

REALIZING SULEIMANOVA SPECTRA VIA PERMUTATIVE MATRICES*

PIETRO PAPARELLA[†]

Abstract. A *permutative matrix* is a square matrix such that every row is a permutation of the first row. A constructive version of a result attributed to Suleĭmanova is given via permutative matrices. A well-known result is strengthened by showing that all realizable spectra containing at most four elements can be realized by a permutative matrix or by a direct sum of permutative matrices. The paper concludes by posing a problem.

Key words. Suleĭmanova spectrum, Permutative matrix, Real nonnegative inverse eigenvalue problem.

AMS subject classifications. 15A18, 15A29, 15B99.

1. Introduction. Introduced by Suleĭmanova in [13], the longstanding *real non-negative inverse eigenvalue problem* (RNIEP) is to determine necessary and sufficient conditions on a set $\sigma = \{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{R}$ so that σ is the spectrum an *n*-by-*n* entrywise nonnegative matrix.

If A is an n-by-n nonnegative matrix with spectrum σ , then σ said to be *realizable* and the matrix A is called a *realizing matrix* for σ . It is well-known that if σ is realizable, then

(1.1)
$$s_k(\sigma) := \sum_{i=1}^n \lambda_i^k \ge 0, \ \forall \ k \in \mathbb{N}$$

(1.2)
$$\rho(\sigma) := \max_{1 \le i \le n} |\lambda_i| \in \sigma.$$

For additional background and results, see, e.g., [2, 9] and references therein.

A set $\sigma = \{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{R}$ is called a *Suleĭmanova spectrum* if $s_1(\sigma) \geq 0$ and σ contains exactly one positive element. Suleĭmanova [13] announced (and loosely proved) that every such spectrum is realizable. Fiedler [3] showed that every Suleĭmanova spectrum is *symmetrically realizable* (i.e., realizable by a symmetric nonnegative matrix), however, his proof is by induction and does not explicitly yield a realizing

^{*}Received by the editors on September 2, 2015. Accepted for publication on December 16, 2015. Handling Editor: Raphael Loewy.

[†]Division of Engineering and Mathematics, University of Washington Bothell, Bothell, WA 98011-8246, USA (pietrop@uw.edu).

307

Realizing Suleimanova Spectra via Permutative Matrices

matrix for all orders. In [6], Johnson and Paparella provide a constructive version of Fiedler's result for Hadamard orders.

Friedland [4] and Perfect [10] proved Suleĭmanova's result via companion matrices (for other proofs, see references in [4]). In particular, the coefficients $c_0, c_1, \ldots, c_{n-1}$ of the polynomial $p(t) := \prod_{k=1}^{n} (t - \lambda_k) = t^n + \sum_{k=0}^{n-1} c_k t^k$ are nonpositive so that the companion matrix of p is nonnegative. As noted in [11, p. 1380], the construction of the companion matrix of p requires evaluating the elementary symmetric functions at $(\lambda_1, \lambda_2, \ldots, \lambda_n)$, a computation with $\mathcal{O}(2^n)$ complexity.

The computation of a realizing matrix for a realizable spectrum is of obvious interest for numerical purposes, but for many known theoretical results, a realizing matrix is not readily available. Indeed, according to Chu:

Very few of these theoretical results are ready for implementation to actually compute [the realizing] matrix. The most constructive result we have seen is the sufficient condition studied by Soules [12]. But the condition there is still limited because the construction depends on the specification of the Perron vector – in particular, the components of the Perron eigenvector need to satisfy certain inequalities in order for the construction to work. [1, p. 18].

In this work, we provide a constructive version of Suleĭmanova's result via *permutative matrices*. The paper is organized as follows: Section 2 contains notation and definitions; Section 3 contains the main results; in Section 4, we show that if $\sigma = \{\lambda_1, \ldots, \lambda_n\}, n \leq 4$, satisfies (1.1) and (1.2), then σ is realizable by a permutative matrix or by a direct sum of permutative matrices; and we conclude by posing a problem in Section 5.

2. Notation. The set of *m*-by-*n* matrices with entries from a field \mathbb{F} (in this paper, \mathbb{F} is either \mathbb{C} or \mathbb{R}) is denoted by $M_{m,n}(\mathbb{F})$ (when $m = n, M_{n,n}(\mathbb{F})$ is abbreviated to $M_n(\mathbb{F})$). For $A = [a_{ij}] \in M_n(\mathbb{C}), \sigma(A)$ denotes the spectrum of A.

The set of *n*-by-1 column vectors is identified with the set of all *n*-tuples with entries in \mathbb{F} and thus denoted by \mathbb{F}^n . Given $x \in \mathbb{F}^n$, x_i denotes the *i*th entry of x.

For the following, the size of each object will be clear from the context in which it appears:

- *I* denotes the identity matrix;
- e denotes the all-ones vector; and
- J denotes the all-ones matrix, i.e., $J = ee^{\top}$.

P. Paparella

DEFINITION 2.1. For $x \in \mathbb{C}^n$ and permutation matrices $P_2, \ldots, P_n \in M_n(\mathbb{R})$, a *permutative matrix*¹ is any matrix of the form

$$\begin{bmatrix} x^{\top} \\ (P_2 x)^{\top} \\ \vdots \\ (P_n x)^{\top} \end{bmatrix} \in M_n(\mathbb{C}).$$

According to Definition 2.1, all one-by-one matrices are considered permutative.

3. Main results. We begin with the following lemmas.

LEMMA 3.1. For $x \in \mathbb{C}^n$, let

$$P = P_{x} = \begin{bmatrix} 1 & 2 & \cdots & i & \cdots & n \\ x_{1} & x_{2} & \cdots & x_{i} & \cdots & x_{n} \\ x_{2} & x_{1} & \cdots & x_{i} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ x_{i} & x_{2} & \cdots & x_{1} & \cdots & x_{n} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ x_{n} & x_{2} & \cdots & x_{i} & \cdots & x_{1} \end{bmatrix} = \begin{bmatrix} x^{\top} \\ (P_{\alpha_{2}}x)^{\top} \\ \vdots \\ (P_{\alpha_{i}}x)^{\top} \\ \vdots \\ (P_{\alpha_{n}}x)^{\top} \end{bmatrix},$$

where P_{α_i} is the permutation matrix corresponding to the permutation α_i defined by $\alpha_i(x) = (1 i), i = 2, ..., n$. Then $\sigma(P) = \{s, \delta_2, ..., \delta_n\}$, where $s := \sum_{i=1}^n x_i$ and $\delta_i := x_1 - x_i, i = 2, ..., n$.

Proof. Since every row sum of P is s, it follows that Pe = se, i.e., $s \in \sigma(P)$.

Since

$$P - \delta_i I = \begin{bmatrix} 1 & 2 & \cdots & i & \cdots & n \\ x_i & x_2 & \cdots & x_i & \cdots & x_n \\ x_2 & x_i & \cdots & x_i & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ x_i & x_2 & \cdots & x_i & \cdots & x_n \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ x_n & x_2 & \cdots & x_i & \cdots & x_i \end{bmatrix},$$

it follows that the homogeneous linear system $(P - \delta_i I)\hat{x} = 0$ has a nontrivial solution (notice that the first and i^{th} rows of $P - \delta_i I$ are identical). Thus, $\delta_i \in \sigma(P)$.

¹Terminolgy due to Charles R. Johnson.

Realizing Suleimanova Spectra via Permutative Matrices

Moreover, if

then

$$Pv_{i} = \begin{bmatrix} x_{i}(s - x_{i}) + x_{i}(x_{1} - s) \\ \vdots \\ x_{i}(s - x_{i}) + x_{i}(x_{1} - s) \\ x_{i}(s - x_{i}) + x_{i}(x_{1} - s) \\ x_{i}(s - x_{i}) + x_{i}(x_{1} - s) \\ \vdots \\ x_{i}(s - x_{i}) + x_{i}(x_{1} - s) \end{bmatrix} = (x_{1} - x_{i}) \begin{bmatrix} x_{i} \\ \vdots \\ x_{i} \\ x_{1} - s \\ x_{i} \\ \vdots \\ x_{i} \\ \vdots \\ x_{i} \end{bmatrix} = \delta_{i}v_{i},$$

so that (δ_i, v_i) is a right-eigenpair for P.

LEMMA 3.2. If

$$M = M_n := \begin{bmatrix} 1 & e^\top \\ e & -I \end{bmatrix} \in M_n(\mathbb{R}), \ n \ge 2,$$

then

$$M^{-1} = M_n^{-1} = \frac{1}{n} \begin{bmatrix} 1 & e^{\top} \\ e & J - nI \end{bmatrix}.$$

Proof. Clearly,

$$nMM^{-1} = \begin{bmatrix} 1 & e^{\top} \\ e & -I \end{bmatrix} \cdot \begin{bmatrix} 1 & e^{\top} \\ e & J-nI \end{bmatrix} = \begin{bmatrix} n & e^{\top} + e^{\top}(J-nI) \\ 0 & nI \end{bmatrix},$$

but $e^{\top} + e^{\top}(J - nI) = e^{\top} + (n - 1)e^{\top} - ne^{\top} = 0$; dividing through by *n* establishes the result. \Box

P. Paparella

THEOREM 3.3 (Suleimanova [13]). Every Suleimanova spectrum is realizable.

Proof. Let $\sigma = \{\lambda_1, \ldots, \lambda_n\}$ be a Suleĭmanova spectrum and assume, without loss of generality, that $\lambda_1 \geq 0 \geq \lambda_2 \geq \cdots \geq \lambda_n$. If $\lambda := [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_n]^\top \in \mathbb{R}^n$, then, following Lemma 3.2, the solution x of the linear system

$$\begin{cases} x_1 + x_2 + \cdots + x_n = \lambda_1 \\ x_1 - x_2 & = \lambda_2 \\ & \vdots \\ x_1 & - x_n = \lambda_n \end{cases}$$

is given by

$$x = M^{-1}\lambda = \frac{1}{n} \begin{bmatrix} s_1(\sigma) \\ s_1(\sigma) - n\lambda_2 \\ \vdots \\ s_1(\sigma) - n\lambda_n \end{bmatrix}.$$

which is clearly nonnegative. Following Lemma 3.1, the nonnegative matrix P_x realizes $\sigma.~\square$

EXAMPLE 3.4. If $\sigma = \{10, -1, -2, -3\}$, then σ is realizable by

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \\ 3 & 2 & 1 & 4 \\ 4 & 2 & 3 & 1 \end{bmatrix}.$$

COROLLARY 3.5. If $\sigma = \{\lambda_1, -\lambda_2, \ldots, -\lambda_n\}$ is a Suleimanova spectrum such that $s_1(\sigma) = 0$ and $\lambda_1 > 0$, then the n-by-n nonnegative matrix

$$P := \begin{bmatrix} 0 & \lambda_2 & \cdots & \lambda_i & \cdots & \lambda_n \\ \lambda_2 & 0 & \cdots & \lambda_i & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ \lambda_i & \lambda_2 & \cdots & 0 & \cdots & \lambda_n \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ \lambda_n & \lambda_2 & \cdots & \lambda_i & \cdots & 0 \end{bmatrix}$$

realizes σ .

EXAMPLE 3.6. If $\sigma = \{6, -1, -2, -3\}$, then σ is realizable by

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 2 & 3 \\ 2 & 1 & 0 & 3 \\ 3 & 1 & 2 & 0 \end{bmatrix}.$$

Realizing Suleimanova Spectra via Permutative Matrices

4. Connection to the RNIEP. It is well-known that for $1 \le n \le 4$, conditions (1.1) and (1.2) are also sufficient for realizability (see, e.g., [6, 7]). In this section, we strengthen this result by demonstrating that the realizing matrix can be taken to be permutative or a direct sum of permutative matrices.

THEOREM 4.1. If $\sigma = \{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{R}$ and $1 \leq n \leq 4$, then σ is realizable if and only if σ satisfies (1.1) and (1.2). Furthermore, the realizing matrix can be taken to be permutative or a direct sum of permutative matrices.

Proof. Without loss of generality, assume that $\rho(\sigma) = 1$.

The case when n = 1 is trivial, but it is worth mentioning that $\sigma = \{1\}$ is realized by the permutative matrix [1].

If $\sigma = \{1, \lambda\}, -1 \leq \lambda \leq 1$, then the permutative matrix

$$\frac{1}{2} \begin{bmatrix} 1+\lambda & 1-\lambda \\ 1-\lambda & 1+\lambda \end{bmatrix}$$

realizes σ .

As established in [6], if $\sigma = \{1, \mu, \lambda\}$, where $-1 \le \mu, \lambda \le 1$, then the matrix

$$\begin{bmatrix} (1+\lambda)/2 & (1-\lambda)/2 & 0\\ (1-\lambda)/2 & (1+\lambda)/2 & 0\\ 0 & 0 & \mu \end{bmatrix}$$

realizes σ when $1 \ge \mu \ge \lambda \ge 0$ or $1 \ge \mu \ge 0 > \lambda$. Notice that this matrix is a direct sum of permutative matrices. If $0 > \mu \ge \lambda$, then, following Theorem 3.3, σ is realizable by a permutative matrix.

When n = 4, all realizable spectra can be realized by matrices of the form

a+b	a-b	0	0]		a	b	c	d
a-b	a + b	0	0					
0	0	c+d	c-d		c	d	a	$\begin{array}{c} c \\ b \end{array}$
0		c-d			d	c	b	a

(for full details, see [6, pp. 10–11]). \Box

5. Concluding remarks. In [4], Fiedler posed the symmetric nonnegative inverse eigenvalue problem (SNIEP), which requires the realizing matrix to be symmetric. Obviously, if $\sigma = \{\lambda_1, \ldots, \lambda_n\}$ is a solution to the SNIEP, then it is a solution to the RNIEP. In [5], Johnson, Laffey, and Loewy that showed that the RNIEP strictly

P. Paparella

contains the SNIEP when $n \ge 5$. It is in the spirit of this problem that we pose the following.

PROBLEM 5.1. Can all realizable real spectra be realized by a permutative matrix or by a direct sum of permutative matrices?

At this point there is no evidence that suggests an affirmative answer to Problem 5.1; however, a negative answer could be just as difficult: one possibility, communicated to me by R. Loewy, is to find an *extreme nonnegative matrix* [8] with a real spectrum that can not be realized by a permutative matrix, or a direct sum of permutative matrices.

Acknowledgment. I wish to thank the anonymous referee and Raphael Loewy for their comments on improving the first-draft.

REFERENCES

- [1] M.T. Chu. Inverse eigenvalue problems. SIAM Rev., 40:1–39, 1998.
- [2] P.D. Egleston, T.D. Lenker, and S.K. Narayan. The nonnegative inverse eigenvalue problem. (Proceedings of the Tenth Conference of the International Linear Algebra Society.) *Linear Algebra Appl.*, 379:475–490, 2004.
- [3] M. Fiedler. Eigenvalues of nonnegative symmetric matrices. *Linear Algebra Appl.*, 9:119–142, 1974.
- [4] S. Friedland. On an inverse problem for nonnegative and eventually nonnegative matrices. Israel J. Math., 29:43–60, 1978.
- [5] C.R. Johnson, T.J. Laffey, and R. Loewy. The real and the symmetric nonnegative inverse eigenvalue problems are different. Proc. Amer. Math. Soc., 124:3647–3651, 1996.
- [6] C.R. Johnson and P. Paparella. Perron spectratopes and the real nonnegative inverse eigenvalue problem. Linear Algebra Appl., to appear, http://arxiv.org/abs/1508.07400.
- [7] R. Loewy and D. London. A note on an inverse problem for nonnegative matrices. *Linear Multilinear Algebra*, 6:83–90, 1978/79.
- [8] T.J. Laffey. Extreme nonnegative matrices. Linear Algebra Appl., 275/276:349–357, 1998.
- [9] H. Minc. Nonnegative matrices. John Wiley & Sons, Inc., New York, 1988.
- [10] H. Perfect. Methods of constructing certain stochastic matrices. Duke Math. J., 20:395–404, 1953.
- [11] O. Rojo, R. Soto, and H. Rojo Fast construction of a symmetric nonnegative matrix with a prescribed spectrum. *Comput. Math. Appl.*, 42:1379–1391, 2001.
- [12] G.W. Soules. Constructing symmetric nonnegative matrices. Linear Multilinear Algebra, 13:241–251, 1983.
- [13] H.R. Suleĭmanova. Stochastic matrices with real characteristic numbers. Doklady Akad. Nauk SSSR (N.S.), 66:343–345, 1949.