We demon-

strated how EcoPAD (v1.0) works hand-in-hand between

modelers and experimenters in the life cycle of the SPRUCE

project. The EcoPAD-SPRUCE system operates while exper-

imenters are making measurements or planning for future re-

search. Information is constantly fed back between modelers

and experimenters, and simultaneous efforts from both par-

ties illustrate how communication between models and data

advance and shape our understanding towards better fore-

casts during the life cycle of a scientific project. ModEx can

be extended to other experimental systems to do the follow-

ing: (1) predict what an ecosystem’s response might be to

treatments once the experimenter has selected a site and de-

cided the experimental plan; (2) assimilate the data exper-

imenters are collecting during the experiment to constrain

model predictions; (3) project what an ecosystem’s responses

may likely be in the rest of the experiment; (4) tell experi-

menters which important datasets they may want to collect

in order to understand the system; (5) periodically update the

projections; and (6) improve the models, the data assimila-

tion system, and field experiments during the process.

In addition to manipulative experiments, the data assimi-

lation system of EcoPAD (v1.0) can be used for automated

model calibration for FLUXNET sites or other observa-

tion networks, such as NEON and LTER (Johnson et al.,

2010; Robertson et al., 2012). The application of EcoPAD

(v1.0) at FLUXNET, NEON, or LTER sites includes three

steps in general. First, build the climate forcing in the suit-

able formats of EcoPAD (v1.0) from the database of each

site. Second, collect the prior information (include obser-

vations of state variables) in the data assimilation system

from FLUXNET, NEON, or LTER sites. Third, incorporate

the forcing and prior information into EcoPAD (v1.0) and

then run EcoPAD (v1.0) with the dynamic data assimilation

system. Furthermore, the proposed continental-scale ecology

study (Schimel, 2011), EcoPAD (v1.0) once properly applied

could also help evaluate and optimize the field deployment of

environmental sensors and supporting cyber-infrastructure,

which will be necessary for larger, more complex environ-

mental observing systems being planned in the US and across

different continents.

4.4 Future developments

EcoPAD (v1.0) will expand as time goes on. The system

is designed to incorporate multiple process-based models,

diverse data assimilation techniques, and various ecologi-

cal state variables for different ecosystems. The case stud-

ies presented in earlier sections are based primarily on one

model. A multiple (or ensemble) model approach is helpful

in tracking uncertainty sources from our process understand-

ing. With rapidly evolving ecological knowledge, emerging

models with different hypotheses, such as the microbial–

enzyme model (Wieder et al., 2013), enhance our capacity

in ecological prediction but can also benefit from rapid tests

against data if incorporated into EcoPAD (v1.0). In addition

to MCMC (Braswell et al., 2005; Xu et al., 2006), a vari-

ety of data assimilation techniques have been recently ap-

plied to improve models for ecological forecasting, such as

the EnKF (Gao et al., 2011), genetic algorithms (Zhou and

Luo, 2008), and 4-D variational assimilation (Peylin et al.,

2016). Future development will incorporate different opti-

mization techniques to offer users the option to search for the

best model parameters by selecting and comparing the best

method for their specific studies. We focus mostly on carbon-

related state variables in the SPRUCE example, and the data

assimilation system in EcoPAD (v1.0) needs to include more

observed variables for constraining model parameters. For

example, the NEON sites not only provide measured ecosys-

tem CO2 fluxes and soil carbon stocks, but also resource

(e.g., GPP–transpiration for water and GPP–intercepted PAR

for light) use efficiency (Johnson et al., 2010).

Researchers interested in creating their own multiple

model and/or multiple assimilation scheme version of Eco-

PAD (v1.0) can start from the GitHub repository (https:

//github.com/ou-ecolab, last access: January 2019) where the

Geosci. Model Dev., 12, 1119–1137, 2019 www.geosci-model-dev.net/12/1119/2019/

https://github.com/ou-ecolab
https://github.com/ou-ecolab


Y. Huang et al.: Ecological Platform for Assimilating Data (EcoPAD, v1.0) 1133

source code of the EcoPAD (v1.0) workflow is archived. To

add a new variable that is not forecasted in the EcoPAD-

SPRUCE example requires modelers and experimenters to

work together to understand their process-based model, ob-

servations, and how messaging works in the workflow of

EcoPAD (v1.0) following the example of EcoPAD-SPRUCE.

To add a new model or a new data assimilation scheme

for variables that are forecasted in EcoPAD-SPRUCE, re-

searchers need to create additional dockers and mount them

to the existing workflow with knowledge of how informa-

tion is passed within the workflow (see the Supplement for

detailed information).

With these improvements, one goal of EcoPAD (v1.0) is

to enable the research community to understand and reduce

forecasting uncertainties from different sources and fore-

cast various aspects of future biogeochemical and ecologi-

cal changes as data become available. EcoPAD (v1.0) acts

as a tool to link model and data, not as a substitution for

either model or data. Ecological forecasting through Eco-

PAD (v1.0) relies strongly on theoretical (model) and empir-

ical (data) ecological studies. Questions regarding the major

factors regulating temporal variability in methane emissions

cannot be directly answered by EcoPAD (v1.0). How to make

use of EcoPAD (v1.0) to inspire breakthroughs in both the-

oretical and empirical ecological studies is worth future ex-

ploration.

The power of EcoPAD (v1.0) also lies in the potential ser-

vice it can bring to society. Forecasting with carefully quan-

tified uncertainty is helpful in providing support for natural

resource managers and policy makers (Clark et al., 2001).

It is always difficult to bring complex mathematical ecosys-

tem models to the general public, which creates a gap be-

tween current scientific advances and public awareness. The

web-based interface from EcoPAD (v1.0) makes modeling as

easy as possible without losing the connection to the math-

ematics behind the models. It will greatly transform envi-

ronmental education and encourage citizen science (Miller-

Rushing et al., 2012; Kobori et al., 2016) in ecology and cli-

mate change with future outreach activities to broadcast the

EcoPAD (v1.0) platform.

5 Conclusions

The fully interactive web-based Ecological Platform for As-

similating Data (EcoPAD, v1.0) into models aims to pro-

mote data–model integration towards predictive ecology by

making complex ecosystem model and data assimilation

techniques accessible to different audience. It is supported

by meta-databases of biogeochemical variables, libraries of

modules for process models, a toolbox of inversion tech-

niques, and a scalable scientific workflow. Through these

components, it automates data management, model simula-

tion, data assimilation, ecological forecasting, and result vi-

sualization, providing an open, convenient, transparent, flex-

ible, scalable, traceable, and readily portable platform to sys-

tematically conduct data–model integration towards better

ecological forecasting.

We illustrated several of its functionalities through the

Spruce and Peatland Responses Under Climatic and En-

vironmental change (SPRUCE) experiment. The iterative

forecasting approach from EcoPAD-SPRUCE through the

prediction–question–discussion–adjustment–prediction cy-

cle and extensive communication between model and data

creates a new paradigm to best inform forecasting. In ad-

dition to forecasting, EcoPAD (v1.0) enables an interac-

tive web-based approach to conduct model simulation, es-

timate model parameters or state variables, quantify uncer-

tainty in estimated parameters and projected states of ecosys-

tems, evaluate model structures, and assess sampling strate-

gies. Altogether, EcoPAD-SPRUCE creates a smart interac-

tive model–experiment (ModEx) system from which experi-

menters can know what an ecosystem’s response might be at

the beginning of their experiments, constrain models through

collected measurements, predict an ecosystem’s response in

the rest of the experiments, adjust measurements to better

understand their system, periodically update projections, and

improve models, the data assimilation system, and field ex-

periments.

Specifically for forecasting carbon dynamics, EcoPAD-

SPRUCE revealed that better forecasting relies on improve-

ments in model structure, parameterization, and accurate ex-

ternal forcing. Accurate external forcing is critical for short-

term flux-based carbon predictions, while the right process

understanding, parameterization, and historical information

are essential for long-term pool-based predictions. In addi-

tion, EcoPAD (v1.0) provides an avenue to disentangle dif-

ferent sources of uncertainties in carbon cycling studies and

to provide reliable forecasts with accountable uncertainties.

Code availability. The EcoPAD (v1.0) portal is available at https:

//ecolab.nau.edu/ecopad_portal/ (Jiang et al., 2019a), and code is

provided at the GitHub repository (https://github.com/ou-ecolab,

Jiang et al., 2019b).

Data availability. Relevant data for this paper are available at the

SPRUCE project web page (https://mnspruce.ornl.gov/, last access:

January 2019) and the EcoPAD (v1.0) web portal (https://ecolab.

nau.edu/ecopad_portal/, Jiang et al., 2019a). Additional data can be

requested from the corresponding author.

Supplement. The supplement related to this article is available

online at: https://doi.org/10.5194/gmd-12-1119-2019-supplement.
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