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Abstract

We develop a discrete-time stochastic volatility option pricing model, which exploits the informa-

tion contained in high-frequency data. The Realized Volatility (RV) is used as a proxy of the

unobservable log-returns volatility. We model its dynamics by a simple but effective (pseudo) long

memory process, the Heterogeneous Auto-Regressive Gamma with Leverage (HARGL) process.

Both the discrete-time specification and the use of the RV allow us to easily estimate the model

using observed historical data. Assuming a standard, exponentially affine stochastic discount fac-

tor, we obtain a fully analytic change of measure. An extensive empirical analysis of S&P 500

index options illustrates that our approach significantly outperforms competing time-varying (i.e.

GARCH-type) and stochastic volatility pricing models. The pricing improvement can be ascribed

to: (i) the direct use of the RV, which provides a precise and fast-adapting measure of the unob-

served underlying volatility; and (ii) the specification of our model, which, on the one hand, is able

to accurately reproduce the volatility persistence and, on the other hand, provides the necessary

smoothing of the noise present in the RV dynamics.

Keywords: High-frequency, Realized Volatility, Option Pricing.

JEL Classification: C13, G12, G13



1. Introduction

It is well established that proper use of intra-day price observations leads to precise and accurate

measurement and forecast of the unobservable asset volatility. At the same time, volatility is the

primary ingredient of every option pricing model. In this paper, combining both these aspects, we

develop a new option pricing model that effectively incorporates the information contained in high-

frequency data, as summarised by the Realized Volatility (RV) measure.1

The RV is an easy-to-compute non-parametric measure of the asset variability, and it is typically

constructed from the intra-day price movements. This allows the RV to change rapidly according to the

market’s movements. We show that such a reliable volatility measure yields accurate pricing of short-

term options. Moreover, we show that our model is able to mimic the long-memory characterising the

volatility process,2 leading also to accurate pricing of long-term options. Thus, both the fast changing

dynamics inherent in the RV and the simple long-memory structure allow our model to reproduce

a realistic Implied Volatility (IV) term structure under different market conditions (e.g., different

volatility regimes). The improvements on the pricing performances yielded by GARCH-type option

pricing models, that rely on the volatility filtered solely from daily returns, are remarkable. Indeed,

in terms of Root Mean Square Error on IV (RMSEIV ), the overall improvements on the extension

of the Heston and Nandi (2000) GARCH recently proposed by Christoffersen, Jacobs, and Heston

(2011) and the Component GARCH of Christoffersen, Jacobs, Ornthanalai, and Wang (2008) are 14%

and 26%, respectively. Finally, the use of RV as a proxy for the unobservable volatility simplifies the

estimation considerably: filtering procedures are no longer required, and the model can be estimated

directly using the observed RV, as obtained from high-frequency data.

Surprisingly, to the best of our knowledge, little work has been devoted to combining RV literature

with that on option pricing to construct RV option pricing models. Notable exceptions are the work of

Stentoft (2008) and Christoffersen, Feunou, Jacobs, and Meddahi (2010). In Stentoft (2008), an Inverse

1The idea of RV measures goes back to the seminal work of Merton (1980), which shows that the integrated variance

of a Brownian motion can be approximated by the sum of a large number of intra-day squared returns. This original

intuition has been recently formalised and generalised by Andersen, Bollerslev, Diebold, and Labys (2001) and (2003);

and Barndorff-Nielsen and Shephard (2001), (2002a), (2002b), and (2005); and Comte and Renault (1998).
2See, e.g., Andersen, Bollerslev, Diebold, and Labys (2001), (2003) and Andersen, Bollerslev, Diebold and Ebens

(2001).
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Gaussian model of a 30-minute returns RV measure is applied to price options on some individual

stocks. However, this work does not provide a formal change of measure for the RV process, since

it only considers the case in which the risk-neutral and physical dynamics of RV are identical (i.e.,

when the volatility risk is not priced). In a concurrent paper, Christoffersen, Feunou, Jacobs, and

Meddahi (2010) generalise the GARCH option pricing approach by extending the Heston and Nandi

(2000) GARCH model to include RV measures. However, they focus mainly on the RV’s contribution

to short- and medium-term option pricing.

Indeed, so far, only marginal attention has been devoted to the long-term part of the IV surface,

where the persistence of the volatility process plays a crucial role. Two exceptions are Comte, Coutin,

and Renault (2003), who employ a fractional stochastic volatility model, and Carr and Wu (2004),

who apply alpha-stable processes to slow down the central limit theorem and obtain negative skewness

and excess kurtosis for long-maturity options.

Moreover, a growing strand of literature advocates the presence of a multi-components volatility

structure. For instance, Li and Zhang (2010), using non-linear principal components analysis, find that

two factors are needed to explain the variation in the IV surface. Christoffersen, Jacobs, Ornthanalai,

and Wang (2008) employ a modified version of the two-factor component GARCH in Engle and Lee

(1999) for options pricing in discrete-time, while Bates (2000) proposes a two-factor jump-diffusion

model to fit the implicit distribution in futures options. In addition, Adrian and Rosenberg (2007)

show that a multi-components volatility model substantially improves the cross-sectional pricing of

volatility risk.

In this paper, we combine all these streams of literature and we introduce a new class of models

that rely on the RV, featuring long-memory, multi-components structure, and analytical tractability.

We model the conditional mean of the volatility process by the Heterogeneous Auto-Regressive (HAR)

multi-components model (see Corsi 2009). The HAR specification can be considered as an acceptable

compromise between parameter parsimony and multi-components specification. Despite the fact that

the HAR model does not formally belong to the class of long-memory processes, it is able to produce

the same memory persistence observed in financial data. Moreover, its multi-component specification is

important in providing the necessary smoothing of the otherwise too noisy (for option pricing purposes)

RV measure. For these reasons the HAR has become one of the standard models for describing and
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forecasting the dynamics of RV.3 The HAR model provides only the first conditional moment of the

RV. In order to specify the whole transition density and complete the probabilistic description of the

RV process, we assume that the conditional distribution of the HAR is a non-central gamma. The

non-central gamma is the same transition density implied by the Cox, Ingersoll, and Ross (1985)

model, widely applied to describe the dynamics of the volatility process. The resulting model belongs

to the family of autoregressive gamma processes, a class of discrete-time affine processes introduced by

Gourieroux and Jasiak (2006). Due to this combination our new model features both long-memory and

affine structure. The latter feature is particularly attractive for option pricing purposes since, as with

the affine processes, leads to a fully analytic conditional Laplace transform. In order to capture the

asymmetric shape of the IV smile for S&P 500 options, we include the leverage effect. The resulting

model is extremely flexible for option pricing purposes. Moreover, considering restricted versions of

this general model, we are able to disentangle the contribution of the different model ingredients (i.e.

long memory and leverage) to the overall pricing performance.

The paper is organised as follows. Section 2 defines our model for log-return and RV under both the

historical and risk-neutral probability measures. Section 3 describes the estimation of the model, and

then analyses its dynamic features. In Section 4, we present the option pricing performances, compare

them with option pricing benchmarks, and perform several robustness checks. Finally, Section 5

summarises the results.

3Andersen, Bollerslev, and Diebold (2007), Aı̈t-Sahalia and Mancini (2008), McAleer and Medeiros (2008), Busch,

Christensen, and Nielsen (2010), and Andersen, Bollerslev, and Huang (2010) use this model (and its extensions) to

forecast the RV; Clements, Galvão, and Kim (2008) and Maheu and McCurdy (2010) implement it for risk management;

Bollerslev, Tauchen, and Zhou (2009) use it to analyse the risk-return trade-off; Andersen and Benzoni (2010) employ it

to test whether bond yields span volatility risk; and Bollerslev and Todorov (2011) adopt it for modelling the expected

Integrated Volatility to compute the Investor Fear Index.
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2. The model

2.1. Dynamics under physical probability

2.1.1. Log-return dynamics

A well-established result in financial econometrics literature is that the marginal distribution of daily

log-return is not Gaussian but typically features fat tails (leptokurtic distribution). This fact has mo-

tivated the use of heavy-tailed distributions in several financial models. In spite of this consideration,

Clark (1973) and Ane and Geman (2000) theoretically argue that, for an underlying continuous-time

diffusion process, the standard Gaussian distribution can be recovered by rescaling the log-return by

an appropriate measure of the market activity. The basic intuition is that the log-return process is a

Brownian motion with a random time. Rescaling the log-return by an appropriate activity measure is

equivalent to performing a time-change that restores the standard Brownian motion in calendar time.

As such a measure of market activity, we adopt the continuous component of the total variation of

the log-price process, i.e., the Integrated Variance (IV). Then, we assume the following conditional

dynamics for the log-return:

yt+1 := ln

(

St+1

St

)

= µt+1 +
√

IVt+1ǫt+1, (1)

ǫt+1| IVt+1 ∼ N(0, 1).

In our notation, yt+1, St+1, and IVt+1 are the cum-dividend log-return, the price, and the IV at time

t+1, respectively. For the drift of the log-return under the physical measure, we propose the following

specification:

µt+1 = r +

(

γ̃ − 1

2

)

IVt+1, (2)

where r represents the risk-free rate between t and t + 1, and γ := γ̃ − 1/2. The term −1/2 in

γ is a convexity adjustment introduced such that the conditional expectation of returns becomes

E [exp yt+1|IVt+1] = exp (r + γ̃IVt+1) and γ̃ can be interpreted as the price risk for volatility. We

observe that our specification introduces a contemporaneous effect of IVt+1 on yt+1. Specifically, the

functional form we are proposing implies a stochastic drift, changing with the daily IV. This feature
has an interesting probabilistic implication, since our model can be embedded into the class of nor-
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mal variance-mean mixture, with yt+1|IVt+1 ∼ N
(

r +
(

γ̃ − 1
2

)

IVt+1,IVt+1

)

; see, e.g., in Barndorff-

Nielsen, Kent, and Sorensen (1982).

As it is customary in RV literature, we estimate the unobservable IV by the corresponding con-

tinuous component of daily RV (details on the RV measure employed in the implementation of the

model are given in Section 3.2.). This choice has also an empirical justification. Andersen, Bollerslev,

Diebold, and Labys (2000), (2001), and (2003), Andersen, Bollerslev, Diebold, and Ebens (2001), and

Andersen, Bollerslev, and Dobrev (2007) indeed showed that, when daily returns are standardised

by the corresponding daily RV, the resulting distribution is nearly Gaussian. We observe the same

feature for our S&P 500 data, as can be seen clearly from the density plots of Fig. 1. Besides the

graphical evidence, we also note that the values of the kurtosis are 7.32 and 3.68 for actual and for

rescaled log-return, respectively. However, the Shapiro-Wilks test does not accept the assumption of

normality. This rejection is in line with the result of Andersen, Bollerslev, and Dobrev (2007) who

show that to completely restore the normality one should take into account for jumps in returns and

leverage effects.

[Figure 1 should be here]

2.1.2. Realized volatility dynamics

Under the physical measure, the model is completed by specifying the dynamics of the RV process.

To capture the well-documented feature of strong persistence in volatility, we follow Corsi (2009), and

we model the conditional mean of the RV (given its past values) using the conditional expected value

of a HAR process. The HAR model for RV is a multi-components volatility model specified as a sum

of different volatility components defined over different time horizons. Specifically, the structure of

the HAR model allows us to separate short-, medium-, and long-term volatility components. This

feature has considerable option pricing implications as documented by Bollerslev and Mikkelsen (1996)

and Comte, Coutin, and Renault (2003). In addition, Adrian and Rosenberg (2007) show that a

multi-components volatility model substantially improves the cross-sectional pricing of volatility risk.

Finally, to take into account the asymmetry in the smile, we here extend the original HAR model by

including a daily leverage effect.

For option pricing purposes, we need the specification of the whole transition probability density or,
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equivalently, the specification of the conditional characteristic function. Therefore, we model RV as an

autoregressive gamma process (see Gourieroux and Jasiak 2006), with p-lags. In our model we set p =

22. Consequently, RVt+1 features a non-central Gamma transition distribution Γ(δ, β′(RVt, Lt), c),

with shape and scale parameters δ and c, respectively, and location given by:

β′(RVt, Lt) = β1RVt + β2RV w
t + β3RV m

t + β4Lt (3)

where β := (β1, β2, β3, β4)
′ ∈ R4, RV w

t :=
∑4

i=1 RVt−i/4, RV m
t :=

∑21
i=5 RVt−i/17, and RVt :=

(RVt, RV w
t , RV m

t ) is a column vector in R3. The quantity Lt represents the leverage effect Lt :=

I(yt<0)RVt (where I(yt<0) takes value 1 if the log-return at date t is negative and takes value 0 other-

wise).4

The conditional mean and conditional variance are given by:

Et(RVt+1) = cδ + c(β1RVt + β2RV w
t + β3RV m

t + β4Lt), (4)

Vt(RVt+1) = c2δ + 2c2(β1RVt + β2RV w
t + β3RV m

t + β4Lt). (5)

In the same spirit as Corsi (2009), the specification in Eq. (3) collects the lagged terms in three differ-

ent non-overlapping factors: RVt (short-term volatility factor), RV w
t (medium-term volatility factor),

and RV m
t (long-term volatility factor). Although different from the standard HAR parametrisation,

the parametrisation in Eq. (3) does not imply any loss of information compared to the original in

Corsi (2009), since it relies only on a different rearrangement of the terms. We thus label this model

as the Heterogeneous Autroregressive Gamma with Leverage (HARGL).

Thanks to the strong analytical tractability of the HARGL specification, we can write down in

closed-form the one-step-ahead conditional Laplace Transform (LT) under P. In particular, from

computations similar to those in Gagliardini, Gouriéroux, and Renault (2011), the conditional LT of

an HARGL process is:

ϕP
RV (η) := E(exp(−ηRVt+1)|(RVt, Lt)) = exp

(

− cη

1 + cη

(

β′(RVt, Lt

)

− δ ln(1 + cη)

)

, (6)

4This leverage specification has been introduced by Engle and Gallo (2006). Despite assuring the positivity of the

process, this specification differs from the one used in GARCH models. The HARGL leverage specification is less

persistent than the GRACH one, since the former depends only on the past log-return, while the latter depends on the

level of the volatility.
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where η ∈ R and β′(RVt, Lt) as in (3).

Restricted versions of the HARGL are easy to obtain: setting β4 = 0 gives the HARG model which

preserves the long-memory property but loses the leverage effect; with β2 = β3 = β4 = 0 we obtain

the simple autoregressive gamma model of order one (ARG) which is the exact discrete-time version

of the CIR process; setting β2 = β3 = 0 leads to an autoregressive gamma of order one with leverage

(ARGL). Both HARG and ARG models belong to the class of affine processes, thus, from Eq. (6), it

is possible to derive in closed-form the multi-step-ahead conditional LT.5

We remark that the need for the conditional LT of RV under the physical measure is twofold. First,

from the probabilistic point of view, the conditional LT completely characterises the distributional

features of the RV (e.g. it uniquely defines its conditional moments and its transition density). Second,

the conditional LT of RV is important for option pricing purposes, as it is a necessary tool to describe

the joint behavior of the log-return process and RV needed in the change of probability measure.

2.1.3. Joint conditional Laplace transform

Given the setup outlined in Sections 2.1.1. and 2.1.2., our model specification is:

yt+1|RVt+1 ∼ N

(

r +

(

γ̃ − 1

2

)

RVt+1, RVt+1

)

,

RVt+1|Ft ∼ Γ(δ, β′(RVt, Lt), c), (7)

β′(RVt, Lt) = β1RVt + β2RV w
t + β3RV m

t + β4Lt.

In this section, to complete the probabilistic description of the log-return and RV dynamics, we study

the joint process K ′
t+1 := (yt+1, RVt+1). This is a bi-dimensional, real-valued process of log-return

and RV whose state space is R × R+. For the sake of notation, let Ft := σ(yt, RVt) indicate the

σ-algebra containing the information about (yt, RVt) available at time t. Thanks to our model setup,

we can easily obtain a closed-form expression for the conditional LT of K ′
t+1. Proposition 1 defines

the closed-form expression for the conditional LT of K ′
t+1.

5Due to the presence of the leverage effect, an analogous closed-form formula is not available for the multi-step-ahead

conditional LT of the HARGL. The HARGL is, however, easy to simulate, following the method illustrated in Gourieroux

and Jasiak (2006).
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Proposition 1. If RVt+1|Ft ∼ Γ(δ, β′(RVt, Lt), c), then the conditional LT of K ′
t+1 := (yt+1, RVt+1)

in α′ = (α1, α2) ∈ R× R under the physical measure (P) is, for v ∈ R:

ϕP
K(v) = exp(−b(v) − a(v)β′(RVt, Lt)), (8)

with v = α2 + γα1 − α2
1/2 and the terms b(v) and a(v) given by

b(v) = δ ln(1 + cv) (9)

and

a(v) =
cv

1 + cv
. (10)

Proof. See Appendix A1.

This is an important result, since the joint conditional LT provides us with a complete character-

ization of the joint conditional (namely, given Ft) transition probability that can be applied to derive

an explicit one-to-one mapping between the parameters of (yt+1, RVt+1) under the measures P and Q

as described in the next section.

2.2. Risk-neutral dynamics

The risk-neutral dynamics of both the log-return and the RV process are obtained following the direct

approach of Bertholon, Monfort, and Pegoraro (2008). We adopt a straightforward modification of

a standard, discrete-time exponential affine SDF for the time (t, t + 1) applied, e.g., in Gagliardini,

Gouriéroux, and Renault (2011) and Gourieroux and Monfort (2007). Due to the model dynamics

described in Eq. (7), we introduce a SDF involving both the log-return and RV at t+1. More precisely,

assuming r = 0 for computational convenience, we specify the following SDF:

Mt,t+1 =
exp(−ν1RVt+1 − ν2yt+1)

EP
t [exp(−ν1RVt+1 − ν2yt+1)]

, (11)

where EP
t [·] represents the conditional expectation E[·|Ft] under the physical measure P.

Under specific restrictions on the vector ν ∈ R2, we state:

Proposition 2. Under the model specification in Eq. (7), the SDF in (11) is compatible with the

no-arbitrage conditions, provided that suitable parameter-restrictions are satisfied. The parameter ν1

remains a free parameter.

8



Proof. See Appendix A2.

The last proposition shows that the SDF in (11) complies with the no-arbitrage conditions. Given

the market incompleteness and the results in Proposition 2, the only free parameter is ν1.

Moreover, thanks to the SDF specification in Eq. (11), it is possible to write down in closed-form

the dynamics of RV under the martingale measure. To this end, we rely on the results in Proposition

1 and specify the conditional LT under Q of the joint process Kt+1. We then have:

Proposition 3. Under the R.N. probability measure Q, the RV is still a HARGL, having parameters

β∗ =
β

(1 + cλ)2
,

δ∗ = δ,

c∗ =
c

1 + cλ
, (12)

with λ = ν1 +
γ2

2 − 1
8 and β ∈ R4 as in Eq. (3).

Proof. See Appendix A3.

The last proposition provides in Eq. (12)-(12) the explicit formulas for the one-to-one mapping

between the parameters of the RV under P and Q. The availability of such formulas is a consequence

of the affine specification of the SDF and of the high analytical tractability of the HARGL process.

From the previous results, we can finally conclude:

Corollary 4. Under Q, the log-return follows a discrete-time stochastic volatility model, with dynamics

as in Eq. (1), with risk premium γ∗ = −1/2. The RV is a HARGL process, featuring a transition

density given by a non-central gamma, with parameters β∗, δ∗, c∗.

Therefore, in the implementation of the model for option pricing, ν1 is the unique parameter to

be calibrated. All the other parameters can be computed explicitly in closed-form, once ν1 has been

calibrated. In Section 4.2., we provide the guidelines for the calibration of ν1.

3. Estimation: methodology and diagnostics

In this section we provide the estimation methodology for the HARG family of models introduced

in the previous section. Then, we analyze the dynamic properties of the proposed models under
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the historical (P) measure. For the sake of completeness, we compare the HARG family’s features

with those of several competitor models. Specifically, we consider an extension of the the Heston

and Nandi (2000) GARCH(1,1) model and the Christoffersen, Jacobs, Ornthanalai, and Wang (2008)

Two-Component GARCH(1,1) model, and the restricted models HARG, ARGL, and ARG .

3.1. Competitor models

The HARGL is a discrete-time model relying on historical observations. Thus, the first natural com-

petitors come from the class of GARCH-type option pricing models. In particular, the first GARCH-

type model we consider here is the widely applied GARCH(1,1) option pricing model, proposed by

Heston and Nandi (2000) (GARCH hereafter). The Heston and Nandi model is an asymmetric GARCH

in which the log-return and conditional variance under P are modelled by

yt+1 = r + λht+1 +
√

ht+1zt+1,

ht+1 = w + bht + a(zt − c
√

ht)
2, (13)

with zt+1 ∼ N(0, 1). In the conditional variance ht+1, the parameter c captures the negative relation

between shocks in the returns and volatility. The original model proposed by Heston and Nandi

(2000) implies a SDF that comprises only compensation for equity risk while the SDF of the HARG

family has additional compensation for variance risk. We thus consider a recent extension of the

GARCH model developed by Christoffersen, Jacobs, and Heston (2011) where the standard SDF is

augmented to include an independent variance risk compensation.6 Specifically, the SDF considered

in Christoffersen, Jacobs, and Heston (2011) can be written (see Appendix A4.) as:7

Mt,t+1 =
exp(φyt+1 + ξht+2)

EP
t [exp(φyt+1 + ξht+2)]

, (14)

which is then comparable to Eq. (11); The free parameter ξ is calibrated on option prices.

The GARCH process represents a first attempt to model the non-constant volatility process; it

is well-known that it fails to capture the strong persistence and the volatility of the volatility (see,

6In the usual GARCH framework the variance risk premium is generated through the equity risk premium parameter

λ such that the two risk-premia are not independent.
7All the technical details about the risk-neutralisation of the Heston and Nandi GARCH with the aforementioned

SDF can be found in Christoffersen, Jacobs, and Heston (2011).
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e.g., Christoffersen, Jacobs, Ornthanalai, and Wang (2008)). Thus, to overcome this problem, the

two-component GARCH (in the following, CGARCH) has been introduced recently. The second

GARCH–type model we consider as a benchmark is then the CGARCH, whose conditional variance

equation is given by

ht+1 = qt+1 + bs(ht − qt) + as((zt − cs
√

ht)
2 − (1 + c2sqt)), (15)

qt+1 = ω + blqt + al((z
2
t − 1)− 2cl

√

htzt),

where (ht − qt) and qt represent the short and long-run persistent components, respectively. As the

component model of Engle and Lee (1999), the CGARCH model is the combination of two variance

factors, which gives rise to a GARCH process with a more persistent dynamics than the standard

one. Christoffersen, Jacobs, Ornthanalai, and Wang (2008) show that the CGARCH is successful

in option pricing, since the long-memory plays a crucial role in the price of medium/long-maturity

ATM options. For the CGARCH a suitable SDF with independent variance compensation is not

available and its development is beyond the scope of the present paper. To overcome the problem of a

possible unfair comparison among the considered models, we fit the parameter ω under the risk-neutral

distribution on option prices, thus substantially introducing a free parameter that helps the model in

reconciling objective and risk-neutral dynamics. A comparison between the two persistent CGARCH

and HARG(L) models is instructive in gauging the improvements due to both the stochastic volatility

model specification (with leverage) and the use of RV.

Additional insights into the features of the HARGL model can be obtained by evaluating the gains

due to both the leverage effect and the multi-components specification, netting out the effect of the

RV. To this end, a comparison between the HARGL and the HARG illustrates the importance of the

leverage Lt, while a comparison between the HARG and the ARG, which is the exact discrete-time

version of the CIR process, illustrates the importance of a multi-component structure in stochastic

volatility option pricing models.

3.2. Volatility measure and estimation methodology

One of the main advantages of our modeling is related to the estimation of the parameters charac-

terizing our family of volatility processes (i.e., ARG, ARGL, HARG, and HARGL). For this family
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of stochastic volatility models, we employ the RV computed from tick-by-tick data for the S&P 500

Futures, from January 1, 1990 to December 31, 2007.

We estimate the continuous component of the RV through the following three steps: (i) estimate

the total variation of the log-price process using the tick-by-tick Two-Scales estimator proposed by

Zhang et al. (2005) (with a fast scale of two ticks and a slower one of 20 ticks); (ii) purify the Two-Scales

estimator from the jump component in returns by the Threshold Bipower variation method recently

introduced in Corsi et al. (2010) with a significance level of 99%; (iii) remove the most extreme

observations in the volatility series, seemingly due to volatility jumps (a feature not embedded in

our model), employing a threshold-based jumps detection method: we set a four standard deviations

threshold computed on a rolling window of 200 days. This procedure affects about 1.5% of the

observations in our sample. A further additional care is needed. The RV is a measure of the integrated

variance during the trading period, i.e. from open to close. As a result, it neglects the contribution

coming from overnight returns. To overcome this problem, we rescale our RV estimator to match

the unconditional mean of the squared daily (i.e., close-to-close) returns. We label the resulting RV

measure as Continuous Realized Volatility (CRV).8

Thanks to the use of the RV as a proxy for the unobservable volatility, we can simply estimate the

parameters of the family of stochastic volatility processes using the Maximum Likelihood Estimator9

on observable historical data. For the model specified in Eq. (7), the conditional transition density is

available in closed-form (see Gourieroux and Jasiak 2006) so that the log-likelihood has the following

series-expansion:

lTt (θ) = −
T
∑

t=1

1

c
(RVt + cβ′(RVt−1, Lt−1) +

T
∑

t=1

log

{

∞
∑

k=1

RV δ+k−1
t

cδ+kΓ(δ + k)

[β′(RVt, Lt−1)]
k

k!

}

, (16)

where θ := (δ, β′, c).

The log-likelihood in Eq. (16) cannot be applied directly since it contains an infinite number of

terms. Thus, to implement the Maximum Likelihood Estimator, we need to truncate the infinite sum

in Eq. (16) to the κ-th order. The tuning parameter κ can be selected using the AIC or the BIC or

by simply looking at the stability of the estimates for different κ values. In our implementation, we

8To keep the discussion as more general as possible we will use interchangeably RV and CRV in the reminder of the

paper and we will make clear the precise measure used whenever relevant.
9See Gourieroux and Jasiak (2006) for a related discussion.
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set κ = 90, since we noticed that larger values of κ imply neither any significant improvement in the

accuracy of the approximation nor any change in the estimates.

To estimate the market price of risk γ̃ in the log-return equation, we apply the following simple

regression model to the cum-dividend log-return:

yt+1 = r +

(

γ̃ − 1

2

)

RVt+1 +
√

RVt+1ǫt+1. (17)

This equation can be re-written as

yt+1 − r + 1
2RVt+1√

RVt+1
= γ̃

√

RVt+1 + ǫt+1,

ỹt+1 = γ̃
√

RVt+1 + ǫt+1. (18)

Since ǫt+1|RVt+1 is assumed N(0, 1), the estimation and testing for the model in Eq. (18) both can

be achieved by customary methods. Specifically, the FED Fund rate provides us with a proxy for the

risk-free rate (r). Then, we estimate γ̃ by robust OLS,10 obtaining an estimated value of 0.51, with a

significant t-statistics (about 26).

As is customary in the literature, the GARCH-type models’ parameters are estimated using the

Maximum Likelihood Estimator, with Gaussian innovation distribution. The conditional variance is

provided in Eq. (13) or Eq. (15).

In Table 1, we show the estimated parameters, their standard deviations, and the value of the

likelihood function for the HARGL and GARCH families, respectively.

[Table 1 should be here]

For the HARGL model, the impact of past lags on the present value of RV is given by the partial

autocorrelation coefficients, cβ′. According to our estimates (considering also the leverage effect Lt),

the sensitivity of RVt on the conditional mean of RVt+1 is c(β1+β4/2) = 0.41, whereas the sensitivity

of RV w
t and RV m

t are cβ2 = 0.31 and cβ3 = 0.12, respectively. We notice that, for each model, the

RV coefficients are all significant and show a decreasing impact of the past lags on the present value of

the RV. This is in line with the literature; see Corsi (2009). Moreover, comparing the log-likelihood of

10Given the normality assumption of ǫt+1|RVt+1 the OLS estimator coincides with MLE. Robust OLS is a modified

version of the OLS aimed to yield estimates which are less sensitive to the presence of outliers; see, e.g., Hampel,

Ronchetti, Rousseeuw, and Stahel (2005).
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the three RV models, we notice that the inclusion of both multiple factors (HARG) and the leverage

component (HARGL) improves upon the value of the likelihood of the competitor models.11

3.3. Diagnostics and goodness-of-fit: conditional dynamics for volatility

We here analyze the dynamic properties of our RV based stochastic volatility models. The goal of this

section is to study the ability of each model to replicate the observed conditional dynamics features

of the RV. To this end, for each member belonging to our class of stochastic volatility models, we

compute some diagnostics of the quality of fit of the transition distribution. Since we are analysing

the transition distribution function, our goodness-of-fit diagnostics implicitly consider the ability of

each model to fit all the conditional moments of the RV. For the sake of brevity, we here describe

the results only for the models including the leverage effect (namely, HARGL and ARGL). Similar

conclusions are obtained also for the models without leverage (namely, HARG and ARG).

Our analysis relies on the methodology proposed by Diebold et al. (1998) and Bates (2000). Let

us label rvt, for t = 1, ..., T , the observations of the RV. For each model, we compute the transition

distribution function z̃t := PRV (RVt ≤ rvt|Ft−1, θ̂), where θ̂ represents the Maximum Likelihood

Estimator for the parameter θ in the considered realized volatility model. If the transition distribution

is correctly specified with correct parameters, the z̃t are independent and identically distributed, with

an uniform distribution U(0, 1). Following Bates (2000), we apply a monotone transformation to z̃t,

defining zt = N−1(z̃t), where N−1(·) is the inverse Cumulative Distribution Function of a N(0, 1).

Under correct model specification, zt should be independent and identically distributed draws from a

N(0, 1). Conversely, if the conditional distribution is misspecified, the analysis of zt detects the overall

misspecification of the conditional density.

[Figure 2 should be here]

In Fig. 2, we analyze the distribution of zt, comparing it to the N(0, 1). We notice that the

HARGL is successful in centring the distribution and capturing a large part of the central probability

mass. Indeed, the twenty-fifth quantile (Q25) and seventy-fifth quantile (Q75) of a standard normal

11The log-likelihood of the RV models and that of the GARCH-type models are clearly not comparable, an incompat-

ibility arising from two different sets of data (RV and daily returns).
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are about -0.67 and 0.67, respectively, and the HARGL implies that Q25 is -0.75 and Q75 is 0.8.

Analogous considerations hold for the ARGL process (right top panel), which has values of Q25 (-

0.67) and Q75 (1.02). The quantiles and other summary statistics for all the considered models are

shown in Table 2.

[Table 2 should be here]

The wider quantile difference (Q75-Q25) highlights that neither the HARGL nor the ARGL are

able to capture completely the actual transition density. This feature is illustrated in the top left

(HARGL) and right (ARGL) panels of Fig. 2. For both the HARGL and ARGL processes, the

Shapiro-Wilks test does not accept the assumed N(0, 1) distribution for zt. Given that our sample

contains almost 5,000 observations, the rejection of the N(0, 1) assumption is not surprising, since the

test is very close to having trivial power. Nevertheless, looking at Table 2, we do remark that the

values of skewness and kurtosis are quite similar to their counterparts in the standard normal.

We supplement our investigation with a graphical analysis of the Sample Auto-Correlation Function

(SACF) of zt and of its higher order moments: (zt − z̄)α, for 1 ≤ α ≤ 4. According to Diebold et al.

(1998), the SACF of the higher moments of zt can provide useful information about the deficiencies

of the higher-moments forecasts. Specifically, the existence of dependence in the correlogram of (zt −
z̄),(zt−z̄)2,(zt−z̄)3, and (zt−z̄)4 reveals misspecification in the conditional mean, conditional variance,

conditional skewness, and conditional kurtosis, respectively. Fig. 2 shows the SACFs for the previous

quantities for the HARGL and ARGL models. All the SACF show some dependence patterns, a

feature indicating deficiencies of the transition dynamics fitting. However, the SACF of every power

transformation of (zt − z̄) of the HARGL is smaller than the corresponding SACF of the ARGL.

Moreover, unreported results confirm that every SACF of the HARG is larger than every corresponding

SACF of the HARGL, while every SACF of the ARG is larger than every corresponding SACF of the

ARGL.

We conclude that the HARGL has the smallest model misspecification among the stochastic volatil-

ity models considered in our analysis. This implies that the HARGL is the model yielding the best fit

of the transition distribution. This superior performance under the physical measure P will also be re-

flected in good pricing performances under the martingale measure Q. This aspect will be investigated

in the next section.
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4. Option pricing: performance assessment

4.1. Data description

In this section, we describe the data employed in our empirical analysis. We use European options,

written on the S&P 500 index. The observations for the option prices range from January 1, 1996

to December 31, 2004, and the data12 are downloaded from OptionMetrics. Following Barone-Adesi,

Engle, and Mancini (2008), options with time to maturity less than 10 days or more than 360 days,

implied volatility larger than 70%, or prices less than 0.05 dollars are discarded. Moreover, we consider

only out-of-the-money (OTM) put and call options for each Wednesday, which tend to be more liquid.

This procedure yields a total number of 39, 215 observations. The numbers of put and call options are

approximately the same, since we have about 51% put and 49% call options.

To perform our analysis, we split the options into different categories, classifying them according

to either time to maturity or moneyness. In particular, we use K/St as a measure of moneyness. In

our empirical application, a put option is said to be Deep OTM (DOTM hereafter) if m ≤ 0.94 and

OTM if 0.94 < m ≤ 0.96. A call option is said to be DOTM if m ≥ 1.04 and OTM if 1.02 < m ≤ 1.04..

According to maturity τ , we classify options as short-maturity (τ < 60 days), medium maturity (τ

between 60− 160 days), and long maturity (τ > 160 days).

[Table 3 should be here]

Considering the IV values reported in Table 3, the data show a strong volatility smile/smirk for

both short- and long-maturity options. This implies that the risk-neutral distribution of the log-return

is far from Gaussian, even after one year, suggesting that a persistent, either time-varying or stochastic

volatility model needs to be applied to address these features.

4.2. Option pricing method

In Section 2.1.3., we derive the one-step-ahead LT of the joint process K ′
t+1, see Eq. (8). For any

given maturity, the computation of the multi-step-ahead conditional LT of the (H)ARG model can

12OptionMetrics also provides the Zero-Coupon yield curve and the Index dividend yield that we use in the pricing

procedure.
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be obtained in an analogous way: solving a system of recursive equations and thus obtaining a semi-

closed-form expression for the option price. For long-maturities, the solving of this system of equations

is computationally demanding. Therefore, we prefer to simplify the pricing procedure, applying a

straightforward Monte Carlo simulation method to all RV option pricing models of the HARG family.

In fact, one additional feature of our class of models is that both the sample paths of the log-return

and of the RV can be easily simulated.Thus, we obtain the option prices for our class of models using

the following four steps: (i) estimation under the physical measure P; (ii) unconditional calibration of

the parameter ν1 such that the model-generated IV for an ATM one-year-maturity option (the longest

maturity in our sample) matches the average market IV for the same maturity;13 (iii) mapping of the

parameters of the model estimated under P into the parameters under Q to specify the dynamics of

the RV and the log-return under the martingale measure Q using Corollary 4; and (iv) for every t,

simulation of both the RV and log-return Q-dynamics so that, for each maturity τ and strike K, we

compute the prices for call OTM options at time t as the average, (1/L) exp−rτ
∑L

l=1max(S
(l)
τ −K, 0).

In the previous formula, L represents the total number of Monte Carlo simulations. In our numerical

analysis, we set L = 50, 000.

For the GARCH and CGARCH models (since the MGF coefficients are quicker to compute) we

have computed option prices using the Fourier-cosine series expansion method described in Fang and

Oosterlee (2008), which has been proven to be both fast and reliable.

13The purpose of the calibration is the selection of ν1 such that the model-unconditional volatility under the risk-neutral

measure matches the unconditional risk-neutral volatility. Given that we do not directly observe the latter, we use the

market-observed IV as an instrument to be matched with the model-generated IV, since they both depend directly on the

volatility under the risk-neutral measure. Alternatively, we could have constructed a model-free expected risk-neutral

volatility (analogously to the VIX index), using long-term options, and calibrated ν1 to match its unconditional mean,

for example. We prefer the first method, since the small number of long-maturity options, and their scarce liquidity,

could both potentially affect the reliability of the computed risk-neutral expected volatility, leading to a possibly biased

estimation of the unconditional expectation.
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4.3. Option pricing results

4.3.1. Static properties

As is customary in the literature, we here analyze the option pricing performances of each model in

terms of Root Mean Square Error on prices (RMSEP ) and on the percentage IV (RMSEIV ). The

former emphasizes the importance of ATM options, which are the most expensive, while the latter

tends to put more weight on OTM options.14 In Table 4, we show the static performances.

[Table 4 about here]

The first row shows the absolute RMSEIV and RMSEP for the HARGL, while the remaining

rows display the HARGL relative performances with respect to other models. Specifically, we compute

the ratio between the RMSE of the HARGL and that of each competitor model. A value less than

one indicates an outperformance of the HARGL model.15

At first glance, the HARGL outperforms all competitors, both in terms of RMSEIV and RMSEP .

A closer inspection shows that in terms of RMSEP (RMSEIV ), (i) the HARGL improves of about

14% (14%) over the HN GARCH; (ii) the HARGL outperforms the CGARCH by about 16% (7%);

(iii) the HARGL improves on all its restricted model specifications.

To gain a deeper understanding of the pricing performances, Table 5 and Table 6 report the results

in terms of both RMSEIV and RMSEP , disaggregated for different maturities (τ) and moneyness

(m). In both the tables, Panel A shows the RMSE of the HARGL model in absolute terms. The other

panels display the relative performances.

[Table 5 about here]

Let us consider Table 5: Panel A shows that the HARGL implies some degree of under-pricing

for DOTM put options. This is on the one hand, a common feature of stochastic volatility option

pricing models without jumps, since they cannot completely capture the probability mass in the left

14See, e.g., Broadie, Chernov, and Johannes (2007) for a discussion of the RMSEIV properties and Christoffersen and

Jacobs (2004) for some comments about the importance of the loss function in option pricing.
15The relative performances for all the models considered in this paper can be computed using the ratios displayed in

Table 4.
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tail of the volatility transition density (see Section 3.3.) and on the other hand related to our leverage

specification as discussed in Section 2.1.2..

The general improvement of the HARGL with respect to the GARCH model is remarkable across

moneyness and maturity (Panel B), particularly for ATM options. The reason is twofold: the direct

use of RV helps in pricing short-term options, while the long-memory structure improves on the pricing

of long-term options.

The improvements on the CGARCH are evident especially for short- and medium-term options

(Panel C), whereas for long-term options the two model seems to produce very similar results, both

being able to reproduce the persistence in volatility.

It is interesting to note that the GARCH out-performs the simple ARG model (Panel D). This

result is mainly driven by a better pricing of the GARCH for short-maturity options. The reason of

this apparently counterintuitive output is that the RV, although is a precise measure of daily variation,

it is much noisier than the expected quadratic variation over the option maturity. The latter quantity

is the main determinant of the option price. Indeed, as can be seen from Fig. 3, the RV is much

noisier than the VIX. Since the ARG model uses only the first lag of the RV, it loads this noise on

the option prices, yielding less accurate prices, while the GARCH smooths the noise by construction.

In that sense, we argue that employing a multi-component model (such as the HARG/HARGL) not

only provides the volatility process with the necessary persistence, but it also helps in smoothing the

noise affecting the RV measure.

[Figure 3 about here]

By looking at the other panels, we disentangle the role that each ingredient in the HARGL model

plays across different maturities and moneyness. Panel E reports the comparison between the full

HARGL model and the simplest counterpart ARG, while in the other panels we disaggregate the

improvements due to the long-memory and the leverage.

A comparison between the HARG and the ARG models (Panel F) and HARGL and ARGL (Panel

G) confirms the importance of the heterogeneous multi-component specification. In particular, the

persistence implied by the three RV components yields advantages in pricing ATM options with long-

maturities (see the last two columns of Panel E).

19



The importance of the leverage effect is disentangled by looking at Panel H where the HARGL and

HARG models are compared. We notice that for ATM options, the HARG model has a performance

similar to that of the HARGL, since the two models share the same degree of persistence in the

volatility term structure. However, the HARGL has a smaller RMSEIV on DOTM and OTM put

options, thanks to the presence of the leverage component.

It is evident from this analysis that all the ingredients (RV, persistence and leverage) are necessary

to accurately price options across different maturities and strikes. This is the reason why the HARGL

consistently shows the best option pricing performance among the considered models. Analogous

considerations hold in terms of RMSEP (see Table 6).

[Table 6 about here]

We conclude this section by analysing the performance of the option pricing models under different

volatility regimes. To perform this analysis, we divide the sample period into three sub-samples: low

and declining, medium and increasing, and high-volatility. The three different regimes have been

identified using the volatility levels given by the VIX index, as shown in Fig. 3 (top panel). For

comparison, Fig. 3 also displays the time evolution of the CRV series (bottom panel).

Fig. 4 compares the average IVs of near-ATM options observed in the data with the IVs obtained

by the CGARCH, ARGL, and HARGL models. We analyze the three volatility periods separately.

[Figure 4 about here]

We notice that in the low- and medium-volatility regimes, the pricing of the HARGL is very

precise for short- and medium-maturities, while it tends to underestimate the IV at longer maturities.

However, from a joint analysis of the three panels of Fig. 4, the HARGL model shows a remarkable

feature: it always appears very close to the market data, irrespective of the volatility regime.

4.3.2. Dynamic properties

In addition to the static analysis carried out in the previous section, we here investigate the ability of

the different models to describe the dynamic evolution of the IV surface. Specifically, we first focus

our attention on the overall pricing of ATM options through time and then disaggregate the results

over the short- and long-ends of the IV surface.
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Fig. 5 analyzes the dynamics of the ATM option bias for the different models. All the considered

models appear to be unconditionally unbiased thus validating our unconditional model calibration

methods. GARCH-type models show a significant variation in their pricing, while the HARGL pro-

duces a pricing error with the smallest standard deviation.

[Figure 5 about here]

Moreover, in order to study the model’s ability to track the dynamics of the short-end of the IV

surface, we show in Fig. 6 the evolution of the IV level (i.e. the average IV of short-term ATM options)

implied by the CGARCH, GARCH, HARGL, and ARGL. Tracking the level is crucial for capturing

the overall dynamics of the IV surface. We notice that both the CGARCH and the GARCH tend

to reproduce the empirical level dynamics with some delay (especially during periods of increasing

volatility). Incidentally, we notice that the delay is smaller in the very first part of the sample,

which largely coincides with the observation period in Christoffersen, Jacobs, Ornthanalai, and Wang

(2008), however, it becomes more pronounced in the rest of the sample. More reactive dynamics can

be obtained by using stochastic volatility models based on RV. This is the case for both the HARGL

and the ARGL. The two bottom panels highlight that the fast-adapting nature of the RV allows

our class of models to adapt more rapidly to changes in market volatility. However, as can be seen

form Fig. 3, the RV is noisier than the VIX. This implies that, if a simple autoregressive model of

order one is employed, the noise is transmitted to option prices, as can be seen in the third panel of

Fig. 6. On the contrary, the multi-component specification of the HARG(L) provide the necessary

smoothing to deliver accurate volatility forecast and option prices. The HARGL thus produce the

best performances, both qualitatively and quantitatively, exploiting the information contained in the

data more thoroughly than the filtering procedure applied by GARCH-type models.

[Figure 6 should be here]

Finally, looking at the dynamics of the IV term-structure (i.e. the difference between the average

IV of ATM long-maturity options and the level), as shown in Fig. 7, we clearly identify the benefit of

combining a persistent model with the use of RV. The HARGL performs remarkably well, especially

in the second part of the sample (i.e. from 2001 to 2007). The CGARCH is penalized since, as seen
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in Panel A, it struggles to track the dynamics of the level while the GARCH still show some delay in

adapting to market changes.

[Figure 7 should be here]

Summarising, the proposed HARGL model, in general, is able to reproduce closely both the IV level

and term-structure dynamics, improving upon the considered GARCH-type models. The fast-adapting

properties of the RV and the ability of the HARGL to generate a realistic degree of persistence are

both necessary ingredients that lead to an accurate modeling of the evolution of the ATM-IV surface

over time.16

4.4. Risk-premia interpretation

The SDF proposed in Eq. (11) implies the compensation for two sources of risk: one is related to

shocks in the log-return and the other concerns the stochastic volatility. The risk-premium coefficients

(ν2 and ν1) have the following interpretation.

As far as ν2 is concerned, from the proof of Proposition 3 (see Appendix A), we have ν2 = γ+0.5 =

γ̃. From Eq. (1) and Eq. (2), we notice that γ̃ represents the market risk premium. Thus, there

is a one-to-one relation between the parameter ν2 in the SDF and the market risk-premium in the

log-return equation. Interestingly, this feature is analogous to the standard risk compensation adopted

in the GARCH literature (see, e.g., Duan 1995). This similarity is related to two important features

of our model. First, as in the GARCH formulation, the risk-premium γRVt+1 is an affine function

of the state variable (see Eq. (17)). Second, the one-day-ahead transition density of the log-return,

given the current level of the volatility, is Gaussian (see Eq. (7)). The latter feature is standard in

the GARCH literature.17

As far as ν1 is concerned, we remark that in Eq. (11), it multiplies RVt+1. However, the com-

pensation for the volatility risk is not simply represented by ν1. From an inspection of the log-return

16Unreported results show that HARG-HARGL and ARG-ARGL models have markedly similar performances in the

evolution of ATM bias, IV level, and term-structure. This is related to the fact that the leverage effect has a negligible

impact on pricing the ATM options.
17See, e.g., Assumption 1 in Heston and Nandi (2000) or, more generally, Christoffersen, Jacobs, and Ornthanalai

(2008), for the class of GARCH models assuming a normal transition density for the log-return dynamics.
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specification, we notice that the RVt+1 has effects on the conditional mean and the conditional vari-

ance of yt+1. Since the latter is multiplied in the SDF by ν2, the compensation for the risk due to

RVt+1 relies on a combination of ν2 and ν1. Specifically, if we set ν1 = 0.5 ν2(ν2 − γ), we remove

the compensation for the volatility risk. This can be easily seen from the proof of Proposition 3 in

Appendix A, Eq. (24). Indeed, straightforward calculations show that λ in Proposition 3 becomes

identically zero. Thus, there is no change of measure for the volatility process: the dynamics of RV is

identical under the physical and risk-neutral measure.

The pricing performance in the special case in which there is no compensation for the volatility

risk (i.e. ν1 = 0.5 ν2(ν2−γ)) deteriorates significantly, for every model belonging to the HARG family.

For instance, in the case of the HARGL model, the RMSEIV and RMSEP are equal to 6.485% and

0.011, respectively. This implies that, at least for the period covered by our sample and given our

model specification, taking into account compensation for volatility risk is essential. The effect of

doing so is twofold: (i) it helps to match the long-term IV, and (ii) it affects the persistence of the

RV dynamics, giving an additional degree of freedom to fit the IV term structure. The presence of a

substantial (negative) variance risk premium (especially in the S&P 500 Index) has been previously

documented in the literature for example by Bakshi and Kapadia (2003) and Carr and Wu (2009).

4.5. Robustness to sample period and RV measures

In this final section we check the robustness of the pricing results with respect to the use of different RV

measures and to the presence of extreme events in the estimation period of the models. Specifically,

we consider three different RV measures: (i) the five minute return RV (RV5min); (ii) the Zhang et al.

(2005) Two-Scale estimator (TS), and (iii) the RV measure employed in the previous sections, which

is the continuous part of the TS measure (CRV), obtained as described in Section 3.2..

We also consider two different estimation periods. The first goes from 1985 to 2007 (including

the 1987 crash and the frequent intradaily RV spikes during the 1987-1989 period (see Bates 2000),

and the second goes from 1990 to 2007. A summary of the HARGL model’s option pricing results

is reported in Table 7 (the complete set of detailed results, for the different models over different

maturity/moneyness bins, are available from the authors upon request).

As far as the estimation period is concerned, we notice that the overall performance remain stable
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for the CRV case while it deteriorates for the other measures when the estimation period is extended to

1985. This is due to the turmoil in financial markets. The crash in 1987, the turmoil in October 1989,

and the following crisis have determined features in the RV dynamics that are no longer representative

of the stochastic behavior of the RV during the pricing period 1996-2004. This can be noticed, for

instance, by analysing the volatility persistence over the period 1985-1990. Unreported computations

highlight that the SACF of the TS and RV5min in the period 1985-1990 is much lower than the SACF

from 1990-2007. This feature reduces the persistence of the estimated HARGL model, leading to

the deterioration of the HARGL pricing performance over the 1996-2004 period. The jump detection

techniques employed in the construction of the CRV measure instead lead to stable estimates and thus

to similar pricing.

Conditional on a given time period, the variations in the performances among the three RV mea-

sures again underly the importance of extreme observation in the estimation of the HARGL. This

can be seen particularly in the period 1985-2007, where the CRV measure shows considerably better

pricing performance than the TS and RV5min, which both appear more sensitive to the presence of

extreme events in the RV dynamics. Thus, we conclude that the CRV measure employed strikes the

best balance between precision (during quiet periods) and robustness to extreme events (during more

turbulent periods).

5. Conclusion

In this paper, we develop a discrete-time stochastic volatility option pricing model that exploits the

historical information contained in the high-frequency data. Using the RV as a proxy for the unobserv-

able returns volatility, we propose a long-memory process with a leverage effect: the HARGL process.

Our model can be considered a reduced form, multi-components model, since it is characterized by

three volatility components (or frequencies): short-, medium-, and long-horizon. Making the latent

volatility observable (through the RV), the HARGL model can be easily estimated by using observed

historical data. This is a clear advantage with respect to other stochastic volatility models, which rely

on time-consuming filtering procedures. The P- and Q-dynamics are reconciled through the definition

of an exponentially affine SDF, which takes into account for both equity and variance risk-premium.

This leads to a tractable dynamics under the risk-neutral measure. The extensive empirical analysis
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of the S&P 500 index options shows that two ingredients are crucial for option pricing performance:

(i) the use of RV, which provides an accurate and fast-adapting proxy for the unobserved volatility,

and (ii) the high persistence and necessary smoothing generated by the HARGL volatility model spec-

ification. Thanks to both these features, the HARGL is better able to reproduce the Q-dynamics,

hence, outperforming competing GARCH-type and other RV based stochastic volatility option pricing

models (ARG, ARGL, and HARG).

A Techinical Appendix: Proofs

A1. Proof of Proposition 1

Proof. Let us compute

EP
t

[

exp(−α′Kt+1)
]

= EP
t [exp(−α1RVt+1 − α2yt+1)]

= EP
t

[

exp(−α2

√

RVt+1εt+1 − (α1 + γα2)RVt+1)
]

= EP
t

[

exp

(

−
(

α1 + γα2 −
1

2
α2
2

)

RVt+1

)]

= exp

[

−b

(

α1 + γα2 −
1

2
α2
2

)

− a

(

α1 + γα2 −
1

2
α2
2

)

β′(RVt, Lt)

]

= ϕP
K(v), (19)

where v := α1 + α2γ − 1
2α

2
2.

A2. Proof of Proposition 2

Proof. For the sake of simplicity, we assume a zero expected instantaneous rate of return (r = 0). Let
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us first write the stochastic discount factor as

Mt,t+1 =
exp(−ν1RVt+1 − ν2yt+1)

EP
t [exp(−ν1RVt+1 − ν2yt+1)]

=
exp(−ν1RVt+1 − ν2yt+1)

EP
t

[

exp(−ν1RVt+1)EP
t [exp(−ν2yt+1)|RVt+1]

]

=
exp(−ν1RVt+1 − ν2yt+1)

EP
t

[

exp(−ν1RVt+1 − ν2γRVt+1) exp
(

RVt+1ν
2
2

2

)]

=
exp(−ν1RVt+1 − ν2yt+1)

EP
t

[

exp
(

−
(

ν1 + ν2γ − ν22
2

)

RVt+1

)]

=
exp(−ν1RVt+1 − ν2yt+1)

ϕP
RV (u)

(20)

where u := ν1 + ν2γ − ν22/2 and ϕP
RV (u) is the generic conditional LT of RV whose specific form

depends on the model employed for the RV dynamics (ARG, ARGL, HARG, HARGL).

The no-arbitrage restrictions are

EP
t [Mt,t+1] = 1 (21)

EP
t [Mt,t+1 exp(yt+1)] = 1. (22)

The first condition is automatically satisfied. The second condition reads:

1

ϕP
RV (u)

EP
t [exp(−ν1RVt+1 − ν2yt+1) exp(yt+1)]

=
1

ϕP
RV (u)

EP
t [exp(−ν1RVt+1 − (ν2 − 1)yt+1)] = 1. (23)

Using the moment generating function of yt+1, the LHS of the Eq. (23) becomes:

1

ϕP
RV (u)

EP
t

[

exp(−ν1RVt+1)E
P
t [exp(−(ν2 − 1)yt+1)|RVt+1]

]

=
1

ϕP
RV (u)

EP
t

[

exp(−ν1RVt+1 − (ν2 − 1)γRVt+1) exp

(

RVt+1(ν2 − 1)2

2

)]

=
1

ϕP
RV (u)

EP
t

[

exp

(

−
(

ν1 + (ν2 − 1)γ − (ν2 − 1)2

2

)

RVt+1

)]

=
ϕP
RV (ũ)

ϕP
RV (u)

= 1 (24)

with ũ :=
(

ν1 + (ν2 − 1)γ − (ν2−1)2

2

)

. Therefore, in order to satisfy the no-arbitrage conditions we
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need to have u = ũ, that is

ν2γ − ν22
2

= (ν2 − 1)γ − (ν2 − 1)2

2

ν2 = γ +
1

2
. (25)

A3. Proof of Proposition 3

Proof. Let us compute

E
Q
t

[

exp(−α′Kt+1)
]

= E
Q
t [exp(−α1RVt+1 − α2yt+1)]

= EP
t [Mt,t+1 exp(−α1RVt+1 − α2yt+1)]

=
1

ϕP
RV (u)

EP
t

[

exp(−(ν1 + α1)RVt+1)E
P
t [exp(−(ν2 + α2)yt+1)|RVt+1]

]

=
1

ϕP
RV (u)

EP
t

[

exp(−(ν1 + α1)RVt+1 − (ν2 + α2)γRVt+1) exp

(

RVt+1(ν2 + α2)
2

2

)]

=
1

ϕP
RV (u)

EP
t

[

exp

(

−
(

ν1 + α1 + (ν2 + α2)γ − (ν2 + α2)
2

2

)

RVt+1

)]

=
ϕP
RV (̟)

ϕP
RV (u)

(26)

with ̟ := ν1 +α1 + (ν2 + α2) γ − (ν2+α2)
2

2 . Considering the non-arbitrage conditions ν2 = γ + 1
2 from

Proposition 2, ̟ becomes

̟ = ν1 + α1 + (ν2 + α2) γ − (ν2 + α2)
2

2
= α2(γ − ν2) + α1 −

1

2
α2
2 + γν2 + ν1 −

ν22
2

= −1

2
α2 + α1 −

1

2
α2
2 + ν1 +

γ2

2
− 1

8

= ζ + λ (27)

where ζ := −1
2α2 + α1 − 1

2α
2
2 and λ := ν1 +

γ2

2 − 1
8 . We now specify the computation for the HARGL

model, the others being particular cases of this:

=
ϕP
RV (ζ + λ)

ϕP
RV (λ)

=
exp (−b(ζ + λ)− a(ζ + λ)β′(RVt, Lt))

exp (−b(λ)− a(λ)β′(RVt, Lt))

= exp
(

− [b(ζ + λ)− b(λ)]− [a(ζ + λ)− a(λ)] β′(RVt, Lt)
)

. (28)
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Thus

E
Q
t

(

exp(−α′Kt+1)
)

= exp
(

−b∗ (ζ)− a∗ (ζ)
(

β∗′ (RVt, Lt)
))

, (29)

in which a∗(ζ) and b∗(ζ) are such that

a∗(ζ)β∗ = a(ζ + λ)β − a(λ)β =
c∗β∗ζ

1 + c∗ζ

b∗(ζ) = b(ζ + λ)− b(λ) = δ∗ ln(1 + c∗ζ), (30)

where

β∗ =
β

1 + cλ
,

δ∗ = δ,

c∗ =
c

1 + cλ
. (31)

Moreover, a comparison between Eq. (29) and Eq. (19) shows that γ∗ = −1
2 . This concludes the

proof.

A4. GARCH SDF

Proof. Following Christoffersen, Jacobs, and Heston (2011), the SDF used in the risk neutralization

is assumed to be:

Mt+1

Mt
=

(

St+1

St

)φ

exp(δ + ηht+1 + ξ(ht+2 − ht+1)), (32)

where φ and δ govern the time preference, while η and ξ govern the respective aversion to equity and

variance risk. From here, it easily follows that

Mt,t+1 =
Mt+1

Et[Mt+1]
=

Mt exp(φyt+1 + δ + ηht+1 + ξ(ht+2 − ht+1))

Et[Mt+1]
. (33)

Taking out from the expectation operator all the measurable quantities (ht+1 is measurable with

respect to the information available at time t), and after some algebra, we obtain:

Mt+1

Et[Mt+1]
=

exp(φyt+1 + ξht+2)

Et[exp(φyt+1 + ξht+2)]
. (34)

This concludes the proof.
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ARG ARGL HARG HARGL

Parameter

γ̃ 0.5215

(0.02277)

c 22.89 22.52 18.11 17.58

(0.201) (0.2017) (0.1601) (0.1526)

δ 1.764 1.642 1.358 1.395

(0.03886) (0.03976) (0.04652) (0.04739)

β1 0.03318 0.03435 0.02513 0.01899

(0.0003713) (0.0003489) (0.0003729) (0.0006312)

β2 - - 0.01556 0.01775

(0.0003114) (0.0006059)

β3 - - 0.006425 0.007186

(0.0002796) (0.0003798)

β4 - 0.004093 - 0.008814

(0.0005423) (0.0007425)

ν1 0.1212 0.1226 0.122 0.1219

Log-likelihood -23647 -23656 -23360 -23294

Persistence 0.7596 0.8197 0.8532 0.8495

GARGH CGARCH

Parameter Parameter

λ 3.6091 λ 2.9392

(1.544) (1.5614)

ω 2.857e-018 bs 0.67044

(3.7603e-008) (0.061499)

b 0.88809 as 1.49e-006

(0.0084516) (6.5849e-007)

a 4.4595e-006 cs 425.59

(4.1813e-007) (169.0385)

c 120.1969 ω 1.2667e-006

(12.1024) (1.8699e-007)

bl 0.9861

(0.0020844)

al 2.4502e-006

(2.8226e-007)

cl 87.824

(15.0899)

(1− 2aξ)−1/2 1.115 ω̂ 1.9237e-006

Log-likelihood 12428 12473

Persistence 0.95252 0.99542

Table 1: Maximum likelihood estimates, robust standard errors, and models performance. The historical data for the ARG,

HARG, and HARGL models are given by the daily CRV computed on tick-by-tick data for the S&P500 Futures (see Section

3.). The estimation period ranges from the period 1990-2007. The last parameter of each column has been fitted on option

prices.
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Model Q5 Q25 Median Q75 Q95 Mean Std Dev Skw Kurt SW P-value

ARG -1.64 -0.58 0.17 1.02 2.38 0.24 1.22 0.17 3.13 0.00

ARGL -1.82 -0.67 0.09 1.02 2.29 0.14 1.23 0.15 3.16 0.00

HARG -1.82 -0.73 -0.02 0.80 2.26 0.07 1.23 0.25 3.22 0.00

HARGL -1.83 -0.75 0.01 0.80 2.30 0.07 1.23 0.22 3.13 0.00

Table 2: Model misspecification tests. Fifth (Q5), twenty-fifth (Q25) quantiles, Median, seventy-fifth

(Q75) and ninety-fifth (Q95) quantiles, and Mean, Standard Deviation (Std Dev), Skewness (Skw), and

Kurtosis (Kurt) of zt = N−1(PRV (RVt ≤ rvt|Ft−1, θ̂)), where θ̂ represents the Maximum Likelihood

Estimator for the considered stochastic volatility model, as given in Table 1. The last column shows

the P-values for the Shapiro-Wilks test.
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Maturity

Moneyness Less then 20 20 to 60 60 to 160 More then 160

Implied volatility

m ≤ 0.94 0.2674 0.2446 0.2329 0.2325

0.94 ≤ m ≤ 0.96 0.2316 0.2242 0.2202 0.2246

0.96 ≤ m ≤ 0.98 0.2118 0.2110 0.2121 0.2190

0.98 ≤ m ≤ 1.02 0.1874 0.1954 0.2031 0.2120

1.02 ≤ m ≤ 1.04 0.1705 0.1803 0.1925 0.2041

1.04 ≤ m 0.1833 0.1751 0.1835 0.1963

Implied volatility standard deviation

m ≤ 0.94 0.0536 0.0525 0.0456 0.0433

0.94 ≤ m ≤ 0.96 0.0503 0.0505 0.0442 0.0425

0.96 ≤ m ≤ 0.98 0.0516 0.0486 0.0433 0.0420

0.98 ≤ m ≤ 1.02 0.0523 0.0484 0.0433 0.0425

1.02 ≤ m ≤ 1.04 0.0478 0.0466 0.0426 0.0439

1.04 ≤ m 0.0444 0.0456 0.0403 0.0405

Number of observations

m ≤ 0.94 1428 2596 1968 1201

0.94 ≤ m ≤ 0.96 874 1513 1005 597

0.96 ≤ m ≤ 0.98 1011 1752 1039 599

0.98 ≤ m ≤ 1.02 2180 3851 2122 1213

1.02 ≤ m ≤ 1.04 1022 1680 1049 543

1.04 ≤ m 1987 3522 2735 1728

Table 3: Database description. Means and standard deviations of prices and implied volatilities of

S&P 500 index out-of-the-money options on each Wednesday from January 1, 1996 to December 31,

2004 (39,215 observations) sorted by moneyness and maturity categories. Implied volatility is the

Black-Scholes implied volatility. Moneyness is defined as m = K/St, where K and S are the strike

and underlying price, respectively. Maturity is measured in calendar days.
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Performance measures

Models RMSEIV RMSEp

HARGL 3.817 0.005

HARGL/GARCH 0.853 0.857

HARGL/CGARCH 0.735 0.923

ARGL/GARCH 0.990 1.093

HARGL/ARG 0.820 0.762

HARG/ARG 0.883 0.798

HARGL/ARGL 0.862 0.784

HARGL/HARG 0.928 0.955

Table 4: Global option pricing performance on S&P500 out-of-the-money options from January 1,

1996 to December 31, 2004, computed with the CRV measure estimated from 1990 to 2007. We use

the maximum likelihood parameter estimates from Table 1. First row: percentage implied volatility

root mean squared error (RMSEIV ) and percentage price root mean squared error (RMSEp) of the

HARGL model. Second and subsequent rows: RMSEIV and RMSEp of the benchmark models

relative to the HARGL. Maturity is in days and moneyness m = K/St, where K and S are the strike

and underlying price, respectively.
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Maturity

Moneyness τ ≤ 20 20 < τ ≤ 60 60 < τ ≤ 160 160 < τ

Panel A HARGL Implied Volatility RMSE

m < 0.94 6.711 4.909 4.320 4.044

0.94 < m ≤ 0.96 4.551 3.789 3.638 3.466

0.96 < m ≤ 0.98 3.518 3.305 3.344 3.542

0.98 < m ≤ 1.02 2.681 2.866 3.100 3.360

1.02 < m ≤ 1.04 2.740 2.622 2.945 3.170

1.04 < m 3.143 2.698 2.996 3.194

Panel B HARGL/GARCH Implied Volatility RMSE

m < 0.94 0.879 1.132 0.993 0.937

0.94 < m ≤ 0.96 1.034 0.973 0.898 0.888

0.96 < m ≤ 0.98 0.919 0.915 0.859 0.877

0.98 < m ≤ 1.02 0.778 0.801 0.799 0.829

1.02 < m ≤ 1.04 0.836 0.716 0.752 0.804

1.04 < m 0.654 0.779 0.790 0.840

Panel C HARGL/CGARCH Implied Volatility RMSE

m < 0.94 0.689 0.910 0.983 1.073

0.94 < m ≤ 0.96 0.778 0.850 0.958 1.037

0.96 < m ≤ 0.98 0.677 0.840 0.954 1.028

0.98 < m ≤ 1.02 0.677 0.810 0.940 0.994

1.02 < m ≤ 1.04 0.900 0.866 0.967 0.982

1.04 < m 0.544 1.026 1.080 1.017

Panel D ARGL/GARCH Implied Volatility RMSE

m < 0.94 0.810 1.216 1.151 1.119

0.94 < m ≤ 0.96 1.075 1.156 1.103 1.077

0.96 < m ≤ 0.98 1.074 1.134 1.081 1.061

0.98 < m ≤ 1.02 1.074 1.114 1.053 1.037

1.02 < m ≤ 1.04 1.200 1.110 1.056 1.035

1.04 < m 0.860 1.194 1.083 1.042

Maturity

Moneyness τ ≤ 20 20 < τ ≤ 60 60 < τ ≤ 160 160 < τ

Panel E HARGL/ARG Implied Volatility RMSE

m < 0.94 0.998 0.894 0.850 0.835

0.94 < m ≤ 0.96 0.904 0.822 0.808 0.824

0.96 < m ≤ 0.98 0.821 0.793 0.791 0.826

0.98 < m ≤ 1.02 0.704 0.705 0.751 0.796

1.02 < m ≤ 1.04 0.662 0.618 0.696 0.771

1.04 < m 0.707 0.607 0.694 0.781

Panel F HARG/ARG Implied Volatility RMSE

m < 0.94 1.111 0.975 0.910 0.878

0.94 < m ≤ 0.96 0.998 0.882 0.848 0.851

0.96 < m ≤ 0.98 0.889 0.834 0.820 0.849

0.98 < m ≤ 1.02 0.720 0.723 0.768 0.815

1.02 < m ≤ 1.04 0.676 0.633 0.715 0.792

1.04 < m 0.749 0.651 0.736 0.820

Panel G HARGL/ARGL Implied Volatility RMSE

m < 0.94 1.085 0.931 0.863 0.837

0.94 < m ≤ 0.96 0.962 0.842 0.814 0.824

0.96 < m ≤ 0.98 0.856 0.807 0.795 0.827

0.98 < m ≤ 1.02 0.724 0.720 0.759 0.799

1.02 < m ≤ 1.04 0.697 0.645 0.712 0.777

1.04 < m 0.760 0.653 0.730 0.806

Panel H HARGL/HARG Implied Volatility RMSE

m < 0.94 0.898 0.917 0.934 0.950

0.94 < m ≤ 0.96 0.906 0.932 0.953 0.968

0.96 < m ≤ 0.98 0.924 0.951 0.964 0.973

0.98 < m ≤ 1.02 0.977 0.975 0.977 0.978

1.02 < m ≤ 1.04 0.980 0.977 0.973 0.973

1.04 < m 0.944 0.933 0.944 0.952

Table 5: Option pricing performance on S&P500 out-of-the-money options from January 1, 1996 to December 31, 2004, computed with

the CRV measure estimated from 1990 to 2007. We use the maximum likelihood parameter estimates from Table 1. Panel A: percentage

implied volatility root mean squared error (RMSEIV ) of the HARGL model sorted by moneyness and maturity. Panels B to H: RMSEIV

of the benchmark models relative to the HARGL sorted by moneyness and maturity. Maturity is in days and moneyness m = K/St,

where K and S are the strike and underlying price, respectively.
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Maturity

Moneyness τ ≤ 20 20 < τ ≤ 60 60 < τ ≤ 160 160 < τ

Panel A HARGL Price RMSE

m < 0.94 0.004 0.007 0.009 0.011

0.94 < m ≤ 0.96 0.004 0.006 0.008 0.010

0.96 < m ≤ 0.98 0.004 0.006 0.008 0.011

0.98 < m ≤ 1.02 0.003 0.005 0.008 0.011

1.02 < m ≤ 1.04 0.003 0.005 0.008 0.011

1.04 < m 0.002 0.004 0.008 0.011

Panel B HARGL/GARCH Price RMSE

m < 0.94 1.059 1.075 0.974 0.909

0.94 < m ≤ 0.96 0.978 0.944 0.878 0.857

0.96 < m ≤ 0.98 0.918 0.893 0.834 0.847

0.98 < m ≤ 1.02 0.769 0.788 0.780 0.810

1.02 < m ≤ 1.04 0.794 0.725 0.751 0.801

1.04 < m 0.933 0.784 0.796 0.850

Panel C HARGL/CGARCH Price RMSE

m < 0.94 0.859 0.909 0.991 1.068

0.94 < m ≤ 0.96 0.784 0.853 0.966 1.026

0.96 < m ≤ 0.98 0.738 0.848 0.965 1.010

0.98 < m ≤ 1.02 0.699 0.829 0.959 0.983

1.02 < m ≤ 1.04 0.878 0.895 0.987 0.972

1.04 < m 1.052 1.011 1.091 1.013

Panel D ARGL/GARCH Price RMSE

m < 0.94 1.149 1.204 1.145 1.108

0.94 < m ≤ 0.96 1.128 1.156 1.098 1.057

0.96 < m ≤ 0.98 1.123 1.136 1.071 1.039

0.98 < m ≤ 1.02 1.089 1.116 1.044 1.018

1.02 < m ≤ 1.04 1.171 1.114 1.050 1.022

1.04 < m 1.246 1.183 1.080 1.033

Maturity

Moneyness τ ≤ 20 20 < τ ≤ 60 60 < τ ≤ 160 160 < τ

Panel E HARGL/ARG Price RMSE

m < 0.94 0.871 0.863 0.839 0.817

0.94 < m ≤ 0.96 0.827 0.799 0.794 0.809

0.96 < m ≤ 0.98 0.789 0.773 0.773 0.812

0.98 < m ≤ 1.02 0.684 0.691 0.736 0.788

1.02 < m ≤ 1.04 0.642 0.623 0.696 0.772

1.04 < m 0.694 0.618 0.698 0.793

Panel F HARG/ARG Price RMSE

m < 0.94 0.943 0.934 0.896 0.859

0.94 < m ≤ 0.96 0.896 0.856 0.832 0.832

0.96 < m ≤ 0.98 0.841 0.812 0.800 0.832

0.98 < m ≤ 1.02 0.698 0.708 0.753 0.806

1.02 < m ≤ 1.04 0.652 0.638 0.717 0.797

1.04 < m 0.731 0.657 0.740 0.835

Panel G HARGL/ARGL Price RMSE

m < 0.94 0.922 0.893 0.851 0.820

0.94 < m ≤ 0.96 0.868 0.817 0.799 0.811

0.96 < m ≤ 0.98 0.817 0.786 0.778 0.815

0.98 < m ≤ 1.02 0.706 0.706 0.747 0.796

1.02 < m ≤ 1.04 0.678 0.651 0.715 0.784

1.04 < m 0.748 0.663 0.737 0.823

Panel H HARGL/HARG Price RMSE

m < 0.94 0.924 0.924 0.937 0.951

0.94 < m ≤ 0.96 0.923 0.933 0.953 0.972

0.96 < m ≤ 0.98 0.938 0.952 0.966 0.975

0.98 < m ≤ 1.02 0.979 0.975 0.977 0.978

1.02 < m ≤ 1.04 0.984 0.977 0.971 0.969

1.04 < m 0.949 0.940 0.943 0.949

Table 6: Option pricing performance on S&P500 out-of-the-money options from January 1, 1996 to December 31, 2004, computed with

the CRV measure estimated from 1990 to 2007. We use the maximum likelihood parameter estimates from Table 1. Panel A: percentage

price root mean squared error (RMSEp) of the HARGL model sorted by moneyness and maturity. Panels B to F: RMSEp of the

benchmark models relative to the HARGL sorted by moneyness and maturity. Maturity is in days and moneyness m = K/St, where K

and S are the strike and underlying price, respectively.
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1990 − 2007 1985 − 2007

RMSEIV RMSEP RMSEIV RMSEP

CRV 3.8546 0.0058 3.7208 0.0054

CRV/TS 0.9590 0.9061 0.7552 0.7013

CRV/RV5min 0.9431 0.8923 0.7519 0.7013

Table 7: HARGL model robustness of the option pricing results to different RV measures and different

estimation periods. The table reports the absolute (first row) and relative (second and third rows)

RMSEIV and RMSEp, computed with three RV measures over two estimation periods. The three

different RV measures are the five-minute return RV (RV5min), the Two-Scale estimator (TS), and

the continuous component of the TS measure (CRV) obtained using the Threshold Bipower variation

(see Section 3.2.). The two estimation periods are 1985-2007 and 1990-2007, while the pricing period

remains from January 1, 1996 to December 31, 2004.
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Figure 1: Log-returns distribution. Comparison of the S&P 500 index log-return distribution under

different re-scaling measures. Left panel: Standard Normal distribution (grey line) and log-return

rescaled by the sample standard deviation (black line). Right Panel: Standard Normal distribution

(grey line) and log-return divided by contemporaneous realized volatility (black line).
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Figure 2: Model misspecification tests. The top panels show the histogram of zt = N−1(PRV (RVt ≤
rvt|Ft−1, θ̂)), where θ̂ represents the Maximum Likelihood Estimator for the considered stochastic

volatility model. The smooth line represents the probability density function of a N(0, 1). The left

panel is for the HARGL and the right panel is for the ARGL. The middle and bottom panels show

the Sample Auto Correlation Function of (zt − z̄) (left middle panel), (zt − z̄)2 (right middle panel),

(zt − z̄)3 (left bottom panel), and (zt − z̄)4 (right bottom panel). In each panel, the light line is

for the HARGL, while the dark line is for the ARGL. The straight, dotted line in each plot is the

Bartlett heteroskedasticity corrected upper bound at 95%-level of significance for the autocorrelation

coefficients.

42



V
IX

 le
ve

l (
%

)

VIX

1990 1992 1995 1997 2000 2002 2005 2007
0

10

20

30

40

50

√

C
R

V
le

ve
l

(%
)

√

CRV

1990 1992 1995 1997 2000 2002 2005 2007
0

10

20

30

40

50

Figure 3: Volatility regimes. Plot of the CBOE volatility index (VIX) (top panel) and of the
√
CRV

measure (bottom panel) from January 1, 1990 to December 31, 2004. We identify three different

volatility regimes: medium volatility from January 1, 1996 to August 1, 1998, high volatility from

August 2, 1998 to May 1, 2003, and low volatility from May 2, 2003 to December 31, 2004.
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Figure 4: Implied volatility term structure for at-the-money options (with moneyness m = K/St

between 0.95 and 1.05, where K and S are the strike and underlying price, respectively). A dot

represents the market-implied volatility, a triangle, the HARG model, a circle, the CGARCH model,

and a cross, the GARCH model. The top, mid, and bottom panels correspond to the low, medium,

and high-volatility regimes as detected in Figure 3. The parameter estimates are taken from Table 1.
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Figure 5: Weekly at-the-money options implied volatility bias. Plot of the average differences between

the model and the market-implied volatility for at-the-money options (with moneyness m = K/St be-

tween 0.95 and 1.05, where K and S are the strike and underlying price, respectively). The parameter

estimates are taken from Table 1.
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Figure 6: Level Dynamic from January 1, 1996 to December 31, 2004. Level is the average implied

volatility of at-the-money options (with moneyness m = K/St between 0.95 and 1.05, where K and S

are the strike and underlying price, respectively) and maturity the shortest available on a given day.

In each panel, the light line represents the data, the black line, the model. The top panel illustrates

the performance of the CGARCH, the second panel refers to the GARCH model, while the third and

the bottom panels refer to the HARGL and ARGL, respectively. The parameter estimates are taken

from Table 1.
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Figure 7: Term Structure Dynamic from January 1, 1996 to December 31, 2004. Term structure

represents the slope of the implied volatility surface and is given by the difference between the average

implied volatility of at-the-money (with moneyness m = K/St between 0.95 and 1.05, where K and

S are the strike and underlying price, respectively) long maturity (more than 120 days) options and

level. In each panel, the light line represents the data, and the black line represents the model. The

top panel illustrates the performance of the CGARCH, the second panel refers to the GARCH model,

while the third and the bottom panels refer to the HARGL and ARGL, respectively. The parameter

estimates are taken from Table 1.
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