
Realizing architecture frameworks through megamodelling
techniques∗

Rich Hilliard1, Ivano Malavolta2, Henry Muccini2, Patrizio Pelliccione2

1Consulting software systems architect
r.hilliard@computer.org

2Dipartimento di Informatica, Università dell’Aquila, L’Aquila - Italy
{ivano.malavolta,henry.muccini,patrizio.pelliccione}@univaq.it

ABSTRACT

Most practising software architects operate within an architecture

framework which is a coordinated set of viewpoints, models and
notations prescribed for them. Whereas architecture frameworks
are defined to varying degrees of rigour and offer varying levels
of tool support, they tend to be closed: constituent elements are
defined in different non-standard ways, they are not re-usable, and
the creation of other frameworks requires a complete rework.

With the aim to manage this issue, this paper presents MEGAF,
an infrastructure for realizing architecture frameworks, which can
be used to create architecture descriptions. It builds upon the con-
ceptual foundations of ISO/IEC 42010 for architecture description.
MEGAF is realized through megamodeling techniques and is im-
plemented via Eclipse plugins.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—Domain-

specific architectures; D.2.11 [Software Engineering]: Software
Architectures; D.2.2 [Software Engineering]: Design Tools and
Techniques

General Terms

Design, Modeling.

Keywords

Software Architecture, ADL, model driven, metamodelling, meg-
amodelling.

1. INTRODUCTION
From the earliest work in Software Architecture (SA), it has been

a fundamental tenet of the field that architectures are best expressed
in terms of multiple views [12]. Each architecture view depicts
some aspects, or system concerns, to address the needs of various
stakeholders, while other views address other concerns; taken to-
gether, these views yield a picture of the architecture as a whole.

∗This work is partly supported by the Italian PRIN d-ASAP project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The use of multiple views has become standard practice in in-
dustry [10, 6, 3, 7]. Academic research and existing architecture
description languages have focused predominantly on the struc-
tural view (i.e. components and connectors) and sometimes on be-
haviour at the architectural level. They have offered limited support
to address the needs of stakeholders with different concerns such as
data management, safety, security, reliability and so on1.

One consequence of the tenet of using multiple views is a grow-
ing body of viewpoints that have become available, such as [10, 13,
9]. A second consequence is the rise of architecture frameworks

as coordinated sets of viewpoints. Most practising software archi-
tects must operate within an architecture framework prescribed for
them by their organization or client. Current frameworks tend to
be closed—as a result, (i) it is difficult to re-use viewpoints and
concerns for defining new frameworks to be used in different orga-
nizations or domains; and (ii) it is impossible to define consistency
rules among viewpoints once forever, since such rules are not re-
usable as the main artefacts themselves.

With the aim of taking a step towards the solution of these current
limitations, the goal of this paper is to provide an infrastructure,
called MEGAF, for building reusable architecture frameworks.

As analysed in [5], once an organization has defined a frame-
work to be used within its domain, the organization can more eas-
ily capitalize investments in evaluation, training, and automated
tools. Using the conceptual foundations of ISO/IEC 42010 [8],
we show how automated support for viewpoints, as first-class en-
tities, can provide architects with improved support for architec-
tural modelling and its application to the analysis of architecture
descriptions. Our approach also provides a basis for sharing and
reuse of such capabilities across projects (and the community) as
an interface to a repository of reusable architectural knowledge.
More precisely, MEGAF allows software architects to create new
architecture frameworks by means of the following features: i) it
provides mechanisms to store views, viewpoints, stakeholders and
system concerns; ii) it provides mechanisms to define correspon-

dences among views, viewpoints, stakeholders, system concerns
and even among architectural elements that are part of them; iii)
it enables consistency and completeness checks based on defined
architectural relationships and rules among elements.

MEGAF is realized by means of megamodeling techniques [1]
that provide appropriate ways for handling different type of mod-
els. By considering views, viewpoints, stakeholders, and concerns
as first class elements of a megamodel, MEGAF allows software ar-
chitects to define, store, and combine them in order to generate the
desired architecture framework. In order to understand the power
of this technology, by representing views as sets of models we are

1See [8] for an extensive discussion of the range of architecturally-
relevant system concerns.

able, for instance, to define links among different views, to define
links between artefacts that constitute each view, and to create and
store views in libraries.

The paper is structured as follows: Section 2 introduces architec-
ture frameworks, the conceptual foundations of ISO/IEC 42010 for
architecture description, and highlights the main existing problems
that represent the motivation of this paper. Section 3 is the heart
of this paper and presents our approach for realizing architecture
frameworks. Section 4 concludes the paper by highlighting future
research directions.

2. ARCHITECTURE DESCRIPTIONS AND

ARCHITECTURE FRAMEWORKS
ISO/IEC 42010, Software and System Engineering — Architec-

ture Description [8], is the internationalized version of IEEE Std
1471, first published in 2000 [7]. The standard addresses archi-

tecture description: the practices of recording software, system
and enterprise architectures in a consistent form so that they may
be understood, documented, analysed and realized. The standard
is method-neutral; designed to be usable by architects employing
many different architecting methods. ISO/IEC 42010 brings into
focus mechanisms for reuse and interoperability of architecting
techniques through three mechanisms: (i) architecture viewpoints:
common ways of expressing and solving a set of known architec-
tural concerns that may be reused across projects; (ii) architecture

frameworks: coordinated set of viewpoints for use by a particular
stakeholder community or domain of application; (iii) architecture

description languages (ADLs) [11] capable of expressing certain
system concerns through one or more modelling resources.

Architecture viewpoints, as defined by the standard, codify the
practice in architecting of specifying an architecture via multiple
views of that architecture where each view is created using some set
of conventions, notations and modelling practices. These conven-
tions and associated practices form the viewpoint. The key idea of
an architecture viewpoint is a set of modelling resources able to ad-

dress a particular set of system concerns for a particular audience

of system stakeholders. As such, a viewpoint is a form of reusable
architectural knowledge (like a pattern or style) for solving a cer-
tain kind of architectural description problem with tried-and-tested
modelling techniques.

An architecture framework builds on the viewpoint idea as a co-
ordinated set of viewpoints, conventions, principles and practices
of architecture description established within a specific domain of
application or community of stakeholders. Similarly, an ADL is a
packaging of one or more types of model (usually unified by a com-
mon syntax and semantics) enabling certain system concerns to be
expressed through one or more types of modelling. For a discus-
sion of the proposed content model and mechanism for architecture
frameworks in ISO/IEC 42010, see [5].

The idea of an architecture framework dates back to the 1970s.
In enterprise architecture, Zachman popularized the term through
his information systems architecture framework [14]. Since then,
many frameworks have been proposed, published and used, in a
variety of domains and defined with varying degrees of formality.
Recent frameworks include GERAM, TOGAF, and DODAF. Ar-
chitecting methods are often presented as frameworks, i.e. as a
coordinated set of viewpoints to use [10, 6, 13, 2, 4]. The recurring
idea among these is that an architecture framework is a prefabri-
cated structure that one can use to organize an architecture descrip-
tion into complementary views [5].

The architecture frameworks proposed till now have been de-
fined with limited degrees of rigour; limiting users’ ability to reuse

Viewpoints Stakeholders Architecture Models

VP1 VP2 VPn… St1 St2 Stm…

CR1 CR2 CRi… V1 V2 Vo…MK1 MK2 …

AM1 AM2 AMh…

governs

MKr

Model Kinds

System Concerns

Correspondence Rules Views

Correspondence

SC1 SC2 SCk…

CR1 CR2 CRi… V1 V2 Vo…MK1 MK2 …

C1 C2 Ce…

frames addresses

MKr

holds

Architectural

Framework 1

Architectural

Framework 2

Architectural

Description 1

created within

Figure 1: Overview of MEGAF

those frameworks and their constituent elements. Furthermore, while
there is a growing number of notations and automated tools to sup-
port them, solutions to the general problems of architecture de-
scription are still scattered. Much work is done with notations
(such as UML) not directly suited to specialized system concerns
(such as performance, availability or cost); most automated tools
are closed—supporting at most one architecture framework or only
a few types of notations; the tools for cross-model or cross-view
checking are limited or do not exist.

In the remainder of this paper we demonstrate how to reify the
ontology of ISO/IEC 42010 to provide automated support for a
number of features that will address part of the limitations above
discussed.

3. MEGAMODELLING ARCHITECTURE

FRAMEWORKS
Megamodeling has been proposed with the aim of supporting

modelling in the large, i.e. dealing with models, metamodels, and
their properties and relations. Intuitively, a megamodel is a model
of which at least some elements represent and/or refer to models or
metamodels. Megamodeling offers the possibility to specify se-
mantic links between models (and metamodels) and to navigate
among them. This is fundamental in MEGAF since architecture
views generally have important relations defined among them.

In order to have a homogeneous framework we make the as-
sumption that all of the heterogeneous artefacts that we use are
models and that each model conforms to its metamodel. This en-
ables the management of complex artefacts since their complexity
is defined and encoded in the metamodel, thus enabling program-
matic management of (even complex) models. This assumption
follows a basic tenet of the ISO/IEC 42010 standard: each view
conforms to a viewpoint, and each architecture model conforms to
a model kind. The assumption also seems reasonable in light of
the recent Doc2Model (Document to Model2) Eclipse project for
parsing structured documents to produce EMF3 models.

The result is MEGAF, which is an infrastructure for realizing
architecture frameworks which can be used to create architecture
descriptions. By referring to Figure 1:
◮ MEGAF is an extensible repository of viewpoints, views, model
kinds, architecture models, system concerns, and stakeholders.
◮ correspondences and correspondence rules between arbitrary el-
ements can be created in MEGAF. They enable the architect to ex-
press and enforce relations both between various elements inside an
architecture description and across architecture descriptions (such
as for product lines or systems of systems).
◮ MEGAF provides functionalities that allow software architects to

2
http://eclipse.org/proposals/doc2model

3
http://www.eclipse.org/modeling/emf

create their own framework by properly selecting among artefacts
previously defined and resident inside MEGAF.
◮ Once the framework has been defined, it can be used to real-
ize the architecture description of the system-of-interest. MEGAF

allows the architecture description to be created compliant to the ar-
chitecture framework, such as the realized architecture models con-
form to suitable model kinds contained in the architecture frame-
work; moreover views are governed by viewpoints defined in the
architecture framework and address some system concerns.

We identified three potential classes of users that would benefit
from this work:
◮ “ordinary” architects (and their organizations) are most likely
to use a predefined architecture framework. These end-users do
not create new viewpoints, but use an existing framework “out of
the box”, however, they may need to customize the presentation of
architecture descriptions for various stakeholder audiences or inte-
grate that framework with existing project tools or artefacts.
◮ “senior” architects create new viewpoints or model kinds to ad-
dress particular system concerns (e.g. fault tolerance) not addressed
by a current framework. They would then integrate those by linking
them with other existing representations.
◮ researchers develop new analysis techniques or representations
on top of existing base derived from the previous two cases.

In the remainder of the paper we make use of a running example
to show how an architecture description and an architecture frame-
work may be modelled using our approach. The running example
is a simple architecture description for a Subscription-based Sensor
Collection Service (SBSCS)4.

3.1 Conceptual overview of MEGAF
The initial step for building MEGAF is the creation of a generic

metamodel for software architecture megamodels; we call this meta-
model GMM4SA that stands for Global Model Management for
Software Architectures. Models conforming to GMM4SA have
other models as first class entities, such as architectural models,
their metamodels, external models for representing correspondences,
and so on. Relationships expressed in the ISO/IEC 42010 stan-
dard have been encoded into GMM4SA, so that each megamodel
conforming to it must satisfy those relationships in order to be
valid. Additional relationships and rules, specific to an architec-
ture framework or organization are defined by means of weaving
models and OCL5 constraints; these implement correspondences
and correspondence rules, respectively. Therefore, each architec-
ture description (AD) element (e.g. view, viewpoint, stakeholder,
concern, etc.) can be explicitly represented via a model or a model
element depending on its granularity (e.g. the SystemConcern be-
comes a metaclass that we can instantiate as many times we need
to model different concerns, whereas ArchitectureModel becomes
a metaclass that references an external resource, so its instances
are externally defined models). The interested reader can find the
GMM4SA metamodel on the web-page of MEGAF.

Referring to the three features of MEGAF highlighted in the in-
troduction, a megamodel conforming to GMM4SA can be consid-
ered a container in which views, viewpoints, stakeholders and sys-
tem concerns are stored and maintained (point (i)). As described
before, GMM4SA offers two mechanisms to define correspondences
among AD elements (point (ii)): the first is Correspondence that
allows software architects to define weaving relationships between
AD elements; the second is CorrespondenceRules expressed in terms

4
http://www.iso-architecture.org/ieee-1471/docs/

SBSCS-AD-v02.pdf
5OMG Object Constraint Language (OCL): http://www.omg.
org/spec/OCL

of OCL constraints. These constraints can be defined between
metamodels, models, or AD elements (point (iii)).

Correspondences among AD elements can be used by software
architects to perform strong and powerful consistency checks that
can be defined at varying levels of granularity: (a) conformance
with respect to the standard and rules defined therein, (b) checks of
rules that are framework-specific, (c) checks of rules that are “lo-
cal” to the specific architecture description. While (a)-rules should
be defined once and forever, (b)-rules allow software architects
to properly define or constrain a framework, and (c)-rules allow
software architects to properly realize the software architecture de-
scription of the system-of-interest.

Figure 2 shows an overview of a megamodel defined for the run-
ning example SBSCS that conforms to GMM4SA. The megamodel
is conceptually divided into two parts, the architecture framework
and the architecture description. The architecture framework con-
tains three viewpoints, namely the financial, the operational and
the system viewpoints. Each viewpoint governs a view that is ref-
erenced in the architecture description. Associated to each view-
point there is a model kind, as shown in the figure. Model kinds are
described by a set of common information like overview, descrip-
tion and references to external documents. Moreover, each model
kind description is completed by its underlying metamodel. Ar-
chitecture models conforming to these metamodels are part of the
architecture description. As can be seen in figure, the SCS Dataflow

architecture model is realized with a graphical editor that we built
for the SID model kind. The Collection TLD architecture model
is realized by using the default tree-like editor. Finally, the SCP

profit statement architecture model is realized by means of an ex-
cel sheet, since we instrumented MEGAF with ATL transformations
able to import/export excel files.

In this simple example each viewpoint frames a system concern
and each system concern is addressed by a view. Finally, the ar-
chitecture description identifies only three of the eight stakeholders
associated to the framework; this is because the other stakeholders
do not have any concern related to the SBSCS architecture being
described. In the following section we explain the implementation
aspects of MEGAF by making use of this running example.

3.2 Implementation of MEGAF

The current MEGAF prototype is available at the MEGAF web-
page6. MEGAF is implemented as an Eclipse plugin and more
specifically, it is defined as an extension of the AM3 component of
AMMA7. This extension is composed of three main elements: (i)
the GMM4SA metamegamodel, (ii) a set of Java classes that extend
the core AM3 viewers and implement some auxiliary mechanisms
of MEGAF, and (iii) a set of OCL and ATL specifications imple-
menting the consistency and completeness checks for megamodels
conforming to GMM4SA.

Some functionalities of MEGAF are inherited from the AM3 en-
gine and from its available extensions. In order to provide software
architecture-specific functionalities we needed to extend the core
AM3 plugins in the context of the Eclipse and AMMA platforms.

First of all, due to its generality, the EMF editor is very basic;
then we extend it for specifying attributes and references related to
GMM4SA only. For example, we provide an editor for architec-
ture viewpoints in which the software architect can specify which
system concerns are framed by the current viewpoint; or for each
architecture description element, the software architect can specify
which architecture decisions affect it, and so on.

6MEGAF website: http://megaf.di.univaq.it
7AMMA website: http://www.sciences.univ-nantes.fr/

lina/atl/AMMAROOT

StakeholdersSystem Concerns

Model Kinds

Architecture Models
Correspondence Rules

Architecture Framework

Viewpoints

Financial

viewpoint (FVP)

System

viewpoint (SVP)

Operational

viewpoint (OVP)
Views

Financial

view (FV)

System

view (SV)

Operational

view (OV)

NodeCheck

Users

Operators

Developers

Acquirers

Accountants

Investors

Owners

Maintainers

Return on

investment

Timely delivery

of sensor data

Understanding of

interactions between

system elements

Architecture Description

Correspondence

governs

governs

frames

frames
frames

SID model Kind TLD model KindCFS model Kind
SCS Dataflow Collection TLD

NodeCheck: Weaving model of SCS

Dataflow and Collection TLD

SCS Profit Statement

Figure 2: Megamodel for the running example SBSCS

As conceptually highlighted in Section 3.1, we defined a number
of OCL constraints to help software architects in checking various
properties of the current architecture description. These OCL con-
straints are implemented as ATL queries since the whole MEGAF

tooling set is based on the AMMA platform (ATL is part of it as
well) and ATL provides a stable and intuitive implementation of
the OCL language; further on, ATL queries can be launched ei-
ther programmatically or via Ant scripts8. This results in a ho-
mogeneous framework to orchestrate, manage and configure such
queries within MEGAF.

The MEGAF tooling set can be extended: we provide an exten-
sion point to define how to import specific kinds of models into a
megamodel conforming to GMM4SA. For instance, a set of stake-
holders and concerns may be extracted from a stakeholder diagram,
or a set of decisions and rationales may be extracted from some
other Architecture Knowledge diagram, a specific model may be
extracted from an Excel sheet, and so on. In the SBSCS running
example, we implemented an extension of MEGAF that is able to
analyse a financial model in Excel and produce its corresponding
EMF model; this allows us to specify financial properties using Ex-
cel and consider this information in the megamodel of the SBSCS
architecture description.

4. CONCLUSION AND FUTURE WORK
This paper proposed MEGAF that is an infrastructure for creating

architecture frameworks that can be used for realizing architecture
descriptions. MEGAF is realized via megamodeling techniques that
natively promote the reuse of each architectural element that re-
sides in MEGAF: a framework can be created by simply linking and
reusing existing elements or adding new ones if needed. MEGAF

and its features have been presented by means of a simple running
example.

On the future work side, we plan to investigate more powerful
mechanisms to support the reuse, from the reuse of a framework
to the reuse of a single system concern. At the moment an artefact
can be reused as it is. Modifications can be made by hand, possi-
bly starting from a copy of the existing element. We are currently
investigating automatic extension and customization mechanisms
inspired by the work presented in [3], which, by means of compo-
sition operators, enables the customization and extension of ADLs.

8
http://ant.apache.org

5. REFERENCES
[1] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez.

Modeling in the large and modeling in the small. In LNCS,

Vol. 3599, 2005.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software

Architectures: Views and Beyond. Addison-Wesley, 2003.

[3] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and
A. Pierantonio. Developing next generation ADLs through
MDE techniques. In ICSE 2010, 2010.

[4] P. Eeles and P. Cripps. The Process of Software Architecting.
Addison Wesley, 2010.

[5] D. Emery and R. Hilliard. Every architecture description
needs a framework: Expressing architecture frameworks
using ISO/IEC 42010. In WICSA/ECSA 2009, 2009.

[6] C. Hofmeister, R. L. Nord, and D. Soni. Applied Software

Architecture. Addison-Wesley, 2000.

[7] IEEE. IEEE Std 1471, IEEE Recommended Practice for

Architectural Description of Software-Intensive Systems,
October 2000.

[8] ISO. ISO/IEC CD1 42010, Systems and software engineering

— Architecture description (draft), January 2010.

[9] P. Kruchten, R. Capilla, and J. C. Dueñas. The decision
view’s role in software architecture practice. IEEE Software,
26(2):36–42, 2009.

[10] P. B. Kruchten. The 4+1 view model of architecture. IEEE

Software, 12(6), 1995.

[11] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE TSE, 26(1), 2000.

[12] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. SIGSOFT Software Engineering

Notes, 17(4):40–52, 1992.

[13] N. Rozanski and E. Woods. Software Systems Architecture:

Working With Stakeholders Using Viewpoints and

Perspectives. Addison-Wesley Professional, 2005.

[14] J. A. Zachman. A framework for information systems
architecture. IBM Systems Journal, 26(3), 1987.

