REALIZING ROTATION VECTORS FOR TORUS HOMEOMORPHISMS

BY JOHN FRANKS

Abstract

We consider the rotation set $\rho(F)$ for a lift F of a homeomorphism $f: T^{2} \rightarrow T^{2}$, which is homotopic to the identity. Our main result is that if a vector v lies in the interior of $\rho(F)$ and has both coordinates rational, then there is a periodic point $x \in T^{2}$ with the property that

$$
\frac{F^{q}\left(x_{0}\right)-x_{0}}{q}=v
$$

where $x_{0} \in R^{2}$ is any lift of x and q is the least period of x.

In this article we consider the rotation set $\rho(F)$ as defined in [MZ], for a lift F of a homeomorphism $f: T^{2} \rightarrow T^{2}$, which is homotopic to the identity. Our main result is that if a vector v lies in the interior of $\rho(F)$ and has both coordinates rational, then there is a periodic point $x \in T^{2}$ with the property that

$$
\frac{F^{q}\left(x_{0}\right)-x_{0}}{q}=v
$$

where $x_{0} \in R^{2}$ is any lift of x and q is the least period of x. This should be compared with the well-known fact that if a homeomorphism of the circle has rational rotation number p / q then it has a periodic point (with rotation number p / q).
R. MacKay and J. Llibre [ML] have proved a similar result using the ideas our Proposition (2.4) below. They require the stronger hypothesis that v is in the interior of the convex hull of vectors in $\rho(F)$ which represent periodic orbits of f.

1. Background and definitions

Suppose $f: T^{2} \rightarrow T^{2}$ is a homeomorphism homotopic to the identity map, and let $F: R^{2} \rightarrow R^{2}$ be a lift.
(1.1) Definition. Let $\rho(F)$ denote the set of accumulation points of the subset of R^{2}

$$
\left\{\left.\frac{F^{n}(x)-x}{n} \right\rvert\, x \in R^{2}, n \in Z^{+}\right\},
$$

Received by the editors August 23, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 58F22.
thus $\nu \in \rho(F)$ if there are sequences $x_{i} \in R^{2}$ and $n_{i} \in Z^{+}$with $\lim n_{i}=\infty$ such that

$$
\lim _{i \rightarrow \infty} \frac{F^{n_{i}}\left(x_{i}\right)-x_{i}}{n_{i}}=\nu
$$

In [MZ] the rotation set is defined for a map homotopic to the identity (rather than a homeomorphism) $f: T^{n} \rightarrow T^{n}$. However, we shall be concerned only with homeomorphisms of T^{2}. In [MZ] it is shown that for homeomorphisms of $T^{2}, \rho(F)$ is convex.

We now briefly review the elementary theory of attractor-repeller pairs and chain recurrence developed by Charles Conley in [C]. In the following $f: X \rightarrow$ X will denote a homeomorphism of a compact metric space X.
(1.2) Definition. An ε-chain for f is a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of points in X such that

$$
d\left(f\left(x_{i}\right), x_{i+1}\right)<\varepsilon \quad \text { for } 1 \leq i \leq n-1
$$

If $x_{1}=x_{n}$ it is called a periodic ε-chain.
A point $x \in X$ is called chain recurrent if for every $\varepsilon>0$ there is an n (depending on ε) and an ε-chain $x_{1}, x_{2}, \ldots, x_{n}$ with $x_{1}=x_{n}=x$. The set \mathbf{R} of chain recurrent points is called the chain recurrent set of f.

It is easily seen that \mathbf{R} is compact and invariant under f.
If $A \subset X$ is a compact subset and there is an open neighborhood U of A such that $f(\operatorname{cl}(U)) \subset U$ and $\bigcap_{n \geq 0} f^{n}(\operatorname{cl}(U))=A$, then A is called an attractor and U is its isolating neighborhood. It is easy to see that if $V=X-\operatorname{cl}(U)$ and $A^{*}=\bigcap_{n \geq 0} f^{-n}(\mathrm{cl}(V))$, then A^{*} is an attractor for f^{-1} with isolating neighborhood V. The set A^{*} is called the repeller dual to A. It is clear that A^{*} is independent of the choice of isolating neighborhood U for A. Obviously $f(A)=A$ and $f\left(A^{*}\right)=A^{*}$.

If we define a relation \sim on \mathbf{R} by $x \sim y$ if for every $\varepsilon>0$ there is an $\varepsilon>0$ there is an ε-chain from x to y and another from y to x, then it is clear that \sim is an equivalence relation.

The equivalence classes in $\mathbf{R}(f)$ for the equivalence relation \sim above are called the chain transitive components of $\mathbf{R}(f)$.
(1.3) Definition. A complete Lyapounov function for $f: X \rightarrow X$ is a continuous function $g: X \rightarrow R$ satisfying:
(1) If $x \notin \mathbf{R}(f)$, then $g(f(x))<g(x)$.
(2) If $x, y \in \mathbf{R}(f)$, then $g(x)=g(y)$ iff $x \sim y$ (i.e., x and y are in the same chain transitive component.
(3) $g(\mathbf{R}(f))$ is a compact nowhere dense subset of R.

By analogy with the smooth setting, elements of $g(\mathbf{R}(f))$ are called critical values of g.

A theorem of C. Conley [C] asserts that a complete Lyapounov function exists for any flow or homeomorphism of a compact space. The proof in [C] is given for flows; for an exposition in the case of homeomorphisms see [F2].

In general the number of chain transitive components for a homeomorphism can be infinite (even uncountable). However, if we specify a fixed $\delta>0$ and work with δ-chains we can decompose $R(f)$ into a finite number of pieces.
(1.4) Definition. For a fixed $\delta>0$ we say that $x, y \in \mathbf{R}(f)$ are δ-equivalent if there is a δ-chain from x to y and one from y to x. This is an equivalence relation and the equivalence classes will be called δ-transitive components of $R(f)$. We will say a compact f-invariant set $\Lambda \subset \mathbf{R}(f)$ is δ-transitive if for every $x, y \in \Lambda, x$ is δ-equivalent to y.
(1.5) Lemma. Given $\delta>0$ and a homeomorphism $f: X \rightarrow X$ of a compact space, then there are finitely many δ-transitive components.

Proof. A δ-transitive component is a union of chain transitive components. Two chain transitive components which are in different δ-transitive components must be at least distance δ - apart. Hence if there were infinitely many δ-transitive components, there would be infinitely many subsets each at least distance δ from the others. This is impossible since X is compact.
(1.6) Theorem. Given $\delta>0$ and a homeomorphism of a compact space $f: X \rightarrow$ X, there is a complete Lyapounov function $g: X \rightarrow R$ for f, and regular values for $g, c_{0}<c_{1}<c_{2}<\cdots<c_{n}$ such that if $\Lambda_{i}=\mathbf{R}(f) \cap g^{-1}\left(\left[c_{i-1}, c_{i}\right]\right)$, then $\left\{\Lambda_{i}\right\}, 1 \leq i \leq n$, are the δ-transitive components of f.
Proof. Let $\Lambda_{1}, \ldots, \Lambda_{n}$ be the δ-transitive components for f. We order them in such a way that if $i<j$ there is no δ-chain from Λ_{i} to Λ_{j}. This is possible since there can be no "cycle" of Λ_{i} 's with each one having a δ-chain to the next and the last having a δ-chain to the first.

Let U_{i} denote the set of all $z \in X$ such that there is a δ-chain from Λ_{i} to z. U_{i} is an open set. Moreover, $f\left(\operatorname{cl}\left(U_{i}\right)\right) \subset U_{i}$, because if $z \in \operatorname{cl}\left(U_{i}\right)$, there is $z_{0} \in U_{i}$ such that $d\left(f(z), f\left(z_{0}\right)\right)<\delta$ and consequently a δ-chain from x to z_{0} gives a δ-chain $x=x_{1}, x_{2}, \ldots, x_{k}, z_{0}, f(z)$ from x to $f(z)$.

Thus if $A_{i}=\bigcap_{n \geq 0} f^{n}\left(\operatorname{cl} U_{i}\right)$ and $A_{i}^{*}=\bigcap_{n \geq 0} f^{-n}\left(X-U_{i}\right)$, then A_{i}, A_{i}^{*} are an attractor repeller pair and $\Lambda_{i} \subset A_{i}$. A result of Conley (see Lemma (1.7) of [F2] for a proof) asserts there is a continuous function $g_{i}: X \rightarrow[0,1]$ such that $A_{i}=g_{i}^{-1}(0), A_{i}^{*}=g_{i}^{-1}(1)$ and $g_{i}(f(x))<g_{i}(x)$ for all $x \in X-\left(A_{i} \cup A_{i}^{*}\right)$. If $i<j$, then $\Lambda_{j} \subset A_{i}^{*}$ so $g_{i}\left(\Lambda_{j}\right)=\{1\}$.

Let $h(x)=\sum_{i=1}^{n} 2^{i} g_{i}(x)$ and note that $h(f(x)) \leq h(x)$ for all $x \in X$. For $x \in \mathbf{R}(f)=\bigcup \Lambda_{i}, h(x)$ is an even integer between 0 and 2^{n+1}. Also note if $x, y \in \mathbf{R}(f)$, then $h(x)=h(y)$ if and only if $g_{i}(x)=g_{i}(y)$ for all i. Hence if $x \in \Lambda_{i}, y \in \Lambda_{j}, i<j$, then $h(x) \neq h(y)$ since $g_{i}(x) \neq g_{i}(y)$. Now if $g_{0}: X \rightarrow[0,1]$ is a complete Lyapounov function, then $g(x)=g_{0}(x)+h(x)$ is the desired function.

2. The δ-transitive case

We begin with a sequence of results leading to our main theorem. Assume throughout that $f: T^{2} \rightarrow T^{2}$ is a homeomorphism homotopic to the identity and $F: R^{2} \rightarrow R^{2}$ is a lift, i.e., if $\pi: R^{2} \rightarrow T^{2}$ is the covering projection then $\pi \circ F=f \circ \pi$.
(2.1) Lemma. If F has no fixed points, then there is an $\varepsilon>0$ such that no periodic ε-chain for F exists.
Proof. This result and its proof are quite similar to (2.1) of [F1] and (2.2) of [F2]. Let

$$
\delta=\min _{x \in R^{2}}|F(x)-x| .
$$

Note this minimum is assumed since it suffices to consider only x in a compact fundamental domain for π. Hence $\delta>0$.

A result of Oxtoby [Ox] says that there is a $\gamma>0$ such that for any finite set of pairs $\left\{\left(x_{i}, y_{i}\right)\right\}$ of elements in R^{2} with $\left\|x_{i}-y_{i}\right\|<\gamma$ there is a pairwise disjoint set of piecewise linear arcs α_{i} from x_{i} to y_{i} with the diameter of each $<\delta$.

Let $\varepsilon=\gamma$; we will show there is no periodic ε-chain for F. Suppose to the contrary that $z_{1}=z, z_{2}, z_{3}, \ldots, z_{n}=z$ is a periodic ε-chain. Letting $y_{i}=z_{i}, x_{i}=F\left(z_{i-1}\right)$, we see that there are pairwise disjoint arcs α_{i} from $F\left(z_{i-1}\right)$ to z_{i}, with diameter $<\delta$. By isotoping in a neighborhood of these arcs we can produce a perturbation G of F satisfying
(1) $\|F(x)-G(x)\|<\delta$ for all $x \in R^{2}$, and
(2) $G\left(z_{i-1}\right)=z_{i}$.

Now G has a periodic point, namely z. Hence by results of [Br or Fa] G has a fixed point p. Thus $\|F(p)-p\| \leq\|F(p)-G(p)\|+\|G(p)-p\|<\delta$ which is a contradiction.
(2.2) Lemma. Suppose Λ is a δ-transitive compact invariant subset of $\mathbf{R}(f)$ for a homeomorphism $f: T^{2} \rightarrow T^{2}$ and F is a lift of f. There is a constant $K>0$, such that for any $x_{0}, y_{0} \in \Lambda, x \in \pi^{-1}\left(x_{0}\right)$ there is a δ-chain for F from x to a point $y \in \pi^{-1}\left(y_{0}\right)$ with $\|y-x\|<K$.
Proof. Fix $\omega \in \pi^{-1}(\Lambda)$ and let Q_{n} denote the set of $z \in \Lambda$ such that there is a δ-chain for f from $\pi(\omega)$ to z of length less than n. Q_{n} is open by definition and $\Lambda=\bigcup_{n \geq 1} Q_{n}$ so compactness of Λ implies $Q_{N}=\Lambda$ for some $N>0$. Hence given $y_{0} \in \Lambda$ there is a δ-chain from $\pi(\omega)$ to y_{0} of length less than N. Lifting this to R^{2}, starting at w, we obtain a δ-chain from w to some $y^{\prime} \in \pi^{-1}\left(y_{0}\right)$. If $P=\sup \|F(\nu)-\nu\|$, then since this δ-chain from w to y^{\prime} has length less than N, it follows that $\left\|y^{\prime}-w\right\|<C_{1}=N(P+\delta)$.

A similar argument shows that given $x_{0} \in \Lambda$ there is an $x^{\prime} \in \pi^{-1}\left(x_{0}\right)$ with a δ-chain from x^{\prime} to w and $\left\|x^{\prime}-w\right\|<C_{2}$ for some constant C_{2} independent of
x_{0}. Piecing these together we obtain a δ-chain from x^{\prime} to y^{\prime} with $\left\|y^{\prime}-x^{\prime}\right\|<$ $K=C_{1}+C_{2}$. Now given any $x \in \pi^{-1}\left(x_{0}\right)$ translate this δ-chain by the integer vector $x-x^{\prime}$ to obtain a δ-chain from x to y, where $y=y^{\prime}+\left(x-x^{\prime}\right)$ satisfies $\pi(y)=y_{0}$ and $\|y-x\|=\left\|y^{\prime}-x^{\prime}\right\|<K$.
(2.3) Definition. If $\Lambda \subset T^{2}$ is a compact invariant set for $f: T^{2} \rightarrow T^{2}$, and F is a lift of f, we denote by $\rho(f, \Lambda)$, the accumulation points of the set

$$
\left\{\left.\frac{F^{n}(x)-x}{n} \right\rvert\, \pi(x) \in \Lambda \text { and } n>0\right\}
$$

(2.4) Proposition. Suppose $\Lambda \subset T^{2}$ is a compact invariant subset of $\mathbf{R}(f)$ for $f: T^{2} \rightarrow T^{2}$ and for some $\delta>0, \Lambda$ is δ-transitive. If 0 is in the interior of the convex hull of $\rho(F, \Lambda)$, then there is a periodic δ-chain for F.
Proof. The hypothesis guarantees that there are vectors $\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4} \in \rho(F, \Lambda)$ such that 0 is in the interior of their convex hull (see Steinitz's theorem in [HDK]). Choose neighborhoods U_{i} of ν_{i} in R^{2} so small that whenever $\nu_{i}^{\prime} \in$ $U_{i}, 0$ is also in the interior of the convex hull of $\nu_{1}^{\prime}, \nu_{2}^{\prime}, \nu_{3}^{\prime}$ and ν_{4}^{\prime}. Fix $z_{0} \in \Lambda$ and $z \in \pi^{-1}\left(z_{0}\right)$. Now by (2.2) and the fact that $\nu_{1} \in \rho(F, \Lambda)$ we can find $x_{i} \in R^{2}$ and $n_{i}>i$ such that
(1) $\lim _{i \rightarrow \infty} \frac{F^{n_{i}}\left(x_{i}\right)-x_{i}}{n_{i}}=\nu_{1}$.
(2) There is a δ-chain from z to x_{i} and $\left\|x_{i}-z\right\|<K$.
(3) There is a δ-chain from $F^{n_{i}}\left(x_{i}\right)$ to $z_{i}^{\prime} \in \pi^{-1}\left(z_{0}\right)$ and $\left\|F^{n_{i}}\left(x_{i}\right)-z_{i}^{\prime}\right\|<$ K.

Notice that piecing together the δ-chain from z to x_{i}, the orbit segment from x_{i} to $F^{n_{i}}\left(x_{i}\right)$ and the δ-chain from $F^{n_{i}}\left(x_{i}\right)$ to z_{i}^{\prime} we obtain a δ-chain from z to z_{i}^{\prime}. Also (1), (2), and (3) imply

$$
\lim _{n \rightarrow \infty} \frac{z_{i}^{\prime}-z}{n_{i}}=\nu_{1}
$$

Choose i sufficiently large that

$$
\frac{z_{i}^{\prime}-z}{n_{i}} \in U_{1}
$$

and set $w_{1}=z_{i}^{\prime}-z, m_{1}=n_{i}$ so that there is a δ-chain from z to $z+w_{1}$ and $w_{1} / m_{1} \in U_{1}$. Note that $\pi\left(z_{i}^{\prime}\right)=\pi(z)=z_{0}$ implies w_{1} is an integer vector.

Now in a similar fashion construct $w_{2}, m_{2}, w_{3}, m_{3}$, and w_{4}, m_{4}, with the analogous properties.

Since 0 is in the convex hull of $w_{1} / m_{1}, w_{2} / m_{2}, w_{3} / m_{3}, w_{4} / m_{4}$ and the vectors $w_{1}, w_{2}, w_{3}, w_{4}$ are integers, it is possible to solve

$$
A w_{1}+B w_{2}+C w_{3}+D w_{4}=0
$$

for positive integers A, B, C, D. Any translate of a δ-chain by an integer vector is another δ-chain. Hence piecing together A translates of the δ-chain from z to $z+w$, with B translates of the δ-chain from z to $z+w_{2}, C$ translates of the δ-chain from z to $z+w_{3}$, etc., we obtain a δ-chain from z to $z+A w_{1}+B w_{2}+C w_{3}+D w_{4}=z$ as desired.

3. The general case

As before we assume $f: T^{2} \rightarrow T^{2}$ is a homeomorphism and $F: R^{2} \rightarrow R^{2}$ is a lift.
(3.1) Proposition. Suppose $\nu_{1}, \nu_{2}, \nu_{3}$ and ν_{4} are extreme points of the convex set $\rho(F)$ and 0 is in the interior of their convex hull. Then F possesses a fixed point.
Proof. In [MZ] it is shown that since ν_{i} is an extreme point of $\rho(F)$ there is an ergodic Borel measure realizing ν_{i} and hence a nonwandering point $x_{i} \in T^{2}$ such that if $x \in \pi^{-1}\left(x_{i}\right)$

$$
\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}=\nu_{i}
$$

We will need only the fact that such an x_{i} exists with $x_{i} \in \mathbf{R}(f)$.
To show that F has a fixed point it suffices by (2.1) to show that for every $\delta>0$ there is a periodic δ-chain for F. Given $\delta>0$, let $\mathbf{R}(f)=\Lambda_{1} \cup$ $\Lambda_{2} \cup \cdots \cup \Lambda_{m}$ be a decomposition of the chain recurrent set into δ-transitive pieces as given in (1.6) and let $g: T^{2} \rightarrow R$ be a complete Lyapounov function compatible with this decomposition. We will show that there exists a piece Λ_{j} of this decomposition and points $y_{i} \in \Lambda_{j}, i=1,2,3,4$, such that whenever $y \in \pi^{-1}\left(y_{i}\right)$,

$$
\nu_{i}=\lim _{n \rightarrow \infty} \frac{F^{n}(y)-y}{n} .
$$

It then follows by (2.4) that F has a δ-chain. Since this holds for all $\delta>0$ we conclude by (2.1) that F has a fixed point.

Choose a smooth approximation $g_{0}: T^{2} \rightarrow R$ to g and regular values $c_{1}, c_{2}, \ldots, c_{m}$ such that the manifolds with boundary $M_{i}=g_{0}^{-1}\left(\left(-\infty, c_{i}\right]\right)$ satisfy
(1) $f\left(M_{i}\right) \subset$ int M_{i}, and
(2) $\Lambda_{i} \subset M_{i}-M_{i-1}$.

Let N_{i} be the manifold $\operatorname{cl}\left(M_{i}-M_{i-1}\right)$, so $T^{2}=\bigcup N_{i}$ and $N_{i} \cap N_{k}$ consists of a finite set of circles if $k=i \pm 1$ and otherwise is empty if $i \neq k$.

These circles are the components of $g_{0}^{-1}\left(\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}\right)$. We first observe that none of these circles is essential in T^{2}. If there were such a circle, say
γ, then it would be in the boundary of M_{j} for some j and M_{j} would have to have another boundary component which is isotopic to γ. (There might also be some inessential circles in the boundary of M_{j}.) It follows that M_{j} is an essential annulus (perhaps with some disks removed) in T^{2}. Let \tilde{M}_{j} be a component of $\pi^{-1}\left(M_{j}\right)$ and choose a lift F_{0} of f so that $F_{0}\left(\tilde{M}_{j}\right) \subset \tilde{M}_{j}$. Now \tilde{M}_{j} is an infinite strip (perhaps with holes) which has a rational slope. It follows since $F_{0}\left(\tilde{M}_{j}\right) \subset \tilde{M}_{j}$ that for any $x \in R^{2}$, if $\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$ exists, then it must lie on a line with this slope, since $F_{0}^{n}(x)$ is constrained between parallel translates of \tilde{M}_{j}. From this and the fact that $F(x)=F_{0}(x)+w$ for some integer vector w, it follows that the convex hull of the vectors ν_{i} given in our hypothesis is a line segment. This contradicts the assumption that 0 is in the interior of the convex hull; so none of the boundary components of the N_{i} can be essential in T^{2}.

Since each of these boundary circles is inessential, each of them bounds a unique smooth disk in T^{2}. The complement of the union of these disks consists of the interior of a single one of the N_{i} 's, say N_{j}. The complement of $\operatorname{int}\left(N_{j}\right)$ in T^{2} consists of a finite set of disks, say $D_{1}, D_{2}, \ldots, D_{r}$. Number these disks so that

$$
D_{i} \subset M_{j} \quad \text { for } 1 \leq i \leq s
$$

and

$$
D_{i} \subset \operatorname{cl}\left(T^{2}-M_{j}\right) \quad \text { for } s<i \leq r
$$

Then

$$
f\left(D_{i}\right) \subset \bigcup_{k=1}^{s} D_{k} \quad \text { for } 1 \leq i \leq s
$$

and

$$
f^{-1}\left(D_{i}\right) \subset \bigcup_{k=s+1}^{r} D_{k} \quad \text { if } s<i \leq r .
$$

Consider now a point $x \in \pi^{-1}\left(x_{1}\right)$ such that

$$
\nu_{1}=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n} .
$$

We will show that if x_{1} is not in Λ_{j}, there is another point $y_{1} \in \Lambda_{j}$ so that whenever $y \in \pi^{-1}\left(y_{1}\right)$,

$$
\nu_{1}=\lim _{n \rightarrow \infty} \frac{F^{n}(y)-y}{n} .
$$

Since the same is true for ν_{2}, ν_{3}, and ν_{4}, we will have completed the proof by the remarks above.

Suppose now that $x_{1} \in D_{p}$ for $1 \leq p \leq s$. There exists $q>0$ such that $f^{q}\left(D_{p}\right) \subset D_{p}$ (recall that x_{1} is recurrent). Hence if $D \subset R^{2}$ is the lift of
D_{p} containing x, then $F^{q}(D) \subset D+w$ for some integer vector w. If we set $G(z)=F^{q}(z)-w$, then $G(D) \subset D$ so there is a fixed point z_{0} for G. Clearly

$$
\nu_{1}=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}=\lim _{n \rightarrow \infty} \frac{F^{n}\left(z_{0}\right)-z_{0}}{n}=\frac{w}{q} .
$$

If $x_{1} \in D_{p}$ and $s<p$, then a similar argument applied to f^{-1} leads to a fixed point z_{0} of G with the same properties.

We want to find a fixed point for G which is in $\pi^{-1}\left(N_{j}\right)$. To do this we consider fixed points of f^{q} on T^{2}. We will use the fact that f^{q} is homotopic to a map with no fixed points so the index sum of the set of fixed points in any Nielsen class for f^{q} is zero (see [B, Theorem 3, p. 94]). Recall that two fixed points p_{1} and p_{2} are in the same Nielsen class for f^{q} provided any lift of f^{q} to R^{2} which pointwise fixes $\pi^{-1}\left(p_{1}\right)$ also pointwise fixes $\pi^{-1}\left(p_{2}\right)$.

We will consider points in the Nielsen class of the point $\pi\left(z_{0}\right)$ where z_{0} is the fixed point of G mentioned above. Any such points which are not in N_{j} will lie in a D_{i} with a lift \tilde{D}_{i} for which $G\left(\tilde{D}_{i}\right) \subset \tilde{D}_{i}$ or with $G^{-1}\left(\tilde{D}_{i}\right) \subset \tilde{D}_{i}$. Hence the contribution to the index of the points in D_{i} will be +1 . Thus the index of the set of fixed points in the Nielsen class of $\pi\left(z_{0}\right)$ which are not in N_{j} is positive (the disk D_{p} contributes at least one +1). It follows there must be a fixed point $y_{1} \in N_{j}$ of f^{q} in the Nielsen class of $\pi\left(z_{0}\right)$. Since y_{1} is in the Nielsen class of $\pi\left(z_{0}\right)$, if $y \in \pi^{-1}\left(y_{1}\right)$, then $G(y)=y$. Hence

$$
\nu_{1}=\lim _{n \rightarrow \infty} \frac{F^{n}(y)-y}{n} .
$$

Also y_{1} is a periodic point of f in N_{j} so $y_{1} \in \Lambda_{j}$. The same argument implies the existence of $y_{2}, y_{3}, y_{4} \in \Lambda_{j}$, so this completes the proof.
(3.2) Theorem. Suppose $f: T^{2} \rightarrow T^{2}$ is a homeomorphism homotopic to the identity and $F: R^{2} \rightarrow R^{2}$ is a lift. If ν is a vector with rational coordinates in the interior of $\rho(F)$, then there is a point $p \in R^{2}$ such that $\pi(p) \in T^{2}$ is a periodic point for f and

$$
\nu=\lim _{n \rightarrow \infty} \frac{F^{n}(p)-p}{n} .
$$

Proof. Suppose $\nu=(r / q, s / q)$ with the greatest common divisor of r, s, and q equal to 1 . If $G(x)=F^{q}(x)-(r, s)$, then a fixed point p of G will satisfy $F^{q}(p)=p+(r, s)$ and hence be the desired point.

It is easy to check (see $[\mathrm{MZ}]$) that $\rho(G)=q \rho(F)-(r, s)$. Thus since $(r / q, s / q)$ is in the interior of $\rho(F)$, it follows that 0 is in the interior of $\rho(G)$. Since $\rho(G)$ is closed and convex there exist extreme points $\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4} \in \rho(G)$ such that 0 is in their convex hull (see Steinitz's theorem in [HDK]). It now follows from (3.1) that G possesses a fixed point p.

References

[B] R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman and Co., Glenview, Ill., 1978.
[Br] M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math. 10 (1984), 35-41.
[C] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, R. I., 1978.
[Fa] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, Enseign. Math. 33 (1987), 315-322.
[F] J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynamical Systems 8^{*} (1988), 99-107.
[F2] __ A variation on the Poincaré-Birkhoff theorem, Hamiltonian Dynamics, Contemp. Math., Amer. Math. Soc., Providence, R. I. (to appear).
[HDK] H. Hadwiger, H. Debrunner, and V. Klee, Combinatorial geometry in the plane, Holt Rinehart and Winston, New York, 1964.
[ML] R. MacKay and J. Llibre, Rotation vectors and entropy for homeomorphisms homotopic to the identity, preprint.
[MZ] M. Misiurewicz and K. Ziemian, Rotation sets of toral maps (to appear).
[Ox] J. Oxtoby, Diameters of arcs and the gerrymandering problem, Amer. Math. Monthly 84 (1977), 155-162.

Department of Mathematics, Northwestern University, Evanston, Illinois 60201

