Realizing Aspects by Transforming for Events

Robert E. Filman! and Klaus Havelund?

1 Research Institute for Advanced Computer Science
NASA Ames Research Center, MS/269-2
Moffett Field, CA 94035
rfilman@mail.arc.nasa.gov
? Kestrel Technology
NASA Ames Research Center, MS/269-2
Moffett Field, CA 94035

havelund@email.arc.nasa.gov

Abstract. We explore the extent to which concerns can be separated in
programs by program transformation with respect to the events required
by these concerns. We describe our early work on developing a system to
perform event-driven transformation and discuss possible applications of

this approach.

1 Aspect-Oriented Programming

Programming is about realizing a set of requirements in an operational software
system. One has a (perhaps changing) set of properties desired of a system, and
builds and evolves that system to achieve those properties. Software engineering
is the accumulated set of processes, methodologies, and tools to ease that evo-
lutionary process, including techniques for figuring out what it is that we want
to build and mechanisms for producing higher-quality systems.

A recurrent theme of software engineering is that of “separation and local-
ization of concerns.” That is, we have “concerns” in building a software system.
These concerns range from high-level ilities like reliability and security to low-
level issues like caching and synchronization. Our environment should provide
us with the linguistic structures to group together just the elements for a par-
ticular concern, while nevertheless yielding an efficient operational system. This
allows us to concentrate expertise on that concern in one particular place, easing
system development and maintenance.

Conventional programming languages (e.g., procedural, imperative and func-
tional languages) provide only a few facilities for separating concerns. The guid-
ing theme of these languages is functional decomposition. One determines what
the elements of the domain are and what behaviors they need to have, and writes
code to implement these methods. The writer of this code must take account any
other requirements beyond pure functionality in the actual code that isn’t some-
how otherwise supported in the environment. The insight of Object-Oriented
Programming was recognizing the leverage of localizing concerns centered on
functionality of the elements of the domain (in objects), indexing behavior with



respect to these objects (methods on objects) and providing mechanisms for
acquiring default behavior and values (inheritance).

Object-oriented decomposition is often good for the “dominant” functional
concern of the system, but leaves other concerns unsupported. This is especially
true for those concerns that require coherent behavior across many different func-
tionalities. The best conventional programming can offer is to concentrate the
code of other concerns in another function or object, and demand programmers
explicitly invoke that code when appropriate. But spreading out the responsi-
bility for invoking the code for multiple concerns to all programmers produces
a more brittle system. Each programmer who has to do something right is one
more place that a mistake can be made; each spot where something needs to
be done is a potential maintenance mishap. Additionally, there may be execu-
tion costs in control transfer. Some separate concerns may require so much local
context that they may not even be expressible as separate subprograms.

Object-Orientation hasn’t given us is any leverage on the problem of cross-
cutting requirements and behaviors—elements that require matching code in
many places in a system, but which are not neatly packagable in the standard
object decompositions. Aspect-Oriented Programming (AOP) {and, more gener-
ally, Aspect-Oriented Software Development (AOSD)) is an emerging technology
for creating programming systems which provide a “single locus” for expressing
such cross-cutting behavior while nevertheless creating systems that actually ex-
ecute efficiently. The general theme of AOSD is to let programmers express the
behavior for each concerns in its own element. Such a system must also include
some directions for how the different concerns are to be knitted together into a
working system (for example, which each separate concern applies) and a mecha-
nism for actually producing a working system from these elements. For example,
most AOP systems given one a way of saying, “High security is achieved by doing
X . Reliability is achieved by doing Y. I want high security in the following places
in the code, and reliability on these operations.” The AOP system then produces
an object that invokes the high security and reliability codes appropriately.

2 AOP and Events

Elsewhere, we have argued that the programmatic essence of Aspect-Oriented
Programming is making quantified programmatic assertions over programs that
otherwise are not annotated to receive these assertions [1-3]. That is, in an AOP
system, one wants to be able to say things of the form, "In this program, when
the following is true, do the following,” without having to go around marking the
places that need the desired modification. Most naturally, most of the kinds of
quantified statements that programmers want to make are about behavior that
is to take place when certain conditions are realized in the executing program.

Consider some AOP applications:

Synchronization in distributed systems {4, 5] Code to check the synchro-
nization condition ought to run before and after synchronization operations.



This code needs internal state (for example, lock state and a perhaps a queue
of waiting processes.)

Buffer manipulation in operating systems kernels [6] Inoperating systems
code, prefetching of pages is to be executed when a page fault event occurs
within the run-time execution context of a prefetch advisory. Entering and
leaving such contexts are also events.

Distributed middleware [7-9] Aspects can run on inter-object communica-
tion in distributed systems to check for consistent configurations, automate
testing, and provide a great variety of other dynamically configurable be-
havior.

Distributed quality-of-service [10,11] By intercepting service invocation events,
aspects can be used to regulate quality of service in concurrent systems.
Collaboration and design [12,13] By interceding at service invocation and
repository entry, aspects can be used to enforce access control, synchroniza-

tion, persistence and resource management in collaborative systems.

E-commerce [14,15] Douence et. al provide an example of using complex his-
tories of client events to determine e-commerce prices. Truyen et. al argue
that appropriate aspect behavior is controlled by a complex context set up
by a sequence of user actions.

Replication [16—-18] Replication through aspects is accomplished by taking
each action that changes state and propagating it to the replicants.

Debugging [3] AOP techniques can be used to create the trace of events to
track program execution or to insert the switching commands to force (con-
current) programs to explore multiple program paths.

Program instrumentation [19] AOP techniques can be used to insert log-
ging information on system performance at interesting junctures in program

execution.

Most conventional AOP systems rely primarily on wrapping function calls
with aspect behavior. However, these examples illustrate the need to be able to
respond to sequences of events, actions at the individual statement level, and
properties of the state of the modeled system.

So what is an event? Ultimately, we want to be able to quantify over any-
thing that changes the data or program counter state of the abstract machine
executing a given program. Unfortunately, the abstract interpreter is not com-
pletely accessible at the programming level—it is neither fixed by the language
definition nor do all its activities (for example, thread switching and garbage col-
lection) have any visible realization in the program text. Similarly, an optimizing
compiler may rearrange or elide an "obvious” sequence of expected events. And
finally, the data state of the abstract interpreter (including, as it does, all of
memory) can be a grand and awkward thing to manipulate.

Nevertheless, much of a program is accessible—we do, after all, have the
program text (or the byte code), and can manipulate that code to our heart’s
content. We may not be able to capture everything that goes on in a particular
interpretive environment, we can get close enough for many practical purposes.
The strategy we adopt is to argue that most dynamic events, while not necessar-
ily local to a particular spot in the source code, are nevertheless tied to places in



the source code. Table 1 illustrates some primitive events and their associated

code loci.

Users are likely to want to express more than just primitive events. The
language of events will also want to describe relationships among events, such
as that one event occurred before another, that a set of events match some
particular predicate, that an event occurred within a particular timeframe, or
that no event matching a particular predicate occurred. This suggests that the

event language will need (1) abstract

temporal relationships, such as ”before”

and ”after,” (2) abstract temporal quantifiers, such as "always” and "never”,
(3) concrete temporal relationships referring to clock time, (4) cardinality re-

lationships on the number times some

event has occurred, and (5) aggregation

relationships for describing sets of events.

Event

Syntactic locus

Accessing the value of a variable or field

References to that variable

Modifying the value of a variable or field

Assignments to that variable

Invoking a subprogram

Subprogram calls

Cycling through a loop

Loop statements

Branching on a conditional

The conditional statement

Initializing an instance

The constructors for that object

Throwing an exception

Throw statements

Catching an exception

Catch statements

Waiting on a lock

Wait and synchronize statements

Resuming after a lock wait

Other’s notify and end of synchronizations

Testing a predicate on several fields

Every modification of any of those fields

Changing a value on the path to another

Control and data flow analysis over statements (slices)

Swapping the running thread

Not reliably accessible, but atomization may be possible

Being below on the stack

Subprogram calls

Freeing storage

Not reliably accessible, but can try using built-in primitives

Throwing an error

Not reliably accessible; could happen anywhere

Table 1. Table 1:

Events and event loci

We are currently working on a system where a set of event-action pairs,
along with a program, would be presented to a compiler. Each event action pair
would include a sentence describing the interesting event in the event language
and an action to be executed when that event is realized. Said actions would
be programs, and would be parameterized with respect to the elements of the
matching events. Examples of such assertions are:

— On every call to method foo in a class that implements the interface B,
replace the second parameter of the call to foo with the result of applying

method f to that parameter.

— Whenever the value of x+y in any object of class A ever exceeds 3, print a
message to the log and reset x to 0.




— If a call to method foo occurs within (some level down on the stack) method
baz but without an intervening call to method mumble, omit the call to
method gorp in the body of foo.

— Every call to foo must be followed by a call to baz without an intervening

call to mumble.

These examples are in natural language. Of course, any actual system will
employ something formal.

Clearly, a sufficiently "meta” interpretation mechanism would give us access
to many interesting events in the interpreter, enabling a more direct imple-
mentation of these ideas. It has often been observed that meta-interpretative
and reflective systems can be used to build AOP systems [20]). However, meta-
interpreters have traditionally exhibited poor performance. We are looking for
implementation strategies where the cost of event recognition is only paid when
event recognition is used. This suggests a compiler that would transform pro-
grams on the basis of event-action assertions. Such a compiler would work with
an extended abstract syntax tree representation of a program. It would map each
predicate of the event language into the program locations that could affect the
semantics of that event. Such a mapping requires not only abstract syntax tree
generation (parsing) and symbol resoluticn, but also developing primitives with
respect to the control and data flow of the program, determining the visibility
and lifetimes of symbols, and analyzing the atomicity of actions with respect to
multiple threads.

Java compiles into an intermediate form (Java byte codes). In dealing with
Java, there is also the choice as to whether to process with respect to the source
code or the byte code. Each has its advantages and disadvantages. Byte codes
are more real: many of the issues of interest (actual access to variables, even the
power consumption of instructions) are revealed precisely at the byte code level.
Working with byte codes allows one to modify classes for which one hasn’t the
source code, including the Java language packages themselves. (JOIE [21] and
Jmangler [22] are examples of an AOP systems that perform transformations at
the byte code level.) On the other hand, source code is more naturally under-
standable, allows writing transformations at the human level, and eliminates the
need for understanding the JVM and the actions of the compiler. (De Volder’s
Prolog-based meta-programming system is an example of source-level transfor-
mation for AOP [23,24].) We find the complexity arguments appealing. Thus,
our implementation plan is to work at the source code level.

3 Related Work

De Volder and his co-workers [23,24] have argued for doing AOP by program
transformation, using a Prolog-based system working on the text of Java pro-
grams. We want to extend those ideas to program semantics, combining both the
textual locus of dynamic events and transformations requiring complex analysis

of the source code.



At the 1998 ECOOP AOP workshop, Fradet and Siidholt [25] argued that
certain classes of aspects could be expressed as static program transformations.
They expanded this argument at the 1999 ECOOP AOP workshop to one of
checking for robustness—non-localized, dynamic properties of a system’s state
[26]. Colcombet and Fradet realized an implementation of these ideas in [27],
applying both syntactic and semantic transformations to enforce desired prop-
erties on programs. In that system, the user can specify a desired property of
a program as a regular expression on syntactically identified points in the pro-
gram, and the program is transformed into one that raises an exception when
the property is violated. Other transformational systems include, Ku a nota-
tional attempt at formalizing transformation [28], and Schonger et al’s proposal
to express abstract syntax trees in XML and use XML transformation tools for
tree manipulation [29].

Nelson et al. identify three concern-level foundational composition operators:
correspondence, behavioral semantics and binding [30]. Correspondence involves
identifying names in different entities that are " the same” —for data items, things
that should share storage; for functions, functional fragments that need to be
assembled into a whole. Behavioral semantics describe how the functional frag-
ments are assembled. Binding is the usual issue of the statics and dynamics of
system construction and change. They discuss alternative formal techniques for
establishing properties of composed systems within this basis.

Masuhara et. al present a semantics-based approach to compiling AQOP sys-
tems. They introduce the notion of “join point shadows” —the places in the text
where the a particular aspect needs to be woven [31].

Walker and Murphy argue for events as appropriate ”join points” for AOP,
and that the events exposed by AspectJ are inadequate [32].

4 Concluding remarks

We have suggested that an interesting way to implement AOP systems is by
describing the events that are to trigger aspect behavior, and transforming an
existing program with respect to these events. We note that we've been con-
sidering implementation environments, not software engineering. An underlying
implementation does not imply anything about the ” right” organization of ”sep-
arate concerns” to present to a user. In particular, we have been completely
agnostic about the appropriate structure for the actions of action-event pairs. It
may be the case that unqualified use of an event language with raw action code
snippets is a software engineering wonder, but we doubt it. On the other hand,
we believe that such transformational system would be an excellent environment
for experimenting with and building systems for AOP. In some sense, these ideas
can be viewed as a domain-specific language for developing aspect-oriented lan-
guages.

References

1. Filman, R.: What is aspect-oriented programming, revisited. (33]



10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and
obliviousness. In: Workshop on Advanced Separation of Concerns (OOPSLA 2000).

(2000)
Filman, R.E., Havelund, K.: Source-code instrumentation and quantification of

events. [34] 45-49

Holmes, D., Noble, J., Potter, J.: Aspects of synchronization. In: Workshop on
Aspect Oriented Programming (ECOOP 1997). (1997)

Netinant, P., Elrad, T., Fayad, M.E.: A layered approach to building open aspect-
oriented systems: A framework for the design of on-demand system demodulariza-
tion. Comm. ACM 44 (2001) 83-85

Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N, Ong, J.S.: Structuring op-
erating system aspects: Using AOP to improve OS structure modularity. Comm.
ACM 44 (2001) 79-82

Filman, R.E., Barrett, S., Lee, D.D., Linden, T.: Inserting ilities by controlling
communications. Comm. ACM 45 (2002) 116-122

Hunleth, F., Cytron, R., Gill, C.: Building customizable middleware using aspect
oriented programming. {35]

Jorgensen, B.N., Truyen, E., Matthijs, F., Joosen, W.: Customization of object
request brokers by application specific policies. In: Proc. Middleware’2000. (2000)
Becker, C.: Quality of service and O.0. oriented middleware multiple concerns and
their separation. [36] 117-126

Zinky, J., Shapiro, R., Loyall, J., Pal, P, Atighetchi, M.: Separation of concerns
for reuse of systemic adaptation in quo 3.0. [33]

Filman, R.E.: A software architecture for intelligent synthesis environments. In:
Proc. 2001 IEEE Aerospace Conference. (2001) 2879-2888

Pinto, M., Amor, M., Fuentes, L., Troya, J.: Collaborative virtual environment
development: An aspect-oriented approach. [36] 97-102

Douence, R., Motelet, O., Siidholt, M.: Sophisticated crosscuts for e-commerce.
33]

’[I‘ruyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jgrgensen, B.N.: Customiza-
tion of on-line services with simultaneous client-specific views. [33]

Antunes, M., Miranda, H., Silva, A.R., Rodrigues, L., Martins, J.: Separating
replication from distributed communication: Problems and solutions. [36] 103-110
Filman, R.E., Lee, D.D.: Redirecting by injector. [36] 141-146

Herrero, J.L., Sdnchez, F., Toro, M.: Fault tolerance AOP approach. In: Workshop
on Aspect-Oriented Programming and Separation of Concerns (Lancaster). (2001)
Deters, M., Cytron, R.K.: Introduction of program instrumentation using aspects.
(35]

Sullivan, G.T.: Aspect-oriented programming using reflection and meta-object
protocols. Comm. ACM 44 (2001) 95-97

Cohen, G.A.: Recombing concerns: Experience with transformation. In: Workshop
on Multi-Dimensional Separation of Concerns (OOPSLA 1999). (1999)

Kniesel, G., Costanza, P., Austermann, M.: JMangler—a framework for load-time
transformation of Java class files. In: First IEEE Int’l Workshop on Source Code
Analysis and Manipulation (SCAM 2001). (2001)

De Volder, K., Brichau, J., Mens, K., D'Hondt, T.: Logic meta-
programming, a framework for domain-specific aspect programming languages.
(ht’cp://www.cs.ubc.ca/kdvolder/binaries/cacm-aop-paper.pdf)

Volder, K.D., D’Hondt, T.: Aspect-oriented logic meta programming. In Cointe, P,
ed.: Meta-Level Architectures and Reflection, 2nd Int’l Conf. Reflection. Volume
1616 of LNCS., Springer Verlag (1999) 250--272



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Fradet, P., Siidholt, M.: AOP: Towards a generic framework using program trans-
formation and analysis. In: Workshop on Aspect Oriented Programming (ECOOP
1998). (1998)

Fradet, P., Siidholt, M.: An aspect language for robust programming. In: Int’l
Workshop on Aspect-Oriented Programming (ECOOP 1999). (1999)

Colcombet, T., Fradet, P.: Enforcing trace properties by program transformation.
In: Proc. 27th ACM Symp. on Principles of Programming Languages. (2000) 54-66
Skipper, M.: A model of composition oriented programming. In: Workshop on
Multi-Dimensional Separation of Concerns in Software Engineering (ICSE 2000).
(2000)

Schonger, S., Pulvermueller, E., Sarstedt, S.: Aspect oriented programming and
component weaving: Using XML representations of abstract syntax trees. In: Work-
shop Aspektorientierte Softwareentwicklung (Bonn), Institut fiir Informatik III,
Universitit Bonn (2002)

Nelson, T., Cowan, D., Alencar, P.: Supporting formal verification of crosscutting
concerns. In Yonezawa, A., Matsuoka, S., eds.: Metalevel Architectures and Sep-
aration of Crosscutting Concerns 3rd Int’l Conf. (Reflection 2001), LNCS 2192,
Springer-Verlag (2001) 153-169

Masuhara, H., Kiczales, G., Dutchyn, C.: Compilation semantics of aspect-oriented
programs. [34] 17-26

Walker, R.J., Murphy, G.C.: Joinpoints as ordered events: Towards applying im-
plicit context to aspect-orientation. In: Workshop on Advanced Separation of
Concerns in Software Engineering (ICSE 2001). (2001)

Workshop on Advanced Separation of Concerns (ECOOP 2001). In: Workshop on
Advanced Separation of Concerns (ECOOP 2001). (2001)

FOAL 2002: Foundations of Aspect-Oriented Langauges (AOSD-2002). In: FOAL
2002: Foundations of Aspect-Oriented Langauges (AOSD-2002). (2002)
Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOP-
SLA 2001). In: Workshop on Advanced Separation of Concerns in Object-Oriented
Systems (OOPSLA 2001). (2001)

Proc. Int’l Workshop on Distributed Dynamic Multiservice Architectures (ICDCS-
2001), Vol. 2. In: Proc. Int’l Workshop on Distributed Dynamic Multiservice Ar-
chitectures (ICDCS-2001), Vol. 2. (2001)



