REALIZING SULEIMANOVA SPECTRA VIA PERMUTATIVE MATRICES*

PIETRO PAPARELLA ${ }^{\dagger}$

Abstract

A permutative matrix is a square matrix such that every row is a permutation of the first row. A constructive version of a result attributed to Suleĭmanova is given via permutative matrices. A well-known result is strenghthened by showing that all realizable spectra containing at most four elements can be realized by a permutative matrix or by a direct sum of permutative matrices. The paper concludes by posing a problem.

Key words. Suleŭmanova spectrum, Permutative matrix, Real nonnegative inverse eigenvalue problem.

AMS subject classifications. 15A18, 15A29, 15B99.

1. Introduction. Introduced by Suleĭmanova in [13], the longstanding real nonnegative inverse eigenvalue problem (RNIEP) is to determine necessary and sufficient conditions on a set $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{R}$ so that σ is the spectrum an n-by- n entrywise nonnegative matrix.

If A is an n-by- n nonnegative matrix with spectrum σ, then σ said to be realizable and the matrix A is called a realizing matrix for σ. It is well-known that if σ is realizable, then

$$
\begin{align*}
s_{k}(\sigma) & :=\sum_{i=1}^{n} \lambda_{i}^{k} \geq 0, \forall k \in \mathbb{N} \tag{1.1}\\
\rho(\sigma) & :=\max _{1 \leq i \leq n}\left|\lambda_{i}\right| \in \sigma \tag{1.2}
\end{align*}
$$

For additional background and results, see, e.g., [2, 9] and references therein.
A set $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{R}$ is called a Suleĭmanova spectrum if $s_{1}(\sigma) \geq 0$ and σ contains exactly one positive element. Suleĭmanova 13 announced (and loosely proved) that every such spectrum is realizable. Fiedler [3] showed that every Suleimanova spectrum is symmetrically realizable (i.e., realizable by a symmetric nonnegative matrix), however, his proof is by induction and does not explicitly yield a realizing

[^0]matrix for all orders. In [6], Johnson and Paparella provide a constructive version of Fiedler's result for Hadamard orders.

Friedland [4] and Perfect [10] proved Suleĭmanova's result via companion matrices (for other proofs, see references in [4). In particular, the coefficients $c_{0}, c_{1}, \ldots, c_{n-1}$ of the polynomial $p(t):=\prod_{k=1}^{n}\left(t-\lambda_{k}\right)=t^{n}+\sum_{k=0}^{n-1} c_{k} t^{k}$ are nonpositive so that the companion matrix of p is nonnegative. As noted in [11, p. 1380], the construction of the companion matrix of p requires evaluating the elementary symmetric functions at $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, a computation with $\mathcal{O}\left(2^{n}\right)$ complexity.

The computation of a realizing matrix for a realizable spectrum is of obvious interest for numerical purposes, but for many known theoretical results, a realizing matrix is not readily available. Indeed, according to Chu:

Very few of these theoretical results are ready for implementation to actually compute [the realizing] matrix. The most constructive result we have seen is the sufficient condition studied by Soules [12. But the condition there is still limited because the construction depends on the specification of the Perron vector - in particular, the components of the Perron eigenvector need to satisfy certain inequalities in order for the construction to work. [1, p. 18].

In this work, we provide a constructive version of Suleĭmanova's result via permutative matrices. The paper is organized as follows: Section 2 contains notation and definitions; Section 3 contains the main results; in Section 4, we show that if $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}, n \leq 4$, satisfies (1.1) and (1.2), then σ is realizable by a permutative matrix or by a direct sum of permutative matrices; and we conclude by posing a problem in Section 5
2. Notation. The set of m-by- n matrices with entries from a field \mathbb{F} (in this paper, \mathbb{F} is either \mathbb{C} or $\mathbb{R})$ is denoted by $M_{m, n}(\mathbb{F})\left(\right.$ when $m=n, M_{n, n}(\mathbb{F})$ is abbreviated to $\left.M_{n}(\mathbb{F})\right)$. For $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C}), \sigma(A)$ denotes the spectrum of A.

The set of n-by- 1 column vectors is identified with the set of all n-tuples with entries in \mathbb{F} and thus denoted by \mathbb{F}^{n}. Given $x \in \mathbb{F}^{n}, x_{i}$ denotes the $i^{\text {th }}$ entry of x.

For the following, the size of each object will be clear from the context in which it appears:

- I denotes the identity matrix;
- e denotes the all-ones vector; and
- J denotes the all-ones matrix, i.e., $J=e e^{\top}$.

Definition 2.1. For $x \in \mathbb{C}^{n}$ and permutation matrices $P_{2}, \ldots, P_{n} \in M_{n}(\mathbb{R})$, a permutative matrix 1 is any matrix of the form

$$
\left[\begin{array}{c}
x^{\top} \\
\left(P_{2} x\right)^{\top} \\
\vdots \\
\left(P_{n} x\right)^{\top}
\end{array}\right] \in M_{n}(\mathbb{C})
$$

According to Definition 2.1, all one-by-one matrices are considered permutative.
3. Main results. We begin with the following lemmas.

Lemma 3.1. For $x \in \mathbb{C}^{n}$, let

$$
P=P_{x}=\begin{gathered}
1 \\
2 \\
\vdots \\
\vdots \\
n
\end{gathered}\left[\begin{array}{cccccc}
1 & 2 & \cdots & i & \cdots & n \\
x_{1} & x_{2} & \cdots & x_{i} & \cdots & x_{n} \\
x_{2} & x_{1} & \cdots & x_{i} & \cdots & x_{n} \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
x_{i} & x_{2} & \cdots & x_{1} & \cdots & x_{n} \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
x_{n} & x_{2} & \cdots & x_{i} & \cdots & x_{1}
\end{array}\right]=\left[\begin{array}{c}
x^{\top} \\
\left(P_{\alpha_{2}} x\right)^{\top} \\
\vdots \\
\left(P_{\alpha_{i}} x\right)^{\top} \\
\vdots \\
\left(P_{\alpha_{n}} x\right)^{\top}
\end{array}\right]
$$

where $P_{\alpha_{i}}$ is the permutation matrix corresponding to the permutation α_{i} defined by $\alpha_{i}(x)=(1 i), i=2, \ldots, n$. Then $\sigma(P)=\left\{s, \delta_{2}, \ldots, \delta_{n}\right\}$, where $s:=\sum_{i=1}^{n} x_{i}$ and $\delta_{i}:=x_{1}-x_{i}, i=2, \ldots, n$.

Proof. Since every row sum of P is s, it follows that $P e=s e$, i.e., $s \in \sigma(P)$.
Since
it follows that the homogeneous linear system $\left(P-\delta_{i} I\right) \hat{x}=0$ has a nontrivial solution (notice that the first and $i^{\text {th }}$ rows of $P-\delta_{i} I$ are identical). Thus, $\delta_{i} \in \sigma(P)$.

[^1]Moreover, if

$$
v_{i}:=\begin{gathered}
1 \\
\vdots \\
i-1 \\
i \\
i+1 \\
\vdots \\
n
\end{gathered}\left[\begin{array}{c}
x_{i} \\
\vdots \\
x_{i} \\
x_{1}-s \\
x_{i} \\
\vdots \\
x_{i}
\end{array}\right], i=2, \ldots, n
$$

then

$$
P v_{i}=\begin{gathered}
1 \\
\vdots \\
i-1 \\
i+1
\end{gathered}\left[\begin{array}{c}
x_{i}\left(s-x_{i}\right)+x_{i}\left(x_{1}-s\right) \\
\vdots \\
x_{i}\left(s-x_{i}\right)+x_{i}\left(x_{1}-s\right) \\
x_{i}\left(s-x_{1}\right)+x_{1}\left(x_{1}-s\right) \\
x_{i}\left(s-x_{i}\right)+x_{i}\left(x_{1}-s\right) \\
\vdots \\
{ }_{n} \\
x_{i}\left(s-x_{i}\right)+x_{i}\left(x_{1}-s\right)
\end{array}\right]=\left(x_{1}-x_{i}\right)\left[\begin{array}{c}
x_{i} \\
\vdots \\
x_{i} \\
x_{1}-s \\
x_{i} \\
\vdots \\
x_{i}
\end{array}\right]=\delta_{i} v_{i},
$$

so that $\left(\delta_{i}, v_{i}\right)$ is a right-eigenpair for $P . \square$
Lemma 3.2. If

$$
M=M_{n}:=\left[\begin{array}{ll}
1 & e^{\top} \\
e & -I
\end{array}\right] \in M_{n}(\mathbb{R}), n \geq 2
$$

then

$$
M^{-1}=M_{n}^{-1}=\frac{1}{n}\left[\begin{array}{cc}
1 & e^{\top} \\
e & J-n I
\end{array}\right]
$$

Proof. Clearly,

$$
n M M^{-1}=\left[\begin{array}{cc}
1 & e^{\top} \\
e & -I
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & e^{\top} \\
e & J-n I
\end{array}\right]=\left[\begin{array}{cc}
n & e^{\top}+e^{\top}(J-n I) \\
0 & n I
\end{array}\right]
$$

but $e^{\top}+e^{\top}(J-n I)=e^{\top}+(n-1) e^{\top}-n e^{\top}=0$; dividing through by n establishes the result.

Theorem 3.3 (Suleĭmanova [13]). Every Suleĭmanova spectrum is realizable.
Proof. Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a Sule m manova spectrum and assume, without loss of generality, that $\lambda_{1} \geq 0 \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. If $\lambda:=\left[\begin{array}{llll}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n}\end{array}\right]^{\top} \in \mathbb{R}^{n}$, then, following Lemma 3.2 the solution x of the linear system

$$
\left\{\begin{aligned}
& x_{1}+x_{2}+\cdots+x_{n}=\lambda_{1} \\
& x_{1}-x_{2} \\
& \\
& \\
& \\
& x_{1} \\
& \\
& \\
& \lambda_{2} \\
& \\
& x_{n}=\lambda_{n}
\end{aligned}\right.
$$

is given by

$$
x=M^{-1} \lambda=\frac{1}{n}\left[\begin{array}{c}
s_{1}(\sigma) \\
s_{1}(\sigma)-n \lambda_{2} \\
\vdots \\
s_{1}(\sigma)-n \lambda_{n}
\end{array}\right] .
$$

which is clearly nonnegative. Following Lemma 3.1, the nonnegative matrix P_{x} realizes σ.

Example 3.4. If $\sigma=\{10,-1,-2,-3\}$, then σ is realizable by

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4 \\
3 & 2 & 1 & 4 \\
4 & 2 & 3 & 1
\end{array}\right] .
$$

Corollary 3.5. If $\sigma=\left\{\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{n}\right\}$ is a Suleĭmanova spectrum such that $s_{1}(\sigma)=0$ and $\lambda_{1}>0$, then the n-by-n nonnegative matrix

$$
P:=\left[\begin{array}{cccccc}
0 & \lambda_{2} & \cdots & \lambda_{i} & \cdots & \lambda_{n} \\
\lambda_{2} & 0 & \cdots & \lambda_{i} & \cdots & \lambda_{n} \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
\lambda_{i} & \lambda_{2} & \cdots & 0 & \cdots & \lambda_{n} \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
\lambda_{n} & \lambda_{2} & \cdots & \lambda_{i} & \cdots & 0
\end{array}\right]
$$

realizes σ.
Example 3.6. If $\sigma=\{6,-1,-2,-3\}$, then σ is realizable by

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 2 & 3 \\
2 & 1 & 0 & 3 \\
3 & 1 & 2 & 0
\end{array}\right] \cdot
$$

4. Connection to the RNIEP. It is well-known that for $1 \leq n \leq 4$, conditions (1.1) and (1.2) are also sufficient for realizability (see, e.g., [6, 7). In this section, we strengthen this result by demonstrating that the realizing matrix can be taken to be permutative or a direct sum of permutative matrices.

Theorem 4.1. If $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{R}$ and $1 \leq n \leq 4$, then σ is realizable if and only if σ satisfies (1.1) and (1.2). Futhermore, the realizing matrix can be taken to be permutative or a direct sum of permutative matrices.

Proof. Without loss of generality, assume that $\rho(\sigma)=1$.
The case when $n=1$ is trivial, but it is worth mentioning that $\sigma=\{1\}$ is realized by the permutative matrix [1].

If $\sigma=\{1, \lambda\},-1 \leq \lambda \leq 1$, then the permutative matrix

$$
\frac{1}{2}\left[\begin{array}{ll}
1+\lambda & 1-\lambda \\
1-\lambda & 1+\lambda
\end{array}\right]
$$

realizes σ.
As established in [6], if $\sigma=\{1, \mu, \lambda\}$, where $-1 \leq \mu, \lambda \leq 1$, then the matrix

$$
\left[\begin{array}{ccc}
(1+\lambda) / 2 & (1-\lambda) / 2 & 0 \\
(1-\lambda) / 2 & (1+\lambda) / 2 & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

realizes σ when $1 \geq \mu \geq \lambda \geq 0$ or $1 \geq \mu \geq 0>\lambda$. Notice that this matrix is a direct sum of permutative matrices. If $0>\mu \geq \lambda$, then, following Theorem 3.3, σ is realizable by a permutative matrix.

When $n=4$, all realizable spectra can be realized by matrices of the form

$$
\left[\begin{array}{cccc}
a+b & a-b & 0 & 0 \\
a-b & a+b & 0 & 0 \\
0 & 0 & c+d & c-d \\
0 & 0 & c-d & c+d
\end{array}\right] \quad \text { or }\left[\begin{array}{cccc}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right]
$$

(for full details, see [6, pp. 10-11]).
5. Concluding remarks. In 4, Fiedler posed the symmetric nonnegative inverse eigenvalue problem (SNIEP), which requires the realizing matrix to be symmetric. Obviously, if $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a solution to the SNIEP, then it is a solution to the RNIEP. In 5], Johnson, Laffey, and Loewy that showed that the RNIEP strictly
contains the SNIEP when $n \geq 5$. It is in the spirit of this problem that we pose the following.

Problem 5.1. Can all realizable real spectra be realized by a permutative matrix or by a direct sum of permutative matrices?

At this point there is no evidence that suggests an affirmative answer to Problem [5.1] however, a negative answer could be just as difficult: one possibility, communicated to me by R . Loewy, is to find an extreme nonnegative matrix 8 with a real spectrum that can not be realized by a permutative matrix, or a direct sum of permutative matrices.

Acknowledgment. I wish to thank the anonymous referee and Raphael Loewy for their comments on improving the first-draft.

REFERENCES

[1] M.T. Chu. Inverse eigenvalue problems. SIAM Rev., 40:1-39, 1998.
[2] P.D. Egleston, T.D. Lenker, and S.K. Narayan. The nonnegative inverse eigenvalue problem. (Proceedings of the Tenth Conference of the International Linear Algebra Society.) Linear Algebra Appl., 379:475-490, 2004.
[3] M. Fiedler. Eigenvalues of nonnegative symmetric matrices. Linear Algebra Appl., 9:119-142, 1974.
[4] S. Friedland. On an inverse problem for nonnegative and eventually nonnegative matrices. Israel J. Math., 29:43-60, 1978.
[5] C.R. Johnson, T.J. Laffey, and R. Loewy. The real and the symmetric nonnegative inverse eigenvalue problems are different. Proc. Amer. Math. Soc., 124:3647-3651, 1996.
[6] C.R. Johnson and P. Paparella. Perron spectratopes and the real nonnegative inverse eigenvalue problem. Linear Algebra Appl., to appear, http://arxiv.org/abs/1508.07400
[7] R. Loewy and D. London. A note on an inverse problem for nonnegative matrices. Linear Multilinear Algebra, 6:83-90, 1978/79.
[8] T.J. Laffey. Extreme nonnegative matrices. Linear Algebra Appl., 275/276:349-357, 1998.
[9] H. Minc. Nonnegative matrices. John Wiley \& Sons, Inc., New York, 1988.
[10] H. Perfect. Methods of constructing certain stochastic matrices. Duke Math. J., 20:395-404, 1953.
[11] O. Rojo, R. Soto, and H. Rojo Fast construction of a symmetric nonnegative matrix with a prescribed spectrum. Comput. Math. Appl., 42:1379-1391, 2001.
[12] G.W. Soules. Constructing symmetric nonnegative matrices. Linear Multilinear Algebra, 13:241-251, 1983.
[13] H.R. Suleйmanova. Stochastic matrices with real characteristic numbers. Doklady Akad. Nauk SSSR (N.S.), 66:343-345, 1949.

[^0]: *Received by the editors on September 2, 2015. Accepted for publication on December 16, 2015. Handling Editor: Raphael Loewy.
 ${ }^{\dagger}$ Division of Engineering and Mathematics, University of Washington Bothell, Bothell, WA 980118246, USA (pietrop@uw.edu).

[^1]: ${ }^{1}$ Terminolgy due to Charles R. Johnson.

