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Quantum computers hold the promise of solving computational problems which are intractable
using conventional methods [1]. For fault-tolerant operation quantum computers must correct errors
occurring due to unavoidable decoherence and limited control accuracy [2]. Here, we demonstrate
quantum error correction using the surface code, which is known for its exceptionally high tolerance
to errors [3–6]. Using 17 physical qubits in a superconducting circuit we encode quantum information
in a distance-three logical qubit building up on recent distance-two error detection experiments [7–
9]. In an error correction cycle taking only 1.1 µs, we demonstrate the preservation of four cardinal
states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit- and
phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-
free approach and apply corrections in postprocessing. We find a low error probability of 3 % per
cycle when rejecting experimental runs in which leakage is detected. The measured characteristics
of our device agree well with a numerical model. Our demonstration of repeated, fast and high-
performance quantum error correction cycles, together with recent advances in ion traps [10], support
our understanding that fault-tolerant quantum computation will be practically realizable.

The surface code [4, 11] is a planar realization of Ki-
taev’s toric code [3] which uses topological features of
a qubit lattice to correct errors in quantum information
processing systems. This code is a prominent contender
to reach fault-tolerant quantum computation because of
its high error threshold of about 1 % against quantum cir-
cuit noise [5, 12] and its compatibility with 2D architec-
tures. The surface code belongs to the family of stabilizer
codes [13, 14] which encode quantum information into a
joint subspace of definite parities on a set of physical data
qubits to form a logical qubit. Errors are detected using
measurements of auxiliary qubits to extract parity infor-
mation without collapsing the logical qubit state. The
fault-tolerant operation of a quantum computer requires
repeated detection and correction of both bit- and phase-
flip errors on data qubits. With an increasing number
of physical qubits and thus an increasing code distance
d the number of errors b(d − 1)/2c which can at least
be detected and corrected per error-correction cycle in-
creases, making the code more resilient when error rates
are sufficiently low.

Error correction limited to a single type of error has
been realized with repetition codes in nuclear magnetic
resonance [15], trapped ions [16], nitrogen-vacancy cen-
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ters [17] and superconducting circuits [9, 18]. In single-
cycle experiments, fault-tolerant stabilizer measurements
and correction of both types of errors have been demon-
strated with the five-qubit code and the Bacon-Shor code
[19–22]. Recently, error detection in a distance-two sur-
face code has been realized with seven qubits [7–9], and
only very recently, repeated stabilizer-based error correc-
tion has been demonstrated with a distance-three color
code in a trapped ion system [10].

Correction of both bit- and phase-flip errors requires
at least a distance-three code. In combination with fault-
tolerant circuits for error syndrome measurements, this
guarantees that any single error on any of the constituent
data and auxiliary qubits or operations can be corrected
[14, 23]. While the work we discuss here focuses on digi-
tal encoding of quantum information, continuous variable
encoding, for example in harmonic oscillator states, con-
stitutes an alternative approach to quantum error cor-
rection (QEC), see for example Refs. 24–27.

A DISTANCE-THREE SURFACE CODE IN
SUPERCONDUCTING CIRCUITS

Experimentally realizing a distance-three surface code
requires nine data qubits and eight auxiliary qubits, also
referred to in the literature as ancilla or measurement
qubits [23, 28, 29]. The qubits are arranged in a di-
agonal, planar square lattice, the edges of which are
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FIG. 1. Device concept, architecture and performance. a Conceptual representation of the distance-three surface code consisting
of data qubits (red circles), Z-type (green circles) and X-type auxiliary qubits (blue circles), with their connectivity indicated

by gray lines. The data qubits participating in the weight-three logical operators ẐL and X̂L are indicated by solid black
lines. Green (blue) plaquettes indicate X-type (Z-type) stabilizer circuits. b False-color micrograph of the device realizing
the concept in a with 17 transmon qubits, see legend for circuit elements and text for details. The qubit lattice is rotated
by 45 degrees with respect to a. c Frequency arrangement in three distinct bands for idling data qubits (red circles), idling
Z/X-type auxiliary qubits (green/blue circles), and readout resonators (violet open circles). The qubit-frequency tuning ranges
are indicated by vertical bars. d Cumulative distributions (integrated histograms) of single-qubit gate (pink), simultaneous
two-qubit gate (cyan), two-state (red) and three-state readout errors (light red).

shown in gray in the schematic Fig. 1a. The data qubits
Dj, j = 1 . . . 9, (red dots) form a 3× 3 array and are in-
terlaced with auxiliary qubits Ai, labeled Xi (blue) and
Zi, i = 1 . . . 4 (green). We realized this arrangement
in a superconducting circuit using 17 transmon qubits
[30] (yellow) capacitively coupled to each other along the
edges of the square array with ∼ 1 mm long coplanar
waveguide segments (turquoise), see Fig. 1b. We discuss
the fabrication of this device in Appendix A.

Using the auxiliary qubits Xi and Zi we measure the
parity of the neighboring two or four data qubits Dj,
which are located at the vertices of the blue and green
plaquettes, in the X or Z basis (Fig. 1a,b). In a Z-basis

measurement, if an odd number of the data qubits in-
volved in the parity operator under consideration is in
the |1〉-state the auxiliary qubit state is flipped. On
the other hand, if an even number of data qubits is in
|1〉 the auxiliary qubit state remains unchanged. The
equivalent is true in the X basis for an even or odd
number of data qubits in the |−〉-state. Here, |0〉, |1〉
are the transmon qubit ground and first excited states,
and |±〉 = (|0〉 ± |1〉) /

√
2 are their superpositions. To

map the parity of the data qubits Dj onto the corre-
sponding auxiliary qubit, we effectively use a sequence
of controlled-not gates with the data qubits as control
and the auxiliary qubit as target, and subsequently mea-
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sure the state of the auxiliary qubit in the Z basis using
single-shot readout. In the Z basis, a single bit-flip error
of any individual data qubit leads to a change of parity,
as does a single phase-flip in the X basis. Hence, mea-
surements of changes of data-qubit parities allow us to
detect and identify phase-flip or bit-flip errors as long
as they occur sufficiently rarely [31]. These parity mea-
surements are also referred to as stabilizer measurements
[13, 14]. The corresponding mutually-commuting weight-

two (or weight-four) stabilizer operators ŜXi =
∏2(4)
j=1 X̂j

and ŜZi =
∏2(4)
j=1 Ẑj of the surface code are products of

two (or four) Pauli-X̂ or -Ẑ operators of the data qubits
j located at the vertices of a given data-qubit plaquette.
Measurement outcomes sAi = ±1 of individual stabilizers
ŜAi are extracted from the observed change of auxiliary
qubit state from one cycle to the next and indicate even
or odd parity, respectively.

In our experiments, the stabilizer gate sequence is re-
alized as two or four controlled-phase (CZ) gates [32–
34] (see Methods Section A) between data and auxiliary
qubits, operated in a high and a low frequency band (see
Fig. 1c), respectively, combined with initial and final π/2-
rotations on the auxiliary qubits (Fig. 2a,b). The gate se-

quence for measuring ŜXi contains additional initial and
final π/2-rotations acting on the data qubits, implement-
ing a basis change from the Z to the X basis (blue dashed
squares in Fig. 2a and b). We apply echo pulses to the
data qubits in the middle of the gate sequence to reduce
dephasing of the data qubits and residual coherent cou-
pling to spectator qubits [35].

The 24 pairwise CZ gates have a mean duration of
98(7) ns, including two conservatively chosen 15-ns-long
buffers at the beginning and the end, and display a mean
gate error of 0.015(10). The gate error histogram, dis-
played as an integrated (cumulative) distribution, shows
variations of about a factor of four in two-qubit gate er-
ror (Fig 1d). We determine the two-qubit gate error
from interleaved randomized benchmarking experiments
with sets of three gates executed in parallel, as employed
in our realization of the surface code cycle. Time-varying
microscopic defects in our device have a detrimental influ-
ence on two-qubit gate performance and are responsible
for outliers in the gate error distribution (Appendix C).
Single-qubit gates displaying a mean error of 0.0009(4)
are realized by applying short resonant microwave pulses
to each qubit individually through a dedicated drive line
(pink coplanar waveguide in Fig. 1b). We determined the
single-qubit gate fidelities in randomized benchmarking
experiments. We discuss the experimental setup used to
realize these gates in Appendix D.

A key element of individual stabilizer measurements
are fast and high-fidelity measurements of auxiliary qubit
states while leaving data qubit states unaffected [36–38]
(see Methods Section B). Accurate stabilizer measure-
ments using mid-cycle qubit readout on timescales com-
parable to or shorter than the cumulated gate times per
error correction cycle also contribute to maximizing the

performance of error detection and correction in our sur-
face code implementation as a whole.

With our readout scheme we discriminate the two com-
putational qubit states and a leakage state, which if un-
detected or uncorrected for is detrimental to any sur-
face code implementation [38–43]. We achieve a mean
readout assignment error of 0.009(7) when discriminat-
ing the computational states only (two-state readout)
and of 0.022(14) when discriminating the computational
states and the leakage state (three-state readout), see Ap-
pendix F. The corresponding cumulative distribution for
two-state readout exhibits performance variations on the
device of about a factor of two when disregarding two out-
liers, while the distribution for three-state readout shows
variations larger by about a factor of two (Fig 1d).

With all elements in place for realizing a surface code,
we first characterize the measurements of individual ŜAi

stabilizers. To do so we prepare the data qubits Dj of a
given weight-two or weight-four plaquette sequentially in
each one of its 22 = 4 or 24 = 16 basis states composed
of |0〉 and |1〉 for ŜZi and |+〉 and |−〉 for ŜXi. In the
beginning of each experiment all qubits are initialized by
heralding the ground state |0〉 from single-shot readout.

For each input state, we compute the mean values sAi

from ∼ 4 × 104 measurements of sAi (colored bars in
Fig. 2c) and find good qualitative agreement with mas-
ter equation simulations (red outlines), see Appendices G
and H for details. Here, +1/− 1 indicate even/odd par-
ity of the measured state. The colored percentage values
display the corresponding experimental and simulated er-
rors of the stabilizer measurements. We attribute the
differences between measurements and simulation mostly
to two-qubit gate errors due to microscopic defect modes
changing their frequency on timescales of hours or days
(Appendix C).

Having verified that all stabilizer measurements per-
form at high quality levels individually, we combine the
stabilizer measurements into a surface code cycle. Exe-
cuting this cycle once, we prepare one of the four cardinal
logical qubit states. Executing the cycle multiple times,
we stabilize the logical states and investigate the perfor-
mance of our realization of the code.

THE SURFACE CODE CYCLE AND STATE
INITIALIZATION

At the beginning of each experimental sequence, we
prepare the nine data qubits in either one of the product
states |0〉⊗9

and X̂L |0〉⊗9
(|+〉⊗9

and ẐL |+〉⊗9
) to begin

the process of initializing the cardinal logical qubit states
|0〉L and |1〉L (|+〉L and |−〉L). The cardinal states are

eigenstates of the eight stabilizer operators ŜAi and ±1
eigenstates of the logical Pauli operators which we choose
as ẐL = Ẑ1Ẑ2Ẑ3 and X̂L = X̂1X̂4X̂7, see solid black
lines in Fig. 1a. As required, ẐL and X̂L commute with
all stabilizers and anti-commute with each other. Since
each of the prepared product states is an equal superposi-
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FIG. 2. Stabilizer circuits and their characterization. Quan-
tum circuit diagrams for a weight-two and b weight-four sta-
bilizers acting between data qubits located on the vertices
of a plaquette (red circles) and the corresponding auxiliary
qubit used for Z-type (green) or X-type (blue circle) stabi-
lizer measurements, where the latter require a basis change
(dashed-blue squares), see text for details. c Measured (filled
bars), and simulated (red wireframes) average stabilizer val-
ues sAi versus data qubit input state, ordered by number of
excitations. Percentages are the experimental (blue, green)
and simulated (red) error of sAi. Gray background indicates
odd and white even parity.

tion of 16 equivalent instances of the target logical state,
executing a single quantum error correction cycle once
deterministically initializes the target logical state in the
stabilizer eigenspace corresponding to the measurement
outcome of the stabilizers (Appendix I).

In a single surface code cycle, we first execute all gate
operations implementing the four ŜZi stabilizer measure-
ments. We realize the necessary two-qubit gates in four
time steps in each of which we execute three CZ gates
simultaneously. Parallelizing stabilizer execution is a
key technical requisite for scalable quantum error correc-
tion, in particular for operation of larger-distance codes.
The two-qubit gates are accompanied by a set of single-
qubit gates applied to all auxiliary qubits in a leading
and a trailing time step, and a dynamical decoupling
pulse applied to all data qubits at a central time step
(Fig. 3a). We choose the order of gate operations to pro-
vide resilience against single auxiliary qubit errors and
to avoid interactions with microscopic defect modes (Ap-
pendix C 2). The gate execution is followed by readout
of the Z-type auxiliary qubits to complete the Z-type sta-

bilizer measurement, see Fig. 3a. Simultaneous with the
Z-type auxiliary qubit readout, we start executing the
X-type stabilizer circuits, which are equivalent up to an
additional basis change of the data qubits. This allows
us to execute the ŜZi and ŜXi stabilizer measurements in
a parallel, pipelined approach [44], see Fig. 3a for a full
circuit diagram and Appendix J for a full pulse sequence.

Thanks to the pipelined approach combined with short
qubit-readout times, we are able to execute a single quan-
tum error correction cycle in a cycle time as short as
tc = 1.1 µs, setting the rate at which we detect errors for
their subsequent correction. A short cycle time is essen-
tial for any error correction code as it determines the per-
formance of the code at a given physical qubit coherence
time. Moreover, a short cycle time reduces the execution
time of error-corrected quantum algorithms [45, 46].

To maximize performance, we have designed our device
with parameters minimizing leakage on data qubits. We
also detect the residual leakage on auxiliary qubits dur-
ing the execution of each cycle, and on data qubits after
the last cycle, using our three-state readout (see Methods
Section C). In our experiments we reject all instances of
detected leakage events. The degree to which leakage re-
jection affects the retained fraction of experimental runs
is discussed in Appendix K.

To characterize our logical-state initialization scheme,
we determine the fidelity of the prepared state with re-
spect to the target logical state by measuring the 29

Pauli strings which form the basis of the 9-data-qubit
logical state [20, 47]. For |0〉L we find a quantum state
fidelity Fphys = Tr(ρ|0〉L〈0|L) = 54.0(1)% (dark red bar
in Fig. 3b) when using our leakage-detection scheme and
when correcting for readout errors on data qubits. Con-
sidering only errors in the logical subspace [7], we find
a logical fidelity FL = Fphys/PL = 99.6(2) % where
PL = 54.2(1) % is the experimentally measured proba-
bility of preparing a state in the logical subspace (Ap-
pendix I). Both Fphys and PL are smaller than in a
distance-two surface code, see Ref. 7 for example, since
the two quantities are expected to decrease with increas-
ing distance d at constant physical error rate.

To further evaluate the performance of our logical
state initialization, we analyze the fidelity of the pre-
pared state with respect to subspaces of states which
our surface code implementation can in principle cor-
rect. The errors which are correctable by the distance-
three surface code include all single-qubit Pauli (weight-

one) errors X̂j , Ŷj , or Ẑj on any data qubit j and
a subset of higher-weight errors. We compute the fi-
delity of the experimentally prepared state with re-
spect to correctable subspaces including states which
are equivalent to the target state up to Pauli errors of
weight i up to i = 4 and find (Fw1,Fw2,Fw3,Fw4) =
[34.3(0), 7.3(5), 0.3(8), 0.1(4)] %, see Appendix I and
Ref. [20]. Hence, the prepared initial state has a fidelity

of Fc = Fphys +
∑4
i=1 Fwi = 96.0(9) % with respect to

states which are in principle correctable in our realization
of the surface code. We also note that weight-one errors



5

X4
X3
X2
X1

Z1
Z2
Z3
Z4
D1
D2
D3

D6
D5
D4

D7
D8
D9

Z stabilizer X stabilizerinit. RO

XYZ

QEC cycle: 1.1µs 

Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

a

Z

XYZ
XYZ
XYZ
XYZ
XYZ
XYZ
XYZ
XYZ
Z
Z
Z
Z

Z
Z
Z

Z
Z
Z
Z

Z
Z
Z
Z

Y YY CZ gate XYZ Meas.Single-qubit gate RepetitionsSingle-qubit Y-rotation (    , π,   )  -π
2

 π
2

b c d

FIG. 3. The surface code cycle, fidelity of logical state initial-
ization, and average error syndromes. a Quantum circuit used
to initialize and (repeatedly) error correct the distance-3 sur-
face code logical qubit. Green (blue) shaded circuit elements
represent the parallel execution of the four Z-type (X-type)
stabilizer circuits. Empty squares indicate single-qubit rota-
tions on data qubits. In the first cycle the Xi auxiliary qubits
are not measured (dashed boxes). b Fidelity of the prepared
logical state |0〉L (dark red bar), all correctable states differing
from |0〉L by one to four Pauli errors (red bars) and all uncor-
rectable states (light red bar). Average syndrome elements

σAim as a function of the cycle index m for c the ẐL (filled cir-

cles) and d the X̂L (filled triangles) preservation experiment.
Open symbols are simulations. The horizontal black arrows
indicate the average syndrome element over all stabilizers and
cycles, see main text for details.

account for the majority of errors on data qubits in the
|0〉L state initialization, with higher weight errors having
a largely reduced probability of occurrence (Fig. 3b).

REPEATED QUANTUM ERROR CORRECTION

Once the first quantum error correction cycle com-
pletes the logical state initialization, we make use of all
subsequent cycles for logical state preservation. In our
experiments, we preserve the cardinal logical qubit states
for up to n = 16 cycles. In each cycle m = 1, .., n we
extract eight stabilizer values sAim . Changes in stabilizer
values signal the occurrence of errors and are used to con-

struct error syndromes σm consisting of eight syndrome
elements σAim = (1−sAim ×sAim−1)/2. The elements σAim are
inferred in each cycle from the current (m) and the pre-
vious (m− 1) measured stabilizer values with σAim = 1(0)
indicating an error (no error), respectively [18].

We collectively process successive syndromes σm to de-
termine which data and auxiliary qubits have most likely
suffered an error [4, 14, 31]. Specifically, we construct
a graph in which the syndrome elements are displayed
at the auxiliary qubit locations along two spatial coordi-
nates for each cycle index m which forms the temporal
coordinate. Spatial and temporal correlations between
non-zero syndrome elements correspond to data and aux-
iliary qubit errors, respectively. If the overall error rate is
sufficiently low, we obtain a low density of non-zero syn-
drome elements, or equivalently, mean syndrome element
values σAim � 1, with the mean taken over experimental
realizations. In that case, the underlying errors can be
decoded with low ambiguity (Appendix L).

Executing n consecutive error correction cycles and
rejecting runs in which leakage has been detected, we
record stabilizer measurement outcomes and construct
syndromes from their values, the averages of which are
shown in Fig. 3c,d. When averaging the syndromes over
all individual elements and time, we find that the average
syndrome element σ = 0.14 � 1 is small (see arrows in
Fig. 3c,d), indicating that errors are rare and, therefore,
allowing for efficient error detection and correction [9].
All syndrome elements σAim averaged over repetitions of
the experiments are approximately constant as a func-
tion of m for m ≥ 2, see Fig. 3c,d obtained for preserv-
ing |0〉L,|1〉L and |+〉L, |−〉L, respectively. We attribute

the small remaining increase of σAim with m to the fact
that, in the absence of auxiliary qubit reset, auxiliary
qubits initially prepared in the ground state tend to an
asymptotic probability of 0.5 to be in the excited state
after m cycles. As a result, with increasing m, auxiliary
qubits suffer from larger decoherence during readout and
during the subsequent idling periods of about 150 ns be-
fore the start of the next quantum-error-correction cy-
cle. Our numerical simulations show the same feature
(open symbols in Fig. 3c,d). For m = 1, the averaged
syndrome elements σAi1 are reduced because the corre-
sponding reference stabilizer values are computed from
the initial data qubit product state, which we prepare
with high fidelity. In the first cycle, the four values of σZi

1

are smaller than σXi
1 because a quantum-error-correction

cycle starts with measurements of ŜZi and errors thus
accumulate only during half a cycle.

To determine the performance of our distance-three
surface code, we extract the logical error per cycle when
preserving eigenstates of the logical qubit operators ẐL

and X̂L versus the number of executed cycles n. For each
sequence of cycles, we decode the error syndromes, in-
cluding a syndrome determined from the final data qubit
readout. After the nth cycle we perform a projective
readout of the final data qubit state in the Z or X basis
from which we determine the eigenvalue zL = ±1 of ẐL
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FIG. 4. Logical state preservation and error per cycle. a Ex-
perimentally determined (full symbols) and simulated (open

symbols) expectation value of the ẐL operator for prepared
|0〉L (circles) and |1〉L (squares) and exponential fit (solid and
dashed line). For reference, twice the average physical qubit
decay is shown (dash-dotted line). The extracted decay times

are indicated on the right. b Corresponding data sets for X̂L,
|+〉L (triangles) and |−〉L (diamonds). For reference, the aver-
age physical qubit coherence decay is indicated (dash-dotted
line). c Logical error probability EL as a function of the
number n of error correction cycles for |0〉L and |+〉L and the
extracted error per cycle εL indicated on the right. Same sym-
bols as in a and b. The dash-dotted line shows the physical
two-qubit gate error accumulated over n cycles, for reference.
The inset shows simulation results for εL in state |0〉L (open,
green circles) for an assumed homogeneous distribution of de-
coherence rates, gate and readout errors, reduced by factors
of x = 2, 5 and 10, see text for details. The green solid line is
a fit to 1/x2.

or xL = ±1 of X̂L.

Decoding the error syndromes and applying potential
corrections to zL or xL, we compute the mean logical

qubit expectation values zL = 〈ẐL〉 and xL = 〈X̂L〉 as a
function of n from a total of 106 experimental runs, where
the available data is reduced by ground state heralding
before and leakage rejection during each run. We decode
the error syndromes using a minimum-weight perfect
matching algorithm [48, 49]. We determine the weights in
an error-model-free approach by inferring the errors per
cycle from the measured data using a correlation anal-
ysis of the syndromes as described in Appendix L and
Refs. [9, 50]. The correction of an error, initiated by
analysing all cycles in postprocessing, takes the form of
changing the sign of the logical qubit operator values zL

and xL when indicated by the decoder. We note that for
correcting ẐL it is sufficient to decode only syndromes
{σZi

m}, or, equivalently, only {σXi
m } for X̂L.

We observe an exponential decay of 〈ẐL〉 and 〈X̂L〉
with n (solid symbols in Fig. 4a,b). From the logical
qubit operator expectation values we extract the logical
error probability EL = (1− |〈ZL〉|) /2 (solid symbols in
Fig. 4c) as a function of n and find a small per cycle error
probability of εL = [1− exp (−tc/T1,L)] /2 ≈ tc/2T1,L =
0.032(1) also indicated on the right hand side of the
corresponding data set in Fig. 4c. Equivalently, we ob-
tain εL = [1− exp (−tc/T2,L)] /2 ≈ tc/2T2,L = 0.029(1)
for 〈XL〉. We find that both the coherence time of
T2,L = 18.2(5) µs and the lifetime T1,L = 16.4(8) µs of
the logical qubit, as extracted from the decay curves of
〈ẐL〉 and 〈X̂L〉, are much longer than the duration of the
quantum error correction cycle tc = 1.1 µs in our imple-
mentation of the surface code. In these experiments,
we reject detected leakage events which occur with small
probabilities on auxiliary and data qubits. As detailed
in Appendix K, the retained fraction of data per cycle
amounts to 92 %.

We note that the logical coherence time is only about
a factor of two lower than the mean physical coherence
time T ∗2 = 37.5 µs of all 17 qubits while the logical re-
laxation time is about a factor four lower than twice the
mean physical energy relaxation time 2T1 = 65.0 µs, as
indicated in Fig. 4a,b. In the latter case the factor of two
assumes an infinite lifetime of the physical qubit ground
state for the comparison. We also note that, within er-
rors bars, the lifetime of the states |0〉L and |1〉L, and
the coherence time of |+〉L and |−〉L are identical. This
is expected since all cardinal states of the logical qubit
have the same number of qubits in the excited state and
our dynamical decoupling scheme alternates between the
basis states which are therefore similarly affected by de-
coherence.

PERFORMANCE ASSESSMENT AND
PROJECTION

We compare the state preservation experiments with
numerical simulations using a Monte Carlo wavefunction
method (open symbols in Fig. 4a,b,c). The model under-
lying the simulations (Appendix G) uses the measured
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coherence times, interaction rates and readout errors of
the device as inputs. We find that despite the complex-
ity of the quantum error correction cycle the measured
expectation values 〈X̂L〉 and 〈ẐL〉, when rejecting leak-
age, come close to the simulated values (open symbols in
Fig. 4a,b). The logical lifetimes extracted from exponen-
tial fits (dashed lines in Fig. 4a,b) to the simulated expec-
tation values are approximately 26 µs providing an upper
bound for the performance achievable with the specified
device parameters.

Since the numerical simulations model the perfor-
mance of our quantum device well, we use the model
to project how future improvements in gate and readout
fidelities are expected to reduce the logical error per cycle
εL. To free the projection from device-specific spread in
qubit parameters, we use the average over all 17 qubits
as uniform parameters (see Tab. I), and find good agree-
ment with the results obtained from the qubit-specific
model. We then uniformly reduce all physical error pa-
rameters of the numerical model by a factor x, repeat
the simulations of 〈X̂L〉 and 〈ẐL〉 vs n, and extract the
mean logical error per cycle εL as a function of the im-
provement factor x. We find that the simulated error per
cycle scales to a good approximation as 1/x2, see inset
in Fig. 4c, as expected for a code of distance three [31].
For reference, we plot the scaled two-qubit physical error
per cycle ε2Q in the same plot (dash-dotted line).

A metric commonly used to assess the performance of
quantum error correction compares the logical error per
cycle εL to the dominant error on the physical level, typ-
ically the two-qubit gate error ε2Q [10, 51]. Such a com-
parison is particularly relevant in architectures in which
the logical two-qubit gate error is dominated by errors
εL in the quantum error correction cycles belonging to or
following the logical two-qubit gate operation. The num-
ber of required cycles scales in general with d in planar
architectures and in architectures allowing for transver-
sal execution of logical two-qubit gates [5, 6, 23, 52, 53].
The good agreement between measured (∼ 3 %) and sim-
ulated (∼ 2 %) logical errors εL together with their sim-
ulated quadratic scaling suggests that the break-even of
per-cycle logical errors with two-qubit gate errors may be
in reach for modest improvements of device performance,
when employing leakage detection or correction.

In our experiments, we demonstrate the viability of re-
alizing quantum error correction in the surface code by
detecting errors during the error correction cycle, and de-
coding the error syndromes and correcting for errors in
postprocessing, which is sufficient in a quantum memory
setting. Next generation experiments will provide the ca-
pability of correcting errors during the cycle using real-
time decoding [10] and fast in-sequence feedback [37],
implemented with dedicated digital electronics. Feed-
back will also enable the mid-cycle suppression of leak-
age [54], for example by auxiliary qubit reset. Realizing
larger surface code lattices while improving the perfor-
mance of their components and demonstrating exponen-
tial suppression of logical errors with increasing code dis-

tance are upcoming important steps toward achieving the
long-term goal of fault-tolerant quantum computation.
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METHODS

A. Controlled-phase Gates

We realize the necessary two-qubit controlled-phase
(CZ) gates by tuning adjacent pairs of data (Dj) and
auxiliary qubits (Xi, Zi) into resonance [32–34] using
individual flux lines implemented with coplanar waveg-
uides (green in Fig. 1b) shorted near the SQUID loop
of each qubit. We fabricated all qubits with asymmetric
superconducting quantum interference devices (SQUIDs)
[55, 56] to allow for data qubits to idle at their min-
imum and auxiliary qubits at their maximum frequen-
cies, at which the qubits are to first-order insensitive to
flux noise. Data qubits are designed with idle frequen-
cies 3.7− 4.1 GHz in a low frequency band and auxiliary
qubits with idle frequencies 5.9− 6.3 GHz in a high fre-
quency band, see red and blue/green dots, respectively,
in Fig. 1c and Appendix B.

We implement CZ gates by tuning both data and aux-
iliary qubits to an intermediate interaction frequency ωint

and ωint − α, respectively, with ωint/2π ranging from
4.4 to 5.6 GHz (Appendix C). The qubit anharmonicity
α ∼ −0.17 GHz is designed to be small to minimize resid-
ual qubit/qubit interactions [35]. We make use of net-
zero flux pulses [34], which reduce both the detrimental
effect of low-frequency flux noise on qubit coherence and
the impact of non-idealities in the transfer function of the
flux lines on gate fidelities. Given the large designed de-
tuning of ∼ 2 GHz between the data and auxiliary qubits
at their idle frequencies, we calculate residual-ZZ interac-
tion strengths between qubits lower than αzz/2π ∼ 8 kHz
[35]. It is only during two-qubit gate execution that αzz

increases by a factor of approximately 2 to 25, depending
on the interaction frequency ωint, which we partially mit-
igate using echo pulses. The coupling strength between
auxiliary qubits and data qubits at the interaction point
is about J/2π ∼ 7 MHz.

B. Qubit-readout Architecture

Each qubit is coupled to a resonant pair of readout
resonator and Purcell filter (red- and blue λ/4 coplanar
waveguide resonators in Fig. 1b). Moreover, each read-
out resonator is coupled strongly to the qubit (g/2π ∼
169 MHz for auxiliary qubits and g/2π ∼ 252 MHz
for data qubits) and has a large effective bandwidth
(κeff/2π ∼ 10 MHz) to enable fast, high-fidelity readout

[57]. The individual Purcell filters both maintain high
qubit coherence, despite the large coupling and band-
width of the readout resonators, and reduce undesired
readout crosstalk (Appendix E) between qubits which are
in close proximity or have similar frequencies [58]. This
is particularly important for the simultaneous frequency-
multiplexed readout of groups of four or five qubits using
joint feed lines (purple coplanar waveguides in Fig. 1b).
The readout resonator frequencies are separated by about
200 MHz within each feed line and occupy a frequency
band extending from 6.8 to 7.6 GHz (purple points in
Fig. 1c).

We read out the states of all qubits dispersively
by applying frequency-multiplexed Gaussian filtered mi-
crowave pulses of duration 200 − 300 ns to all four feed
lines. We integrate the transmitted signals in a het-
erodyne detection scheme for a duration of 400 ns (Ap-
pendix F). Auxiliary qubits are read out near their idle
frequencies while data qubits are read out at a flux-tuned
qubit frequency of ∼ 5 GHz reducing the data qubit-
readout resonator detuning [59] and thus enhancing the
dispersive coupling and the readout fidelity [57, 60].

C. Leakage Detection

We make use of a leakage detection scheme based on
three-state readout which allows us, in postprocessing,
to reject those sequences in which any of the qubits were
measured in a leakage state, see Appendix F. In our CZ
gate scheme we make use of the second excited state
|2〉 of the auxiliary qubits rather than the one of the
data qubits to mediate the interaction which minimizes
data qubit leakage. Performing three-state readout of
the data qubits after the final error correction cycle, we
reject experimental runs for which data qubit leakage
was detected. The rejected fraction per qubit and per
cycle amounts to 0.0017(2). In addition there is a cycle-
independent rejection probability of about 0.01 per qubit
due to false positives caused by readout-error. In addi-
tion, we detect, if any of the eight auxiliary qubits has
leaked to the |2〉 state in any of the n cycles, using the
same three-state readout, and find an average rejection
probability of 0.0094(4) per qubit per cycle. In total, this
leads to a rejected data fraction per cycle of 8 %.

SUPPLEMENTARY INFORMATION

Appendix A: Device fabrication

To fabricate the 17-qubit surface code device, we
pattern transmon qubit islands, couplers, resonators,
and control lines into a 150 nm-thin niobium film sput-
tered onto a high-resistivity silicon substrate using pho-
tolithography and reactive ion etching. To establish a
well-connected ground plane at microwave frequencies
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and realize cross-overs for coplanar waveguides, we fab-
ricate aluminum-titanium-aluminum trilayer airbridges
onto the device using a two-layer resist photolithog-
raphy process with reflow. We fabricate aluminium-
based Josephson junctions of the transmon qubits using
electron-beam lithography (EBL) and shadow evapora-
tion, and establish electrical contact between the junction
metal and the niobium base-layer film using aluminum
bandages [61] fabricated in a second EBL and evapora-
tion run.

Appendix B: Device parameters and performance

We characterize the performance and properties of
each qubit on the device using spectroscopy and standard
time-domain methods, see Tab. I. Note that some param-
eters (marked with the superscript ’a’ in Tab. I) were
extracted from measurements in a separate cooldown of
the same device.

We realize single-qubit gates with 40-ns-duration mi-
crowave DRAG pulses [62] with a Gaussian envelope
which has a standard deviation of σ = 10 ns and is trun-
cated at ±2σ.

We realize two-qubit gates with net-zero flux
pulses [34, 63] with an average duration of 68 ns, see Ap-
pendix C for a detailed description of the two-qubit gates
implementation. We add 15 ns buffers before and after
each flux-pulse resulting in a total average two-qubit gate
duration of 98 ns.

We benchmark the performance of single- and two-
qubit gate operations across the entire device using ran-
domized benchmarking [64, 65] (single-qubit gates) and
interleaved randomized benchmarking [66–68] (two-qubit
gates), and display the resulting errors in Fig. 5. CZ
gates that are executed simultaneously in the quantum
error correction cycle (see Fig. 3a and Fig. 16) are also
calibrated and benchmarked simultaneously.

Single-qubit gates have a mean error of 0.09(4) %,
which is in good agreement with the mean error of 0.08 %
obtained from master-equation simulations taking only
decoherence into account, see Appendix G. Two-qubit
gates have an average gate error of 1.5(1.0) %, and a best
(worst) gate error of 0.6 % (5.4 %). Two-qubit gates used

to realize the stabilizer ŜX1 display larger errors, which
we attribute to the low coherence times of the auxiliary
qubit X1, and to the interaction with a microscopic defect
(Appendix C) with a frequency close to the idle-frequency
of qubit X1.

Appendix C: Two-qubit gates

Two-qubit gates are essential building blocks of the
stabilizer circuits of the surface code. Here, we describe
our implementation of CZ gates, discuss the constraints
and considerations for gate parallelization and gate or-
dering during the error correction cycle, and report on
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FIG. 5. Single- and two-qubit gate errors as characterized
by randomized benchmarking and interleaved randomized
benchmarking, respectively. The average measured single-
qubit (two-qubit) gate error across the device is 0.09(4) %
[1.5(1.0) %].

coherence properties during the gate execution.

1. CZ gate implementation

We realize two-qubit controlled-phase (CZ) gates [32,
33] by flux-tuning two neighboring qubits to an interac-
tion frequency between the idle frequencies of the two
qubits. We use a net-zero pulse shape to protect the
qubits from low-frequency flux noise and to avoid the
buildup of long-timescale distortions in the flux-control
lines [34, 63].

The flux pulse applied to each qubit consists of
two Gaussian-filtered, approximately 30-ns-long sections,
which are interleaved with a 2.5-ns-long net-zero transi-
tion section, see Fig. 6a for an example waveform. The
amplitudes of the longer sections bring the |20〉-transition
frequency into resonance with the the |11〉-transition fre-
quency, see Fig. 6b. We calibrate the duration of these
sections to achieve full population recovery into the |11〉
state.

To achieve a π-controlled-phase rotation, we calibrate
the pulse amplitude of the transition section for the data
qubit, which effectively controls the phase acquired by
the |20〉 state relative to the |11〉 state.

We select interaction frequencies which allow for the
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TABLE I. Qubit parameters, coherence properties and single-qubit performance for the nine data qubits (top) and the eight
auxiliary qubits (bottom). We also provide, for relevant quantities, the averaged value across the device in column Q.

Parameter D1 D2 D3 D4 D5 D6 D7 D8 D9

Qubit idle frequency, ωQ/2π (GHz) 3.885 3.994 3.952 3.878 3.895 3.74 4.056 3.993 4.143
Qubit anharmonicity, α/2π (MHz) -184 -184 -183 -184 -186 -184 -181 -183 -181
Lifetime, T1 (µs) 29.1 33.0 65.5 59.3 32.2 60.2 36.0 33.1 25.9
Ramsey decay time, T ∗2 (µs) 35.0 13.5 33.9 74.3 46.1 78.1 74.8 41.4 31.7
Echo decay time, T e

2 (µs) 46.2 52.2 49.3 75.5 56.1 89.3 72.5 59.1 36.3
Single-qubit RB errora, ε1Q (%) 0.06 0.07 0.04 0.04 0.06 0.06 0.04 0.08 0.06
Readout frequency, ωRO/2π (GHz) 6.769 6.979 6.88 7.12 7.18 7.032 6.91 7.075 6.868
Qb. freq. during RO, ω′Q/2π (GHz) 5.321 4.75 5.275 4.25 4.42 5.13 4.395 3.993 5.0
Dispersive shifta, χ/2π (MHz) -2.0 -2.2 -1.9 -1.6 -1.5 -1.6 -2.3 -2.0 -2.4
Disp. shift during RO, χ′/2π (MHz) -7.4 -3.9 -6.0 -2.0 -2.1 -4.7 -3.0 -2.0 -4.9
Readout linewidtha, κeff/2π (MHz) 6.3 7.2 8.3 8.7 3.5 9.0 8.6 8.2 8.9
Qubit-RO res. couplinga, gQ,RR/2π (MHz) 244 269 241 241 238 244 267 265 260

Two-state readout error, ε
(2)
RO (%) 0.7 0.5 0.5 0.6 0.8 0.5 2.3 1.3 0.5

Three-state readout error, ε
(3)
RO (%) 4.4 1.0 5.9 2.1 1.6 1.1 3.3 2.1 1.0

Thermal population, Pth (%) 2.1 0.7 1.5 3.8 2.7 2.2 0.0 0.8 1.6

Parameter X1 X2 X3 X4 Z1 Z2 Z3 Z4 Q

Qubit idle frequency, ωQ/2π (GHz) 6.097 5.885 6.022 6.049 6.328 6.192 5.956 6.037 -
Qubit anharmonicity, α/2π (MHz) -170 -174 -170 -170 -163 -168 -171 -170 -177
Lifetime, T1 (µs) 12.4 17.4 18.5 12.6 17.0 42.7 29.7 27.5 32.5
Ramsey decay time, T ∗2 (µs) 5.6 14.3 20.7 28.9 29.3 33.1 48.0 28.9 37.5
Echo decay time, T e

2 (µs) 15.8 33.0 16.1 33.1 31.5 26.0 53.6 53.6 47.0
Single-qubit RB errora, ε1Q (%) 0.16 0.13 0.17 0.14 0.1 0.09 0.07 0.16 0.09
Readout frequency, ωRO/2π (GHz) 7.372 7.554 7.258 7.461 7.316 7.502 7.2 7.412 -
Qb. freq. during RO, ω′Q/2π (GHz) 5.9 5.885 6.022 6.049 6.328 6.191 5.956 5.687 -
Dispersive shifta, χ/2π (MHz) -2.8 -1.9 -3.2 -2.6 -4.7 -2.9 -3.2 -2.8 -2.4
Disp. shift during RO, χ′/2π (MHz) -2.1 -1.9 -3.2 -2.6 -4.7 -2.9 -3.2 -2.8 -3.5
Readout linewidtha, κeff/2π (MHz) 15.1 20.1 13.0 11.0 11.2 12.2 14.3 10.0 10.3
Qubit-RO res. couplinga, gQ−RR/2π (MHz) 167 168 167 168 171 170 167 171 213

Two-state readout error, ε
(2)
RO (%) 2.7 0.7 0.8 0.8 1.3 0.4 0.4 0.5 0.9

Three-state readout error, ε
(3)
RO (%) 3.9 2.0 1.9 1.6 2.2 1.2 0.9 1.1 2.2

Thermal population, Pth (%) 0.2 0.2 0.5 0.3 0.6 0.5 0.2 0.9 1.1

a Measured in a different cooldown.

parallel execution of three CZ gates in each of the eight
time steps of the quantum error correction cycle, as in-
dicated by the color and label of the qubit-qubit cou-
plers in Fig. 6c. The interaction frequencies for a single
time step (colored horizontal lines of same color) are cho-
sen to avoid crossing neighboring qubits on which gates
are executed in the same time step. In addition, the in-
teraction frequencies in a given CZ gate time step are
distributed over the available ∼ 2 GHz frequency range
to minimize residual-ZZ couplings between neighboring
qubits performing CZ gates in parallel. The overall, cal-
culated residual-ZZ coupling during the eight CZ gate
time steps, averaged over all 24 qubit pairs and over the
eight time steps, amounts to αZZ/2π = 27(37) kHz, which
is about a factor three larger than with all qubits biased
at their idle frequency.

Finally, the interaction frequencies are chosen to mini-
mize population loss due to interaction with the strongly
coupled microscopic defects of our device. To charac-
terize the defect-mode distribution, we determine the
frequency-dependent population loss for each qubit by

measuring the remaining excited-state population after
applying Gaussian-filtered square flux pulse that tunes
the qubit frequency from its idle frequency (black semi-
circle) to ωint for a duration of tint = 100 ns, see the gray
filled areas in Fig. 6c. For most qubits, we observe a
constant background population loss of ≤ 2 % over the
entire frequency range, with 0−3 narrow frequency bands
(≤ 50 MHz) exhibiting peak population loss ≥ 25%. We
attribute these population-loss peaks to coherent interac-
tions with defects coupled to the qubits with a strength of
g/2π ≥ 0.8 MHz. Qubits D7, D8 and X1 display broader
and higher population-loss peaks, likely due to the inter-
action with defects coupled to the qubits with g/2π on
the order of 1-20 MHz. For these qubits, the finite inter-
action during the rising and falling edge of the flux pulse
leads to a population loss tail when crossing the defect.
We choose interaction frequencies for the two-qubit gates
that are detuned from all defects and that avoid crossing
strongly coupled defects.

In addition to a suitable selection of interaction fre-
quencies, accurate control of the qubit frequency is es-
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c

FIG. 6. Realization of two-qubit gates. a. Example of a
net-zero pulse shapes before compensating for flux line dis-
tortions that are applied simultaneously on a data qubit (D5)
and an auxiliary qubit (X2) to implement a CZ gate between
the two. Note that the duration of the transition section has
been increased from 2.5 ns to 12.5 ns for better visibility in
this figure. b. Calculated evolution of the eigenenergies for
the pulse shapes shown in panel a. c. Frequency arrangement
chosen for the operation of the device. Measured population
loss (gray areas) when flux-tuning qubits from their idle fre-
quencies (black dots) to ωint for a duration of 100 ns. The
chosen two-qubit gate interaction frequencies are displayed
as colored lines corresponding to the color code used in the
conceptual device representation at the bottom of the panel,
which indicates two-qubit pairs between which gates are ex-
ecuted. Gates sharing the same color are executed simulta-
neously, in the time step indicated by the label extending
between pairs of qubits

sential for the realization of high-fidelity and low-leakage
two-qubit gates. However, the flux pulses reaching the
sample and controlling the qubit frequency, are trans-
formed from the programmed waveforms on the AWGs
due to the transfer functions of, for instance, the high-
pass filtering in the bias-tee, the frequency-dependent
attenuation in the cables, and imperfections in the
impedance matching of the flux line. To characterize the
flux pulse distortions at timescales ranging from ∼ 50 ns
to 50 µs, we apply a step-like Gaussian-filtered flux pulse
and resolve the resulting time dependence of the qubit
frequency by identifying which drive frequency induces

a transition from |0〉 to |1〉, for a varying delay ∆t after
applying the step-like flux pulse. The time-dependent
qubit-frequency response is then used to calibrate infi-
nite impulse response (IIR) filters which invert the distor-
tions of signals propagating along the flux line in digital
preprocessing of the programmed waveforms, see above.
Moreover, to compensate for distortions on nanosecond
timescales, we calibrate finite impulse response (FIR) fil-
ters using methods described in Ref. 69.

2. Two-qubit gate order

We choose the order of the two-qubit gates, executed
in the CZ gate time steps 1, 2, 3, 4 for ŜZi and in the
time steps 5, 6, 7, 8 for ŜXi (Fig. 6c), to provide resilience
against single auxiliary-qubit errors propagating to data
qubits [23, 29]. Simultaneously, we satisfy constraints
imposed by the presence of microscopic defects near the
two-qubit gate interaction frequencies (Appendix C 1).

A single X̂ error on an auxiliary qubit Zi (Xi) during

a stabilizer measurement ŜZi (ŜXi) results in Ẑ (X̂) er-
rors on all data qubits which subsequently perform CZ
gates with that auxiliary qubit, see Fig. 7a for an ex-
ample. Auxiliary qubit Ẑ errors commute with the CZ
gates and therefore do not propagate to data qubits. We
only consider the middle of weight-four stabilizer gate se-
quences as potential times when X̂ errors occur on the
auxiliary qubits since the error propagates to two data
qubits only in this case. For all other auxiliary qubit er-
ror locations, the error effectively propagates to at most
a single data qubit because data qubit errors are only rel-
evant up to multiplication with stabilizer operators. For
instance, although an error between the first and second
CZ gate physically propagates to three data qubits of the
corresponding stabilizer plaquette, this three-qubit error
is equivalent to a single-qubit error, of the same type, on
the originally unaffected data qubit of the plaquette.

To ensure that such correlated two-qubit Ẑ or X̂ er-
rors do not result in logical errors in the decoding pro-
cess, we choose the last two CZ gates of each of the ŜZi

(ŜXi) measurements to involve data qubits which are not
aligned parallel to the data-qubit strings forming the log-
ical operators ẐL (X̂L) [29], i.e. not horizontal (vertical)

in Fig. 7b. With this gate order, correlated two-qubit Ẑ
or X̂ errors can be correctly identified (up to multiplica-
tion with stabilizer operators). As an example, we con-

sider the correlated error ẐD4ẐD7 on D4 and D7 resulting
from a single error ẐZ2 on Z2, see Fig. 7b. As a conse-
quence, X2 and X4 show syndrome elements of 1 (dark

blue, solid circles in Fig. 7b). Because the stabilizers ŜX2

and ŜX4 do not share a data qubit, this syndrome cannot
be caused by a single data-qubit error and the minimum-
weight-perfect-matching decoder (Appendix L) correctly

identifies both errors, the error ẐD7 and one of the equiv-
alent errors ẐD4 (indicated in Fig. 7b with solid, dark

blue arrows) or ẐD1. On the other hand, if the gates Z2-



12

a

Y

Y

Y

Y

Y

Y

Y

Y

Y

Z

b

Z1 Z3

Z2 Z4

X1

X2

D2

X3

D3

X4

D4 D5 D6

D7 D8 D9

D1Z^L

X^L

Y YY Single-qubit Y-rotation (    , π,   )  

CZ gate   Z Measurement

-π
2

 π
2

Error
X

Z

Z Z

Z
ZZ

Y

Y

Y

Y

Y

X

X

Z

Z

Z

C
or

re
ct

ed

Logical error
ZL

FIG. 7. Limiting the propagation of auxiliary-qubit errors. a
Weight-four stabilizer circuit as discussed in the main text.
A single X̂ error on the auxiliary qubit in the middle of the
circuit propagates to two data qubits (violet lines), resulting

in a correlated ẐẐ error (green box) for Z-type stabilizer cir-

cuits and in a correlated X̂X̂ error (blue rounded-corner box
with dashed outline) for X-type stabilizer circuits. b 17-qubit

surface code schematic with two potential correlated ẐẐ er-
rors (solid and dashed green boxes) indicated. Dark blue,
solid and dashed circles around auxiliary qubits indicate the
corresponding syndrome elements with value 1. Dark blue,
solid and dashed arrows indicate the errors identified by the
decoder, see text for details.

D7 and Z2-D8 were successively performed in either the
CZ gate time steps 1 and 2, or 3 and 4, the correspond-
ing correlated error ẐD7ẐD8 (green rectangle with dashed
outline in Fig. 7b) would not be correctly identified by
the decoder. In that case, only the syndrome element of
X3 is 1 and as a result the decoder identifies one of the
equivalent single-qubit errors ẐD9 (indicated in Fig. 7b

with a dashed, dark blue arrow) or ẐD6, and applies the

corresponding correction ẐD9 or ẐD6. However, one such
false correction together with the original error ẐD7ẐD8

is equivalent to the application of ẐL and thus leads to a
logical error, see black dashed line in Fig. 7b.

We note that data qubits participating in the last two
CZ gates of a stabilizer measurement may also be aligned
diagonally with respect to the data qubit string of the
corresponding logical operator, and that the resulting
weight-two error on the data qubits remains correctable.
In particular, this is the case for ŜZ3 and allows us to
execute the gate Z3-D5 in a different time step than the
gate Z2-D7, which would otherwise result in a frequency
crossing of Z2 and D5 because the gate Z2-D7 is con-
strained to an interaction frequency ωint/2π . 4.5 GHz
due to a microscopic defect on D7 (Fig. 6c). For com-
pleteness, we note that there is no constraint imposed
on the two-qubit gate order from maintaining the com-
mutation of neighboring stabilizers ŜZi and ŜXi [29, 31]

because we measure ŜZi and ŜXi sequentially.

3. Reduced coherence at interaction frequencies

At the two-qubit gate interaction frequency, the sensi-
tivity of the qubit frequency to fluctuations in flux is

higher than at the idle frequency, which is first-order
insensitive to fluctuations in flux. Hence, flux-noise-
induced dephasing is increased during two-qubit gates.
We characterize the effective Ramsey decay time T ∗,int

2 ,
for a given qubit Qi (Q ∈ {D,X,Z} and i = 1, . . . , 9
if Q = D and i = 1, . . . , 4 otherwise), fluxed-tuned to
the interaction frequency ωint with a sequence of Ram-
sey measurements. Specifically, we measure the phase
of a given qubit with a Ramsey experiment in which we
insert a train of N 60 ns-duration net-zero flux pulses
(with 15-ns-long buffers on each side) between two Ram-
sey π/2-pulses. We repeat the measurement for N =
1, 2, 4, 8, . . . , 256 pulses, extract the phase contrast for
each measurement from a cosine fit, and fit the phase
contrasts to a decaying exponential to extract T ∗,int

2 .

We compare T ∗,int
2 to the Ramsey decay time mea-

sured at the qubit idle frequency, T ∗2 , for each of the
24 two-qubit gates, see the wire-frame and filled bars in
Fig. 8a, respectively. Averaged over the 24 qubit-pairs,
we observe a mean T ∗int

2 of 13.1(4.2) µs at the interaction
frequency, compared to a mean T ∗2 of 46.8(20.2) µs at the
idle frequency. As the built-in echo effect of the net-
zero flux-pulse provides protection against low-frequency
flux-noise, we hypothesize that the reduction in decay-
time is dominated by high-frequency flux noise. We com-
pute the decay-time ratio T ∗2 /T

∗,int
2 for each qubit-pair,

see Fig. 8b, and extract a mean ratio of ∼ 3.2 (gray area).
This reduction in Ramsey decay time significantly affects
the coherence limit of the two-qubit gates. To reproduce
the characteristics of the experiment in numerical sim-
ulations, we account for this reduction by adjusting the
dephasing rates for the duration of the two-qubit gates,
see Appendix G for details.

Appendix D: Experimental setup

We install the 17-qubit quantum device in a
magnetically-shielded sample holder mounted at the base
plate of a dilution refrigerator [70] and connect it to the
control-electronics setup located at room temperature as
indicated in Fig. 9. Input and output lines for charge
control (pink), flux control (green), and readout (purple),
are configured with the indicated microwave components
for signal conditioning.

DC voltage sources (Bat.) generate a current which
passes through a series of attenuators and filters to in-
duce a magnetic flux in the SQUID-loop of the transmon
qubit and control its idle frequency. Arbitrary waveform
generators (AWG) generate voltage pulses at a sampling
rate of 2.4 GSa/s to control the qubit frequencies on the
nano-second timescale to implement two-qubit gates, see
Appendix C. The AWG signal is combined with the DC
bias current using a bias-tee.

Single-qubit drive pulses are generated at an interme-
diate frequency in the range of 0-500 MHz by an AWG,
and then up-converted (UC) to microwave frequencies in
an analog IQ-mixer using the continuous-wave signal of



13

0

25

50

75
T 2

,T
,in

t
2

 (µ
s) a

0

3

6

9

12

T 2
/T

,in
t

2

b

Z1

D1

D4

X2

D2

X1

D7

Z2

D5

Z3

D3

X4

D8

X3

D6

D9

Z4

FIG. 8. Reduced coherence during two-qubit gate execu-
tion. a Comparison between the Ramsey decay times mea-
sured at the qubit idle frequencies (wire-frames), T ∗2 , and at

the two-qubit gate interaction frequencies (solid bars), T ∗,int
2 ,

for the 24 two-qubit gates of the device, with colors match-
ing the respective qubit color in the conceptual device rep-
resentation at the bottom of the figure. Each qubit appears
multiple times as it is tuned to different interaction frequen-
cies depending on which neighboring qubit it performs a gate
with. b Ratio of the Ramsey decay time at the qubit idle fre-
quency, T ∗2 , and the Ramsey decay time at the two-qubit gate
interaction frequency, T ∗,int

2 . The median ratio is indicated
by the gray area.

a microwave generator (MWG) as a carrier.

An ultra-high frequency quantum analyzer (UHFQA)
generates multiplexed-readout pulses at a sampling rate
of 1.8 GSa/s. The amplification chain at each read-
out port of the sample consists of a wide-bandwidth
near-quantum limited traveling-wave parametric ampli-
fier (TWPA) [71], a high-electron-mobility transistor
(HEMT) amplifier and low-noise, and room-temperature
amplifiers (RT-A board). We add the TWPA pump
tone to the input of the amplifier using a 20 dB direc-
tional coupler (Dir. coupler), and cancel it interferomet-
rically at the input of the room-temperature amplifiers by
combining the cryostat output signal with a phase- and
amplitude-displaced pump tone that bypasses the cryo-
stat. After amplification, the signal is down-converted
with an IQ-mixer in a down-conversion (DC) board and
then both digitally demodulated and integrated using the
field-programmable gate-array of the UHFQA.

Appendix E: Crosstalk characterization and
compensation

An important requirement for scaling up quantum
processors is the individual and independent control of
its constituents. Here, we characterize three types of
crosstalk relevant for the execution of the surface code
on our 17-qubit device: microwave drive crosstalk, flux
crosstalk, and measurement-induced dephasing.

1. Drive crosstalk

During the execution of multi-qubit quantum circuits,
individual qubits are susceptible to off-resonant driv-
ing mediated by microwave pulses applied to drive lines
designed to address other qubits. Ensuring low cross-
driving is therefore essential for the successful execution
of the surface code.

We characterize the coupling rates of each drive line
(DL Qi) to all other qubits on the device, by measur-
ing the excited state population of qubit Qj after ap-
plying a 100-ns-long Gaussian drive pulse to drive line
DL Qi at the frequency of qubit Qj. We sweep the
pulse amplitude and fit a cosine function to the mea-

sured data to obtain the amplitude aDLQi
j correspond-

ing to a π-rotation induced on qubit Qj. As a measure
of cross-driving, we normalize each value by the π-pulse

amplitude of the target qubit aDLQi
i to obtain the cross-

driving ratios, of which we show the negative logarithm

− log10

(
aDLQi
j /aDLQi

i

)
in Fig. 10. Given the chosen

pulse duration and the maximum drive rate which we can
apply without compressing the up-conversion IQ-mixer,
this method allows us to resolve cross-driving ratios down

to about − log10

(
aDLQi
j /aDLQi

i

)
≈ −1.6, or equivalently

a Rabi rotation angle of 4.6 degrees. We find the off-
diagonal elements of the cross-driving matrix on average
1.5 orders of magnitude smaller than the drive rate of
the target qubit, which provides an upper bound for the
cross-driving of Qj via DL Qi, since pulses applied to DL
Qi during the execution of the surface code are detuned
from the frequency of Qj.

Some auxiliary-data qubit pairs in physical proxim-
ity exhibit larger crosstalk, most likely mediated by the
qubit-qubit coupling resonator. However, for all these
pairs, the drive line addresses a qubit in the other fre-
quency band (see Fig. 1a and Fig. 1c for a visual repre-
sentation of the geometry and the frequency bands) than
the cross-coupled qubit (see hatched region in Fig. 10),
which strongly suppresses the effective cross-driving dur-
ing device operation. Taking both the relative detun-
ings and the experimentally characterized cross-driving
ratios into account, we estimate the gate error induced
on Qj resulting from applying a π-pulse on Qi via DL Qi
and find that the gate error is smaller than 0.01% for all
auxiliary-data qubit pairs except for DL X3 - D9 and DL
X2 - D1 with estimated gate errors of 0.06% and 0.17%,
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respectively.

For qubit pairs within the same frequency band, we
find that the expected gate error is smaller than 0.2%
for all pairs except for the drive line DL D5 and qubits
D1 and D4, for which the expected gate errors are 19.2%
and 16.6%, respectively. We attribute the stronger cross-
coupling for these elements to the crossover between DL
D5 and the qubit-qubit couplers connecting Z1-D1 and
D4-X2 (see Fig. 1b). As crosstalk on that scale would

significantly impact the execution of the surface code,
we compensate the cross-driving of DL D5 on D1 and D4
with an interferometric cancellation drive pulse which has
opposite amplitude but is otherwise identical to the pulse
arriving at D1 via DL D5.

Note that this characterization measurement was per-
formed in a separate cooldown of the same device.
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2. Flux crosstalk

During the execution of a two-qubit gate, the
transition-frequencies of both qubits are tuned to an in-
termediate interaction frequency (Appendix C), at which
the sensitivity of the qubit-frequency to flux is increased.
Consequently, the parallel execution of two-qubit gates
requires a careful flux crosstalk characterization and com-
pensation.

We characterize the coupling of each flux line on the
device to all qubits using a sequence of Ramsey experi-
ments. In particular, we measure the effect of the flux
line with target qubit Qi (FL Qi) on any qubit Qj by
sweeping the amplitude Vi of a voltage pulse on FL Qi
and measuring the phase φj induced on Qj in a Ram-
sey experiment. During the experiment, Qj is flux-tuned
away from its idle frequency to increase its flux sensitiv-
ity and thereby increase the signal-to-noise ratio of the
measured phase. We convert the measured phase to fre-
quency of Qj, ωj = φj/τfp, with τfp = 60 ns the duration
of the flux pulse applied on FL Qi, which is close to the
mean two-qubit gate duration on our device. Finally, we
convert the frequency ωj(Vi) to a flux Φj(Vi) dependent
on the applied voltage Vi and fit a linear function to it,

whose slope dΦj/dVi corresponds to an element of the
flux crosstalk matrix C. Repeating this procedure for all
flux lines and all qubits, we obtain the flux crosstalk ma-
trix. For each flux line FL Qi, we normalize all crosstalk
elements with respect to the targeted coupling on Qi, i.e.
dΦi/dVi, to obtain the cross-flux ratio, which we show on
a base-ten logarithmic scale in Fig. 11a.

We find that crosstalk (off-diagonal elements) is on av-
erage about three orders of magnitude smaller than the
target couplings (diagonal elements). The total induced

flux ~Φ = (Φ1, . . . ,Φ17)T in the SQUID loops when ap-

plying voltage pulses with amplitude ~V = (V1, . . . , V17)T

is given by

~Φ = C ~V (E1)

Hence, to induce a target flux vector ~Φ′, we program the
amplitudes

~V ′ = C−1 ~Φ′ (E2)

which compensates for the flux line crosstalk between all
qubits on the device.

To verify the effectiveness of our compensation scheme,
we repeat the crosstalk characterization measurement
with activated flux crosstalk compensation, which yields
C̃, see Fig. 11b. The resulting off-diagonal elements of
C̃ are suppressed by two additional orders of magnitude.
To further reduce the flux crosstalk in our experiments,
we apply the crosstalk compensation method recursively
by using C̃−1 as a second compensation matrix.

3. Measurement-induced dephasing

A successful implementation of the surface code re-
quires repeated readout of a subset of auxiliary qubits
without disturbing the state of any other qubits. How-
ever, in the presence of finite readout crosstalk, a readout
pulse on an auxiliary qubit can off-resonantly excite the
readout resonator of another qubit, thereby leading to
dephasing and/or coherent phase rotations on that other
qubit.

To characterize this effect, we sweep the amplitude of
the readout pulse of an auxiliary qubit Qi while mea-
suring the phase of another qubit Qj in a Ramsey ex-
periment [58]. We fit the Ramsey-fringes contrast to a
Gaussian model and the phase deviation to a quadratic
model, from which we extract the measurement-induced
dephasing rate Γij , and the coherent phase rotation ∆φij
for the untargeted qubit Qj when reading out Qi. The
additional dephasing rate can be related to a phase-flip
probability P ijφ = [1−exp(−ΓijτRO)]/2, where τRO is the
readout pulse duration.

We characterize the measurement-induced dephasing
of all auxiliary qubits on any other qubit, see Fig. 12.
Note that for this measurement, the qubit idle frequency
of X1 was changed from 6.097 GHz to 4.429 GHz to avoid
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FIG. 11. Flux crosstalk characterization and compensation. a Measured flux crosstalk matrix C normalized by its diagonal,
for a 60 ns net-zero flux pulse and without crosstalk compensation (see text for details). b Measured flux crosstalk matrix with
a single round of flux crosstalk compensation calibrated based on the matrix shown in a. Red numbers indicate a negative sign
of dΦj/dVi.

a microscopic two-level defect whose frequency drifted
towards X1’s idle frequency.

On average, we observe a phase-flip probability of
0.09 % and a coherent phase rotation of 0.6◦. In our
implementation of the surface code, all Z-type (X-type)
auxiliary qubits are measured simultaneously, and there-
fore their mutual measurement-induced dephasing is not
a concern (hatched region in Fig. 12). We observe the
largest dephasing (Pφ = 2.3 % and ∆φ = 13.4◦) on aux-
iliary qubit Z2, when reading out auxiliary qubit X2,
which we attribute to cross-driving of the readout res-
onator of Z2 by the readout signal targeting X2. This
dephasing could partially explain the higher mean syn-
drome element σZ2

m , compared to the other mean syn-
drome elements (see Fig. 3c).

In future work, we expect that we could correct for the
coherent phase rotations by utilizing virtual-Z rotations
of equal magnitude and opposite sign.

Appendix F: Readout characterization

1. Three-state readout

We dispersively read out the state of the transmon
qubits by applying a Gaussian-filtered (σ = 10 ns) rect-
angular pulse with a pulse duration of 200 ns to aux-
iliary qubits and 300 ns to data qubits, see Fig. 14b
for an example waveform. To optimally distinguish be-
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FIG. 12. Measurement-induced dephasing. a Phase flip prob-
ability and b coherent phase rotation when measuring aux-
iliary qubits, on any other qubits. The hatched gray area
corresponds to auxiliary qubits which are read out simultane-
ously in the surface-code experiment (see text for details).

tween the first three states of the transmon, we integrate
the complex-valued downconverted signals s(t) in real-
time on the UHFQA (see Appendix D) with two sets
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FIG. 13. Three-state readout characterization of auxiliary
qubit X4 presented as a representative example. We show
the first 3000 of the 105 single-shot measurements for each of
the three state preparations, after preselection. The blue, red,
and black areas delimit the regions of the integrated quadra-
ture plane in which a measured data point is assigned to |0〉,
|1〉 and |2〉, respectively. We indicate the mean (white dot)
and the 1σ confidence ellipse (white dashed line) of each Gaus-
sian distribution. The marginal histogram distributions of u1

and u2 are shown in the top and right panel, respectively.

of complex-valued, 400-ns-long integration weights wi(t)
[57, 58, 72–74] to obtain

ui = Re

{∫ tint.

0

s(t)wi(t) dt

}
. (F1)

We use the integration weights

w1(t) = s∗|1〉(t)− s
∗
|0〉(t), (F2)

w2(t) = s∗|2〉(t)− s
∗
|0〉(t)− (F3)

−
∫
w1(t)(s|2〉(t)− s|0〉(t)) dt∫

|w1(t)|2 dt
w1(t), (F4)

where si(t) is the averaged measured readout-resonator
response for a qubit prepared in state i ∈ {|0〉 , |1〉 , |2〉}.

To characterize the single-shot readout, we prepare the
qubit 105 times in each of the three basis states (|0〉, |1〉,
and |2〉), and measure the integrated resonator response
yielding a pair of values {u1, u2} for each experimental
run. Prior to applying the state-preparation pulses we
perform a pre-selection readout and reject measurements
in which the qubit is not in the ground state. We esti-
mate the thermal population for each qubit as the prob-
ability to be in |1〉 or |2〉 after this pre-selection readout,
see Tab. I. We fit the distribution of measured {u1, u2}
pairs to a trimodal Gaussian mixture model, associating
each qubit state to one of the Gaussian components, see
Fig. 13. To characterize two-state readout, we use only
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FIG. 14. Pulse sequence used for flux pulse-assisted readout
of qubit D1. a The qubit transition-frequency (red solid line)
is tuned from its lower sweet spot value (red dotted line),
ωQ ∼ 4 GHz, to a value ω′Q closer to the readout resonator
frequency (purple line), using a fast flux pulse. b Intermediate
frequency signal programmed on the AWG to generate the
readout pulse.

the Gaussian components of the mixture model corre-
sponding to the |0〉 and |1〉 state. Based on the fitted
model, we assign the individual readout outcomes to the
most likely qubit state and compute the N -level readout
error (Tab. I)

ε
(N)
RO = 1− 1

N

N∑
i=1

P (i|i), (F5)

where P (i|i) is the probability of correctly assigning the
state i to a qubit prepared in the state i.

2. Flux pulse-assisted readout

We make use of the flux-tunability of our transmon
qubits to dynamically change the qubit frequency for the
duration of the readout, see Fig. 14a. This allows us to
optimize readout parameters in-situ, such as the read-
out resonator-qubit detuning and the dispersive shift χ,
see Tab. I for the parameters during readout. We employ
this method for all data qubits to reduce the detuning
with the readout resonator during the readout, and for
auxiliary qubit X1 to avoid a microscopic defect located
close to its idle frequency (Fig. 6c).

We use Gaussian-filtered, rectangular flux pulses with
short rising and falling edges (σ = 0.5 ns) in order to
minimize coupling to defects. The flux pulse lasts longer
than the readout pulse (see also Appendix J) because we
continue integrating the readout signal while the readout
resonator field is ringing down.
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Appendix G: Numerical Simulations

1. General considerations

In this section, we describe how the simulations of the
experiment are performed. These simulations are based
on the measured device characteristics including the indi-
vidual qubit coherence times, readout errors (see Tab. I)
and spurious ZZ interactions.

a. Device Hamiltonian

The system Hamiltonian includes a flux-tunable trans-
mon Hamiltonian per qubit mode and capacitive-
coupling interactions of the form ~gk,k′ n̂kn̂k′ , where n̂k
is the charge operator associated with the kth qubit,
and ~gk,k′ is the capacitive coupling strength be-
tween the pair of qubits (k, k′). Single-qubit gates
are modeled by a microwave-drive Hamiltonian of the
form 2en̂kVk(t), where Vk(t) is a time-dependent volt-
age. Two-qubit gates are modeled by time-dependent
flux pulses {φk(t), φk′(t)} on both target and control
qubits in the pair (k, k′). Here, φk is the external flux
applied to the SQUID loop of qubit k.

To facilitate the comparison to spectroscopy data used
for gate calibration, we move to the flux-dependent basis
which diagonalizes the device Hamiltonian, resulting in
an effective model of the form

Ĥeff(t)/~ =
∑
k

ωk[φk(t)]b†kbk +
αk
2
b†2k b

2
k − iΩk(t)(bk − b†k)

+
∑
k<k′

ξk,k′ [φk(t), φk′(t)]b
†
kbkb

†
k′bk′

+ . . .

(G1)

Here, ωk[φk(t)], αk and Ωk(t) correspond, respectively,
to the frequency, anharmonicity and effective drive am-
plitude of the kth qubit mode, while ξk,k′ [φk(t), φk′(t)]
is the strength of the cross-Kerr (or ZZ) interaction of

the form b†kbkb
†
k′bk′ between the pair of modes (k, k′).

Note that the explicit dependence of the qubit frequen-
cies and cross-Kerr interactions on the flux biases φk is
omitted below. This model accounts for the change in
the ZZ-interactions with the bare mode frequencies, and
therefore with the external flux biases {φk(t), φk′(t)} dur-
ing the two-qubit gates. Higher-order interactions repre-
sented by the dots in Eq. (G1) are not included in this
effective model. Indeed, the impact of such nonidealities
is minimized by device design and careful scheduling of
the two-qubit gates, as described in Appendices C and E.

We describe relaxation and dephasing with the effec-
tive zero-temperature master equation for the system’s

density matrix ρ(t)

ρ̇(t) = −i[Ĥeff(t)/~, ρ(t)]

+
∑
k

γ1,kD[bk]ρ(t)

+
∑
k

γϕ,k[φk(t)]D[b†kbk]ρ(t),

(G2)

where γD[ô]• = D[ĉ]• = ĉ • ĉ† − {ĉ†ĉ, •}/2 for the
collapse operator ĉ =

√
γô, and γ1,k and γϕ,k[φk(t)]

are, respectively, the decay and dephasing rates associ-
ated to mode k. The dephasing rates of the qubits in-
volved in two-qubit gates incorporate a flux-bias depen-
dence γϕ,k[φk(t)] which is determined experimentally.

b. Numerical solver

To make the simulation of the 17-qubit chip nu-
merically tractable, with each qubit modeled as a d-
dimensional Kerr-nonlinear oscillator, we employ the
method of Monte Carlo wavefunctions [75–77] as imple-
mented in QuTiP’s mcsolve [78]. Because it evolves
wavefunctions of size d17 rather than the d17 × d17 den-
sity matrix necessary for a master-equation simulation,
the memory requirements are significantly reduced in this
approach with respect to the master-equation simulation.

Succinctly, the Monte Carlo method evolves a stochas-
tic wavefunction |ψ(t)〉 according to a non-Hermitian

Hamiltonian Hnh = Heff(t) − i~2
∑
l c
†
l cl, where cl are

the collapse operators of the system’s master equation.
Time-evolution under Hnh for a time dt leads to a de-
crease of the norm-square of the wavefunction by dp =∑
l dt〈ψ(t)|c†l cl|ψ(t)〉 � 1. At time t+ dt, the wavefunc-

tion |ψ(t + dt)〉 is renormalized with probability 1 − dp,
or subject to a single quantum jump with probability dp.
In the case of a jump, the wavefunction collapses to the

state cl|ψ(t)〉/〈ψ(t)|c†l cl|ψ(t)〉
1/2

with relative probabil-

ity 〈ψ(t)|c†l cl|ψ(t)〉/
∑
l′〈ψ(t)|c†l′cl′ |ψ(t)〉.

One realization of this stochastic evolution is known as
a quantum trajectory, and an advantage of this approach
is that multiple such trajectories can be numerically com-
puted in parallel [76]. With a sufficiently large number
of trajectories, one can recover the solution of the master
equation in Eq. (G2) as

E[|ψ(t〉〈ψ(t)|] = ρ(t). (G3)

Expectation values of an observable Ô are similarly ob-
tained from

E[〈ψ(t)|Ô|ψ(t)〉] = tr[ρ(t)Ô]. (G4)

We adjust the solver’s error-tolerance parameters such
that Eq. (G3) holds numerically (see qutip.Options).
To do so, we determine the appropriate solver pa-
rameters by comparing the result of qutip.mcsolve
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to that produced by the complete master-equation
solver qutip.mesolve for systems of up to seven qubits
and error-tolerance parameters set to numerical accuracy.
In our stochastic simulations, we determine the number
of trajectories that are needed by analyzing the conver-
gence of Eq. (G4) for all the stabilizer and logical-qubit
operators. We found that 50k trajectories were sufficient
to estimate these expectation values with a sampling un-
certainty of less than 1 %, for the reduced model that we
introduce below.

c. Measurement model

Qubit measurements are modeled by letting the qubit
idle for a time equal to the experimental readout time,
followed by the projection of the stochastic wavefunction
according to

|ψ〉 →
Πj
k|ψ〉√
pjk

, (G5)

where Πj
k = |j〉〈j|k is the single-qubit projector of the

qubit k, j ∈ {0, 1} corresponds to the measured qubit

state, and pjk = 〈ψ|Πj
k|ψ〉 is the probability of measuring

qubit k in the state j. We model qubit readout errors by
flipping the result of the measurement with a probability
that is computed from the readout assignment matrix for
each qubit.

d. Single-qubit gate model

Single-qubit gates on qubit k are implemented with a
Gaussian DRAG waveform with carrier frequency ωk [62]
and additional virtual-Z gates [79] when needed. To
speed up the simulations, we drop counter-rotating terms
following the usual rotating-wave approximation (RWA).
We test this approximation by first comparing the aver-
age gate error per qubit with and without the counter-
rotating terms, which we find to be limited by decoher-
ence instead. Second, we have found no significant dis-
crepancy in the estimated value of the logical qubit oper-
ators when using a RWA for simulating circuits with up
to seven-qubits in a setup similar to that of Ref. [7] for
up to five quantum-error-detection cycles.

e. Two-qubit gate model

CZ gates between a pair of qubits (k, k′) are em-
ulated by the free evolution of the effective Hamilto-

nian (π/tg−ξk,k′)b†kbkb
†
k′bk′ , where tg is the experimental

gate time. During the gate time, we change the dephas-
ing rates γϕ,k and γϕ,k′ of the two qubits involved in the
gate to the effective values corresponding to the coher-
ence times measured experimentally for the 24 different

controlled-Z gates at the qubit interaction frequencies,
see Appendix C.

Given that the qubits are flux-biased at specific inter-
action frequencies during the gate time, we also account
for the residual cross-Kerr interactions by adjusting the
interaction strengths ξk,k′ of the gate qubits with their
neighbors on the device. With this model, we simulate an
average gate infidelity of 0.9 %, which is consistent with
the median of the interleaved randomized benchmarking
error of 1.2 %. Data post-selection in the experiment mit-
igates the impact of leakage to a large extent and enables
the use of a simpler model of the two-qubit gates which
involves levels only within the computational subspace.
As discussed in Appendix C, the performance of some of
the two-qubit gates is limited by the interaction of qubits
with strongly coupled two-level defects, an effect which
is not included in the model used for the simulations.

f. Pulse schedule

Combining our model for the single- and two-qubit
gates with projective measurements, we concatenate
these operations to compose the pulse sequences used
in the quantum error correction experiment, including
buffer times, state-preparation and measurement pulses.

2. Reduced 9+4 model

By using the Monte Carlo solver we can simulate a
17-qubit system in a reasonable time using a general-
purpose workstation: approximately 25 s per trajectory
per error-correction cycle with a clock speed of ∼ 3 GHz
and using about 6 GB of RAM. However, improvements
in runtime and potential extensions of this method to
even larger systems are possible with effective models
with a reduced number of qubits. In this section, we
describe an approximate model that employs a total of
13 qubits and is obtained by tracing out the auxiliary-
qubit modes that do not participate in a given stabilizer
measurement.

In practice, this effective model significantly reduces
the simulation requirement to about 2 s per trajectory
per QEC cycle while using less than 1 GB of memory. A
schematic illustration of the two models in consideration
is provided in Fig. 15.

To introduce the “9+4” model, we first consider the Z-
type stabilizer measurements which constitute the first
half of the QEC cycle. As illustrated in Fig. 15a (see
also Fig. 2a), the circuit only involves single- and two-
qubit operations on the nine data and four Z-type aux-
iliary qubits. Meanwhile, the measurement of the X-
type auxiliary qubits, which occurs in 400 ns, projects
those qubits into a product state of the form |Xn〉 =⊗

k′′∈X−aux. |jk′′〉 with jk′′ ∈ {0, 1}. By assuming that
the state of the X-type auxiliary qubits remains close to
a product state during the full semi-cycle duration, it is
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FIG. 15. a Illustration of the 9+4 model. Logical Z (X) stabilizer measurements are simulated by tracing out the state
of the X-type (Z-type) auxiliary qubits prior to the stabilizer measurement. ρ({•}) refers to a density matrix describing the
subsystem {•} of qubits indexed by color. b Full 17-qubit model includes all qubits at all times in the simulation. c Comparison
between the decoded simulated data for the reduced 9+4- and the full 17-qubit model. The parameters of the simulation are
those measured on the device and provided in Tab. I. We observe an excellent agreement of the resulting logical T1 and T2

times between these two models.

possible to trace-out those qubit modes from the Hamil-
tonian. Following the measurement, the best description
of the auxiliary modes is given by a product of single-
qubit density matrices of the form |1k′′〉〈1k′′ |e−t/T1,k′′ +

|0k′′〉〈0k′′ |(1 − e−t/T1,k′′ ) if the measurement result for
qubit k′′ is 1, and |0k′′〉0k′′ | otherwise. In other words,
this corresponds to the effective model

Ĥred(t)/~ =
∑
k

(
ωk +

∑
k′′∈X

ξk,k′′e
−t/T1,k′′ 〈b†k′′bk′′〉

)
b†kbk

+
αk
2
b†2k b

2
k − iΩk(t)(bk − b†k)

+
∑
k<k′

ξk,k′b
†
kbkb

†
k′bk′ ,

(G6)

where the subindices k and k′ run over data and Z-type

auxiliary qubits, and 〈b†k′′bk′′〉 is the expectation value

of b†k′′bk′′ immediately after the preceding X-type auxil-
iary measurement. After evolving the 13-qubit wavefunc-

tion under Ĥred(t) for the full semi-cycle, the projective
measurement of the four Z-type auxiliary qubits is per-
formed and the state of the system at time T is updated
as

|ψ(T )〉|Zn〉 → |ψ(T )〉|Xn〉, (G7)

where |ψ(T )〉 describes the state of the data qubits after
the projection. We perform the simulation of the follow-
ing X-type stabilizer measurement in a similar way.

In our simulations, we account for some of the noise as-
sociated with the auxiliary qubits that were traced out.
First, as Eq. (G6) shows, the cross-Kerr interaction be-
tween an auxiliary qubit that has been traced out and its
neighboring data qubits varies in time to account for the
auxiliary qubit’s finite T1 time. Second, the idling state
of a traced-out auxiliary qubit k′′ after its measurement
is modeled by flipping |jk′′〉 from |1〉 to |0〉 with prob-
ability 1 − exp (−Tsemi−cycle/T1,k′′), where Tsemi−cycle is
the time of a quantum error correction semi-cycle. The
resulting auxiliary-qubit state from this process is used



21

TABLE II. Stabilizers ŜAi of the distance-3 surface code,
characterized by the measured stabilizer error (ε) and the sta-
bilizer error (εsim) determined from simulation.

Symbol Stabilizer ε (%) εsim (%)

ŜZ1 Ẑ1Ẑ4 2.9 2.8

ŜZ2 Ẑ4Ẑ5Ẑ7Ẑ8 8.4 5.0

ŜZ3 Ẑ2Ẑ3Ẑ5Ẑ6 6.8 4.3

ŜZ4 Ẑ6Ẑ9 2.5 2.0

ŜX1 X̂2X̂3 5.7 6.7

ŜX2 X̂1X̂2X̂4X̂5 5.9 3.9

ŜX3 X̂5X̂6X̂8X̂9 11.8 4.4

ŜX4 X̂7X̂8 4.5 2.6

Weight-two average 3.9 3.5
Weight-four average 8.2 4.4
Average 6.1 3.9

to simulate the next quantum error correction cycle.
To test the validity of this reduced model, Fig. 15c

shows a comparison between the results obtained for the
reduced 9+4- and 17-qubit models for up to eight QEC
cycles. The parameters of the simulation reflect those of
the measured device, as discussed above. We show the
decoded data from a logical-state preservation simulation
as a function of the number of QEC cycles, from where we
can infer the logical T1 and T2 for the two models. We use
the decoder described in Appendix L with weights that
are extracted from the simulation data for each model.
The result shows an excellent agreement between the re-
duced and full models of the experiment, with a discrep-
ancy that is contained in the error of the exponential fit.
This observation gives us confidence about the accuracy
of the 9+4 model used to perform the simulations re-
ported in the main text. We note that, while limited in
some respects, our effective model goes beyond previous
approaches [48, 80] in the treatment of correlated errors
(spurious ZZ) and dissipation in continuous time.

Appendix H: Stabilizers

The distance-three surface code comprises eight stabi-
lizer operators, i.e. products of Ẑ or X̂ Pauli operators
of a subset of the nine data qubits, as listed in Tab. II.
We characterize the quantum circuit realizing each ŜAi

(Fig. 2a,b) for the 2N input states of the N ∈ {2, 4} data
qubits of a given plaquette (Fig. 1a) and compute the
stabilizer error

ε = 1− 1

2N

2N∑
n=1

1

2
|sAin − sAin,ideal|, (H1)

see Tab. II. We measure an average weight-two stabilizer
error of 3.9 %, which is in good agreement with the 3.5 %
average weight-two stabilizer error extracted from numer-
ical simulations (Appendix G). The average weight-four

stabilizer error obtained from measurements (8.2 %) is
larger than the one obtained from simulation (4.4 %),
which we identify as most likely due to the interaction
with microscopic defects, residual coherent errors in two-
qubit gates, and residual crosstalk which are not modeled
in our numerical simulations (Appendix G).

Appendix I: Logical state initialization and
characterization

Here, we describe the characterization of the prepared
nine-data-qubit logical states by measuring their quan-
tum state fidelity with respect to (i) the target state, (ii)
the target logical subspace, and (iii) states in correctable
subspaces.

1. Fidelity with respect to the target state

While the complete tomographic reconstruction of a
generic quantum state ρ of n = 9 qubits would require
the measurement of 4n = 262144 independent Pauli cor-
relators [81], the measurement of the fidelity with re-

spect to a target logical state ρ|0〉L = |0〉L〈0|L =P̂LP̂O

expressed in terms of the projector P̂L onto the logical
subspace and the projector P̂O onto an eigenstate of ZL

P̂LP̂O =
1

29
(1 + ẐL)

4∏
i=1

(1 + sXiŜXi)

4∏
i=1

(1 + ŜZi) (I1)

=
1

512

512∑
j=1

γjP̂j (I2)

requires the measurement of only 2n = 512 terms
[20, 47]. Here, sXi are the outcomes of the X-stabilizer

measurements obtained in the state initialization, P̂i are
9-qubit Pauli correlators obtained from expanding the
product in Eq. (I1), and the γj take values +1 or −1 de-
pending on the individual outcomes of {sXi}. The fidelity
Fphys of state ρ with respect to |0〉L is given by

Fphys = Tr
(
ρρ|0〉L

)
=

1

512

512∑
j=1

〈γjP̂j〉ρ (I3)

where 〈γjP̂j〉ρ corresponds to the expectation value of

the Pauli correlator P̂i in state ρ.
We evaluate each of the 512 Pauli correlators of

Eq. (I3) with data collected by executing a single quan-
tum error correction cycle, followed by single-qubit to-
mography rotations on data qubits and a readout of all
qubits. We observe that in 80.5% of the experimen-
tal runs the measurements of sZi yield the target value
+1 for all four ŜZi, which is in good agreement with
the probability of having none of the four Z-type mean
syndrome elements signaling an error in the first cycle,∏4
i (1− σ

Zi
1 ) ≈ 84.5%, see Fig. 3c.
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For each 〈γjP̂j〉ρ, we reject leakage events as detected
by our three-state readout scheme (Appendix K) and ac-
count for readout errors (Appendix F) on each of the
data qubits involved in the correlator. Note that apart
from leakage rejection we keep all instances for further
data analysis, including those events in which at least
one of the four measured ŜZi values yields −1. Following
Eq. (I3), we then take the average over all expectation
values to compute Fphys.

2. Fidelity in the logical subspace

Similarly, we evaluate the probability of having pre-
pared a state in the logical subspace as

PL = Tr
(
ρP̂L

)
=

1

256

256∑
j=1

〈γjP̂j〉ρ (I4)

where the sum extends over the expectation values of the
256 Pauli correlators resulting from the expansion of the
projector onto the logical subspace P̂L. Together with
the value of Fphys the probability PL yields an estimate
for the logical fidelity FL = Fphys/PL, which corresponds
to the fidelity of the prepared state with the target logical
state conditioned on having successfully projected onto
the logical subspace.

3. Fidelity with respect to states in correctable
subspaces

In the context of quantum error correction, it is in-
sightful to compute the fidelity of the prepared state with
respect to any of the states which are equivalent to the
target state up to a correctable error. By construction, a
data-qubit state projected to the logical Z-basis is a ±1
eigenstate of the eight stabilizers ŜAi and a ±1 eigenstate
of ẐL. Thus, there are 29 = 512 distinct eigenstates of
the data-qubit space in the logical Z-basis, with pair-wise
degenerate syndromes. However, in a simple error cor-
rection scheme, each of the 28 = 256 possible syndromes
produced by the eight stabilizers is associated to a single
corrective action. Consequently, for each of the 256 pairs
of eigenstates with a degenerate syndrome, only one of
the two eigenstates can be included in a given correctable
subspace. To perform error correction most effectively,
one includes the eigenstate in the correctable subspace,
which can be reached by a Pauli error that is more likely
to occur on the physical device.

Specifically, we construct correctable subspaces for |0〉L
in the following way: for each pair of eigenstates with de-
generate syndrome, we compute the lowest weight errors
which, when applied to |0〉L, lead to these two eigen-
states, respectively. With the assumption that lower-
weight errors are more likely than higher-weight errors,
we preferably include the eigenstate that can be reached
via the lowest weight error. If the two eigenstates can

only be reached by applying errors of equal weight-n, we
check how many different errors of weight-n lead to each
of the two eigenstates, and include the eigenstate that
can be reached by more weight-n errors. Finally, if both
eigenstates can be reached by an equal number of weight
n errors, we randomly select one of the two eigenstates.
Note that with this approach, any correctable subspace
includes |0〉L (trivial +1 eigenstate of all stabilizers and

of ẐL), as well as all the states, which can be reached by
applying a weight-one Pauli error on any one of the data
qubits.

We define the fidelity of the prepared state ρ with re-
spect to a set of N states {Ên |0〉L } as

Fc =

N∑
n=1

Tr
(
ρ Ên|0〉〈0|LÊ†n

)

=
1

512

N∑
n=1

Tr

ρ 512∑
j=1

ÊnγjP̂jÊ
†
n


where we have made use of Eq. (I2). We observe that

ÊnP̂jÊ
†
n = cj,nP̂j with cj,n = ±1 because Ên and P̂j are

both tensors of Pauli matrices, and all matrices in the
Pauli group commute or anti-commute. Consequently,

Fc =
1

512

N∑
n=1

512∑
j=1

cj,n〈γjP̂j〉ρ (I5)

can be computed based on the same set of 512 measured
expectation values 〈γjP̂j〉ρ with the appropriate combi-
nation of sign prefactors cj,n. This circumvents the need
to measure the expectation value of 512 Pauli correlators
for each of the N = 256 states spanning the correctable
subspace.

We evaluate the fidelity Fc of the prepared state with
respect to any state in the correctable subspace for 500
different correctable subspaces randomly chosen accord-
ing to the procedure described above. We obtain a mean
correctable fidelity averaged over the 500 correctable sub-
spaces of Fc = 96.0(9) %. The 4.0(9)% average infidelity,
which can also be interpreted as the probability of be-
ing in a state which would result in a logical error after
a single cycle, is in good agreement with the probabil-
ity of logical error per cycle εL = 0.032(1) deduced from

the state preservation of 〈ẐL〉, see main text. We ob-
serve that εL is slightly smaller, likely due to the fact
that the state initialization characterization cannot cor-
rect for auxiliary-qubit readout errors, which require sev-
eral quantum error-correction cycles to be detected.

Appendix J: Pulse sequence

We realize the quantum circuit presented in Fig. 3 a
with a combination of microwave and flux pulses applied
to the 17 qubits, see Fig. 16 for the complete pulse se-
quence of a single cycle of quantum error correction used
to prepare |0〉L.
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π-half pulse π pulse readout pulseCZ gate

QEC cycle: 1.1µs 

FIG. 16. AWG pulse sequence for the execution of a single quantum error correction cycle. Single-qubit drive pulses (solid
lines), readout pulses (solid lines), and flux pulses (dotted lines) are displayed for each of the 17 qubits, as indicated by the
label in the conceptual device representation. Qubit pairs realizing CZ gates are connected by shaded gradients. The time axis
is segmented (parallel lines intersecting the axes) during idle times for clarity, see text for details.

The sequence starts with a multiplexed readout of all
qubits to herald the ground-state in post-selection. Next,
single-qubit drive pulses are applied to a subset of the
data qubits to prepare the nine data qubits in one of the
four product states |0〉⊗9

, X̂L |0〉⊗9
, |+〉⊗9

or ẐL |+〉⊗9
,

each of which is a superposition of the 16 equivalent in-
stances of the respective target logical state. Thereafter,
Z-type stabilizers are executed by applying three simul-
taneous CZ gates in four sequential time steps, with a
dynamical decoupling pulse applied to all data qubits
in between the second and the third two-qubit gate time
step. Each CZ gate is realized by applying a flux pulse to
a data qubit and to the corresponding auxiliary qubit, see
the shaded gradient connecting pairs of qubits in Fig. 16.
While the Z-type auxiliary qubits are being read out, the
X-type stabilizers are realized in a similar fashion as the

Z-type stabilizers but with π/2-rotations implementing
basis changes before and after the four time steps of CZ
gates. Finally, all qubits are read out in the Z-basis af-
ter a latency of 800 ns set by the minimum re-triggering
period of our acquisition devices.

Appendix K: Leakage rejection

While non-computational states can provide a useful
resource for example to realize two-qubit gates in trans-
mon qubits, uncontrolled leakage into non-computational
states constitutes a source of errors. Leakage has there-
fore been addressed both theoretically and experimen-
tally by reducing leakage errors [34, 82], by detecting
leakage indirectly on both auxiliary and data qubits using
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FIG. 17. Retained fraction of experimental runs after leakage
rejection. a Retained fraction when rejecting leakage of data
qubits only (light, green symbols), of auxiliary qubits only
(mid-green), and of both (dark green). Solid black lines are
exponential fits to the data. Data corresponds to the state
preservation experiments of |0〉L and |1〉L presented in the
main text. b Same as a, but for data from the state preser-
vation experiments of |+〉L and |−〉L.

hidden Markov models [38] or quantum non-demolition
measurement protocols [83], by developing leakage-aware
decoding schemes [18, 42], and by converting leakage er-
rors into errors within the computational subspace ren-
dering them correctable in the standard error correction
framework [39–41].

For our experimental realization of the surface code we
mitigate leakage, particularly of data qubits, by choosing
a frequency configuration and two-qubit gate scheme in
which only the auxiliary qubits evolve through the sec-
ond excited state |2〉, keeping the average leakage prob-
ability per data qubit and per cycle as low as about two
per mill. Furthermore, we detect the remaining leakage
events on both the data and auxiliary qubits by imple-
menting a high-fidelity three-state readout scheme (Ap-
pendix F), which allows us to reject all instances of exper-
imental runs with detected leakage events and to study
the performance of quantum error correction indepen-
dent of leakage dynamics [43].

When analyzing the state preservation experiments
shown in Fig. 4 of the main text, we find that the re-
tained fraction of runs r in which no leakage event has
been detected, decreases to good approximation expo-

TABLE III. Extracted logical error per cycle εL for the ex-
periment preserving eigenstates of ẐL and of X̂L using the
indicated leakage rejection schemes. The retained data frac-
tion per cycle rc after leakage rejection is also indicated.

Leakage rejection εL [ẐL] εL [X̂L] rc

(i) None 0.054(1) 0.049(2) 1.000(0)
(ii) Data qubits only 0.049(1) 0.044(1) 0.985(2)
(iii) Aux. qubits only 0.033(2) 0.030(1) 0.925(3)
(iv) Aux. and data qubits 0.032(1) 0.029(1) 0.921(3)

nentially with n, indicating that the retained fraction of
runs per cycle rc is independent of the cycle number,
see Fig. 17. The value rc ≈ 92.1(3) %, which we obtain
from exponential fits r = Arnc (black lines) to the data
(dark symbols) is identical within error bars for prepared

eigenstates of ẐL (panel a) and X̂L (panel b). We at-
tribute the slight deviation between the measured data
and the exponential fit to the finite probability of falsely
classifying a |1〉-state as |2〉 during readout, which for
auxiliary qubits is on average 0.004 and for data qubits
0.019. In fact, the probability for having such falsely
identified leakage events is proportional to the popula-
tion of the |1〉-state, which for auxiliary qubits increases
from cycle to cycle due to their initialization in |0〉 and
the error correction protocol, approaching 0.5 in the limit
of large n. Hence, the falsely identified auxiliary-qubit
leakage events increase with n, approaching about 21 %
of the totally detected auxiliary qubit leakage events and
explaining the slight increase of detected leakage events
per cycle with n.

Distinguishing between leakage events on data and
auxiliary qubits (lighter data points in Fig. 17 a, b), we
find that the probability for having detected a leak-
age event on any of the nine data qubits is only about
0.015(2) per cycle and about 0.075(3) for the eight aux-
iliary qubits.

For comparison, we also determine the extracted log-
ical error probabilities εL without leakage rejection (i),
when rejecting data qubit leakage only (ii), and when re-
jecting auxiliary qubit leakage only (iii), see Table III.
For simplicity, we interpret non-rejected measured |2〉-
states as |1〉-states during decoding. Compared to the
case when rejecting all detected leakage events (iv), the
average absolute increase in the logical error probability
is 0.021(2) for scheme (i), 0.016(1) for scheme (ii), and
only 0.001(1) for scheme (iii). These results suggest that
the low leakage rates achieved on our device, when com-
bined with auxiliary-qubit reset using either feedback in
combination with three-state readout or an unconditional
scheme [54, 73], could render leakage errors tractable in
general.
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Appendix L: Decoding and weight extraction

To identify the most likely sequence of errors hav-
ing occurred in a single instance of an experimen-
tal run, we decode the measured set of syndromes in
post-processing by adopting the minimum-weight-perfect
matching (MWPM) algorithm described in Ref. [48]. We
represent each syndrome element σAim as a vertex of a
graph, which has two spatial dimensions set by the lay-
out of auxiliary qubits Ai in the surface code lattice, and
one temporal dimension indexed by the cycle number m.
We connect pairs of vertices with edges, each of which
represents a particular error at the physical level [18].

In our model, we consider three kinds of errors. First,
auxiliary qubit errors, including errors during readout,
which are represented by vertices at the same location
but separated in time by one cycle (∆m = 1). Second,
auxiliary qubit measurement misclassification errors, i.e.
measurement errors which do not change the state of the
auxiliary qubit, are represented by edges connecting ver-
tices at the same location but separated in time by two
cycles (∆m = 2). And third, single Pauli errors acting
on data qubits, which are represented by edges connect-
ing vertices either to a direct neighbor of the same type
(X or Z) or to a boundary. Depending on the time at
which these errors occur, the corresponding edge either
connects to a vertex of the same cycle (∆m = 0) or the
next cycle (∆m = 1). We extract the probabilities asso-
ciated with those edges directly from measured syndrome
correlations using the methods described in Refs. [9, 50].

Details of this scheme will be provided in a separate pub-
lication.

Based on the individual edge error probabilities, we
then compute for all pairs of vertices k and l with
∆m ≤ 2, the total probability pkl of being connected.
We do so, by summing the individual probabilities over
all possible error paths along the edges of the graph, see
Ref. [50] for details. Here, the terms pkk correspond
to the probability of having vertex k being connected
to a boundary. We convert the matrix of probabilities
pkl into a weight matrix wkl = − ln pkl, based on which
the MWPM algorithm connects each syndrome element
σAim = 1 either to a second such syndrome element or to
a boundary while minimizing the total weight associated
with these connections.

To correct for decoded errors in the final outcome
zL (xL) of the logical operator ẐL (X̂L), we evaluate
zL = z1z2z3 (xL = x1x4x7) from the final data qubit
readout and multiply it by (−1)M , where M is the num-
ber of syndrome element pairs determined by the MPWM
algorithm, which signal a logical error. A syndrome el-
ement pair signals a logical error if the underlying error
path contains an odd number of errors on those data
qubits, which are contained in the logical operator string
ẐL = Ẑ1Ẑ2Ẑ3 (X̂L = X̂1X̂4X̂7).

For consistency we evaluate the weights for each of
the experimental and simulated state preservation exper-
iments independently. We verified that the decoding with
weights extracted from separate data sets yields the same
logical lifetimes.
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her, M. Roetteler, and M. Troyer, Quantum computing
enhanced computational catalysis, Phys. Rev. Research
3, 033055 (2021).

[46] R. Babbush, J. R. McClean, M. Newman, C. Gid-
ney, S. Boixo, and H. Neven, Focus beyond quadratic
speedups for error-corrected quantum advantage, PRX
Quantum 2, 010103 (2021).

[47] D. Nigg, M. Müller, E. A. Martinez, P. Schindler,
M. Hennrich, T. Monz, M. A. Martin-Delgado, and
R. Blatt, Quantum computations on a topologically en-
coded qubit, Science 345, 302 (2014).

[48] T. E. O’Brien, B. Tarasinski, and L. DiCarlo, Density-
matrix simulation of small surface codes under current
and projected experimental noise, npj Quantum Inf. 3,
39 (2017).

[49] J. Edmonds, Paths, trees, and flowers, Canadian Journal
of Mathematics 17, 449 (1965).

[50] S. T. Spitz, B. Tarasinski, C. W. J. Beenakker, and T. E.
O’Brien, Adaptive weight estimator for quantum error
correction in a time-dependent environment, Advanced
Quantum Technologies 1, 1800012 (2018).

[51] C. J. Trout, M. Li, M. Gutiérrez, Y. Wu, S.-T. Wang,
L. Duan, and K. R. Brown, Simulating the performance
of a distance-3 surface code in a linear ion trap, New
Journal of Physics 20, 043038 (2018).

[52] A. J. Landahl and C. Ryan-Anderson, Quantum com-
puting by color-code lattice surgery, arXiv:1407.5103
(2014).

[53] M. Gutiérrez, M. Müller, and A. Bermúdez, Transversal-
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