
Realizing Aspects by Transforming for Events

Robert E. Filman 1 and Klaus Havelund 2

Research Institute for Advanced Computer Science

NASA Ames Research Center, MS/269-2
Moffett Field, CA 94035

rfilman@mail,arc.nasa.gov

2 KestrelTechnology

NASA Ames ResearchCenter, MS/269-2

Moffett Field, CA 94035
havelund@ema£1, arc. nasa. gov

Abstract. We explore the extent to which concerns can be separated in
programs by program transformation with respect to the events required
by these concerns. We describe our early work on developing a system to
perform event-driven transformation and discuss possible applications of
this approach.

1 Aspect-Oriented Programming

Programming is about realizing a set of requirements in an operational software

system. One has a (perhaps changing) set of properties desired of a system, and
builds and evolves that system to achieve those properties. Software engineering

is the accumulated set of processes, methodologies, and tools to ease that evo-

lutionary process, including techniques for figuring out what it is that we want

to build and mechanisms for producing higher-quality systems.
A recurrent theme of software engineering is that of "separation and local-

ization of concerns." That is, we have "concerns" in building a software system.

These concerns range from high-level ilities like reliability and security to low-

level issues like caching and synchronization. Our environment should provide

us with the linguistic structures to group together just the elements for a par-
ticular concern, while nevertheless yielding an efficient operational system. This

allows us to concentrate expertise on that concern in one particular place, easing

system development and maintenance.
Conventional programming languages (e.g., procedural, imperative and func-

tional languages) provide only a few facilities for separating concerns. The guid-

ing theme of these languages is functional decomposition. One determines what
the elements of the domain are and what behaviors they need to have, and writes

code to implement these methods. The writer of this code must take account any

other requirements beyond pure functionality in the actual code that isn't some-
how otherwise supported in the environment. The insight of Object-Oriented

Programming was recognizing the leverage of localizing concerns centered on
functionality of the elements of the domain (in objects), indexing behavior with



respectto theseobjects(methodsonobjects)andprovidingmechanismsfor
acquiringdefaultbehaviorandvalues(inheritance).

Object-orienteddecompositionisoftengoodfor the"dominant"functional
concernofthesystem,but leavesotherconcerns unsupported. This is especially
true for those concerns that require coherent behavior across many different func-

tionalities. The best conventional programming can offer is to concentrate the

code of other concerns in another function or object, and demand programmers

explicitly invoke that code when appropriate. But spreading out the responsi-

bility for invoking the code for multiple concerns to all programmers produces
a more brittle system. Each programmer who has to do something right is one

more place that a mistake can be made; each spot where something needs to

be done is a potential maintenance mishap. Additionally, there may be execu-
tion costs in control transfer. Some separate concerns may require so much local

context that they may not even be expressible as separate subprograms.

Object-Orientation hasn't given us is any leverage on the problem of cross-

cutting requirements and behaviors--elements that require matching code in

many places in a system, but which are not neatly packagable in the standard

object decompositions. Aspect-Oriented Programming (AOP) (and, more gener-

ally, Aspect-Oriented Software Development (AOSD)) is an emerging technology

for creating programming systems which provide a "single locus" for expressing
such cross-cutting behavior while nevertheless creating systems that actually ex-

ecute efficiently. The general theme of AOSD is to let programmers express the
behavior for each concerns in its own element. Such a system must also include

some directions for how the different concerns are to be knitted together into a

working system (for example, which each separate concern applies) and a mecha-

nism for actually producing a working system from these elements. For example,

most AOP systems given one a way of saying, "High security is achieved by doing

X. Reliability is achieved by doing Y. I want high security in the following places

in the code, and reliability on these operations." The AOP system then produces

an object that invokes the high security and reliability codes appropriately.

2 AOP and Events

Elsewhere, we have argued that the programmatic essence of Aspect-Oriented

Programming is making quantified programmatic assertions over programs that
otherwise are not annotated to receive these assertions [1-3]. That is, in an AOP

system, one wants to be able to say things of the form, "In this program, when

the following is true, do the following," without having to go around marking the

places that need the desired modification. Most naturally, most of the kinds of

quantified statements that programmers want to make are about behavior that

is to take place when certain conditions are realized in the executing program.

Consider some AOP applications:

Synchronization in distributed systems [4, 5] Code to check the synchro-
nization condition ought to run before and after synchronization operations.



Thiscodeneedsinternalstate(forexample,lockstateandaperhapsaqueue
ofwaitingprocesses.)

Buffer manipulation in operatingsystemskernels [6] Inoperatingsystems
code,prefetchingof pagesis to beexecutedwhenapagefaulteventoccurs
withintherun-timeexecutioncontextof aprefetchadvisory.Enteringand
leavingsuchcontextsarealsoevents.

Distributed middleware[7-9] Aspectscanrunoninter-objectcommunica-
tionin distributedsystemsto checkfor consistentconfigurations,automate
testing,andprovidea greatvarietyof otherdynamicallyconfigurablebe-
havior.

Distributed quality-of-service[10,11]Byinterceptingserviceinvocationevents,
aspectscanbeusedto regulatequalityof servicein concurrentsystems.

Collaborationand design[12,13] Byintercedingat serviceinvocationand
repositoryentry,aspectscanbeusedto enforceaccesscontrol,synchroniza-
tion,persistenceandresourcemanagementin collaborativesystems.

E-commerce[14,15] Douenceet.al provideanexampleofusingcomplexhis-
toriesof clienteventsto determinee-commerceprices.Truyenet. al argue
that appropriateaspectbehavioriscontrolledbya complexcontextsetup
bya sequenceofuseractions.

Replication [16-18]Replicationthroughaspectsis accomplishedby taking
eachactionthatchangesstateandpropagatingit to thereplicants.

Debugging[3] AOPtechniquescanbeusedto createthetraceof eventsto
trackprogramexecutionor to inserttheswitchingcommandsto force(con-
current)programsto exploremultipleprogrampaths.

Programinstrumentation [19] AOPtechniquescanbeusedto insertlog-
ginginformationonsystemperformanceat interestingjuncturesinprogram
execution.
MostconventionalAOPsystemsrelyprimarilyonwrappingfunctioncalls

withaspectbehavior.However,theseexamplesillustratetheneedto beableto
respondto sequencesof events,actionsat the individualstatementlevel,and
propertiesofthestateof themodeledsystem.

Sowhatis anevent?Ultimately,wewantto beableto quantifyoverany-
thingthat changesthedataor programcounterstateof theabstractmachine
executinga givenprogram.Unfortunately,theabstractinterpreterisnotcom-
pletelyaccessibleat theprogramminglevel--itisneitherfixedbythelanguage
definitionnordoall its activities(forexample,threadswitchingandgarbagecol-
lection)haveanyvisiblerealizationin theprogramtext.Similarly,anoptimizing
compilermayrearrangeorelidean"obvious"sequenceofexpectedevents.And
finally,thedatastateof theabstractinterpreter(including,asit does,all of
memory)canbeagrandandawkwardthingtomanipulate.

Nevertheless,muchof a programis accessible---wedo,afterall, havethe
programtext (or thebytecode),andcanmanipulatethat codeto ourheart's
content.Wemaynotbeableto captureeverythingthatgoesonin aparticular
interpretiveenvironment,wecangetcloseenoughfor manypracticalpurposes.
Thestrategyweadoptisto arguethatmostdynamicevents,whilenotnecessar-
ily localto aparticularspotin thesourcecode,areneverthelesstiedto placesin



thesourcecode.Table1 illustratessomeprimitiveeventsandtheirassociated
codeloci.

Usersarelikelyto wantto expressmorethanjust primitiveevents.The
languageofeventswill alsowantto describerelationshipsamongevents,such
asthat oneeventoccurredbeforeanother,that a setof eventsmatchsome
particularpredicate,that aneventoccurredwithina particulartimeframe,or
that noeventmatchinga particularpredicateoccurred.Thissuggeststhat the
eventlanguagewill need(1)abstracttemporalrelationships,suchas"before"
and"after," (2)abstracttemporalquantifiers,suchas"always"and"never",
(3) concretetemporalrelationshipsreferringto clocktime,(4) cardinalityre-
lationshipsonthenumbertimessomeeventhasoccurred,and(5)aggregation
relationshipsfordescribingsetsof events.

Event Syntactic locus

Accessing the value of a variable or field References to that variable
Modifying the value of a variable or field Assignments to that variable

Invoking a subprogram Subprogram calls

Cycling through a loop Loop statements
Branching on a conditional The conditional statement
Initializing an instance The constructors for that object

Throwing an exception Throw statements
Catching an exception Catch statements
Waiting on a lock Wait and synchronize statements
Resuming after a lock wait Other's notify and end of synchronizations
Testing a predicate on several fields Every modification of any of those fields

Changing a value on the path to another Control and data flow analysis over statements (slices)
Swapping the running thread Not reliably accessible, but atomization may be possible

Being below on the stack Subprogram calls
Freeing storage Not reliably accessible, but can try using built-in primitives
Throwin_ an error Not reliably accessible; could happen anywhere

Table 1. Table 1: Events and event loci

We are currently working on a system where a set of event-action pairs,

along with a program, would be presented to a compiler. Each event action pair
would include a sentence describing the interesting event in the event language

and an action to be executed when that event is realized. Said actions would

be programs, and would be parameterized with respect to the elements of the

matching events. Examples of such assertions are:

- On every call to method foo in a class that implements the interface B,

replace the second parameter of the call to foo with the result of applying

method f to that parameter.

- Whenever the value of x+y in any object of class A ever exceeds 5, print a

message to the log and reset x to 0.



- If acalltomethodfoooccurswithin(someleveldownonthestack)method
bazbut withoutaninterveningcallto methodmumble,omit the call to
methodgorpin thebodyof foo.

- Everycallto foomustbefollowedby acallto bazwithoutanintervening
callto mumble.

Theseexamplesarein naturallanguage.Ofcourse,anyactualsystemwill
employsomethingformal.

Clearly,asufficiently"meta"interpretationmechanismwouldgiveusaccess
to manyinterestingeventsin the interpreter,enablinga moredirectimple-
mentationof theseideas.It hasoftenbeenobservedthat meta-interpretative
andreflectivesystemscanbeusedto buildAOPsystems[20].However,meta-
interpretershavetraditionallyexhibitedpoorperformance.Wearelookingfor
implementationstrategieswherethecostofeventrecognitionisonlypaidwhen
eventrecognitionis used.Thissuggestsa compilerthat wouldtransformpro-
gramsonthebasisofevent-actionassertions.Sucha compilerwouldworkwith
anextendedabstractsyntaxtreerepresentationofaprogram.It wouldmapeach
predicateoftheeventlanguageintotheprogramlocationsthat couldaffectthe
semanticsof thatevent.Suchamappingrequiresnotonlyabstractsyntaxtree
generation(parsing)andsymbolresolution,butalsodevelopingprimitiveswith
respectto thecontrolanddataflowoftheprogram,determiningthevisibility
andlifetimesofsymbols,andanalyzingtheatomicityof actionswith respectto
multiplethreads.

Javacompilesintoanintermediateform(Javabytecodes).In dealingwith
Java,thereisalsothechoiceasto whethertoprocesswithrespectto thesource
codeor thebytecode.Eachhasits advantagesanddisadvantages.Bytecodes
aremorereal:manyoftheissuesofinterest(actualaccessto variables,eventhe
powerconsumptionofinstructions)arerevealedpreciselyatthebytecodelevel.
Workingwithbytecodesallowsoneto modifyclassesforwhichonehasn'tthe
sourcecode,includingtheJavalanguagepackagesthemselves.(JOIE[21]and
Jmangler[22]areexamplesof anAOPsystemsthatperformtransformationsat
thebytecodelevel.)Ontheotherhand,sourcecodeis morenaturallyunder-
standable,allowswritingtransformationsat thehumanlevel,andeliminatesthe
needforunderstandingtheJVMandtheactionsofthecompiler.(DeVolder's
Prolog-basedmeta-programmingsystemisanexampleof source-leveltransfor-
mationfor AOP[23,24].)Wefindthecomplexityargumentsappealing.Thus,
ourimplementationplanis to workat thesourcecodelevel.

3 Related Work

DeVolderandhisco-workers[23,24]havearguedfor doingAOPby program
transformation,usinga Prolog-basedsystemworkingonthetext of Javapro-
grams.Wewanttoextendthoseideastoprogramsemantics,combiningboththe
textuallocusofdynamiceventsandtransformationsrequiringcomplexanalysis
of thesourcecode.



At the1998ECOOPAOPworkshop,FradetandSiidholt[25]arguedthat
certainclassesofaspectscouldbeexpressedasstaticprogramtransformations.
Theyexpandedthisargumentat the 1999ECOOPAOPworkshopto oneof
checkingforrobustness--non-localized,dynamicpropertiesof a system'sstate
[26].ColcombetandFradetrealizedan implementationof theseideasin [27],
applyingbothsyntacticandsemantictransformationsto enforcedesiredprop-
ertiesonprograms.In that system,theusercanspecifyadesiredpropertyof
aprogramasa regularexpressiononsyntacticallyidentifiedpointsin thepro-
gram,andtheprogramis transformedintoonethat raisesanexceptionwhen
the propertyis violated.Othertransformationalsystemsinclude,Ku a nota-
tionalattemptat formalizingtransformation[28],andSchongeret al'sproposal
to expressabstractsyntaxtreesin XMLanduseXMLtransformationtoolsfor
treemanipulation[29].

Nelsonetal. identifythreeconcern-levelfoundationalcompositionoperators:
correspondence,behavioralsemanticsandbinding[30].Correspondenceinvolves
identifyingnamesindifferententitiesthatare"thesame"--fordataitems,things
that shouldsharestorage;forfunctions,functionalfragmentsthat needto be
assembledintoawhole.Behavioralsemanticsdescribehowthefunctionalfrag-
mentsareassembled.Bindingis theusualissueof thestaticsanddynamicsof
systemconstructionandchange.Theydiscussalternativeformaltechniquesfor
establishingpropertiesofcomposedsystemswithinthisbasis.

Masuharaet.al presentasemantics-basedapproachto compilingAOPsys-
tems.Theyintroducethenotionof "joinpointshadows"--theplacesin thetext
wherethea particularaspectneedsto bewoven[31].

WalkerandMurphyargueforeventsasappropriate"join points"for AOP,
andthat theeventsexposedbyAspectJareinadequate[32].

4 Concluding remarks

Wehavesuggestedthat aninterestingwayto implementAOPsystemsis by
describingtheeventsthat areto triggeraspectbehavior,andtransformingan
existingprogramwith respectto theseevents.Wenotethat we'vebeencon-
sideringimplementationenvironments,notsoftwareengineering.Anunderlying
implementationdoesnotimplyanythingaboutthe"right" organizationof"sep-
arateconcerns"to presentto a user.In particular,wehavebeencompletely
agnosticabouttheappropriatestructurefortheactionsofaction-eventpairs.It
maybethecasethatunqualifieduseofaneventlanguagewithrawactioncode
snippetsisasoftwareengineeringwonder,butwedoubtit. Ontheotherhand,
webelievethatsuchtransformationalsystemwouldbeanexcellentenvironment
forexperimentingwithandbuildingsystemsforAOP.In somesense,theseideas
canbeviewedasadomain-specificlanguagefordevelopingaspect-orientedlan-
guages.

References

1. Filman,R.:Whatisaspect-orientedprogramming,revisited.[33]



2. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and

obliviousness. In: Workshop on Advanced Separation of Concerns (OOPSLA 2000).

(2000)

3. Filman, R.E., Havelund, K.: Source-code instrumentation and quantification of

events. [34] 45-49
4. Holmes, D., Noble, J., Potter, J.: Aspects of synchronization. In: Workshop on

Aspect Oriented Programming (ECOOP 1997). (1997)

5. Netinant, P., Elrad, T., Fayad, M.E.: A layered approach to building open aspect-

oriented systems: A framework for the design of on-demand system demodulariza-

tion. Comm. ACM 44 (2001) 83-85

6. Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., Ong, J.S.: Structuring op-

erating system aspects: Using AOP to improve OS structure modularity. Comm.

ACM 44 (2001) 79-82
7. Filman, R.E., Barrett, S., Lee, D.D., Linden, T.: Inserting ilities by controlling

communications. Comm. ACM 45 (2002) 116-122

8. Hunleth, F., Cytron, R., Gill, C.: Building customizable middleware using aspect

oriented programming. [35]

9. Jcrgensen, B.N., Truyen, E., Matthijs, F., Joosen, W.: Customization of object

request brokers by application specific policies. In: Proc. Middleware'2000. (2000)

10. Becker, C.: Quality of service and O.O. oriented middlewaxe multiple concerns and

their separation. [36] 117-126

11. Zinky, J., Shapiro, R., Loyal!, J., Pal, P., Atighetchi, M.: Separation of concerns

for reuse of systemic adaptation in quo 3.0. [33]

12. Filman, R.E.: A software architecture for intelligent synthesis environments. In:

Proc. 2001 IEEE Aerospace Conference. (2001) 2879-2888

13. Pinto, M., Amor, M., Fuentes, L., Troya, J.: Collaborative virtual environment

development: An aspect-oriented approach. [36] 97-102

14. Douence, R., Motelet, O., Siidholt, M.: Sophisticated crosscuts for e-commerce.

[33]
15. Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jcrgensen, B.N.: Customiza-

tion of on-line services with simultaneous client-specific views. [33]

16. Antunes, M., Miranda, H., Silva, A.R., Rodrigues, L., Martins, J.: Separating

replication from distributed communication: Problems and solutions. [36] 103-110

17. Filman, R.E., Lee, D.D.: Redirecting by injector. [36] 141-146

18. Herrero, J.L., S£nchez, F., Toro, M.: Fault tolerance AOP approach. In: Workshop

on Aspect-Oriented Programming and Separation of Concerns (Lancaster). (2001)

19. Deters, M., Cytron, R.K.: Introduction of program instrumentation using aspects.

[35]
20. Sullivan, G.T.: Aspect-oriented programming using reflection and meta-object

protocols. Comm. ACM 44 (2001) 95-97

21. Cohen, G.A.: Recombing concerns: Experience with transformation. In: Workshop

on Multi-Dimensional Separation of Concerns (OOPSLA 1999). (1999)

22. Kniesel, G., Costanza, P., Austermann, M.: JMangler--a framework for load-time

transformation of Java class files. In: First IEEE Int'l Workshop on Source Code

Analysis and Manipulation (SCAM 2001). (2001)

23. De Volder, K., Brichau, J., Mens, K., D'Hondt, T.: Logic meta-

programming, a framework for domain-specific aspect programming languages.

(htt p://www.cs.ubc.ca/kdvolder/binaries/cacm-aop-paper.p df)

24. Volder, K.D., D'Hondt, T.: Aspect-oriented logic meta programming. In Cointe, P.,

ed.: Meta-Level Architectures and Reflection, 2nd Int'l Conf. Reflection. Volume

1616 of LNCS., Springer Verlag (1999) 250--272



25.Fradet,P.,Sfidholt,M.:AOP:Towardsagenericframeworkusingprogramtrans-
formationandanalysis.In:WorkshoponAspectOrientedProgramming(ECOOP
1998).(1998)

26.Fradet,P.,Sfidholt,M.: Anaspectlanguageforrobustprogramming.In: Int'l
WorkshoponAspect-OrientedProgramming(ECOOP1999).(1999)

27.Colcombet,T.,Fradet,P.:Enforcingtracepropertiesbyprogramtransformation.
In:Proc.27thACMSymp.onPrinciplesofProgrammingLanguages.(2000)54-66

28.Skipper,M.: A modelofcompositionorientedprogramming.In:Workshopon
Multi-DimensionalSeparationofConcernsinSoftwareEngineering(ICSE2000).
(2000)

29. Schonger, S., Pulvermueller, E., Sarstedt, S.: Aspect oriented programming and

component weaving: Using XML representations of abstract syntax trees. In: Work-

shop Aspektorientierte Softwareentwicklung (Bonn), Institut ffir Informatik III,

Universit_it Bonn (2002)

30. Nelson, T., Cowan, D., Alencar, P.: Supporting formal verification of crosscutting

concerns. In Yonezawa, A., Matsuoka, S., eds.: Metalevel Architectures and Sep-

aration of Crosscutting Concerns 3rd Int'l Conf. (Reflection 2001), LNCS 2192,

Springer-Verlag (2001) 153-169

31. Masuhara, H., Kiczales, G., Dutchyn, C.: Compilation semantics of aspect-oriented

programs. [34] 17-26

32. Walker, R.J., Murphy, G.C.: Joinpoints as ordered events: Towards applying im-

plicit context to aspect-orientation. In: Workshop on Advanced Separation of

Concerns in Software Engineering (ICSE 2001). (2001)

33. Workshop on Advanced Separation of Concerns (ECOOP 2001). In: Workshop on

Advanced Separation of Concerns (ECOOP 2001). (2001)

34. FOAL 2002: Foundations of Aspect-Oriented Langauges (AOSD-2002). In: FOAL

2002: Foundations of Aspect-Oriented Langauges (AOSD-2002). (2002)

35. "Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOP-

SLA 2001). In: Workshop on Advanced Separation of Concerns in Object-Oriented

Systems (OOPSLA 2001). (2001)

36. Proc. Int'l Workshop on Distributed Dynanfic Multiservice Architectures (ICDCS-

2001), Vol. 2. In: Proc. Int'l Workshop on Distributed Dynamic Multiservice Ar-

chitectures (ICDCS-2001), Vol. 2. (2001)


