
Realtime and Robust Hand Tracking from Depth

Chen Qian1,2 Xiao Sun1 Yichen Wei1 Xiaoou Tang2 Jian Sun1

1Microsoft Research 2Chinese University of Hong Kong

{v-xiasun,yichenw,jiansun}@microsoft.com {qc012,xtang}@ie.cuhk.edu.hk

Abstract

We present a realtime hand tracking system using a depth

sensor. It tracks a fully articulated hand under large view-

points in realtime (25 FPS on a desktop without using a

GPU) and with high accuracy (error below 10 mm). To

our knowledge, it is the first system that achieves such ro-

bustness, accuracy, and speed simultaneously, as verified

on challenging real data.

Our system is made of several novel techniques. We mod-

el a hand simply using a number of spheres and define a fast

cost function. Those are critical for realtime performance.

We propose a hybrid method that combines gradient based

and stochastic optimization methods to achieve fast conver-

gence and good accuracy. We present new finger detection

and hand initialization methods that greatly enhance the ro-

bustness of tracking.

1. Introduction

Hand tracking is important in many human computer

interaction applications and has been intensely studied for

decades [10, 28, 4, 2, 7, 14]. Nevertheless, it remains chal-

lenging due to its extraordinary complexity. The hand is

highly articulated with complex finger interactions. It usu-

ally moves fast under large viewpoint variations.

In spite of significant progress in recent years, the state-

of-the-art approaches are limited in certain aspects. The

hand motion capture work in [13] obtains high accuracy

using a complex mesh model, but is limited by a slow lo-

cal optimization. The works in [8, 9] use a simple polyg-

onal model and achieve real time performance, but require

an expensive GPU for model rendering and cost function

evaluation. The optimization is purely local and cannot re-

cover from tracking failure. The global techniques [3, 4]

search a large parameter space to avoid poor local optima,

but the result is usually coarse and the search is slow. The

approaches in [21, 25] perform realtime global search and

local optimization, but rely on inconvenient setup (a col-

or glove in [21] and multiple cameras in [25]). Other re-

altime and robust systems are limited in recognizing dis-

crete hand gestures only [31, 5, 6, 29] without optimization,

supporting a small number of DOFs [22], or under a fixed

viewpoint [12]. Those limitations above are due to diffi-

cult tradeoffs between the system complexity and targeted

goals. To achieve high accuracy and speed, previous works

use complex model, sophisticated cost function, expensive

optimization, or specific setup.

We present a new state-of-the-art hand tracking system.

It can track free and complex hand motion in realtime on a

desktop with high accuracy. Our work is largely inspired by

recent advances in human body tracking [24, 1, 15, 30, 27].

However, directly applying existing body tracking tech-

niques to the hand usually works poorly, due to the unique

challenges in hand tracking mentioned above. Therefore,

careful adaptation and improvement are needed.

We follow a “Local Optimization + Initialization by Part

Detection” framework [1, 15, 30] and present several con-

tributions. We adopt a simple hand model that is approxi-

mated using a set of spheres, and a fast cost function that

measures the distance between the model and a sparse point

cloud. These simplifications are critical for realtime perfor-

mance. Details are given in Section 2.

In spite of its simplicity, the cost function is still effec-

tive in that it reaches the global minimum at the correct hand

pose in almost all cases. However, it is not smooth enough

and has an abundance of local optima in the high dimen-

sional space. Previous gradient based optimization for body

tracking [27] and stochastic optimization for hand tracking

[8, 9] cannot minimize the cost well, being either too sensi-

tive to local optima or too slow in convergence. Observing

the complementary nature of the two methods, we devel-

op a hybrid optimization method that combines the merits

of both. As described in Section 3, it converges faster and

resists local optima better.

Part detection and part-based initialization have been

proven critical to the robustness in body tracking [18, 1, 30,

24]. Inspired by such works, we propose novel and effec-

tive methods for finger detection, segmentation, and hand

initialization in Section 4. Comprehensive experiments on

challenging real data validate the efficacy of our system, as

shown in Section 5.

1

1 DOF
2 DOF

T

I M

R

L

6 DOF Wrist

 (a) (b) (c)

Figure 1. (a) 26 DOFs hand motion model; (b) the hand model

in [8]; (c) our hand model that approximates (b) using 48 spheres.

2. Model and Cost Function

Hand Model. To model hand kinematics, we adopt the

commonly used 26 degrees of freedom (DOF) hand motion

model [21, 9]: 6 DOFs for the global hand pose and 4 D-

OFs for each finger, illustrated in Figure 1(a). We preserve

the kinematic constraints of the hand by enforcing the joint

angles in their valid ranges (as defined in [23]) during opti-

mization. The 26 motion parameters are denoted as Θ.

A simple geometric model is critical for fast computa-

tion of distance and intersection. For example, in [27], the

human body is modeled as mixture of spheres and cylin-

ders. In this work, we use the simplest sphere set repre-

sentation. Specifically, we approximate the polygonal mesh

model in [8] using 48 spheres, as illustrated in Figure 1(b)

and (c). The number of spheres for each part is manually

specified: 6 for each finger (8 for the thumb) and 16 for

the palm. The spheres’ sizes and centers are also empirical-

ly set to approximate the polygonal model at the canonical

pose as in Figure 1. In this work, we do not use any per-

sonal model adaption (except a global scale as in Section 5)

and find the sphere model works well across a few differ-

ent subjects. Nevertheless, using optimized personal hand

model [26] and sphere approximation technique [20] should

further improve the accuracy.

The sphere model is denoted as M(Θ) = {si}
48
i=1. Each

sphere s = {c(Θ), r} has center c(Θ) and radius r. The no-

tation implies that the radii are fixed but the centers depend

on the parameter Θ through forward kinematics. We drop

the notation Θ in the remainder of this paper for concise-

ness.

Data. We use Intel’s Creative Interactive Gesture Cam-

era. The depth resolution is 320 × 240. For hand segmen-

tation, we use a black band around the wrist to create depth

voids, and find the nearest connected component to be the

hand region, assuming the hand is closest to the camera.

The hand region is further refined by median filtering and

morphological opening, denoted as depth map D. It is then

converted to a 3D point cloud, denoted as P .

Cost Function. This measures the discrepancy between

the hand model and input depth, as well as hand model va-

lidity. It is defined as

λ ·
∑

p∈sub(P)

D(p, sx(p))
2 +

∑

i

B(ci,D)2 +
∑

i,j

L(si, sj)
2.

(1)

The first term D(·) aligns the point cloud P to the sphere

model M. To reduce the computational complexity, the

point cloud is randomly down sampled to 256 points, de-

noted as sub(P). This operation achieves good trade-off

between efficiency and accuracy. For each point p, x(p) in-

dexes its closest sphere and D(·) is the distance from that

point to the sphere surface,

D(p, s) = abs(||p− c||2 − r). (2)

The second term B(·) forces the model to lie inside the

point cloud. Each sphere center is projected onto the depth

map as j(c). If the depth at j(c) is closer, the sphere center

is in front of the depth and receives a penalty being the depth

difference. If there is no depth at j(c), the sphere center is

outside the silhouette of the depth and receives a penalty be-

ing the distance to silhouette, which is efficiently computed

by a distance transform of the silhouette1. Formally, this

term is defined as

B(c,D) =

{

max(0,D(j(c))− cz) if D(j(c)) is valid

dist(j(c), silhouette of D) otherwise

(3)

The third term L(·) penalizes model self-collision. The

collision cost is

L(si, sj) = max(ri + rj − ||ci − cj ||2, 0). (4)

We observe that most collisions during optimization are be-

tween neighboring fingers and therefore only test neighbor-

ing fingers for efficiency.

The cost function is simple and effective. The first term

matches the visible spheres to the point cloud. It is weighted

by λ = |M|/|sub(P)| so its magnitude is the same as the

second term. The second term forces the occluded spheres

to lie behind depth and complements the first one. It has

a similar spirit as [27, 30] but is simpler since it is only

evaluated on a few spheres.

The first term has computational complexity

O(|M||sub(P)|) as the nearest sphere for each point

needs to be computed. The last two terms have complexity

|M|. As both |M| and |sub(P)| are small, evaluation of

the cost function (1) is very fast. This is critical for realtime

performance, as any reasonable optimization method would

evaluate a cost function many times.

For simplicity we do not consider temporal coherency in

the cost function and left this as future work.

1The distance is measured in pixels and converted to millimeters using

the average input depth.

Thumb Interpolation Ratio

In
d

e
x
 In

te
rp

o
la

tio
n

 R
a

tio

Thumb Interpolation Ratio

In
d

e
x
 In

te
rp

o
la

tio
n

 R
a

tio

all 2812 points 256 pointsLocal Optimum Local Optimum

Depth Last Frame: True Pose:

Figure 2. (better viewed in color) Illustration of a real tracking ex-

ample. Top: due to the fast motion of the thumb and index fingers,

the pose from the last frame is a poor initialization for the current

frame. Bottom: we generate intermediate poses by interpolating

thumb and index finger parameters of the last pose and true pose

while keeping other parameters intact. The cost function (1) is

densely evaluated on the two interpolation coefficients ([0, 1]) and

visualized, using dense and sparse 3D point cloud, with local op-

tima overlaid.

3. ICP-PSO Local Optimization

Tracking is performed by the local optimization of (1)

from an initial hand pose, which is either from last frame or

finger detection on current frame.

For such point-model alignment tasks, Iterated Closest

Point (ICP) method [17, 19] is widely used. It uses alter-

nate and gradient based optimization, converges fast, and is

suitable for realtime applications. However, it can be easi-

ly trapped in poor local optima and cannot handle non-rigid

objects well. Various extensions have been proposed to han-

dle articulated objects [16], and ICP has been successfully

adapted for human body tracking [27] recently. Yet, it is

still insufficient for high-dimensional articulated hands, e-

specially under free viewpoints. Even worse, for realtime

performance we are limited to using a sparse subset instead

of the whole point cloud. All above factors lead to an abun-

dance of local optima in the cost function. The fast hand

motion also frequently leads to poor initialization.

The challenges are exemplified in Figure 2. There are

many local optima that would trap the gradient based op-

timization from the poor initialization in last frame. The

problem deteriorates with a sparse sampling of the point

cloud.

Stochastic optimization is necessary to alleviate this

problem. We use the Particle Swarm Optimization (PSO)

method [11] and briefly review it here. A particle is a high

dimensional parameter vector, a swarm is a collection of

particles, and PSO is an evolutionary process where parti-

cles interact with each other to search the parameter space.

During evolution, the global best known particle position of

the whole swarm and the local best known position of each

particle are remembered. The initial particles are randomly

sampled (usually around an initial particle) and their initial

velocities are all set to zero. In each generation of evolu-

tion, a particle’s velocity is updated as a randomly weighted

summation of its previous velocity, the velocity towards its

local best position, and the velocity towards the global best

position. The particle then moves at its velocity from its

previous position. After all particles move, the global best

and local bests are updated.

PSO can better explore the parameter space and avoid

poor local optima by attracting more particles to more

promising areas. Recently, it has been successfully used

for hand tracking [8, 9]. However, it does not work well in

our case. A possible reason is that the cost function in [9]

compares all points’ depth but our cost function uses sparse

points and is less smooth, as shown in Figure 2. We find

that even with many particles, PSO still converges slowly

and cannot effectively minimize the cost. This problem is

called particle premature [11] and frequently observed in

high dimensional space. Because each particle has a large

local volume to search, the random search in PSO is not

efficient enough and a particle could be attracted to an in-

correct global best too early, even when there exists a good

local optimum nearby.

The above analysis indicates that the two approaches are

complementary by nature: ICP quickly reaches local op-

tima; PSO explores parameter space more effectively but

suffers from premature convergence. We propose a hybrid

optimization approach to combine the merits and overcome

the drawbacks of both. The key idea is that each particle

takes an additional ICP like gradient descent step before

the random particle movement in each PSO generation. In

this way, each particle moves faster and minimizes the cost

more effectively, as in ICP. All particles interact with each

other to sample the promising area more frequently and a

single one has a higher chance to jump from a poor local

optimum, as in PSO. Consequently, the combined approach

converges faster and resists local optima better than both.

An illustrative example is shown at the top of Figure 3.

In generation 0, a few particles are randomly sampled

around the poor initialization (bottom right) and the best

one (solid green cross) is attracted to the promising area

(top left) after ICP. Through PSO update, the entire swar-

m is gradually attracted to the promising area, and finally

reaches the correct solution in generation 10.

We further extend PSO to deal with multiple local op-

tima more effectively. In each generation the particles are

divided into multiple clusters using k-means clustering and

the average hand joint distance as the particle distance. This

dynamic particle re-allocation uses particles more effective-

ly, as a better local optimum usually attracts more particles.

 Generation 0 Generation 4 Generation 10

Figure 3. (better viewed in color) Illustration of the ICP-PSO opti-

mization processes using the example in Figure 2 for k = 1 (top)

and k = 2 (bottom). See text for details.

Random particle update is performed within each cluster

independently to keep these clusters around their own local

optima. This is illustrated at the bottom of Figure 3. When

k = 2, the particles automatically converge to the two local

optima. This further alleviates the particle premature.

Our optimization method is called ICP-PSO and is s-

ketched in Algorithm 1. In the initialization, each particle is

a random perturbation of the pose in last frame. Whenever

a finger detection based hand pose is available, we empiri-

cally allocate 1/4 particles for the second initial. In the ran-

dom perturbation, each dimension is independently drawn

from a 1D gaussian distribution whose center is the initial

value and the standard deviation is manually specified as: 5
degrees for angles (the joint angle and global rotation) and

15 mm for the global position. In the ICP part, we use a

similar strategy as in [16], i.e., instead of a full Levenberg-

Marquardt (LM)-like gradient descent of all 26 parameters,

gradient descent is only performed on a randomly select-

ed parameter and the process is repeated a small number of

times (empirically set to m = 10). This has been shown

to be more robust than LM in [16] and we have observed a

similar result in our experiments. For conciseness, we do

not elaborate PSO part but refer the reader to [9] for more

details.

4. Finger Detection for Hand Initialization

Tracking from only the last frame is fragile. Recent ad-

vances in human body tracking [24, 1, 15, 30, 27] have

proven that the capability of re-initialization on every frame

is critical for robust tracking. In this work, we present sim-

ple and effective methods for finger detection and hand ini-

tialization. They are derived from an intuitive geometrical

viewpoint, without using learning such as in [25].

Finger Detection. Recent body part detection method-

Algorithm 1 Our ICP-PSO optimization method.

1: Input: initial hand pose(s) from the last frame (and fin-

ger detection)

2: generate random particles around the initial pose(s)

3: for each generation do

4: for each particle do

5: compute point-sphere correspondences

6: for m times do

7: gradient descent on a random parameter

8: end for

9: end for

10: k-means clustering of all particles

11: particle swarm update within each cluster

12: end for

13: Output: the best particle

s [18, 1] find extreme points on the 3D point cloud using 3D

geodesic distances. We find this approach does not perform

well on hand because the underlying 3D graph is quite un-

stable in case of finger occlusions and depth noises caused

by the fast motion. Consequently, finger tips are often not

among the top detected extreme points.

The key idea in our method is to exploit the simplici-

ty of finger geometry. Instead of the 3D point cloud, we

detect the extreme points on 2D XY plane and 1D Z direc-

tion, separately. This is much simpler and more stable. To

classify the extreme points as finger tip/non-tip, we grow a

finger segment proposal from each extreme point and check

whether the segment geometry is similar to a finger. This

geometric checking is intuitive, fast and accurate.

XY-Fingers are parallel to the image plane and detect-

ed on a mask binarized from the depth map. We initialize

the first extreme point as the mask center and compute it-

s geodesic distances to all pixels using distance transform.

We then repeatedly add the maximal point in the distance

map as a new extreme point and update the distance map in

an incremental manner, similar to [1]. From each extreme

point, a segment grows on the current distance map until its

length or width exceeds a full finger’s sizes. Note that the

segment length/width are in pixels on the 2D mask and they

are converted to millimeters using camera parameters and

pixel depths for comparison. The segment is considered as

a finger if its length, width and aspect ratio are all close e-

nough to a real finger2. The process is repeated six times to

find the wrist and (at most) five finger tips.

Z-Fingers are pointing towards the camera and their tips

are detected as local minima on the depth map. From each

tip, a segment grows by flood fill until its depth exceeds the

size of top finger phalange. For classification of tip/non-tip,

we observe that a good Z-Finger segment should have the

2As finger identity is unknown for now, we simply use the index finger

of our hand model for such comparison.

Classified as fingertip

Classified as non-fingertip

Correct finger segment

Rejected finger segment

Figure 4. (better viewed in color) Illustration of finger detection

and hand pose initialization. For each example, left shows de-

tected extreme points, finger segment proposals, and tip/non-tip

classification results. Right shows the estimated hand pose. The

top two examples are XY Fingers. Each segment visualizes its

length and width lines that are used for geometric checking. The

bottom two examples are Z Fingers. Each segment visualizes its

two spheres and the sector in the ring for geometric checking.

most pixels in a small sphere that centers on the extreme

point and approximates the top phalange. The remaining

pixels outside the sphere should reside in a small angular

range. Therefore, we check a ring between the small sphere

and a larger (3×) sphere, find the sector (spanning 60 de-

grees) with highest density within the ring, and consider this

segment as correct if the sector contains the most pixels in

the ring (more than 90%). The sector is efficiently found

using a 1D integral histogram that counts the pixel along

the angular dimension in the ring.

Our methods and results are illustrated in Figure 4. We

do not strictly distinguish XY and Z Fingers. Slanted fin-

gers can be usually detected by both. We detect XY-Fingers

before Z-Fingers, and discard any segment immediately

whenever it grows to touch an existing segment. Our meth-

ods use simple operations (incremental distance transform

and flood fill) for only a few times (six in XY and typically

about five for Z) in small patches, thus very fast. We further

down sample the 320× 240 depth map to 160× 120 for ef-

ficiency. The detection takes 2 ms (1 ms for XY and Z) on

average. All parameters in segment growth and geometric

checking are empirically set to achieve high precision.

Hand Initialization While inverse kinematics is the s-

tandard technique to estimate an articulated shape (such as

hand) from end effectors (such as finger tip), it is unsta-

ble for highly articulated hand. We propose a simpler and

more robust approach that also uses finger segments. Given

f detected fingers, we assume detected fingers are straight

(each 2 DOFs) and undetected fingers are bent (DOFs are

ignored). Therefore, the hand pose parameters are simpli-

fied to 2f + 6 DOFs, denoted as Θ′.

Each finger tip t provides 3 constraints. From each finger

segment we estimate its direction d by PCA, which provides

2 constraints. We remove the finger segments from the point

cloud and use the remaining 3D points to estimate the palm

orientation l by PCA, which provides 3 constraints. There-

fore we have 5f+3 constraints, which are sufficient to solve

2f + 6 unknowns for f = 1 to 5.

From forward kinematics, we can derive each finger tip

t̂(Θ′), finger direction d̂(Θ′), and palm orientation l̂(Θ′).
We find the optimal hand pose that minimizes the differ-

ences between those quantities,

Θ′
opt = argΘ′ min

∑f

i=1 ||ti − t̂i(Θ
′)||2

+
∑f

i=1 angle(di, d̂i(Θ
′)) + angle(l, l̂(Θ′)).

(5)

As the finger identity is unknown, we enumerate sever-

al combinations, run optimization for each and choose the

solution with the smallest cost in terms of (5). This opti-

mization problem is small and takes less than 1 ms to solve.

Due to the simplifications in Θ′ made above, the esti-

mated hand pose is usually rough. However, it is usually

well aligned at the fingers and is good enough to initialize

the local optimization in Section 3. Our method works well

for many useful gestures with extending and visible fingers,

e.g., those in sign language. See Figure 4 for example re-

sults. It is less effective for complex gestures with bent and

occluded fingers, which however, would also challenge any

other finger detection method.

5. Experiments

The evaluation of hand tracking in the literature is stil-

l primitive. There lacks common datasets, protocols and

metrics. This makes cross-approach comparison quite diffi-

cult. In this work, we create a real challenging dataset with

manually labeled ground truth3. Up to our knowledge, it-

s complexity and magnitude is the most comprehensive in

the literature. We use strict evaluation processes and metric-

s that are rarely done before. We hope these could advance

the experimentation practices for future work.

Dataset and Metrics. We ask six subjects to make vari-

ous rapid gestures. A 400-frame video sequence is recorded

for each. We manually label the ground truth hand pose for

2400 frames. To account for different hand sizes, a global

hand model scale is specified for each subject (see Table 2),

but no further personal adaptation is used.

In the evaluation, we measure the average error E of six

joints: the five finger tips and the wrist. This measure is

strict because these joints are semantically important and

present bigger errors than other internal joints. We also

measure the success rate S, which is the percentage of good

frames which have E < 10mm.

3Available at http://research.microsoft.com/en-us/people/yichenw/

0 10 20 30 40 50

5

10

15

20

25

30

#Generation

E
rr

o
r(

m
m

)

PSO

ICP

ICP−PSO

0 10 20 30 40 50

300

600

900

1200

1500

#Generation
C

o
st

PSO

ICP

ICP−PSO

Figure 5. Average error and cost function values decrease as opti-

mization methods run through generations.

Evaluation of Optimization. We compare the proposed

ICP-PSO method with the baseline methods ICP and PSO,

which are simplified from Algorithm 1. The ICP baseline

removes lines 10 to 11 and is equivalent to multiple inde-

pendent runs. The PSO baseline removes lines 4 to 9 and

sets k = 1. We use 128, 40, and 32 particles for PSO, ICP,

and ICP-PSO, respectively, so that they have approximately

the same running time for one generation. All methods run

for 50 generations and generally converge.

It is inappropriate to directly compare video tracking re-

sults. Because results of later frames highly depend on

those of earlier frames, the performance cannot be fully

attributed to the methods themselves. Instead, compari-

son is performed on single frames under the same initial-

ization. For each frame, we randomly perturb the ground

truth pose to generate various initial poses. The initial poses

are then divided into three difficulty levels. All levels con-

tain 10 initial poses in each frame and their average join-

t errors are within [15mm, 25mm], [25mm, 35mm], and

[35mm, 45mm], respectively.

To further consolidate our experiments, we also synthe-

size depth maps for each frame using our labeled ground

truth hand pose. We use the polygonal model in Figure 1(b)

instead of our sphere model to make the depth more faithful.

Table 1 reports the average accuracies on all levels using

both real and synthetic depth. It clearly shows that ICP-PSO

is better on all difficulty levels, and using multiple clusters

(k > 1) is better than using one cluster k = 1, especial-

ly when initial errors are large and local optima problem is

severe. These conclusions are consistent in both real and

synthetic results, while real results are slightly worse. We

fix k = 4 in our remaining experiments as it is optimal when

using 32 particles.

We then investigate the effect of number of generations

and particles, using difficulty level [15mm, 25mm] and re-

al depth. Conclusions remain the same in other cases. Fig-

ure 5 shows that our method decreases the cost function and

improves the accuracy much more quickly. Figure 6 shows

that using more particles can improve accuracy, but ICP and

PSO are still worse even with more particles.

Evaluation of Tracking and Initialization During

64 128 256 512 1024 20 40 80 160 320 16 32 64 128 256
0

2

4

6

8

10

#Particles

E
rr

o
r(

m
m

)

PSO

ICP

ICP−PSO

Figure 6. Average errors using different number of particles of the

three methods.

Subject 1 2 3 4 5 6

Scale 1.1 1.0 0.9 0.95 1.1 1.0

FORTH 35.4 19.8 27.3 26.3 16.6 46.2

FORTH* 19.8 15.8 19.8 15.4 16.0 21.0

PSO 26.7 14.8 44.7 18.1 15.0 24.3

PSO* 18.6 12.1 21.2 14.4 13.7 22.4

ICP 27.3 20.7 34.4 25.1 17.00 32.8

ICP* 17.9 15.9 19.2 15.6 10.8 25.9

ICP-PSO 9.3 24.1 14.4 13.4 11.0 20.0

ICP-PSO* 8.0 7.4 10.8 10.9 7.3 11.7
Table 2. Model scales and average joint tracking errors (in mm)

of 6 subjects. Methods with ∗ use initialization.

tracking, we initialize the first frame using ground truth.

We also implement the state-of-the-art method in [9]

(FORTH)4. In total, four methods are compared, using (de-

noted as ∗) and not using finger-based hand initialization.

Table 2 reports the average joint errors over all frames for

all subjects. Our method already achieves good accuracy

without initialization. Using initialization further improves

all methods significantly. Figure 7 shows errors over all

frames for the first subject. The large errors without using

initialization are mostly reduced using initialization. Exam-

ple results of all methods are shown in Figure 8.

We are not aware of any work that reports hand tracking

accuracy on challenging real data. Our accuracy is about 10
mm, which compares favorably to the accuracy (around 5
mm) reported on synthetic data [9, 13].

Timing For tracking, we use 128, 40, and 32 particles

for PSO, ICP, and ICP-PSO, respectively. All run 20 gener-

ations and have similar speed. On an Intel i7 3.4GHz CPU,

the run time is: 2 ms preprocessing, 2 ms finger detection, 1

ms hand initialization and 35 ms optimization(four thread-

s). This translates to 25 frames per second (FPS). Note that

we can trade a small accuracy loss for higher frame rate by

using fewer particles (see Figure 6) and fewer generations

(see Figure 5).

We use 64 particles and 40 generations in FORTH imple-

mentation, resulting in 14 FPS on an nVidia GeForce 580

GPU. More generations does not improve accuracy.

4The public implementation of [9] uses color based skin segmentation.

It does not work well in our case.

Einit 15-25 mm 25-35 mm 35-45 mm

Metric Ereal Esyn Sreal Ssyn Ereal Esyn Sreal Ssyn Ereal Esyn Sreal Ssyn

PSO 9.80 7.79 61.4% 83.4% 12.27 10.16 44.2% 67.5% 16.25 14.25 31.3% 50.0%
ICP 10.52 7.71 52.5% 76.9% 14.50 11.75 27.5% 48.8% 19.80 17.71 13.8% 27.3%

ICP-PSO, k = 1 5.98 3.37 87.7% 95.7% 8.93 5.79 72.2% 85.4% 13.95 10.81 54.2% 68.4%
ICP-PSO, k = 2 5.65 3.07 89.7% 96.6% 8.39 5.00 74.4% 88.6% 12.75 9.23 58.0% 73.6%
ICP-PSO, k = 4 5.53 2.91 90.8% 97.9% 7.93 4.53 76.8% 90.2% 12.28 8.99 60.4% 74.2%

Table 1. Averaged performance metrics of three methods on three difficulty levels, using real and synthetic depth maps. Note that k is the

k-means parameter in ICP-PSO.

0 50 100 150 200 250 300 350 400
0

20

40

60

80

Frame

E
rr

o
r(

m
m

)

FORTH (35.41mm) FORTH* (19.83mm)

0 50 100 150 200 250 300 350 400
0

20

40

60

80

Frame

PSO (26.74mm) PSO* (18.62mm)

0 50 100 150 200 250 300 350 400
0

20

40

60

80

Frame

E
rr

o
r(

m
m

)

ICP (27.32mm) ICP* (17.86mm)

0 50 100 150 200 250 300 350 400
0

20

40

60

80

Frame

ICP−PSO (9.28mm) ICP−PSO* (7.96mm)

Figure 7. Average joint error in all frames of first subject. Each plot shows the results of one method using (∗) and not using initialization.

The horizontal dotted lines are mean errors of each method over all frames.

6. Conclusion

We present a new state-of-the-art hand tracking system,

realized as the synergy of a simplified model, a fast cost

function, and effective methods for optimization and ini-

tialization. Its realtime and robust performance on a desktop

makes it useful for many applications such as user interface,

sign language recognition, and virtual reality control.

References

[1] A.Baak, M.Muller, G.Bharaj, H.P.Seidel, and C.Theobalt. A data-

driven approach for real-time full body pose reconstruction from a

depth camera. In ICCV, 2011. 1, 4

[2] A.Erol, G.Bebis, M.Nicolescu, R.D.Boyle, and X.Twombly. Vision-

based hand pose estimation: A review. CVIU, 2007. 1

[3] V. Athitsos and S. Sclaroff. Estimating 3d hand pose from a cluttered

image. In CVPR, 2003. 1

[4] B.Stenger, A.Thayananthan, P.H.S.Torr, and R.Cipolla. Model-based

hand tracking using a hierarchical bayesian filter. PAMI, 2006. 1

[5] C.Keskin, F.Kirac, Y.E.Kara, and L.Akarun. Hand pose estimation

and hand shape classification using multi-layered randomized deci-

sion forests. In ECCV, 2012. 1

[6] D.Tang, T.Y, and T.K.Kim. Real-time articulated hand pose estima-

tion using semi-supervised transductive regression forests. In ICCV,

2013. 1

[7] H.Hamer, K.Schindler, E.K.Meier, and L.V.Gool. Tracking a hand

manipulating an object. In ICCV, 2009. 1

[8] I.Oikonomidis, N.Kyriazis, and A.A.Argyros. Markerless and effi-

cient 26-dof hand pose recovery. In ACCV, 2010. 1, 2, 3

[9] I.Oikonomidis, N.Kyriazis, and A.A.Argyros. Efficient model-based

3d tracking of hand articulations using kinect. In BMVC, 2011. 1, 2,

3, 4, 6

[10] J.M.Rehg and T. Kanade. Visual tracking of high dof articulated

structures: an application to human hand tracking. In ECCV, 1994.

1

[11] J. Kennedy and R. Eberhart. Particle swarm optimization. In Inter-

national Conference on Neural Networks, 1995. 3

[12] D. Kim, O. Hilliges, S. Izadi, A. Butler, J. Chen, I. Oikonomidis,

and P. Olivier. Digits: Freehand 3d interactions anywhere using a

wristworn gloveless sensor. In UIST, 2012. 1

[13] L.Ballan, A.Taneja, J.Gall, L.V.Gool, and M.Pollefeys. Motion cap-

ture of hands in action using discriminative salient points. In ECCV,

2012. 1, 6

[14] M.L.Gorce, D.J.Fleet, and N.Paragios. Model-based 3d hand pose

estimation from monocular video. PAMI, 2011. 1

[15] M.Ye, X.Wang, R.Yang, L.Ren, and M.Pollefeys. Accurate 3d pose

estimation from a single depth image. In ICCV, 2011. 1, 4

[16] S. Pellegrini, K. Schindler, and D. Nardi. A generalisation of the icp

algorithm for articulated bodies. In BMVC, 2008. 3, 4

[17] P.J.Besl and N.MacKay. A method for registration of 3d shapes.

PAMI, 1992. 3

[18] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun. Real-time

identification and localization of body parts from depth images. In

ICRA, 2010. 1, 4

[19] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorith-

m. In 3-D Digital Imaging and Modeling, 2001. 3

[20] R.Wang, K.Zhou, J.Snyder, X.Liu, H.Bao, Q.Peng, and B.Guo. Vari-

ational sphere set approximation for solid objects. Visual Computer,

2009. 2

Depth

ICP*

PSO*

FORTH*

ICP-PSO*

Frame 87 91 153 200 262 331 42 122

Figure 8. (better viewed in color) Example tracking results of the first subject. Those with red frames contain large errors. Color coded

correspondence map of each result is also shown for better visualization.

[21] R.Y.Wang and J.Popovi. Real-time hand-tracking with a color glove.

In SIGGRAPH, 2009. 1, 2

[22] R.Y.Wang, S.Paris, and J.Popovic. 6d hands: Markerless hand track-

ing for computer aided design. In UIST, 2011. 1

[23] E. S. Serra. Kinematic model of the hand using computer vision,

2011. 2

[24] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finoc-

chio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake.

Efficient human pose estimation from single depth images. PAMI,

2013. 1, 4

[25] S. Sridhar, A. Oulasvirta, and C. Theobalt. Interactive markerless

articulated hand motion tracking using rgb and depth data. In ICCV,

2013. 1, 4

[26] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton, S. Iza-

di, A. Fitzgibbon, and A. Hertzmann. User-specific hand modeling

from monocular depth sequences. In CVPR, 2014. 2

[27] V.Ganapathi, C.Plagemann, D.Koller, and S.Thrun. Real-time human

pose tracking from range data. In ECCV, 2012. 1, 2, 3, 4

[28] Y. Wu, J. Y.Lin, and T. S.Huang. Capturing natural hand articulation.

In ICCV, 2001. 1

[29] C. Xu and L. Cheng. Efficient hand pose estimation from a single

depth image. In ICCV, 2013. 1

[30] X.Wei, P.Zhang, and J.Chai. Accurate realtime full-body motion cap-

ture using a single depth camera. In Siggraph Asia, 2012. 1, 2, 4

[31] Z.Mo and U.Neumann. Real-time hand pose recognition using low-

resolution depth images. In CVPR, 2006. 1

