REALIZING ROTATION VECTORS FOR TORUS HOMEOMORPHISMS

BY JOHN FRANKS

ABSTRACT. We consider the rotation set $\rho(F)$ for a lift F of a homeomorphism $f: T^2 \to T^2$, which is homotopic to the identity. Our main result is that if a vector v lies in the interior of $\rho(F)$ and has both coordinates rational, then there is a periodic point $x \in T^2$ with the property that

$$\frac{F^q(x_0) - x_0}{q} = v$$

where $x_0 \in R^2$ is any lift of x and q is the least period of x.

In this article we consider the rotation set $\rho(F)$ as defined in [MZ], for a lift F of a homeomorphism $f: T^2 \to T^2$, which is homotopic to the identity. Our main result is that if a vector v lies in the interior of $\rho(F)$ and has both coordinates rational, then there is a periodic point $x \in T^2$ with the property that

$$\frac{F^q(x_0) - x_0}{q} = v$$

where $x_0 \in \mathbb{R}^2$ is any lift of x and q is the least period of x. This should be compared with the well-known fact that if a homeomorphism of the circle has rational rotation number p/q then it has a periodic point (with rotation number p/q).

R. MacKay and J. Llibre [ML] have proved a similar result using the ideas our Proposition (2.4) below. They require the stronger hypothesis that v is in the interior of the convex hull of vectors in $\rho(F)$ which represent periodic orbits of f.

1. BACKGROUND AND DEFINITIONS

Suppose $f: T^2 \to T^2$ is a homeomorphism homotopic to the identity map, and let $F: R^2 \to R^2$ be a lift.

(1.1) Definition. Let $\rho(F)$ denote the set of accumulation points of the subset of R^2

$$\left\{\frac{F^n(x)-x}{n} \mid x \in R^2, n \in Z^+\right\},\$$

Received by the editors August 23, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 58F22.

©1989 American Mathematical Society 0002-9947/89 \$1.00 + \$.25 per page thus $\nu \in \rho(F)$ if there are sequences $x_i \in R^2$ and $n_i \in Z^+$ with $\lim n_i = \infty$ such that

$$\lim_{i\to\infty}\frac{F^{n_i}(x_i)-x_i}{n_i}=\nu.$$

In [MZ] the rotation set is defined for a map homotopic to the identity (rather than a homeomorphism) $f: T^n \to T^n$. However, we shall be concerned only with homeomorphisms of T^2 . In [MZ] it is shown that for homeomorphisms of T^2 , $\rho(F)$ is convex.

We now briefly review the elementary theory of attractor-repeller pairs and chain recurrence developed by Charles Conley in [C]. In the following $f: X \to X$ will denote a homeomorphism of a compact metric space X.

(1.2) Definition. An ε -chain for f is a sequence x_1, x_2, \ldots, x_n of points in X such that

$$d(f(x_i), x_{i+1}) < \varepsilon$$
 for $1 \le i \le n-1$.

If $x_1 = x_n$ it is called a periodic ε -chain.

A point $x \in X$ is called *chain recurrent* if for every $\varepsilon > 0$ there is an *n* (depending on ε) and an ε -chain x_1, x_2, \ldots, x_n with $x_1 = x_n = x$. The set **R** of chain recurrent points is called the *chain recurrent set* of f.

It is easily seen that **R** is compact and invariant under f.

If $A \subset X$ is a compact subset and there is an open neighborhood U of A such that $f(cl(U)) \subset U$ and $\bigcap_{n\geq 0} f^n(cl(U)) = A$, then A is called an *attractor* and U is its isolating neighborhood. It is easy to see that if V = X - cl(U) and $A^* = \bigcap_{n\geq 0} f^{-n}(cl(V))$, then A^* is an attractor for f^{-1} with isolating neighborhood V. The set A^* is called the *repeller* dual to A. It is clear that A^* is independent of the choice of isolating neighborhood U for A. Obviously f(A) = A and $f(A^*) = A^*$.

If we define a relation \sim on **R** by $x \sim y$ if for every $\varepsilon > 0$ there is an $\varepsilon > 0$ there is an ε -chain from x to y and another from y to x, then it is clear that \sim is an equivalence relation.

The equivalence classes in $\mathbf{R}(f)$ for the equivalence relation ~ above are called the *chain transitive components* of $\mathbf{R}(f)$.

(1.3) Definition. A complete Lyapounov function for $f: X \to X$ is a continuous function $g: X \to R$ satisfying:

- (1) If $x \notin \mathbf{R}(f)$, then g(f(x)) < g(x).
- (2) If $x, y \in \mathbf{R}(f)$, then g(x) = g(y) iff $x \sim y$ (i.e., x and y are in the same chain transitive component.
- (3) $g(\mathbf{R}(f))$ is a compact nowhere dense subset of R.

By analogy with the smooth setting, elements of $g(\mathbf{R}(f))$ are called *critical* values of g.

A theorem of C. Conley [C] asserts that a complete Lyapounov function exists for any flow or homeomorphism of a compact space. The proof in [C] is given for flows; for an exposition in the case of homeomorphisms see [F2].

In general the number of chain transitive components for a homeomorphism can be infinite (even uncountable). However, if we specify a fixed $\delta > 0$ and work with δ -chains we can decompose R(f) into a finite number of pieces.

(1.4) Definition. For a fixed $\delta > 0$ we say that $x, y \in \mathbf{R}(f)$ are δ -equivalent if there is a δ -chain from x to y and one from y to x. This is an equivalence relation and the equivalence classes will be called δ -transitive components of R(f). We will say a compact f-invariant set $\Lambda \subset \mathbf{R}(f)$ is δ -transitive if for every $x, y \in \Lambda$, x is δ -equivalent to y.

(1.5) Lemma. Given $\delta > 0$ and a homeomorphism $f: X \to X$ of a compact space, then there are finitely many δ -transitive components.

Proof. A δ -transitive component is a union of chain transitive components. Two chain transitive components which are in different δ -transitive components must be at least distance δ -apart. Hence if there were infinitely many δ -transitive components, there would be infinitely many subsets each at least distance δ from the others. This is impossible since X is compact. \Box

(1.6) Theorem. Given $\delta > 0$ and a homeomorphism of a compact space $f: X \to X$, there is a complete Lyapounov function $g: X \to R$ for f, and regular values for g, $c_0 < c_1 < c_2 < \cdots < c_n$ such that if $\Lambda_i = \mathbf{R}(f) \cap g^{-1}([c_{i-1}, c_i])$, then $\{\Lambda_i\}, 1 \le i \le n$, are the δ -transitive components of f.

Proof. Let $\Lambda_1, \ldots, \Lambda_n$ be the δ -transitive components for f. We order them in such a way that if i < j there is no δ -chain from Λ_i to Λ_j . This is possible since there can be no "cycle" of Λ_i 's with each one having a δ -chain to the next and the last having a δ -chain to the first.

Let U_i denote the set of all $z \in X$ such that there is a δ -chain from Λ_i to z. U_i is an open set. Moreover, $f(\operatorname{cl}(U_i)) \subset U_i$, because if $z \in \operatorname{cl}(U_i)$, there is $z_0 \in U_i$ such that $d(f(z), f(z_0)) < \delta$ and consequently a δ -chain from x to z_0 gives a δ -chain $x = x_1, x_2, \ldots, x_k, z_0, f(z)$ from x to f(z).

Thus if $A_i = \bigcap_{n\geq 0} f^n(\operatorname{cl} U_i)$ and $A_i^* = \bigcap_{n\geq 0} f^{-n}(X - U_i)$, then A_i , A_i^* are an attractor repeller pair and $\Lambda_i \subset A_i$. A result of Conley (see Lemma (1.7) of [F2] for a proof) asserts there is a continuous function $g_i : X \to [0, 1]$ such that $A_i = g_i^{-1}(0)$, $A_i^* = g_i^{-1}(1)$ and $g_i(f(x)) < g_i(x)$ for all $x \in X - (A_i \cup A_i^*)$. If i < j, then $\Lambda_j \subset A_i^*$ so $g_i(\Lambda_j) = \{1\}$.

Let $h(x) = \sum_{i=1}^{n} 2^{i} g_{i}(x)$ and note that $h(f(x)) \leq h(x)$ for all $x \in X$. For $x \in \mathbf{R}(f) = \bigcup \Lambda_{i}$, h(x) is an even integer between 0 and 2^{n+1} . Also note if $x, y \in \mathbf{R}(f)$, then h(x) = h(y) if and only if $g_{i}(x) = g_{i}(y)$ for all *i*. Hence if $x \in \Lambda_{i}$, $y \in \Lambda_{j}$, i < j, then $h(x) \neq h(y)$ since $g_{i}(x) \neq g_{i}(y)$. Now if $g_{0}: X \to [0, 1]$ is a complete Lyapounov function, then $g(x) = g_{0}(x) + h(x)$ is the desired function. \Box

JOHN FRANKS

2. The δ -transitive case

We begin with a sequence of results leading to our main theorem. Assume throughout that $f: T^2 \to T^2$ is a homeomorphism homotopic to the identity and $F: R^2 \to R^2$ is a lift, i.e., if $\pi: R^2 \to T^2$ is the covering projection then $\pi \circ F = f \circ \pi$.

(2.1) Lemma. If F has no fixed points, then there is an $\varepsilon > 0$ such that no periodic ε -chain for F exists.

Proof. This result and its proof are quite similar to (2.1) of [F1] and (2.2) of [F2]. Let

$$\delta = \min_{x \in \mathbb{R}^2} |F(x) - x|.$$

Note this minimum is assumed since it suffices to consider only x in a compact fundamental domain for π . Hence $\delta > 0$.

A result of Oxtoby [Ox] says that there is a $\gamma > 0$ such that for any finite set of pairs $\{(x_i, y_i)\}$ of elements in \mathbb{R}^2 with $||x_i - y_i|| < \gamma$ there is a pairwise disjoint set of piecewise linear arcs α_i from x_i to y_i with the diameter of each $< \delta$.

Let $\varepsilon = \gamma$; we will show there is no periodic ε -chain for F. Suppose to the contrary that $z_1 = z, z_2, z_3, \ldots, z_n = z$ is a periodic ε -chain. Letting $y_i = z_i, x_i = F(z_{i-1})$, we see that there are pairwise disjoint arcs α_i from $F(z_{i-1})$ to z_i , with diameter $< \delta$. By isotoping in a neighborhood of these arcs we can produce a perturbation G of F satisfying

- (1) $||F(x) G(x)|| < \delta$ for all $x \in \mathbb{R}^2$, and
- (2) $G(z_{i-1}) = z_i$.

Now G has a periodic point, namely z. Hence by results of [Br or Fa] G has a fixed point p. Thus $||F(p) - p|| \le ||F(p) - G(p)|| + ||G(p) - p|| < \delta$ which is a contradiction. \Box

(2.2) Lemma. Suppose Λ is a δ -transitive compact invariant subset of $\mathbf{R}(f)$ for a homeomorphism $f: T^2 \to T^2$ and F is a lift of f. There is a constant K > 0, such that for any $x_0, y_0 \in \Lambda$, $x \in \pi^{-1}(x_0)$ there is a δ -chain for F from x to a point $y \in \pi^{-1}(y_0)$ with ||y - x|| < K.

Proof. Fix $\omega \in \pi^{-1}(\Lambda)$ and let Q_n denote the set of $z \in \Lambda$ such that there is a δ -chain for f from $\pi(\omega)$ to z of length less than n. Q_n is open by definition and $\Lambda = \bigcup_{n \ge 1} Q_n$ so compactness of Λ implies $Q_N = \Lambda$ for some N > 0. Hence given $y_0 \in \Lambda$ there is a δ -chain from $\pi(\omega)$ to y_0 of length less than N. Lifting this to R^2 , starting at w, we obtain a δ -chain from w to some $y' \in \pi^{-1}(y_0)$. If $P = \sup ||F(\nu) - \nu||$, then since this δ -chain from w to y' has length less than N, it follows that $||y' - w|| < C_1 = N(P + \delta)$.

A similar argument shows that given $x_0 \in \Lambda$ there is an $x' \in \pi^{-1}(x_0)$ with a δ -chain from x' to w and $||x'-w|| < C_2$ for some constant C_2 independent of

 x_0 . Piecing these together we obtain a δ -chain from x' to y' with $||y'-x'|| < K = C_1 + C_2$. Now given any $x \in \pi^{-1}(x_0)$ translate this δ -chain by the integer vector x - x' to obtain a δ -chain from x to y, where y = y' + (x - x') satisfies $\pi(y) = y_0$ and ||y - x|| = ||y' - x'|| < K. \Box

(2.3) Definition. If $\Lambda \subset T^2$ is a compact invariant set for $f: T^2 \to T^2$, and F is a lift of f, we denote by $\rho(f, \Lambda)$, the accumulation points of the set

$$\left\{\frac{F^n(x)-x}{n} \mid \pi(x) \in \Lambda \text{ and } n > 0\right\}.$$

(2.4) **Proposition.** Suppose $\Lambda \subset T^2$ is a compact invariant subset of $\mathbf{R}(f)$ for $f: T^2 \to T^2$ and for some $\delta > 0$, Λ is δ -transitive. If 0 is in the interior of the convex hull of $\rho(F, \Lambda)$, then there is a periodic δ -chain for F.

Proof. The hypothesis guarantees that there are vectors ν_1 , ν_2 , ν_3 , $\nu_4 \in \rho(F, \Lambda)$ such that 0 is in the interior of their convex hull (see Steinitz's theorem in [HDK]). Choose neighborhoods U_i of ν_i in R^2 so small that whenever $\nu'_i \in U_i$, 0 is also in the interior of the convex hull of ν'_1 , ν'_2 , ν'_3 and ν'_4 . Fix $z_0 \in \Lambda$ and $z \in \pi^{-1}(z_0)$. Now by (2.2) and the fact that $\nu_1 \in \rho(F, \Lambda)$ we can find $x_i \in R^2$ and $n_i > i$ such that

- (1) $\lim_{i\to\infty} \frac{F^{n_i}(x_i)-x_i}{n_i} = \nu_1$.
- (2) There is a δ -chain from z to x_i and $||x_i z|| < K$.
- (3) There is a δ -chain from $F^{n_i}(x_i)$ to $z'_i \in \pi^{-1}(z_0)$ and $||F^{n_i}(x_i) z'_i|| < K$.

Notice that piecing together the δ -chain from z to x_i , the orbit segment from x_i to $F^{n_i}(x_i)$ and the δ -chain from $F^{n_i}(x_i)$ to z'_i we obtain a δ -chain from z to z'_i . Also (1), (2), and (3) imply

$$\lim_{n\to\infty}\frac{z_i'-z}{n_i}=\nu_1$$

Choose i sufficiently large that

$$\frac{z_i'-z}{n_i} \in U_1$$

and set $w_1 = z'_i - z$, $m_1 = n_i$ so that there is a δ -chain from z to $z + w_1$ and $w_1/m_1 \in U_1$. Note that $\pi(z'_i) = \pi(z) = z_0$ implies w_1 is an integer vector.

Now in a similar fashion construct w_2 , m_2 , w_3 , m_3 , and w_4 , m_4 , with the analogous properties.

Since 0 is in the convex hull of w_1/m_1 , w_2/m_2 , w_3/m_3 , w_4/m_4 and the vectors w_1 , w_2 , w_3 , w_4 are integers, it is possible to solve

$$Aw_{1} + Bw_{2} + Cw_{3} + Dw_{4} = 0$$

for positive integers A, B, C, D. Any translate of a δ -chain by an integer vector is another δ -chain. Hence piecing together A translates of the δ -chain from z to z + w, with B translates of the δ -chain from z to $z + w_2$, C translates of the δ -chain from z to $z + w_3$, etc., we obtain a δ -chain from z to $z + Aw_1 + Bw_2 + Cw_3 + Dw_4 = z$ as desired.

3. The general case

As before we assume $f: T^2 \to T^2$ is a homeomorphism and $F: R^2 \to R^2$ is a lift.

(3.1) **Proposition.** Suppose ν_1 , ν_2 , ν_3 and ν_4 are extreme points of the convex set $\rho(F)$ and 0 is in the interior of their convex hull. Then F possesses a fixed point.

Proof. In [MZ] it is shown that since ν_i is an extreme point of $\rho(F)$ there is an ergodic Borel measure realizing ν_i and hence a nonwandering point $x_i \in T^2$ such that if $x \in \pi^{-1}(x_i)$

$$\lim_{n\to\infty}\frac{F^n(x)-x}{n}=\nu_i$$

We will need only the fact that such an x_i exists with $x_i \in \mathbf{R}(f)$.

To show that F has a fixed point it suffices by (2.1) to show that for every $\delta > 0$ there is a periodic δ -chain for F. Given $\delta > 0$, let $\mathbf{R}(f) = \Lambda_1 \cup$ $\Lambda_2 \cup \cdots \cup \Lambda_m$ be a decomposition of the chain recurrent set into δ -transitive pieces as given in (1.6) and let $g: T^2 \to R$ be a complete Lyapounov function compatible with this decomposition. We will show that there exists a piece Λ_i of this decomposition and points $y_i \in \Lambda_i$, i = 1, 2, 3, 4, such that whenever $y \in \pi^{-1}(y_i)$,

$$\nu_i = \lim_{n \to \infty} \frac{F^n(y) - y}{n}$$

It then follows by (2.4) that F has a δ -chain. Since this holds for all $\delta > 0$ we conclude by (2.1) that F has a fixed point.

Choose a smooth approximation $g_0: T^2 \to R$ to g and regular values c_1, c_2, \ldots, c_m such that the manifolds with boundary $M_i = g_0^{-1}((-\infty, c_i])$ satisfy

- (1) $f(M_i) \subset \text{int } M_i$, and
- (2) $\Lambda_i \subset M_i M_{i-1}$.

Let N_i be the manifold $cl(M_i - M_{i-1})$, so $T^2 = \bigcup N_i$ and $N_i \cap N_k$ consists of a finite set of circles if $k = i \pm 1$ and otherwise is empty if $i \neq k$. These circles are the components of $g_0^{-1}(\{c_1, c_2, \dots, c_m\})$. We first observe

that none of these circles is essential in T^2 . If there were such a circle, say

 γ , then it would be in the boundary of M_j for some j and M_j would have to have another boundary component which is isotopic to γ . (There might also be some inessential circles in the boundary of M_j .) It follows that M_j is an essential annulus (perhaps with some disks removed) in T^2 . Let \tilde{M}_j be a component of $\pi^{-1}(M_j)$ and choose a lift F_0 of f so that $F_0(\tilde{M}_j) \subset \tilde{M}_j$. Now \tilde{M}_j is an infinite strip (perhaps with holes) which has a rational slope. It follows since $F_0(\tilde{M}_j) \subset \tilde{M}_j$ that for any $x \in \mathbb{R}^2$, if $\lim_{n\to\infty} \frac{F^n(x)-x}{n}$ exists, then it must lie on a line with this slope, since $F_0^n(x)$ is constrained between parallel translates of \tilde{M}_j . From this and the fact that $F(x) = F_0(x) + w$ for some integer vector w, it follows that the convex hull of the vectors ν_i given in our hypothesis is a line segment. This contradicts the assumption that 0 is in the interior of the convex hull; so none of the boundary components of the N_i can be essential in T^2 .

Since each of these boundary circles is inessential, each of them bounds a unique smooth disk in T^2 . The complement of the union of these disks consists of the interior of a single one of the N_i 's, say N_j . The complement of $int(N_j)$ in T^2 consists of a finite set of disks, say D_1 , D_2 , ..., D_r . Number these disks so that

$$D_i \subset M_j$$
 for $1 \le i \le s$

and

$$D_i \subset \operatorname{cl}(T^2 - M_j)$$
 for $s < i \le r$

Then

$$f(D_i) \subset \bigcup_{k=1}^s D_k$$
 for $1 \le i \le s$

and

$$f^{-1}(D_i) \subset \bigcup_{k=s+1}^r D_k$$
 if $s < i \le r$.

Consider now a point $x \in \pi^{-1}(x_1)$ such that

$$\nu_1 = \lim_{n \to \infty} \frac{F^n(x) - x}{n}.$$

We will show that if x_1 is not in Λ_j , there is another point $y_1 \in \Lambda_j$ so that whenever $y \in \pi^{-1}(y_1)$,

$$\nu_1 = \lim_{n \to \infty} \frac{F^n(y) - y}{n}.$$

Since the same is true for ν_2 , ν_3 , and ν_4 , we will have completed the proof by the remarks above.

Suppose now that $x_1 \in D_p$ for $1 \le p \le s$. There exists q > 0 such that $f^q(D_p) \subset D_p$ (recall that x_1 is recurrent). Hence if $D \subset R^2$ is the lift of

 D_p containing x, then $F^q(D) \subset D + w$ for some integer vector w. If we set $G(z) = F^q(z) - w$, then $G(D) \subset D$ so there is a fixed point z_0 for G. Clearly

$$\nu_1 = \lim_{n \to \infty} \frac{F^n(x) - x}{n} = \lim_{n \to \infty} \frac{F^n(z_0) - z_0}{n} = \frac{w}{q}.$$

If $x_1 \in D_p$ and s < p, then a similar argument applied to f^{-1} leads to a fixed point z_0 of G with the same properties.

We want to find a fixed point for G which is in $\pi^{-1}(N_j)$. To do this we consider fixed points of f^q on T^2 . We will use the fact that f^q is homotopic to a map with no fixed points so the index sum of the set of fixed points in any Nielsen class for f^q is zero (see [B, Theorem 3, p. 94]). Recall that two fixed points p_1 and p_2 are in the same Nielsen class for f^q provided any lift of f^q to R^2 which pointwise fixes $\pi^{-1}(p_1)$ also pointwise fixes $\pi^{-1}(p_2)$.

We will consider points in the Nielsen class of the point $\pi(z_0)$ where z_0 is the fixed point of G mentioned above. Any such points which are not in N_j will lie in a D_i with a lift \tilde{D}_i for which $G(\tilde{D}_i) \subset \tilde{D}_i$ or with $G^{-1}(\tilde{D}_i) \subset \tilde{D}_i$. Hence the contribution to the index of the points in D_i will be +1. Thus the index of the set of fixed points in the Nielsen class of $\pi(z_0)$ which are not in N_j is positive (the disk D_p contributes at least one +1). It follows there must be a fixed point $y_1 \in N_j$ of f^q in the Nielsen class of $\pi(z_0)$. Since y_1 is in the Nielsen class of $\pi(z_0)$, if $y \in \pi^{-1}(y_1)$, then G(y) = y. Hence

$$\nu_1 = \lim_{n \to \infty} \frac{F^n(y) - y}{n}$$

Also y_1 is a periodic point of f in N_j so $y_1 \in \Lambda_j$. The same argument implies the existence of y_2 , y_3 , $y_4 \in \Lambda_j$, so this completes the proof. \Box

(3.2) **Theorem.** Suppose $f: T^2 \to T^2$ is a homeomorphism homotopic to the identity and $F: R^2 \to R^2$ is a lift. If ν is a vector with rational coordinates in the interior of $\rho(F)$, then there is a point $p \in R^2$ such that $\pi(p) \in T^2$ is a periodic point for f and

$$\nu = \lim_{n \to \infty} \frac{F^n(p) - p}{n}.$$

Proof. Suppose $\nu = (r/q, s/q)$ with the greatest common divisor of r, s, and q equal to 1. If $G(x) = F^{q}(x) - (r, s)$, then a fixed point p of G will satisfy $F^{q}(p) = p + (r, s)$ and hence be the desired point.

It is easy to check (see [MZ]) that $\rho(G) = q\rho(F) - (r, s)$. Thus since (r/q, s/q) is in the interior of $\rho(F)$, it follows that 0 is in the interior of $\rho(G)$. Since $\rho(G)$ is closed and convex there exist extreme points $\nu_1, \nu_2, \nu_3, \nu_4 \in \rho(G)$ such that 0 is in their convex hull (see Steinitz's theorem in [HDK]). It now follows from (3.1) that G possesses a fixed point p. \Box

References

- [B] R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman and Co., Glenview, Ill., 1978.
- [Br] M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math. 10 (1984), 35-41.
- [C] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, R. I., 1978.
- [Fa] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, Enseign. Math. 33 (1987), 315-322.
- [F] J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynamical Systems 8* (1988), 99-107.
- [F2] ____, A variation on the Poincaré-Birkhoff theorem, Hamiltonian Dynamics, Contemp. Math., Amer. Math. Soc., Providence, R. I. (to appear).
- [HDK] H. Hadwiger, H. Debrunner, and V. Klee, *Combinatorial geometry in the plane*, Holt Rinehart and Winston, New York, 1964.
- [ML] R. MacKay and J. Llibre, Rotation vectors and entropy for homeomorphisms homotopic to the identity, preprint.
- [MZ] M. Misiurewicz and K. Ziemian, Rotation sets of toral maps (to appear).
- [Ox] J. Oxtoby, *Diameters of arcs and the gerrymandering problem*, Amer. Math. Monthly 84 (1977), 155–162.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201