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Realizing the measure-device-
independent quantum-key-
distribution with passive heralded-
single photon sources
Qin Wang1,2,3, Xing-Yu Zhou1,2 & Guang-Can Guo1,2,3

In this paper, we put forward a new approach towards realizing measurement-device-independent 

quantum key distribution with passive heralded single-photon sources. In this approach, both 

Alice and Bob prepare the parametric down-conversion source, where the heralding photons are 

labeled according to different types of clicks from the local detectors, and the heralded ones can 
correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets 
of data through using only one-intensity of pump light by observing different kinds of clicks of 
local detectors. By employing the newest formulae to do parameter estimation, we could achieve 

very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out 

corresponding numerical simulations, we compare the new method with other practical schemes of 

measurement-device-independent quantum key distribution. We demonstrate that our new proposed 

passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-

state measurement-device-independent quantum key distribution with either heralded single-photon 

sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish 

source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity 
modulating errors into account, our new method will show even more brilliant performance.

�e quantum key distribution (QKD) allows two legitimate users, usually called Alice and Bob, to share the 
secure cryptographic keys even at the existence of a malicious eavesdropper, Eve1. In principle, QKD can o�er 
unconditional security guaranteed by the law of quantum physics2–4. However, due to existing imperfections in 
real-life QKD devices, Eve can take advantage of those loopholes and hack present QKD systems. For instance, 
under the circumstances of imperfect light sources, Eve can carry out the so-called photon-number-splitting 
(PNS) attack5–7. Fortunately, the decoy-state method was proposed to counter the PNS attack8–10, dramatically 
improving the performance of practical QKD system11–14. Moreover, in order to countermeasure all the poten-
tial attacks directed on the detection devices, the measurement-device-independent quantum-key-distribution 
(MDI-QKD) protocols were proposed15,16, which seems very promising in the implementations of QKD17–27.

During the past few years, the MDI-QKD has been widely investigated using either the heralded-single pho-
ton sources (HSPS) or the weak coherent sources (WCS). By applying di�erent number of decoy states, all of 
them can be classi�ed into two types: the passive setup with only one intensity, and the active device with more 
than one intensity. For those active device, implementing two-, three- or four-intensity decoy states17–25, where in 
real-life, an acousto- or electro-optic modulator is o�en used to switch between di�erent decoy states with high 
speed, they will inevitably result in intensity uncertainty during parameter estimations, and thus deteriorate their 
practical performance. For passive setups28, one has to do the worst-case parameter estimation on the contribu-
tions from two-single-photon pulses owning to very few input parameters. Here, we will present a new scheme on 
implementing the MDI-QKD protocol with HSPS while using only one-intensity decoy state. In this scheme, we 
record all the successful detection events and mark them with di�erent tags by classifying the heralding photons 
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into di�erent species, so that we can possess many input parameters and carry out very accurate estimations for 
the two-single-photon pulse contributions.

�e paper is organized as follow: At the beginning, we present the core idea on how to generate the passive 
heralded single-photon sources; Second, we propose to implement the passive heralded single-photon sources 
into the MDI-QKD; �ird, we carry out corresponding numerical simulations and compare its performance with 
other o�en used decoy-state proposals, e.g., the standard three-intensity decoy-state MDI-QKD using either the 
HSPS or the WCS. Finally, a summary and outlook are given at the end of the paper.

The passive heralded single-photon sources
Normally, the HSPS can be generated from the parametric down-conversation (PDC) process, which can be 
either a thermal or poissonian distribution12. For simplicity, here we use the poissonian distributed PDC source 
as an example to describe the scheme. (In the case of thermal distribution, it will show similar behavior). �e 
PDC process can generate a squeezed two-mode �eld, each denoted as the idler mode (I mode) and the signal 
mode (S mode) individually. �e two-mode �eld can be written as: Ψ = ∑ =

∞ n nPnIS 0 n I S
, where |n〉  repre-

sents an n-photon state, µ =
µ µ−P e( )n n !

n

, and µ is the average photon number per time slot.
In most former HSPS schemes, the idler mode is o�en locally detected with a photon diode at the sender’s 

side, and the signal mode is encoded with useful information and sent to the receiver through the quantum chan-
nel. Meanwhile, the sender delivers a synchronization signal to the receiver whenever the local phot-diode clicks. 
�is is the so-called HSPS. However, below we will con�gure the devices in a di�erent manner.

�e schematic setup of our new scheme on generating the passive HSPS is shown in Fig. 1, where the most 
important change is to split the idler mode into two paths and then send each into a local single-photon detector 
(A1 and A2) separately. In all, the click events in the two local detectors may consist of four kinds of possibilities, 
each denoted as Xi (i =  1, 2, 3, 4): (1) Non-clicking; (2) Only one clicking at A1; (3) Only one clicking at A2; (4) 
Clicking at both A1 and A2.

We de�ne P nXi
 as the probability of the Xi events occurring if given an n-photon state in the idler mode. �en 

the signal state will be projected into ρ = ∑f n nP
n nXi

 (un-normalized), where fn is the photon-number distri-
bution in the S mode. In the following, let’s derive the construction of the Xi event. To simplify the description, 
let’s begin with perfect detector e�ciency for A1 and A2, and we will deal a bit later in the manuscript with 
non-unity detector e�ciency by assuming “imaginary beam splitters”.

First, we denote P s sx i 1 2
 as the probability of the Xi event occurring given a s s1 2  projection state. For a vacuum 

projection state, the corresponding local detector will click with a probability of di (the dark count rate), and 
non-clicking with a probability of (1 −  di). While for a non-vacuum projection state, the local detector will surely 
click with 100% probability. We can then list all the probabilities of the four (Xi) events taking place as shown in 
Table 1.

Second, we de�ne Ps s n1 2
 as the probability of projecting an n-photon state into state s s1 2 . For an n-photon 

number state, a�er passing through a beam-splitter (BS) in the idler mode, it is changed into:

∑+ =
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− −† † † †

n
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Figure 1. (a) �e schematic setup of generating the passive HSPS. �e pump light is generated from a light 
emitting diode (LED). A�er passing though the Periodically Poled Lithium Niobate (PPLN) crystal, the 
parametric down-conversion photon pairs (idler and signal) are separated by a dichroic mirror (DM). �e 
idler mode is split into two parts by a beam-splitter (BS) and sent into two single-photon detectors (A1 and A2) 
respectively. (b) �e illustration of single-photon detection in the idler mode, where an imaginary beam-splitter 
(IBS) is positioned before each local detector. t is the IBS transmissivity.
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where the right side of the equation follows a binomial distribution, and Cn
k is the binomial coe�cient, de�ned as 

=

−

C :n
k n

k n k

!

! ( ) !
; T2 represents the transmission e�ciency of the BS, denoted as t; R2 corresponds to the re�ection 

e�ciency, denoted as (1 −  t).
As illustrated in Fig. 1, a�er the �rst BS we combine the coupling e�ciency and detection e�ciency in each 

path, and treat it as the transmission e�ciency (ηi, i =  1, 2) of an imaginary beam-splitter (IBS), and the loss cor-
responds to the re�ection e�ciency (1 −  ηi). A�er passing through the two IBSs, only the transmitted photons are 
collected. Now the state can be expressed as:
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where η=Ti i
, and η= −R 1i i

, (i =  1, 2).
�en we can get the corresponding projection probability as:
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For any input n-photon state, the probability of occurring the Xi heralding event can be written as:

∑= ⋅ .P P P
(4)

n
s s

s s s s nx
,

xi

1 2

i 1 2 1 2

�e corresponding heralded signal state is :

∑ρ = ⋅f n nP P ,
(5)n s s

n s s s s n
, ,

x

1 2

i 1 2 1 2

where the analysis of P s sx i 1 2
 can be found in Table 1, and Ps s n1 2

 has been formulated in Eq. (3). Now with the 
above, we can do the calculation for any Xi event and any quantum e�ciency.

In the following, we will denote the above X1, X2 and X3 events as the x, y and z state respectively. 
Correspondingly, in the photon-number space, we have ρ = ∑ξ

ξP n nn n , with =
ξP f Pn n nx i

, (ξ =  x, y, z).

According to Eqs (1–5), we get the simpli�ed photon-number distribution for the x, y and z state as
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Here for simplicity we have assumed that all the local detectors have the same dark count rate, i.e., di =  d. Besides, 
we reasonably set ∈ 





t 0,
1

2
, and ηA ∈  [0, 1].

For any ⩾n 2, we �nd

Case P s s1 1 2
P s s2 1 2

P s s3 1 2
P s s4 1 2

X1 : s1 =  0, s2 =  0 (1 −  d1)(1 −  d2) d1(1 −  d2) d2(1 −  d1) d1d2

X2 : s1 ≠  0, s2 =  0 0 (1 −  d2) 0 d2

X3 : s1 =  0, s2 ≠  0 0 0 (1 −  d1) d1

X4 : s1 ≠  0, s2 ≠  0 0 0 0 1

Table 1.  Probability of the (Xi) event occurring.
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With the conditions above, we get the following inequalities:

.

−

−

−

−

⩾ ⩾

⩾ ⩾

P

P

P

P

P

P

P

P

P

P

P

P

,

(9)

n
y

n
x

n
y

n
x

y

x

n
z

n
y

n
z

n
y

z

y

1

1

1

1

1

1

1

1
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For any − −⩾ ⩾k j j i 0, we can demonstrate

.⩾G i j k( , , ) 0 (10)

See the “Proof ” section for the detailed proof. With the two inequalities, one can directly apply Wang’s formu-
las for the yield and phase-�ip rate of single-photon pairs in ref. 25.

Implementing the passive HSPS into the MDI-QKD
�e MDI-QKD was designed to remove all possible side-channel attacks and show attractive performance in 
real-life implementation. In MDI-QKD, both Alice and Bob send signals to an untrusted third party (UTP), 
Charlie. A�er a Bell state measurement, Charlie announces whether the measurement is successful. �en the 
successful event will be employed for key distribution. In order to make the MDI-QKD more practical, usually 
a decoy-state method is implemented in parallel. In most other schemes, it requires both Alice and Bob to ran-
domly modulate their signal light into di�erent intensities, and then do estimations with corresponding success-
ful events. While here in our new scheme, only one-intensity signal light is applied at either Alice or Bob’s side, 
and then process parameter estimations by considering di�erent counting events conditional on case Xi (i =  1, 2, 
3, i.e., x, y and z state) as introduced above. �e schematic experimental setup of the scheme is shown in Fig. 2.

In fact, the security of our proposal is equivalent to the processes as following: First, both Alice and Bob send 
out all heralded signal pulses (signal mode), and the UTP records all the successful counting events by do project-
ing measurement; Second, Alice and Bob start to send out heralding signals from local detectors, and correspond-
ingly the UTP can divide all the successful counting events into di�erent species (signal states or decoy states) and 
marked with di�erent tags; �ird, the UTP announce the tags of each successful event, and the legitimate users 
apply corresponding bit-�ip operations and get the raw keys; Moreover, error correction and privacy ampli�ca-
tion processes are carried out; Finally, people carry out parameter estimation processes. From the above, we �nd 
that during the signal transmission Eve is unable to judge which is the signal state and which is the decoy state, 
and has to apply the same attack strategy on all the pulses (signal state and decoy state), and his eavesdropping 
will certainly be discovered by the legitimate users by error tests.

In this scheme, for simplicity, we assume both Alice and Bob possess the same passive setup for signal gener-
ation. �en each of them can send out signals with x, y and z state individually. Whenever Alice sends out an α 
state and Bob sends out a β, with α, β ∈  (x, y, z), the average counting rate ( α βQ ,

W ) and the mean quantum-bit 
errors =α β α β α βT E Q( : )W W W

, , ,  can be written as:

∑ ∑= =α β
α β

α β
α β

=

∞

=

∞

Q P P Y and T P P e Y ,
(11)

W

n m
n m nm

W W

n m
n m nm

W
nm
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,
, 0

,
, 0

where we label W as the Z- or X-basis. �e Z- or X-basis can be considered independently, herea�er we shall 
therefore omit the superscript W without causing any confusion. �e subscripts n, m each represents the numbers 
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of the photons sent by Alice or Bob respectively. Ynm
W  and enm

W  each corresponds to the conditional yield or the error 
rate when Alice sends an n-photon state and Bob sends an m-photon state. α βEW

,  denotes the average quantum-bit 
error-rate.

Below we de�ne
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According to Wang et al.’s work in ref. 25, once the source states satisfy the inequalities in (9) and (10), we can 
immediately get the lower-bound of the counting rate for the two-single-photon pulses (Y L

11) as

=
+ − +

−

.
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Similarly, we can get the upper bound of the quantum-bit error-rate for the two-single-photon pulses (eU
11)

25:
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where γ = P P P G(1, 2, 3)z z z
1 2 3 , for ξ ∈  (x, y, z), = − − − + −ξ ξ ξ ξ
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In the new scheme, the Z-basis is used for key generation, and the X-basis is for error testing. From Eqs (14) and 
(15), we can obtain the lower-bound for the yield of two-single-photon pulses in the Z basis (Y Z L

11
, ) and the 

upper-bound for the quantum-bit error-rate of two-single-photon pulses in the X basis (e X U
11

, ). Moreover, the 
average counting rate and the mean quantum-bit error-rate can be observed experimentally. With all the above, 
we can calculate the secure key generation rate with the following formula:

Figure 2. �e schematic setup of our new passive-decoy state MDI-QKD protocol. Alice and Bob generate 
the passive HSPS as illustrated in Fig. 1, and randomly code each signal pulse into one of the four polarization 
states (horizontal (H), vertical (V), 45 degrees (+ ) and 135 degrees (− )) with a polarization rotator (PR). 
�en they simultaneously send their signal pulses to the third party (Charlie) through the quantum channel. 
Charlie apply a partial Bell-state projection measurement on pulses from both Alice and Bob. Ai (i =  1, 2, 3, 4): 
triggering single-photon detectors. Di (i =  1, 2, 3, 4): triggered single-photon detectors. PBS: polarization beam-
splitter. BS: beam-splitter.
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≥ + − − −R P P Y H e Q fH E Q fH E( ) [1 ( )] ( ) ( ), (16)
y z Z L X U

y y
Z

y y
Z

z z
Z

z z
Z

1
2

1
2

11
,

11
,

, , , ,

where f is the error correction e�ciency, and here we take f =  1.1616,18; = − − − −H p p p p p( ) : log ( ) (1 )log (1 )
2 2

. 
To simplify the calculation, we only use the y and z state for the key distillation. In fact, all the four kinds of events 
(Xi, i =  1, 2, 3, 4) can be used to distill the �nal keys. �at means the performance of the new scheme should be 
even better when taking all the successful events into consideration.

Numerical simulation
With the formulae above, we can perform a numerical simulation for our new passive scheme on the decoy-state 
MDI-QKD, and further compare its performance with other practical methods, e.g. the conventional 
three-intensity decoy-state MDI-QKD using either WCS or HSPS17,22. In real-life experiment, the average gains 
and the average quantum-bit error-rates can be directly measured. While in numerical simulations, we should use 
a reasonable model to predict what should probably be observed in experiment. By referring the linear model in 
ref. 19, we can give a prediction for the probably observed values of the gains and the quantum-bit error-rates. For 
fair comparison, we assume the same parameters as in refs 16 and 18 in our simulation, see Table 2.

In the source generation part, the non-degenerate parametric down-conversion process is o�en used to gen-
erate non-degenerated photon pairs, e.g., one is within the telecommunication wavelength range suitable for 
�ber transmission, and the other is within the visible wavelength range, convenient for detection. �erefore, 
it is reasonable to assume the local detectors with a detection e�ciency of 75%, and a dark count rate of 10−6 
(commercial products SPCM-NIR-16 or SPCM-AQRH-16 APD)25. Corresponding simulation results have been 
displayed in Figs 3, 4, 5 and 6.

In Fig. 3, we compare the estimation value for the quantum-bit error-rate of two-single-photon pulses (e X
11) 

among our new scheme (H1), the conventional three-intensity decoy-state MDI-QKD using HSPSs (H3)
22 and the 

standard three-intensity decoy-state MDI-QKD using WCSs (W3)17. We can �nd from Fig. 3 that, our new 
scheme shows signi�cantly lower bound of the e11 than the other two schemes, which is on one hand due to the 
many kinds of successful counting events, and on the other hand owning to the usage of the newest estimating 
formula, Eq. (15).

�e comparison of Y11 in the Z basis between the above three methods is shown in Fig. 4. �e conventional 
three-intensity decoy-state MDI-QKD using the HSPS (H3) and using the WCS (W3) shows a similar level of Y Z

11. 
In contrast to them, the new proposed passive MDI-QKD (H1) obviously exhibits higher values.

In Fig. 5, we show a comparison for the optimal intensity of the signal state (µ) for di�erent kinds of methods. 
Compared with the other two lines (W3 and H3), our new passive scheme (H1) presents superior values from the 
beginning to the end.

Moreover, we show a comparison for the key generation rate (R) for our new passive scheme(H1), for the 
standard three-intensity decoy-state MDI-QKD using HSPSs (H3), and for the conventional three-intensity 
decoy-state MDI-QKD using WCSs (W3), see Fig. 6(a). Compared with the other two proposals, the performance 

ηC dC ed e0 γ

14.5% 3.0 ×  10−6 1.5% 0.5 0.2 dB/km

Table 2.  Parameters values for simulations. ηC and dC are the detection e�ciency and dark count rate at the 
UTP’s side; ed is the probability that the survived photon hits the wrong detector, which is independent of the 
transmission distance, and e0 is the error rate of dark count; γ is the channel loss constant.

Figure 3. Comparison of the estimation value of e X

11 between di�erent methods. �e solid line (H1) refers to 
our new scheme, the dashed line (H3) represents the standard three-intensity decoy-state MDI-QKD using 
HSPS, and the dash-dotted line (W3) corresponds to the case of using conventional three-intensity decoy-state 
MDI-QKD using WCS. For simplicity, we set the intensity of the decoy state as v =  0.1 for H3 and W3.
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of our new scheme has drastically improved both the transmission distance and the �nal key generation rate. For 
a more vivid comparison, we also calculate the relative key generation rate between our new passive scheme and 
the other two three-intensity decoy-state methods, see the le� and right axes in Fig. 6(b), respectively. We �nd 
that compared with the standard three-intensity decoy-state MDI-QKD using HSPSs, our new passive scheme 
can obtain more than �ve times enhancement in the key generation rate at long distances (> 200 km). While com-
pared with the conventional three-intensity decoy-state MDI-QKD using WCSs, it can exhibit more than 100% 
enhancement in the key generation rate, and achieve more than 100 km longer transmission distance.

Conclusion
In summary, we have introduced a new protocol for the measurement-device-independent quantum-key- 
distribution with heralded single-photon sources involving only one-intensity decoy state. �e key features are: 
At the source generation part, we split the triggering signals and send into di�erent local detectors. By recording 
di�erent kinds of detection events in the local detectors, we can divide the triggered events into di�erent spe-
cies at the receiver’s side. Moreover, during parameter estimations, we have implemented the newest formulae, 
i.e., Eqs (14) and (15) to give an upper or lower bound for the counting rate and the quantum-bit error-rate of 
two-single-photon pulses. Consequently, we obtain many input parameters and can do very accurate estimations 
for the two-single-photon pulse contributions. Furthermore, by carry out corresponding numerical calculations, 
we compare the new scheme with other o�en used three-intensity decoy-state methods, demonstrating that the 
new proposed approach could exhibit outstanding performance among those compared.

Besides, we should declare that if we take the source errors into consideration, the new proposed passive 
scheme will exhibit even predominant capability than those active decoy-state methods. Because no intensity 
modulator is applied in our new scheme, and thus avoids source uncertainties. �ese unfortunately exist in other 

Figure 4. Comparison of the estimation value of YZ

11 between di�erent methods. �e solid line (H1) refers to 
our new scheme, the dashed line (H3) represents the standard three-intensity decoy-state MDI-QKD using 
HSPS, and the dash-dotted line (W3) corresponds to the case of using conventional three-intensity decoy-state 
MDI-QKD using WCS. For simplicity, we set the intensity of the decoy state as v =  0.1 for H3 and W3.

Figure 5. Comparison of the optimal intensity of the signal state u between di�erent methods. �e solid 
line (H1) refers to our new scheme, the dashed line (H3) represents the standard three-intensity decoy-state 
MDI-QKD using HSPS, and the dash-dotted line (W3) corresponds to the case of using conventional three-
intensity decoy-state MDI-QKD using WCS. For simplicity, we set the intensity of the decoy state as v =  0.1 for 
H3 and W3.
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two-, three-, or four-intensity decoy-state methods. �erefore, it may be a promising candidate for the implemen-
tation of quantum key distribution in the near future.

In addition, we have noted that recently a new novel four-intensity decoy-state protocol [Phys. Rev. A 93, 
042324 (2016)] have been proposed by Wang et al.29, which shows excellent performance when accounting for 
statistical �uctuation and using biased basis. It should be interesting to implement their method into our present 
passive scheme which deserves further study in our future research.

Proof
In order to demonstrate inequality (10), which states that ⩾G i j k( , , ) 0, when − −⩾ ⩾k j j i 0, we recall that 
the Vandermonde determinant de�ned as

γ γ γ

γ γ γ

=

− − −

⋯
⋯

⋮ ⋮ ⋱ ⋮

⋯

V :

1 1 1

n

n

n n
n
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1 2

1
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satis�es Vn >  0 for any 0 <  γ1 <  γ2 <  ··· <  γn, which follows from Vn =  Π i<j(γj −  γi). Now we establish the result 
which will be used in deriving inequality (10): �e generalized Vandermonde determinant de�ned as

γ γ γ
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⋯
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satis�es Dn >  0 for any 0 <  γ1 <  γ2 <  ··· <  γn and λ λ λ< < <⩽0 n1 2 .
To establish this, we proceed by induction method. First, it is clear that D1 >  0. Now assume that Dn−1 >  0, we 

will show that Dn >  0. Note that

γ γ γ
γ γ γ

γ γ γ

=
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Figure 6. (a) Comparison of the �nal key generation rate R between di�erent methods. �e solid line (H1) 
refers to our new scheme, the dashed line (H3) corresponds to the standard three-intensity scheme using HSPS, 
and the dash-dotted line (W3) represents a conventional three-intensity MDI-QKD using WCS. (b) �e ratio 
between the key generation rates of the new proposed passive scheme and the other two, see the le� and right 
axes respectively.
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in order to show that Dn >  0, we may assume without loss of generality that λ1 =  0, and only consider Dn of the 
following form

γ γ γ

γ γ γ

= .

λ λ λ
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⋯
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1 1 1
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We will show that Dn >  0 for λ λ λ< < <⩽0 n1 2 .
First, consider Dn as a function of γn and note that =

γ γ=
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which is positive by assumption.
With the above preparation, we proceed to prove inequality (10). As introduced above, in the new passive 

decoy-state scheme, Bob’s counting events can be divided into four species by conditioning them on Alice’s her-
alding events Xi, (i =  1, 2, 3 and 4). �e �rst three have been denoted as states x, y and z respectively, and their 
photon-number distribution can be written as in Eq. (6). By substituting Eq. (6) into condition (10), we obtain
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By the property of the generalized Vandermonde determinant inequality, the above expression is non-positive. 
It completes the proof of inequality (10).
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