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REALLOCATION OF AN INFINITELY DIVISIBLE GOOD

B. KLAUS, H. PETERS, AND T. STORCKEN

Abstract. We consider the problem of reallocating the total initial
endowments of an in¯nitely divisible commodity among agents with

single-peaked preferences. With the uniform reallocation rule we pro-

pose a solution which satis¯es many appealing properties, describing
the e®ect of population and endowment variations on the outcome. The

central properties which are studied in this context are population mono-

tonicity, bilateral consistency, (endowment) monotonicity and (endow-
ment) strategy-proofness. Furthermore, the uniform reallocation rule

is Pareto optimal and satis¯es several equity conditions, e.g., equal-

treatment and envy-freeness. We study the trade-o® between properties
concerning variation and properties concerning equity. Furthermore, we

provide several characterizations of the uniform reallocation rule based

on these properties.

1. Introduction

In this paper we study situations where the total of initial endowments of

an in¯nitely divisible good is reallocated among a group of agents. In many

cases where free disposal of the good is not allowed (non-price models) it

is natural to assume that the agents' preferences over their shares of the

good are single-peaked. Each agent has an optimal share of the good, below

which and above which preference is decreasing.

There is a wide literature exploring the situation where the problem is re-

duced to the allocation of a total endowment. As described in Sprumont [7],

rationing in a two-good economy in which prices are in disequilibrium can

be interpreted as such a distribution problem with total endowment. A so-

lution for this class of problems satisfying many appealing properties is the

uniform rule. Benassy [2] described the uniform rule as a strategy-proof

rationing scheme: an agent who misrepresents his preference cannot im-

prove his outcome. Sprumont [7] started the axiomatic analysis in 1991. He

proved that the uniform rule is the only rule which satis¯es Pareto opti-

mality, strategy-proofness and anonymity. Ching [3] weakens anonymity to

a condition called equal treatment of equals: agents announcing the same

preferences are treated equally. The axiomatic analysis of Thomson (see [8],
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2 B. KLAUS, H. PETERS, AND T. STORCKEN

[9] and [10]) provides several characterizations of the uniform rule including

consistency and monotonicity properties.

In this paper we study similar properties in the more general setting of

economies where agents have initial endowments. This extension of the

model quite naturally arises if we observe distribution problems with total

endowments where preferences might change over time. Consider for exam-

ple the distribution of a task (e.g., ¯xed amount of teaching hours) among

the members of a group. The (single-peaked) preferences of the agents do

not only depend on the total endowment, but also on external factors (time

for research, other tasks) which are not ¯xed. So, over time, preferences

might change, calling for a reallocation of the task.

Another interpretation of the model can be found in a recent paper of

Barbera, Jackson and Neme [1]. There, sharing problems where agents

might have natural claims, or are treated with di®erent priorities, are stud-

ied. In this setting they characterize the class of distribution rules that are

strategy-proof and Pareto optimal, but which allow for an asymmetric treat-

ment of the agents. Adding a third condition, describing a kind of individual

monotonicity, yields a subclass of strategy-proof and Pareto optimal rules

which they call sequential allotment rules and which they consider to be

a natural extension of the procedure which underlies the uniform rule. By

applying uniform division in the stepwise de¯nition of a sequential allotment

rule, thereby reducing the computation to one step, the uniform reallocation

rule, introduced in Klaus, Peters and Storcken [6], is obtained.

In Klaus, Peters and Storcken [6] the main result is the characterization
of the uniform reallocation rule by Pareto optimality, strategy-proofness and

an equal-treatment condition based on the preferences and the net demands

of the agents. This equity condition, which corresponds to Ching's equal-

treatment condition for division problems, may be replaced by anonymity

and translation invariance.

Like the uniform rule, the uniform reallocation rule satis¯es many desir-

able properties, which we study in the sequel. We can strengthen equal-

treatment to envy-freeness which, in our setting, is formalized in terms of

allotment changes and not in terms of the outcome as in the case of divid-

ing a total endowment. Our ¯rst result (Theorem 3.1) is that, similar to

the total endowment case (see Thomson [10], Lemma 1), the uniform re-

allocation rule is the unique reallocation rule satisfying Pareto optimality,

peaks-onliness and envy-freeness.

Besides strategy-proofness, which describes the in°uence of certain prefer-

ence variations on the outcome, and Pareto optimality, the uniform realloca-

tion rule has several properties incorporating the variation of the remaining

model assumptions.

One such property, introduced by Thomson [8] for the total endowment

case, is population monotonicity. In the reallocation case this property

describes the impact of merging two reallocation problems. We show (The-
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orem 3.2) that in the characterization of Theorem 3.1 peaks-onliness can be

replaced by population monotonicity.

A further monotonicity property, endowment monotonicity, describes the

change of the solution if certain endowment variations are considered. By

decreasing (increasing) the endowments in case of excess demand (supply),

no individual is better o® than before. This monotonicity condition is an ex-

tension of the one-sided resource-monotonicity of Thomson [10], introduced

for division problems. Thomson proves ([10], Theorem 2) that the uniform

rule is the only rule satisfying Pareto optimality, envy-freeness and one-sided

resource-monotonicity for a restricted domain of single-peaked, continuous

preferences. For the reallocation case a similar result (Theorem 4.4) can be

deduced where the conditions of envy-freeness and monotonicity are adapted

as indicated above. However, the proof of this characterization of the uni-

form reallocation rule is based on a di®erent argument and remains valid for

the whole domain of single-peaked preferences.

The next property of the uniform reallocation rule we study is bilateral

consistency. For the total endowment case, bilateral consistency of a rule

requires the following. Consider a division assigned by a rule and assume

that all agents except two leave with their assigned quantities of the good. If

the remaining agents divide the remaining endowment again by applying the

same rule, then they receive the same shares as before. In Thomson [9] two

characterizations of the uniform rule by means of Pareto optimality, bilat-
eral consistency and continuity in the total amount to divide are provided.

In the ¯rst characterization ([9], Theorem 1) envy-freeness singles out the

uniform rule. In the second characterization ([9], Theorem 2) envy-freeness

is replaced by individual rationality from equal division: no agent, after the

distribution, is worse o® than in the case of equally dividing the total en-

dowment. In a recent study, Dagan shows that the continuity property may

be skipped (see [4], Theorem 2 and Theorem 3).

In reallocation situations bilateral consistency not only prescribes the in-

di®erence of the outcome to the splitting o® of a group in a certain way, but

it also includes an equity component. The leftover of the departing agents is,

up to domain restrictions, equally added to the endowments of the remaining

agents. Individual rationality from equal division in the total endowment

case corresponds quite naturally to individual rationality (with respect to

the initial endowments) in reallocation situations. After the reallocation no

agent is worse o®. The latter two conditions (bilateral consistency and in-

dividual rationality) together with Pareto optimality determine the uniform

reallocation rule for reallocation problems with at least three agents (The-

orem 5.2). For reallocation problems with at least four agents individual

rationality can be replaced by envy-freeness (Theorem 5.3). The proofs of

Dagan's characterizations ([4], Theorem 2 and Theorem 3) can be adapted

to the reallocation case. This yields di®erent proofs of Theorem 5.2 and

Theorem 5.3 for problems with at least four agents. Further characteriza-
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tions of the uniform reallocation rule can be obtained by Pareto optimality,

bilateral consistency and extra conditions, for instance boundedness (of the

outcome) by endowments and peaks (Theorem 5.1).

Finally, endowment strategy-proofness is studied. If initial endowments

are private information it might happen that agents manipulate the out-

come by only reporting|showing|a smaller part of their endowments. Re-

allocation rules where agents cannot pro¯t from withholding parts of their

endowments are called endowment strategy-proof. Endowment strategy-

proofness together with Pareto optimality, bilateral consistency and the

dummy property (agents who have their peak as initial endowment do not

participate in the reallocation) characterizes the uniform reallocation rule

(Theorem 6.3). In Theorem 6.4 we show that we can replace endowment

strategy-proofness and the dummy property by equal-treatment and a prop-

erty called reversibility. This latter condition links the outcomes of excess

demand and excess supply. To be more precise, consider a situation with

demanders, having their peaks above their initial endowments, and suppli-

ers, having their peaks below their initial endowments. Now this situation

is reversed by turning demanders into suppliers with supply equal to their

former demand and suppliers into demanders in a similar way. Reversibility

requires that the allotment changes of the latter problem are opposite to

those of the former.

The paper proceeds as follows. In Section 2 we introduce the model and

the uniform reallocation rule. In Sections 3, 4, 5 and 6 we introduce the

equity and variation properties which yield several characterizations of the

uniform reallocation rule. An overview over the results is given in Section 7

and the independence of the axioms used in the characterizations is shown.

Furthermore, a discussion of the sensitivity of the model assumptions is

included.

2. Reallocations

Consider exchange economies with a single good for which the agents have
single-peaked (ordinal) utility, for instance strictly concave utility functions

with a global optimum. So, the commodity space is one dimensional: IR+.

Let i be an agent. Then his utility function ui is a continuous function from

IR+ to IR such that

² there is a unique point ûi at which ui is maximal

² for all ®;¯ 2 IR+, ui(®) < ui(¯) if ® < ¯ · ûi or if ® > ¯ ¸ ûi.

The point ûi is called the peak of i. Denote the set of all these utility

functions by U : A set of agents is denoted by N ½ IN . Furthermore, UN

denotes the set of N-tuples u of utility functions. So, u = huiii2N , where

ui is the utility function of agent i. If u; v 2 UN , then û = v̂ indicates that
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for every agent i the peak at u (ûi) is equal to that at v (v̂i).

A reallocation problem or short a problem is a triple hN; e; ui, where N

is a nonempty and ¯nite set of agents, N ½ IN , e is a vector of initial

endowments e = heiii2N 2 IRN
+ and u is a pro¯le of utility functions: u 2

UN . At e the initial endowment of agent i is ei.

In problem hN; e; ui agent i is a demander whenever his endowment ei is

strictly less than his peak ûi. In that case he wants more of the good. His

(net) demand is denoted by di(N; e; u), so di(N; e; u) := ûi ¡ ei. Denote

the set of demanders by D(N; e; u). A supplier is an agent j who has an

endowment that is strictly greater than his peak. The supply of such an

agent is sj(N; e; u) := ej ¡ ûj . The set of suppliers is denoted by S(N; e; u).

If agent k is neither a supplier nor a demander, then his peak ûk equals

his endowment ek . In that case he favors no trade, and is called a non-

trader. Let d(N; e; u) :=
P

i2D(N;e;u) di(N; e; u) denote total demand and

s(N; e; u) :=
P

i2S(N;e;u) si(N; e; u) total supply. The excess demand func-

tion z(N; e; u) := d(N; e; u) ¡ s(N; e; u) may be positive, zero, or negative.

If it is positive we say that the problem has excess demand. If it is zero, the

problem is balanced and one would expect that the reallocation is such that

every agent gets his peak. If it is negative, then we have excess supply.

A vector x = hxiii2N 2 IRN
+
is called feasible (at problem hN; e; ui) or a

reallocation if
P

i2N xi =
P

i2N ei. A reallocation x is called Pareto optimal

(at problem hN; e; ui), if there is no reallocation y = hyiii2N in IRN
+ , such

that

ui(xi) · ui(yi) for all agents i 2 N and

uj(xj) < uj(yj) for at least one agent j 2 N .

Utility strictly increases, if the peak is approached from above or from

below. Therefore, a reallocation x 2 IRN
+

is Pareto optimal at problem

hN; e; ui, precisely when x is same-sided, i.e., xi · ûi for all i 2 N or xi ¸ ûi
for all i 2 N . Consequently, a reallocation x 2 IRN

+ is Pareto optimal if and

only if,

xi · ûi for all i 2 N whenever z(N; e; u) > 0 (excess demand),

xi ¸ ûi for all i 2 N whenever z(N; e; u) < 0 (excess supply), and

xi = ûi for all i 2 N whenever z(N; e; u) = 0 (balancedness).

Sprumont [7] uses same-sidedness as de¯nition of Pareto optimality.

In several properties, discussed hereafter, the number of agents is not

¯xed, therefore solutions will be de¯ned over the set of all problems. To

avoid repetition of the Pareto optimality condition, it is incorporated in the

de¯nition of a rule as follows.

A pre-rule Ã assigns to every problem hN; e; ui a reallocation Ã(N; e; u).
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A rule ' is a Pareto optimal pre-rule.

Let hN; e; ui be a problem and i 2N . Then 'i(N; e; u) denotes the allot-

ment of i under rule ' at problem hN; e; ui. Furthermore, 4'i(N; e; u) :=

'i(N; e; u)¡ ei denotes the actual allotment change for agent i under ' at

hN; e; ui. If N is ¯xed, then we write '(e; u), 'i(e; u), 4'(e; u), 4'i(e; u)

instead of '(N; e; u), 'i(N; e; u), 4'(N; e; u) or 4'i(N; e; u) respectively.

We adopt analogous conventions for the endowment vector e and the pro¯le

of utility functions u.

An agent i is non-satiated under pre-rule Ã at problem hN; e; ui if bui 6=
Ãi(N; e; u).

A special rule is the uniform reallocation rule U r, introduced in [6]. For

a problem hN; e; ui it is de¯ned as follows,

U r
j (N; e; u) :=

8<
:

min fûj ; ej + ¸g if z(N; e; u) > 0 (excess demand)

ûj if z(N; e; u) = 0 (balancedness)

max fûj ; ej ¡ ¸g if z(N; e; u) < 0 (excess supply)

for every j 2 N , where ¸ ¸ 0 solves
P

i2N U r
i (N; e; u) =

P
i2N ei.

So, if there is excess demand, then all suppliers and non-traders get their

peaks. Demanders either receive their peaks or get maximal equal allotment

change ¸. In excess supply all non-satiated agents get minimal allotment

change ¡¸. Hence, agents are either satiated or receive the same (maximal

or minimal) allotment change. In fact, combined with Pareto optimality

this exactly determines the uniform reallocation rule:

Lemma 2.1. The uniform reallocation rule is the only rule Ã such that,

for every problem hN; e; ui non-satiated agents

(a) obtain maximal allotment change maxf¢Ãi(N; e; u) j i 2 Ng if the prob-

lem is of excess demand,
(b) obtain minimal allotment change minf¢Ãi(N; e; u) j i 2 Ng if the prob-

lem is of excess supply,

(c) do not exist, if the problem is balanced, i.e., all agents get their peaks.

Proof. By de¯nition, the uniform reallocation rule is same-sided and there-

fore Pareto optimal. Hence, the uniform reallocation rule is actually a rule.

Also by de¯nition, U r satis¯es (a), (b), and (c). Suppose ' is a rule sat-

isfying (a), (b), and (c), and let hN; e; ui be a problem. We prove that

'(N; e; u) = U r(N; e; u). If the problem is balanced then this is obvious, so

we suppose that the problem has excess demand (the excess supply case is

analogous). Hence, z(N; e; u) > 0:

If ei > 'i(N; e; u) for some i 2 N , then by feasibility there is a j 2 N

such that ej < 'j(N; e; u). Hence ¢'i(N; e; u) is not maximal, so by (a) it

follows that in that case 'i(N; e; u) = bui.
So, if i is not satiated, then ¢'i(N; e; u) ¸ 0. Because of same-sidedness

we have bui ¸ 'i(N; e; u) for every i 2 N .

For suppliers i, where ei > bui, this means that bui = 'i(N; e; u).
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For non-traders i, where ei = bui, this also means that bui = 'i(N; e; u).

So, only demanders can be non-satiated, in which case they obtain max-

imal allotment change. Because of same-sidedness, it follows that non-
satiated demanders obtain less than their peaks. But then it follows that

'(N; e; u) = U r(N; e; u).

3. Peaks-only rules

In this section we focus on rules which base the outcomes on the peaks in-

stead of the complete utility functions. The uniform reallocation rule is such

a rule. Moreover, it will appear to be the only rule which satis¯es this condi-

tion and at which no agent envies another one. Furthermore, a monotonic-

ity condition is discussed. It is shown that this condition and envy-freeness

imply the peaks-onliness condition. Because the uniform reallocation rule

satis¯es this condition, this implication yields a second characterization of

this rule.

Let ' be a pre-rule. Then ' is said to be peaks-only if for all problems

hN; e; ui and hN 0; e0; u0i, with N = N 0, e = e0 and û = û0,

'(N; e; u) = '(N 0; e0; u0):

So, a rule ' is peaks-only if, and only if, the outcomes only depend on

the peaks of the utility functions and not on the whole functions. As a

manner of speaking, peaks-only rules ignore intensities. Nevertheless, many

well-known rules are peaks-only. The uniform rule, the proportional rule,

equal division and hierarchical rules, rules which are discussed in Section 7,

are peaks-only. It is evident that by its de¯nition the uniform reallocation

rule is also peaks-only. Clearly, if a rule takes intensities into account, then

it is apt to be vulnerable to strategic behavior and more di±cult to apply.

The pre-rule ' is said to be envy-free if for all problems hN; e; ui and all

individuals i; j 2 N with ¢'j(N; e; u) + ei ¸ 0,

ui(¢'j(N; e; u) + ei) · ui('i(N; e; u)):

So, i envies j if i prefers j's allotment change, added to his endowment, to

his own allotment|provided the former is feasible. The uniform reallocation

rule is envy-free. For instance, in case of excess demand, only demanders

can be non-satiated and, if so, they obtain the same, maximal allotment
change.

The well-known property of envy-freeness was introduced by Foley [5]

for resource allocation problems. Envy-freeness for division problems with

single-peaked preferences was ¯rst used by Sprumont in his axiomatic anal-

ysis of the uniform rule, [7].

The following theorem characterizes the uniform reallocation rule as the

only rule which is envy-free and peaks-only.1 The main idea of the proof

1Here as well as elsewhere in the paper, the expression \characterization" implies the

logical independence of the characterizing axioms. For all characterizations appearing
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is that, because of these two properties, allotment changes for non-satiated

agents are maximal or minimal, depending on whether the problem is in

excess demand or in excess supply. As this typically describes the uniform
reallocation rule, we are done.

The theorem and its proof are similar to Lemma 3 and its proof in Thom-

son [10], which treats the case of total endowment instead of initial endow-

ments.

Theorem 3.1. The uniform reallocation rule is the only envy-free and peaks-

only rule.

Proof. Clearly, the uniform reallocation rule is an envy-free and peaks-only

rule. In order to prove that it is the only one let ' be an envy-free and

peaks-only rule. Let hN; e; ui be a problem. We prove that '(N; e; u) =

U r(N; e; u). By Pareto optimality, it follows immediately that '(N; e; u) =

U r(N; e; u) = û if z(N; e; u) = 0 (balancedness). Without loss of gener-

ality suppose that z(N; e; u) > 0 (excess demand). By Lemma 2.1 it is

su±cient to prove that non-satiated agents get maximal allotment changes

at '. Let i 2 N be a non-satiated agent at '(N; e; u). Hence, by same-

sidedness, 'i(N; e; u) < ûi. Consider the allotment change 4'j(N; e; u)

of an arbitrary agent j. As there is a utility pro¯le v 2 UN , such that

v̂ = û and vi (x) > vi('i(N; e; u)) for all x > 'i(N; e; u), it follows by envy-

freeness and peaks-onliness that 4'j(N; e; u) + ei · 'i(N; e; u). Hence,

4'j(N; e; u) · 4'i(N; e; u).

The following characterization of the uniform reallocation rule involves

population monotonicity. Loosely speaking, a rule is population monotonic

if merging two disjoint problems either both of excess demand or both of

excess supply, makes in one subgroup either all agents weakly better o® or

all agents weakly worse o®. So, if we add a demander to a problem hN; e; ui

with excess demand, yielding problem hN 0; e0; u0i, then either all agents in

N weakly prefer the outcome at hN; e; ui to that at hN 0; e0; u0i or all agents

in N prefer it the other way around.

A pre-rule ' is said to be population monotonic, if for all problems hN; e; ui

and hN 0; e0; u0i, such that z(N; e; u) ¢ z(N 0; e0; u0) > 0 and N \N 0 = ;,

either ui('i(N; e; u)) ¸ ui('i(N [N 0; he; e0i; hu; u0i)) for all i 2 N

or ui('i(N; e; u)) · ui('i(N [N 0; he; e0i; hu; u0i)) for all i 2 N:

Here he; e0i is the vector x in IRN[N 0

+
such that xi = ei for all i 2 N and

xi = e0i for all i 2 N 0. The pro¯le hu; u0i 2 UN[N 0

has a similar meaning.

Note that z(N; e; u) ¢ z(N 0; e0; u0) > 0 if, and only if, both problems have

in this paper, however, the proof of logical independence of the axioms is postponed to

Section 7.
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excess demand or both problems have excess supply.

The uniform reallocation rule is population monotonic. To see this, let

hN; e; ui and hN 0; e0; u0i be two problems with excess demand. Let ¸, ¸0

and ¹ be the maximal allotment changes of U r in the problems hN; e; ui,

hN 0; e0; u0i and hN [N 0; he; e0i; hu; u0ii respectively. Let i; j 2 N . Suppose i

is strictly better o® at hN; e; ui than at hN [N 0; he; e0i; hu; u0ii. Suppose for

j the converse holds. Then i and j must be demanders. Hence, the agents

i and j are not satiated at problem hN [ N 0; he; e0i; hu; u0ii and hN; e; ui

respectively. So,

¹ = 4'i(N [N 0; he; e0i; hu; u0i) <4'i(N; e; u) · ¸ and

¸ = 4'j(N; e; u) <4'j(N [N 0; he; e0i; hu; u0i) · ¹.

Because this cannot be true, all agents in N are either weakly better o®

in hN; e; ui than in hN [N 0; he; e0i; hu; u0i, or all are weakly worse o®. The

proof for problems with excess supply is similar.

Hence, the uniform reallocation rule is population monotonic. Moreover,

the following theorem shows that envy-freeness and population monotonicity

characterize the uniform reallocation rule.

Theorem 3.2. The uniform reallocation rule is the only envy-free and pop-

ulation monotonic rule.

Proof. In order to prove that U r is the only envy-free and population mono-

tonic rule suppose ' is such a rule. It is su±cient to prove that ' is peaks-

only. Let hN; e; ui be a problem and v 2 UN such that û = v̂. With-

out loss of generality let N = f1; 2; : : : ; ng and suppose z(N; e; u) > 0.

Consider N 0 = fn+ 1; : : : ; 2ng. Take e0 2 IRN 0

such that e0i+n = ei for

all i 2 N . Let u0 2 UN 0

be such that u0i+n = vi for all i 2 N . It

is su±cient to show that 'i(N; e; u) = 'i+n(N
0; e0; u0), because this also

implies 'i(N; e; v) = 'i+n(N
0; e0; u0). Clearly, z(N 0; e0; u0) > 0. Consider

hN [N 0; he; e0i; hu; u0ii. Then z(N [N 0; he; e0i; hu; u0i) > 0. Envy-freeness

and same-sidedness imply for all i 2 N ,

'i(N [N 0; he; e0i; hu; u0i) = 'i+n(N [N 0; he; e0i; hu; u0i) · ûi = û0i+n.

Population monotonicity, same-sidedness and feasibility imply for all i 2 N ,

'i(N [N 0; he; e0i; hu; u0i) = 'i(N; e; u).

Similarly for all i 2 N 0 it follows that

'i(N [N 0; he; e0i; hu; u0i) = 'i(N
0; e0; u0).

Hence, for i 2 N , 'i(N; e; u) = 'i+n(N
0; e0; u0).
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4. Monotonicity

This section provides a characterization of the uniform reallocation rule

which is based on an endowment monotonicity property. Endowment mono-

tonicity means that if, in case of excess demand, the individual endowments

decrease (or increase in case of excess supply), then no individual is better

o® after the change. The characterization says that the uniform reallocation

rule is the only rule which is endowment monotonic and envy-free.

The stages of the proof of this characterization are as follows. First it is

shown that endowment monotonicity and Pareto optimality imply coordi-

natewise continuity. Then another preliminary result is obtained. It says

that endowment monotonic and envy-free rules have the dummy property.

This latter condition means that non-traders are left on their endowments,

hence receive zero allotment change. Next we show that endowment mono-

tonic rules which satisfy the dummy property, assign allotments somewhere

between the individual endowments and peaks. With these results the char-

acterization follows easily.

Let ' be a rule. Because the properties, dealt with in this section, leave

the group size and utilities unchanged, we ¯x the set of agents at N and

the pro¯le of utility functions at u. Moreover, a problem hN; e; ui is now

denoted by e. Let x and y be two vectors in IRN
+
. Then x ¸ y means that

xi ¸ yi for all i 2 N .

We say that the pre-rule ' is endowment monotonic or monotonic, if for

all problems e and e0 such that e · e0,

if z(e0) ¸ 0, then ui('i(e)) · ui('i(e
0)) for all i 2 N , and(1)

if z(e) · 0, then ui('i(e
0)) · ui('i(e)) for all i 2 N .(2)

In [10], Thomson introduced endowment monotonicity properties for di-

vision problems. His one-sided resource-monotonicity corresponds to our
monotonicity property.

Under same-sidedness monotonicity is equivalent to 'i(e) · 'i(e
0) for all

i 2 N and all e · e0 in IRN
+ such that z(e0) ¸ 0 or z(e) · 0. By this it

follows easily that U r is monotonic.

For all e 2 IRN
+ , ® 2 IR+ and i 2 N , let e(®; i) denote a vector of

endowments such that e(®; i)k = ek if k 2 N ¡ fig and e(®; i)i = ®. So,

e(®; i) is a unilateral change of e by agent i. Furthermore, ® denotes i's

endowment in that change.

The pre-rule ' is said to be coordinatewise continuous if for all i 2 N and

all e 2 IRN
+ the function ® 7¡! 'i(e(®; i)) is continuous.

The following lemma says that monotonic rules are coordinatewise contin-

uous. A similar result for allocation problems, without initial endowments,

can be found in Thomson [10] (in the proof of Theorem 2).
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Lemma 4.1. Let ' be a monotonic rule. Then ' is coordinatewise contin-

uous.

Proof. Let ®1; ®2; : : : ; ®t; : : : be a sequence in IR+ converging to ® 2 IR+,

and let x := '(e(®; i)) and xt := '(e(®t; i)) for some ¯xed i 2 N and all

t 2 IN . We want to show that xt converges to x. Without loss of generality

suppose that ®1 < ®2 < ®3 < : : : < ®. We distinguish two cases.

Case 1: z(e(®; i)) ¸ 0:

Then z(e(®t; i)) > 0 for all t 2 IN . Hence, by same-sidedness, it follows

that x · û and xt · û for all t 2 IN . Now, by monotonicity, xt · x for all
t 2 IN and the sequence x1; x2; : : : ; xt; : : : is non-decreasing. By feasibility,

it follows that X
j2N

xtj =
X
j2N

e(®t; i)j and

X
j2N

xj =
X
j2N

e(®; i)j .

Because e(®t; i) converges to e(®; i), xt converges to x.

Case 2: z(e(®; i)) < 0:

Then there is a number t0 such that z(e(®t; i)) < 0 for all t ¸ t0. Without

loss of generality let t0 = 1. The proof proceeds similar to Case 1.

A pre-rule ' is said to have the dummy property, if for all non-traders j

at problem e the allotment change is zero, i.e., 'j(e) = ej .

Lemma 4.2. Let ' be a monotonic and envy-free rule. Then ' has the

dummy property.

Proof. Suppose at problem e, 'j(e) 6= ej for some non-trader j. This implies

that z(e) 6= 0 because otherwise, by Pareto optimality, every agent gets his

peak. We assume z(e) > 0, the other case is similar.

By same-sidedness 'j(e) < buj = ej . Furthermore, by monotonicity it is

without loss of generality (lower the endowments if necessary) to assume
that all agents, except agent j, have either maximal demand or zero as

initial endowment, i.e., for all i 2 N ¡ fjg, ei = max fûi ¡m; 0g, where

m := maxi 6=j fûi ¡ eig. Here, m > 0 because z(e) > 0. Let ® :=4'j(e) < 0

denote the allotment change of agent j. For 0 · " · ¡® we consider the

following endowment vector:

~e(")i :=

½
ei if i 6= j

'j (e) + " if i = j.

Hence, 'j(e) · ~e(")j · ej . Furthermore, denote the allotment changes at

~e(") by ®"i :=4'i(~e(")) for all i 2 N . By envy-freeness between j and agents

i 2 N ¡ fjg and monotonicity it follows that, for all i 6= j and 0 · " · ¡®:

~e(")j + ®"i > ûj or ~e(")j + ®"i · ~e(")j + ®"j = 'j(ee(")) · 'j(e).
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Because ûj ¡ ~e(")j = ¡® ¡ " this implies for all i 6= j:

®"i > ¡® ¡ " or ®"i · ®"j · 'j(e)¡ ee(")j < 0 for all 0 < " · ¡®.

(3)

Now we prove that ®"i ¸ 0 for all i 6= j and 0 < " · ¡®. Suppose, to the

contrary, that ®"i < 0 for some i 6= j and 0 < " · ¡®. Then ee(")i = ei > 0.

So bui ¡ ei = m ¸ buk ¡ ek for all k 6= j. So, because by same-sidednessbuk ¸ ®"
k
+ ee(")k = ®"

k
+ ek, it follows that bui ¸ ®"

k
+ ee(")i for all k 6= j.

Because i does not envy k, we must have ®"
k
· ®"i < 0 for all k 6= j. Hence,

®"
k
< 0 for all k 2 N . This, however, contradicts feasibility. So, ®"

k
¸ 0 for

all k 6= j, and (3) implies:

®"i > ¡®¡ " for all i 6= j and all 0 < " · ¡®.(4)

By monotonicity we have for all 0 · " · ¿ · ¡® and all i 6= j:

®¿i ¸ ®"i .(5)

Now (5) and (4) together imply:

®"i ¸ ¡® for all i 6= j and all 0 < " · ¡®.(6)

By coordinatewise continuity (Lemma 4.1) (6) implies ®0i ¸ ¡®. This is

only possible if N = fi; jg, ®0i = ¡® and ®0j = ®. Hence, j envies i.

A pre-rule ' is bounded by endowments and peaks, if for all problems e

and all i 2 N

either ei · 'i(e) · ûi or ûi · 'i(e) · ei.

Boundedness by endowments and peaks implies the dummy property.

Furthermore, boundedness by endowments and peaks implies individual ra-

tionality, i.e., for all problems e and all i 2 N

ui(ei) · ui('i(e)).

The following lemma says that under monotonicity and same-sidedness

the dummy property is equivalent to boundedness by endowments and peaks.

Lemma 4.3. Let ' be a monotonic rule which has the dummy property.

Then ' is bounded by endowments and peaks.

Proof. Let e be a problem. Without loss of generality suppose z(e) > 0.

By same-sidedness, 'i(e) · ûi for all i 2 N . Suppose j 2 N , such that

'j(e) < ûj . It su±ces to prove that ej · 'j(e). Consider ¹e 2 IRN
+ , with

¹ei = ei for all i 2 D(e) and ¹ei = ûi for all i =2 D(e). By monotonicity,

'i(¹e) · 'i(e) for all i 2 N . By the dummy property, 'i(¹e) = ûi for all

i =2 D(¹e). Therefore j 2 D(e) = D(¹e). By monotonicity it is su±cient to

prove that ej = ¹ej · 'j(¹e). Suppose 'j(¹e) < ¹ej .
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Consider ~e 2 IRN
+ , such that ~ei = ¹ei for all i 2 N ¡ fjg and ~ej = ûj .

Because 'j(¹e) < ¹ej , it follows by same-sidedness and feasibility that D(¹e) 6=

fjg. Hence z(~e) > 0. Therefore by monotonicity we have

'i (¹e) · 'i(~e) for all i 2 N .

By feasibility this yields 'j (~e) · 'j(¹e) + ûj ¡ ¹ej < ûj = ~ej . This, however,
contradicts the dummy property. So, 'j(¹e) ¸ ¹ej .

Finally, we can prove the characterization of this section.

Theorem 4.4. The uniform reallocation rule is the only rule which is envy-

free and monotonic.

Proof. The uniform reallocation rule satis¯es both properties. In order to

prove that it is the only one let ' be a rule with these properties, and

consider problem e. Without loss of generality suppose z(e) > 0.

By same-sidedness and boundedness by endowments and peaks (Lem-

mas 4.2 and 4.3) it follows that 'i(e) = ûi for all i =2 D(e). By Lemma 2.1

it is su±cient to prove that non-satiated agents get maximal allotment

change. Let i; j 2 D(e), such that 'i (e) < ûi. Then we have to show

that 4'j(e) · 4'i(e).

Suppose 4'i(e) < 4'j(e). Because of envy-freeness, ei +4'j(e) > ûi.

Take k 2 S(e). Consider e(®; k), ® · ek and ® ¡! ûk. By coordinatewise

continuity, monotonicity and envy-freeness it follows that

e(®0; k)i +4'j(e(®
0; k)) > ûi, where ®

0 = ûk.

Note that k is a non-trader at problem e(®0; k). Hence, the set of suppliers

has been decreased by one. Repeating this process yields a problem, say ~e,

such that ~el = el for all l 2 D(e), ~ek = ûk for all k =2 D(e) and

~ei +4'j(~e) = ei +4'j(~e) > ûi.

In particular, we have 4'j(~e) > 0. But then either feasibility or bounded-

ness by endowments and peaks is violated.

Results on endowment monotonicity for allocation rules can be found

in Thomson [10]. There, a characterization of the uniform allocation rule

for a restricted class of single-peaked preferences2 by one-sided resource-

monotonicity and envy-freeness is derived. Theorem 4.4, which can be seen

as an extension of this result to the reallocation case, is based on a di®erent

proof technique, and holds for the whole domain of single-peaked prefer-

ences.

2The function r : IR+ ¡! IR+ [ f1g which assigns to each point either the corre-

sponding indi®erence point on the other side of the peak, and zero or in¯nity if such a

indi®erence point does not exists, has to be bounded.
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5. Consistency

In this section two characterizations of the uniform reallocation rule are

discussed. Consistency means that under the mechanism at hand subgroups

of agents do not redistribute their subtotal di®erently. So, if a group of

agents leaves with their allotments, then, loosely speaking, applying the
mechanism on the remaining agents yields the same outcome as before. Ac-

tually, our characterizations only involve bilateral consistency, which means

that only situations where two agents remain are considered. First we prove

that the uniform reallocation rule is the only rule which is bilateral consis-

tent and bounded by endowments and peaks. Then we show that replacing

the latter condition by the weaker individual rationality condition, yields a

second characterization of the uniform reallocation rule. Finally we show

that for problems with at least four agents, bilateral consistency and envy-

freeness determine the uniform reallocation rule.

A pre-rule ' is said to be bilaterally consistent, if for all problems hN; e; ui

and all agents i; j 2N , i 6= j,

'i

³
fi; jg; e(i; j); ujfi;jg

´
= 'i (N; e; u) .

Here, ujfi;jg = hu(i); u(j)i denotes the restriction of u to fi; jg and the

adjusted endowment vector e(i; j) 2 IR
fi;jg
+

is de¯ned as follows. Without

loss of generality suppose 4'i(N; e; u) · 4'j(N; e; u). Then,

e(i; j)j := max

½
0; ej +

1

2
(4'i(N; e; u) +4'j(N; e; u))

¾
and

e(i; j)i := ei + (4'i(N; e; u) +4'j(N; e; u))¡ (e(i; j)j ¡ ej) .

So, endowment adjustments are as close as possible3 to the mean allotment

changes of i and j. It is straightforward to prove that the adjusted endow-

ments e(i; j)j and e(i; j)i are non-negative. Furthermore, if 4'i(N; e; u) ¸

0, we obtain mean allotment changes

e(i; j)j := ej +
1

2
(4'i(N; e; u) +4'j(N; e; u)) and

e(i; j)i := ei +
1

2
(4'i(N; e; u) +4'j(N; e; u)) .

The bilateral consistency property for reallocation problems, is based on
Thomson's bilateral consistency for allocation problems, see [9]. There,

bilateral consistency is de¯ned with respect to the remaining total endow-

ment, which is left after the departure of all except two agents with their

allotments. Then, dividing the remaining (total) endowment among the two

agents, applying the same allocation rule, yields the same outcome as before.

3By just applying mean allotment changes negative endowments, which are not ad-

missable in this model, might occur.
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In the reallocation case, however, we ¯rst have to distribute the leftover

among the two agents to get a reduced reallocation problem. So, bilateral

consistency in this setting means that if two agents have to redivide their
allotments according to the same rule, then this redivision is equal to the

original outcome, provided that they start from adjusted endowments.

It is straightforward to prove that the uniform reallocation rule is bilat-

erally consistent.

The next theorem characterizes this rule as described before.

Theorem 5.1. The uniform reallocation rule is the only rule which is bi-

lateral consistent and bounded by endowments and peaks.

Proof. Let ' be such a rule and hN; e; ui a problem. It is su±cient to

prove that '(N; e; u) = U r(N; e; u). Without loss of generality suppose

z(N; e; u) > 0; the case of excess supply or balancedness is similar. By

boundedness by endowments and peaks and same-sidedness, 'i(N; e; u) = ûi
for all non-demanders i =2 D(N; e; u). Now, by Lemma 2.1, it is su±cient to

show that non-satiated demanders get maximal allotment changes. Let i; j 2

D(N; e; u) such that 'i(N; e; u) < ûi. We have to show that 4'i(N; e; u) ¸

4'j(N; e; u).

To the contrary, suppose

4'j(N; e; u) >4'i(N; e; u):(7)

Because of boundedness by endowments and peaks 4'i(N; e; u) ¸ 0. So,

e(i; j)j 6= 0. Consider problem
D
fi; jg ; e(i; j); ujfi;jg

E
. By bilateral consis-

tency,

'i
³
fi; jg ; e(i; j); ujfi;jg

´
= 'i(N; e; u):

Because e(i; j)i = ei +
1

2
(4'i(N; e; u) +4'j(N; e; u)) and (7) we have

'i(N; e; u) < e(i; j)i.

If e(i; j)i · ûi, then obviously boundedness by endowments and peaks is

violated. If e(i; j)i > ûi, then by boundedness by endowments and peaks

'i

³
fi; jg ; e(i; j); ujfi;jg

´
¸ ûi.

But as 'i
³
fi; jg ; e(i; j); ujfi;jg

´
= 'i(N; e; u) < ûi, this cannot be the case.

Hence, we have a contradiction and are done.

Note that Theorem 5.1 holds also if we ¯x N .

The following theorem shows that under Pareto optimality and bilateral

consistency the boundedness condition of the previous theorem and individ-

ual rationality are equivalent if there are at least three agents.

Theorem 5.2. For problems with at least three agents, the uniform reallo-

cation rule is the only individually rational and bilaterally consistent rule.
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Proof. Let ' be an individually rational and bilaterally consistent rule. It

is su±cient to prove that ' is bounded by endowments and peaks (Theo-

rem 5.1). Let hN; e; ui be a problem. Without loss of generality suppose
z(N; e; u) > 0; the excess supply or balancedness case is similar. By indi-

vidual rationality and same-sidedness,

ej · 'j(N; e; u) · ûj for all j =2 S(N; e; u).

Take a supplier i 2 S(N; e; u), then by same-sidedness 'i(N; e; u) · ûi. Now

suppose that 'i(N; e; u) < ûi. We deduce a contradiction and are done.

By feasibility and individual rationality there is a demander j 2 D(N; e; u)

such that

4'j(N; e; u) > 0.(8)

By bilateral consistency

'i(N; e; u) = 'i

³
fi; jg ; e(i; j); ujfi;jg

´
.(9)

It follows from (8) that e(i; j)i > 'i(N; e; u). So, by individual rationality,

(9), and bui > 'i(N; e; u),

e(i; j)i ¸ ûi > 'i(N; e; u):(10)

Let M = fi; j; lg, where l =2 fi; jg. Take ¹e 2 IRN
+ such that ¹ek = e(i; j)k

for k 2 fi; jg and ¹el = e(i; j)i. Take u
0 2 UM such that u0jfi;jg = ujfi;jg and

û0
l
= ¹el. So, the problem

D
fi; jg ; e(i; j); ujfi;jg

E
is enlarged with a non-trader

l and this yields hM; ¹e; u0i. By individual rationality 'l (M; ¹e; u0) = û0
l
= ¹el.

So, ¹e(i; j) = e(i; j). Because u0jfi;jg = ujfi;jg, by bilateral consistency and

(9),

'k
¡
M; ¹e; u0

¢
= 'k

³
fi; jg ; e(i; j); ujfi;jg

´
= 'k(N; e; u) for k 2 fi; jg .

Hence, by bilateral consistency we have for k 2 fi; lg

'k
¡
M; ¹e; u0

¢
= 'k

³
fi; lg ; ¹e(i; l); u0jfi;lg

´
.

Since 4'l (M; ¹e; u0) = 0 and because of the choice of ¹el and (10)

¹e(i; l)i = ¹ei +
1

2

¡
4'i

¡
M; ¹e; u0

¢
+4'l

¡
M; ¹e; u0

¢¢
= ¹ei +

1

2
4'i

¡
M; ¹e; u0

¢
= ¹ei +

1

2

¡
'i
¡
M; ¹e; u0

¢
¡ ¹ei

¢
=

1

2
e(i; j)i +

1

2
'i(N; e; u) > 'i(N; e; u).
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By individual rationality ¹e(i; l)i ¸ ûi > 'i(N; e; u). By adding non-traders

in this manner we obtain a sequence ¹et(i; lt) such that

¹et(i; lt)i ¸ ûi > 'i(N; e; u) and

¹et(i; lt)i =

µ
1

2

¶t
e(i; j)i +

tX
k=1

µ
1

2

¶k
'i(N; e; u)

=

µ
1

2

¶t
e(i; j)i +

Ã
1¡

µ
1

2

¶t!
'i(N; e; u) for all t 2 IN .

This obviously yields a contradiction.

The previous theorem holds if we ¯x N and if N has at least three agents.

For ¯xed N with two agents the theorem does not hold, because in that

situation bilateral consistency has no impact.

The last characterization in this section is obtained by extending a re-

sult of Dagan ([4], Lemma 2) to reallocation rules and applying bilateral

consistency and Theorem 3.1.

Theorem 5.3. For problems with at least four agents, the uniform realloca-

tion rule is the unique rule satisfying envy-freeness and bilateral consistency.

As already mentioned above, we use in the proof of Theorem 5.3 the

following extension of a result of Dagan ([4], Lemma 2) for allocation rules.

Lemma 5.4. Let there be at least four agents. If a rule is bilaterally con-

sistent and envy-free, then the rule satis¯es peaks-onliness for all two-person

problems.

The proof of Lemma 5.4 is similar to the proof of Dagan's result [4],

Lemma 2.

Proof. Let ' be a bilaterally consistent and envy-free rule and consider the

two-person problem hN; e; ui, N = fi; jg. To show peaks-onliness we have

to prove that for utility functions u; u0 with û = û0 it holds that

'(N; e; u) = '(N; e; u0):

Because there are at least four agents, we can consider the problem

hN 0; e; u0i, N 0 = fk; lg such that N \N 0 = ; and ûi = û0
k
, ûj = û0

l
. Merging

the two problems yields (N [N 0; he; ei ; hu; u0i). By Pareto optimality

'm
¡
N [N 0; he; ei ;

­
u; u0

®¢
·

­
u; u0

®
for all m 2 N [N 0 or

'm
¡
N [N 0; he; ei ; hu; u0i

¢
¸

­
u; u0

®
, for all m 2 N [N 0.

Then, by envy-freeness

'i
¡
N [N 0; he; ei ; hu; u0i

¢
= 'k

¡
N [N 0; he; ei ; hu; u0i

¢
and(11)

'j
¡
N [N 0; he; ei ; hu; u0i

¢
= 'l

¡
N [N 0; he; ei ; hu; u0i

¢
.
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By applying bilateral consistency onN andN 0 as remaining agents we obtain

'm (N; e; u) = 'm
¡
N [N 0; he; ei ; hu; u0i

¢
, m 2 N , and(12)

'n
¡
N 0; e; u0

¢
= 'n

¡
N [N 0; he; ei ; hu; u0i

¢
, n 2 N 0.

Equation (11) together with (12) yields

' (N; e; u) = '
¡
N 0; e; u0

¢
.(13)

Now, by applying a similar argument as above to the problems hN 0; e; u0i

and hN; e; u0i it follows that

'(N 0; e; u0) = '(N; e; u0):(14)

Hence, ((13) and (14)) the lemma is proven.

Proof of Theorem 5.3. Let ' be a bilaterally consistent and envy-free rule.

Then, bilateral consistency together with Lemma 5.4 implies peaks-onliness

for problems with an arbitrary number of agents n ¸ 4. Then, by Theo-

rem 3.1 the rule ' equals the uniform reallocation rule for problems with at

least four agents.

In Thomson [9] and Dagan [4] results similar to those described in The-

orem 5.2 and Theorem 5.3 are given for allocation rules. Thomson includes

a continuity condition in his characterizations ([9], Theorem 1, Theorem 2),

besides bilateral consistency, individual rationality from equal division or

envy-freeness respectively. Dagan proves that the results of Thomson remain

true without continuity for allocation problems with at least four agents ([4],

Theorem 2, Theorem 3). Now, \translating" the steps of the proofs4 in Da-

gans characterizations into the reallocation setting is almost su±cient to

get alternative proofs of Theorem 5.2 and Theorem 5.3. The argument of

converse consistency (see [4], Lemma 4), which completes the proofs of the

characterizations, however, has no equivalent in the reallocation setting. By

assuming that a rule, satisfying the characterizing properties, does not equal

the uniform reallocation rule, and using bilateral consistency, a contradic-

tion, which completes the alternative proofs, is easily derived.

6. Strategy-Proofness

In this section we discuss characterizations of the uniform reallocation

rule in which endowment strategy-proofness plays a prominent role. This

condition makes sense in those situations where the initial endowments are

private information and the preferences are known. It guarantees, so to

speak, that withholding some of the endowment by an agent is not pro¯table

for that agent, whatever the other agents do. So, truth-telling is a weakly

dominant strategy. If agents were also allowed to o®er more than their

actually possession, then feasibility could cause that some agents obtain a
negative allocation. Because our model does not allow such assignments,

4[4], Lemmas 2, 3, 5 and 6 can be proved in their \reallocation version ".
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supplies are considered to be real amounts handed out to the mechanism.

Then, demands can be faked only by withholding endowment.

A pre-rule ' is said to be (endowment) strategy-proof, if for all problems

hN; e; ui, all agents i 2 N and all e0 2 IRN
+ , with e0j = ej for all j 2 N ¡ fig

and e0i · ei,

ui ('i (N; e; u)) ¸ ui
¡
ei +¢'i(N; e

0; u)
¢
.

If i acts strategically and pretends to have e0i instead of ei, then the rule

' assigns 'i(N; e
0; u) to i. But, as endowments are private information, '

can better be interpreted as a reallocation which assigns allotment changes.

So, i's actual allotment in that situation is ei +4'i (N; e
0; u). Therefore,

strategy-proofness is de¯ned in this way. It means that i cannot envy himself

in a situation of withholding endowment.

The following Lemma shows that if a rule is strategy-proof, then withhold-

ing endowment by non-satiated agents yields a smaller allotment change, in

case of excess demand, and a greater allotment change, in case of excess

supply.

Lemma 6.1. Let ' be a strategy-proof rule. Let hN; e; ui be a problem and

i 2 N such that 'i (N; e; u) 6= ûi. Let e0 2 IRN
+

such that ej = e0
j
for all

j 2 N ¡ fig and ei ¸ e0i. Then:

If z(N; e0; u) · 0, then ¢'i (N; e
0; u) ¸ ¢'i(N; e; u), and

if z(N; e; u) > 0, then ¢'i (N; e
0; u) · ¢'i(N; e; u).

Proof. Suppose z(N; e0; u) · 0. Then 'i (N; e; u) > ûi by same-sidedness.

Let f := min fx 2 IR+ j ui(x) ¸ ui('i (N; e; u))g. Obviously, f < ûi. By
strategy-proofness it follows that 'i (N; e

0; u)¡ e0
i
+ ei · f or 'i (N; e

0; u)¡

e0
i
+ ei ¸ 'i (N; e; u). Because ei ¸ e0

i
and f < ûi · 'i (N; e

0; u) by same-

sidedness, the former cannot be true. The latter implies the desired result.

Suppose z(N; e; u) > 0. Then 'i (N; e; u) < ûi by same-sidedness. Let

f := sup fx 2 IR+ j ui(x) ¸ ui('i (N; e; u))g. Obviously, f > ûi. Suppose

ei ¡ e0i < f ¡ ûi. By strategy-proofness 'i (N; e
0; u) ¡ e0i + ei · 'i (N; e; u)

or 'i (N; e
0; u)¡ e0

i
+ ei ¸ f . Because ei¡ e0

i
< f ¡ ûi · f ¡'i (N; e

0; u), by

same-sidedness, it follows that the latter cannot be the case. The ¯rst yields

the desired result. In case of ei ¡ e0
i
¸ f ¡ ûi, we shift ei stepwise (with the

size of the steps small enough) to e0i and apply the same argument as above

in each step.

We have the following consequence of the previous lemma.

Corollary 6.2. Let ' be a strategy-proof rule. Let hN; e; ui be a problem

with excess demand. Then,

ei · 'i (N; e; u) · ûi for all i 2 D(N; e; u), and

'j (N; e; u) = ûj for all j =2 D(N; e; u).
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Proof. By same-sidedness, 'k (N; e; u) · ûk for all k 2 N . For all k 2 N let

e(k) 2 IRN
+
such that e(k)l = el for all l 2 N ¡fkg and e(k)k = 0. Take k 2

N . Suppose 'k (N; e; u) < ûk. Then 4'k (N; e(k); u) · 4'k (N; e; u) by

Lemma 6.1. Because 'k (N; e(k); u) ¸ 0, it follows that 4'k (N; e(k); u) ¸

0. So, 4'k (N; e; u) ¸ 0. Therefore ek · 'k (N; e; u). So, k 2 D(N; e; u).

This completes the proof.

A similar result cannot be obtained for the excess supply case, even if

there were an upper bound for the endowments. (For instance, if there are

¯nite resources.) This is due to the asymmetry in the de¯nition, caused by

the requirement of e0i · ei. Therefore, strategy-proofness as de¯ned here,

has not such a great impact on the solution as one would expect. The

following theorem characterizes the uniform reallocation rule as the only

strategy-proof and bilaterally consistent rule which has the dummy property.

Recalling Theorem 5.2, Theorem 6.3 implies that, if there are at least three

agents, under bilateral consistency and Pareto optimality, strategy-proofness

together with the dummy property is equivalent to individual rationality.

Theorem 6.3. The uniform reallocation rule is the only rule which is bi-

laterally consistent, strategy-proof, and has the dummy property.

Proof. In order to prove that U r is the only rule with these properties, let

' be such a rule. Let hN; e; ui be a problem. If there is excess demand

we are done by Corollary 6.2 and Theorem 5.1. For z(N; e; u) = 0, Pareto
optimality implies '(N; e; u) = U r(N; e; u). Therefore suppose z(N; e; u) <

0. We prove that ' is bounded by endowments and peaks at hN; e; ui. Then

in view of Theorem 5.1 we are done.

By same-sidedness for all k 2 N ,

'k(N; e; u) ¸ ûk.

Let j 2 S(N; e; u). Consider e0 2 IRN
+ such that e0

k
= ek for all k 2 N ¡ fjg

and e0j = max fûj ; ej ¡ s(N; e; u) + d(N; e; u)g. So, at hN; e0; ui agent j is

either a non-trader or at e0 demand equals supply. Therefore, 'j(N; e
0; u) =

ûj . So, 4'j(N; e
0; u) · 0. By Lemma 6.1 we have

4'j(N; e; u) · 4'j(N; e
0; u) · 0:

So, ej ¸ 'j(N; e; u) ¸ ûj .

Let j 2 D(N; e; u). It is su±cient to prove that 'j(N; e; u) · ûj . Suppose,

to the contrary, that 'j(N; e; u) > ûj . Then, by feasibility, there is a supplier

i. So, 4'i(N; e; u) · 0 by the previous step of the proof. By bilateral

consistency

'j

³
fi; jg ; e(i; j); ujfi;jg

´
= 'j(N; e; u).

Because4'i(N; e; u) · 0, e(i; j)j < 'j(N; e; u). Above, we proved that sup-

pliers obtain an allotment change between their peak and their endowment.

Therefore, at
D
fi; jg ; e(i; j); ujfi;jg

E
j cannot be a supplier. So, e(i; j)j · ûj .

Now, similarly as in the proof of Theorem 5.2, by introducing a sequence
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of non-traders l1; l2; : : : ; lt; : : : we obtain a sequence of endowments e(i; lt)j
converging to 'j(fj; ltg ; e(j; lt); ujfj;ltg) = 'j(N; e; u) > ûj , where j cannot

be a supplier at
D
fj; ltg ; e(j; lt); ujfj;ltg

E
. This cannot be the case.

In the second and last characterization of this section the condition of

reversibility is needed.

A pre-rule ' is said to be reversible if for all problems hN; e; ui and

hN; e0; u0i, such that ei ¡ ûi = ¡(e0
i
¡ ûi) for all i 2 N ,

¢'i (N; e; u) = ¡¢'i
¡
N; e0; u0

¢
for all i 2 N .

So, if all agents demand at hN; e; ui as much as they supply at hN; e0; u0i,

then their allotment change at hN; e0; u0i is the reversal of that at hN; e; ui.

Clearly, by applying reversibility two times we obtain that a solution only

depends on the demands and the supplies. That is, if ' is a reversible rule

and hN; e; ui and hN; e0; u0i are two problems such that ei ¡ ûi = e0i ¡ û0i for

all i 2 N , then

¢'i (N; e; u) = ¢'i
¡
N; e0; u0

¢
for all i 2 N .

In particular, this means that reversibility implies peaks-onliness.

Furthermore, we need an equal-treatment condition in the following the-

orem.

A pre-rule ' is said to be equally-treating if for all problems hN; e; ui and

all i; j 2 N , such that ei ¡ ûi = ej ¡ ûj ,

¢'i (N; e; u) = ¢'j (N; e; u) .

The equal-treatment condition we introduce here is stronger than the

equal-treatment condition introduced in Klaus, Peters and Storcken [6] for

reallocation rules.

By de¯nition the uniform reallocation rule satis¯es reversibility and equal-

treatment. The following theorem says that it is the only such rule which

in addition is strategy-proof.

Theorem 6.4. The uniform reallocation rule is the only reversible, equally-

treating and strategy-proof rule.

Proof. Let ' be such a rule. By reversibility it is su±cient to consider

only problems with excess demand. Let hN; e; ui be a problem such that

z(N; e; u) > 0. We prove that '(N; e; u) = U r(N; e; u).

Because ' only depends on demands and supplies it is without loss of

generality to suppose that ûi = ûj for all i; j 2 N and 2ûi ¡ e ¸ 0 for all

i 2 N .

Without loss of generality suppose D(N; e; u) = f1; 2; : : : ;mg =: M .

Consider e 2 IRN
+ such that ek · ûk for all k 2 M , and ek = ek for all



22 B. KLAUS, H. PETERS, AND T. STORCKEN

k 2N ¡M . Let ¸(e) = jfk 2M j ek 6= 0gj. Let O(e) = fk 2M j ek = 0g.

By induction on t we prove that for all such e with ¸(e) · t,

'(N; e; u) = U r(N; e; u).(15)

Clearly, this is su±cient.

Because N and u are ¯xed, we suppress these symbols from notation in

the rest of this proof.

By Corollary 6.2

'j(e) = ûj = U r
j (e) for all j =2M .(16)

Basis: ¸(e) = 0

Then equal-treatment and (16) yield (15).

Induction step: Let ¸(e) = t+ 1.

Suppose (15) does not hold. Then, by (16), there is a demander, say i,

such that 'i(e) 6= U r(e). We deduce a contradiction.

By equal-treatment, U r
k
(e) = U r

l
(e) and 'k(e) = 'l(e) for all k; l 2 O(e).

Therefore, by feasibility, it is without loss of generality to suppose that

i =2 O(e). Now there are two cases; both yield a contradiction.

Case 1: 'i(e) < U r
i (e).

Hence, 'i(e) < ûi. Let e
0 2 IRN

+
such that e0

k
= ek for all k 2 N ¡fig and

e0i = 0. By Lemma 6.1, 4'i(e
0) · 4'i(e). Because 4U

r
i (e

0) ¸ 4U r
i (e), it

follows by our induction hypothesis that

¢U r
i (e) = U r

i (e)¡ ei · U r
i

¡
e0
¢
= 'i(e

0) · 'i(e)¡ ei =4'i(e);

contradicting our starting point.

Case 2: 'i(e) > U r
i (e).

Let e0 be as in Case 1. Then, U r
i (e) < ûi. Hence, in this case 4U r

i (e
0) =

4U r
i (e). Now, it is su±cient to prove that

4'i(e
0) ¸ 4'i(e),(17)

because then, similarly to Case 1, a contradiction is easily deduced. Let

e; e0 2 IRN
+ such that

ûk ¡ ek = ¡ (ûk ¡ ek) forall k 2 N

and

ûk ¡ ¹e0k = ¡
¡
ûk ¡ e0k

¢
forall k 2 N:

Then, by reversibility, we have

4'i(e) = ¡4'i(e) and(18)

4'i(e
0) = ¡4'i(e

0).(19)

If 'i(e
0) = ûi, then 'i(e

0) = ûi and clearly 4'i(e
0) ¸ 4'i(e). If 'i(e

0) 6= ûi,

then by Lemma 6.1

4'i(e
0) · 4'i(e).

Therefore by (18) and (19) we obtain (17).
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7. Overview, Sensitivity Analysis, and Independence of the

Conditions

In the preceding sections eight characterizations of the uniform realloca-

tion rule were presented. To illustrate the relation between these results,

we start this section with a schematic overview of these results. Combin-

ing some of the results immediately yields an ninth characterization (The-

orem 7.1) by means of bilateral consistency, monotonicity and the dummy

property.

Next, we discuss the sensitivity of the results with respect to variations

of the model assumptions.

Finally, independence of the conditions in the characterizations is demon-

strated.

Overview of the Results

The following diagram illustrates the logical connections between the re-

sults of the foregoing sections.

In the sequel we use the following abbreviations.

PO Pareto optimality

PSO peaks-onliness

EF envy-freeness

PM population monotonicity

EM (endowment) monotonicity

DP dummy property

BEP boundedness by endowments and peaks

BC bilateral consistency

IR individual rationality

SP strategy-proofness

RE reversibility

ET equal-treatment

Figure 1 enters here.

Theorem 7.1 (which is added to the diagram) is directly implied by

Lemma 4.3 and Theorem 5.1.

Theorem 7.1. The uniform reallocation rule is the only monotonic rule

satisfying bilateral consistency and the dummy property.

Sensitivity Analysis

The table below indicates the e®ect of four di®erent model variations on

the obtained results. The entries in the cells indicate whether the results

remain true. The details are discussed below.

Table 1 enters here.



24 B. KLAUS, H. PETERS, AND T. STORCKEN

(1) In the model presented here, initial endowments and allotments were

restricted to non-negative numbers. In other settings one might allow

agents to be in debt. In that case, negative endowments and, as a
consequence, negative allotments are admitted. Most of the results

remain true with little changes in the proofs. In case of bilateral

consistency, mean leftover changes for the remaining agents are no

longer subject to a non-negativity restriction. The same holds for

envy-freeness. This does not a®ect the proofs. However, the proof of

Corollary 6.2 is not valid any more. It is an open question whether

Corollary 6.2 or Theorem 6.3 hold in this setting. For Theorem 6.4

there is an alternative proof which is not presented here because of

space limitations.

(2) If we suppose that the endowments and the peaks are not only non-

negative but also bounded from above, all results except Theorem 6.4

remain valid. Of course, envy-freeness and bilateral consistency must

be adapted to this new situation similarly as in the original model, to

guarantee that the (adjusted) endowments, which are used in these

conditions, are well-de¯ned. In the proof of Theorem 6.4 we cannot

apply reversibility because the reversed problems are not necessarily

well-de¯ned in this setting.

(3) Up to now, we assumed that the set of potential agents is in¯nite. This

assumption is crucial for the proof of Theorem 3.2 where we duplicate

the number of agents to exploit population monotonicity. It is an

open problem whether the characterization of Theorem 3.2 holds for

a ¯nite set of potential agents. All other results remain true because

the proofs of these theorems apply to a ¯xed number of agents.

(4) The last model variation we consider concerns the domain of the pref-

erences. We have assumed throughout that the preferences of the

agents are single-peaked and continuous. In fact continuity is only

needed to prove Lemma 6.1. Whether the characterizations based on

this lemma, Theorem 6.3 and Theorem 6.4, hold true for the whole
class of single-peaked preferences is not yet clear. All other results

remain valid.

Independence of the Characterizing Conditions

The logical independence of the characterizing conditions in all theorems

discussed in the previous sections and earlier in this section is proven by

means of eight reallocation (pre-)rules. These (pre-)rules are de¯ned below.

The endowment pre-rule 'e assigns to every individual at every problem

hN; e; ui the initial endowment:

'e(N; e; u) := e:

In case of excess demand (supply), the hierarchical rule 'h satiates all sup-

pliers (demanders) and the demanders (suppliers) according to their number.
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So in case of z(N; e; u) ¸ 0,

'hi (N; e; u) := ûi

if i =2 D(N; e; u) and

'hi (N; e; u) := minfûi; ei + s(N; e; u)¡
X

j2D(N;e;u);j<i

4'hj (N; e; u)g

otherwise. In case of z(N; e; u) · 0, 'h is de¯ned similarly.

The following maximally satiating rule 'max satiates as many agents as

possible. Let z(N; e; u) > 0 andD(N; e; u) = f1; 2; : : : ; dkg. Let d1(N; e; u) =

: : : = dt1(N; e; u) < dt1+1(N; e; u) = : : : = dt2(N; e; u) < : : : < dtr (N; e; u) =

: : : = dk(N; e; u). Then,

'maxi (N; e; u) := ûi

if i =2 D(N; e; u) and

'maxi (N; e; u) := minfûi; ei +
1

ts ¡ ts¡1
(s(N; e; u)¡

X
j·ts¡1

4'j(N; e; u))g

if i 2 D(N; e; u); ts¡1 < i · ts. Hence, demanders are satiated according to

their claims. First minimal demands are satiated uniformly. If there is some

supply left, then the next smallest demands are satiated, and so on:

In case of z(N; e; u) < 0, 'max is de¯ned similarly.

The following rule is a variation of 'max.

¹'max(N; e; u) :=

½
'max(N; e; u) if z(N; e; u) > 0 and

U r(N; e; u) if z(N; e; u) · 0:

The rule '0 is equal to the uniform reallocation rule except for those

problems hN; e; ui where all peaks are zero. In that case all agents except

agent n, where N = f1; : : : ; ng, are satiated and feasibility of the allocation

is adjusted on the account of n. So, if û 6= 0 (the zero vector), then

'0(N; e; u) := U r(N; e; u).

If û = 0, then

'
0

i
(N; e; u) :=

½
0 for i < n and

s(N; e; u) for i = n.

The following rule ¹'0 is a variation of '0. Instead of adjusting feasibility

on the account of n this is done on the account of the highest numbered

supplier. So, if û 6= 0, then

¹'0(N; e; u) := U r(N; e; u)

For û = 0 let k := max fi j i 2 S(N; e; u)g. Then,

¹'
0

i (N; e; u) :=

½
0 for all i 2 N ¡ fkg and

s(N; e; u) for i = k.
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The following rule ~' is a rule which is not peaks-only. Let hN; e0; u0i be

a problem with e0 =
D
5

2
; 0; : : : ; 0

E
, û0i = 0 for i > 2 and u01 = u02 such that

u0
1(x) = ¡

¯̄̄
3

2
¡ x

¯̄̄
for x 2 [0;1). Then, ~' is de¯ned by

~'(N; e; u) :=

(
U r(N; e; u). if hN; e; ui 6= hN; e0; u0i andD
1; 3

2
; 0; : : : ; 0

E
otherwise.

Finally the rule '̂ satiates all agents as much as possible except those with

the greatest demand (supply) in case of excess demand (supply). Feasibility

is adjusted on their account. If z(N; e; u) > 0, then

'̂i(N; e; u) :=

8<
:

ûi if i =2 D(N; e; u) and

minfûi; ei + °g if i 2 D(N; e; u)¡G and

ei ¡ ¸ if i 2 G,

where G = argmaxi2D(N;e;u) di(N; e; u) and ° and ¸ are determined by fea-

sibility and the range restriction ei ¡ ¸ ¸ 0 (i 2 G) such that ° is maximal

and ¡¸ is minimal.

In case of z(N; e; u) · 0, '̂ is de¯ned similarly.

The following table shows which of the previous pre-rules satis¯es which

of the characterizing conditions. The last nine rows of this table indicate for

each characterization and each (pre-)rule which condition is not satis¯ed by

the (pre-)rules while all other characterizing conditions are satis¯ed.

Table 2 enters here.

The last table below illustrates the trade-o®s between the di®erent char-

acterizations. Roughly speaking there are four groups of conditions; I con-

ditions present in all characterizations (and therefore not interesting with

respect to a trade-o® discussion), II conditions of equity, III conditions re-

lating di®erent problems, and IV conditions that bound the outcome.

Table 3 enters here.

Conditions of the ¯rst three groups appear in all characterizations. The

last group is only present, when bilateral consistency, which also belongs

to the second group, is one of the characterizing conditions. Clearly the

price which has to be paid for using this hybrid condition of group II and

III is either a relatively strong condition of group IV or the weaker dummy

property in combination with strategy-proofness or monotonicity. Compar-

ing Theorems 6.3 and 6.4 we see that the trade-o® of relaxing the equity

condition is compensated by the relatively strong reversibility condition of

group IV.
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PO
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Figure 1
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(1) (2) (3) (4)

e 2 IRN e 2 [0; b] ; N µ f1; : : : ;mg ; u arbitrary

b 2 IR+ m ¸ 3 single-peaked

instead of instead of instead of instead of

e 2 IRN
+ e 2 IRN

+ N ½ IN u single-peaked

and continuous

Th 3.1

PO, PSO, yes yes yes yes

EF

Th 3.2

PO, PM, yes yes ? yes

EF

Th 4.4

PO, EM, yes yes yes yes

EF

Th 5.1

PO, BC, yes yes yes yes

BEP

Th 5.2

PO, BC, yes yes yes yes

IR

Th 5.3

PO, BC, yes yes yes yes

EF

Th 6.3

PO, BC, ? yes yes ?

SP, DP

TH 6.4

PO, ET, yes ? yes ?

SP, RE

TH 7.1

PO, BC, yes yes yes yes

EM, DP

Table 1
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'e 'h 'max ¹'max '0 ¹'0 ~' '̂

PO N Y Y Y Y Y Y Y

PSO Y Y Y Y Y Y N Y

EF Y N N N N N Y N

PM Y Y Y Y N N N N

EM Y Y N N Y N N N

BC Y N N N Y N N Y

BEP Y Y Y Y N N N N

IR Y Y Y Y N N Y N

SP Y Y N Y Y N N Y

DP Y Y Y Y N Y Y Y

ET Y N Y Y N N Y Y

RE Y Y Y N N N N Y

Th 3.1 PO EF EF EF EF EF PSO EF

Th 3.2 PO EF EF EF - - PM {

Th 4.4 PO EF EF EF EF EF EM {

Th 5.1 PO BC BC BC BEP BEP { BEP

Th 5.2 PO BC BC BC IR IR BC IR

Th 5.3 PO { { { EF { BC EF

Th 6.3 PO BC BC BC DP SP { {

Th 6.4 PO ET SP RE { { { {

Th 7.1 PO BC BC BC DP { { EM

Y The rule satis¯es the condition in question.

N The rule does not satisfy the condition in question.

Table 2
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Th Th Th Th Th Th Th Th Th
3.1 3.2 4.4 5.1 5.2 5.3 6.3 6.4 7.1

I Conditions present in

all characterizations

PO £ £ £ £ £ £ £ £ £

II Conditions relating

di®erent problems

PM £

EM £ £

SP £ £

PSO £

RE £

III Conditions of

equity

BC also group II £ £ £ £ £

EF £ £ £ £

ET £

IV Conditions bounding

the outcome

IR £

BEP £

DP £ £

£ The condition in question (row) is part of the corresponding

characterization (column).

Table 3

Department of Quantitative Economics, University of Maastricht, P.O.

Box 616, 6200 MD Maastricht, The Netherlands


