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Abstract. This paper deals with the detection of arbitrary static ob-
jects in traffic scenes from monocular video using structure from motion.
A camera in a moving vehicle observes the road course ahead. The camera
translation in depth is known. Many structure from motion algorithms
were proposed for detecting moving or nearby objects. However, detect-
ing stationary distant obstacles in the focus of expansion remains quite
challenging due to very small subpixel motion between frames. In this
work the scene depth is estimated from the scaling of supervised image
regions. We generate obstacle hypotheses from these depth estimates in
image space. A second step then performs testing of these by comparing
with the counter hypothesis of a free driveway. The approach can detect
obstacles already at distances of 50m and more with a standard focal
length. This early detection allows driver warning and safety precaution
in good time.

1 Introduction

Automatic detection and verification of objects in images is a central challenge
in computer vision and pattern analysis research. An important application is
robustly hypothesizing and verifying obstacles for safety applications in intelli-
gent vehicles. The practical value of such systems becomes evident as obstacle

Fig. 1. Six out of ten front–end crashes could be prevented if safety systems reacted
a split second earlier than the driver. Detecting arbitrary obstacles from monocular
video in the road course ahead, however, is quite challenging.
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detection is a prerequisite to warn the driver of approaching hazards (see Fig. 1).
Commonly used radar sensors lack detecting static objects therefore we tackle
this problem using computer vision.

For a camera mounted in a vehicle with a given camera translation in depth,
detecting obstacles in traffic scenes has three major challenges:

1. The algorithm has to run in real time with minimum delay in reaction time.
2. Obstacles have to be detected at large distances to route the vehicle or warn

the driver as early as possible.
3. The position and horizontal dimension of an obstacle have to be estimated

precisely to safely guide the vehicle in case an emergency brake is insufficient.

The first two challenges demand an algorithm able to detect obstacles in the
focus of expansion where optical flow displacement vectors between consecutive
frames are extremely small. Overcoming this by skipping frames violates the first
constraint. The last challenge requires robust verification of obstacle boundaries.

Traditional vision based obstacle detection relies on depth estimation from
stereo systems [7]. Such systems work well. However, single cameras are already
available in series production performing numerous vision based driver assis-
tance algorithms such as intelligent headlight control and night view. Obstacle
detection from a single camera is, hence, a desirable alternative.

According to [1,14] obstacle detection in monocular vision can be split into
methods employing a–priori knowledge and others based on the relative image
motion. Former algorithms need to employ strict assumptions regarding the ap-
pearance of observed objects. Since we are interested in a model free approach, we
have to use latter methods. Proposed realtime optical flow algorithms [3,11,13]
and obstacle detection based on those [12] calculate the displacement between
consecutive frames of an image sequence. In such a basic approach, integrating
flow vectors over successive image pairs is subject to drifts and therefore these
algorithms are not suitable for the posed problem. Moreover, these methods de-
tect obstacles in two steps firstly calculating flow vectors for every pixel and
secondly analyzing those flow vectors. Working directly in image space is more
desirable as all the information available is accessed directly.

We propose an obstacle detection algorithm in the two standard steps:

1. Hypothesis generation from estimating scene depth in image space.
2. Candidate testing by analyzing perspective transformation over time.

In the first step, conclusions about scene depth are drawn from the scaling
factor of image regions, which is determined using region tracking. We use the
tracking algorithm described in [8] which is consistent over multiple frames of
an image sequence and directly estimates scale and translation in image space.
For an evaluation of different tracking algorithms we refer to [5]. If distance
measurements fall below a given threshold, obstacle hypotheses are generated.
Due to the restricted reliability of depth from region scaling, such an approach
can result in false hypotheses which have to be dismissed.

The testing of generated hypotheses is performed in the second step. We check
whether the observed perspective distortion over time corresponds to an obstacle
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with distance given from hypothesis generation or to a free driveway. In such an
approach we are able to detect arbitrary obstacles directly in image space. The
two steps will be investigated separately in Sects. 2 and 3. Experimental results
on real image data can be found in Sect. 4. A final conclusion and motivation
for further work will be given in Sect. 5.

2 Depth Tracking from Monocular Video

This section investigates the mathematical foundation for reconstructing scene
depth from monocular vision. First we describe the underlying perspective pro-
jection and the model used for depth computation. Then we describe how depth
information can be computed from scaling of image regions and how this fact
can be used to efficiently detect stationary obstacles. Finally we investigate the
error in depth estimation.

We use a monocular camera mounted on a vehicle such that the camera’s
optical axis e3 coincides with the vehicle translation direction. The reference
system is the left–handed camera coordinate system (0, e1, e2, e3) with the e2

unit vector being the ground plane normal. In particular, we assume a flat ground
and a straight road to travel on. The image plane has equation Z = f , where f
is the focal length of the camera. The ground plane is Y = −Y0 with the camera
height Y0. For a point X = (X, Y, Z)� in 3–D space we obtain the corresponding
image point x = (x, y)� by a perspective projection:

x =
f

Z

(
X
−Y

)
. (1)

In practice the camera coordinate system e3 axis usually is not parallel to the
ground plane. Camera rotation can be compensated transforming the camera to
a virtual forward looking camera in a similar way as described in [9]. The camera
translation in depth between consecutive frames is known from inertial sensors.

Obstacles are assumed to be axis parallel bounded boxes. This states that the
Z coordinate of the obstacle plane facing the camera is constant. In practice the
relative depths on obstacle surfaces are small compared to the distance between
obstacle and camera such that this assumption is a good approximation.

Let X(t) = (X(t), Y (t), Z(t))� be a point at time t and x(t) its projected
image point. The camera translation in depth between time t and t+τ is T (t, τ)
leading to X(t + τ) = X(t) + T (t, τ). The camera translational and rotational
velocity is Ṫ (t) and Ω̇(t) respectively. Particular coordinates are represented by
subscripted characters. Traditional structure from motion algorithms based on
optical flow involve using the image velocity field mentioned by Longuet-Higgins
and Prazdny in [10] (the time argument is dropped due to better readability):

ẋ =
1
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⎞
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Such algorithms are exact for time instances where image velocities are measur-
able. However, flow vectors measure the displacement of image points between
frames. Therefore resolving (2) using an explicit or implicit integration method
induces drifts by adding up errors in inter–frame motions. We divide the motion
of image regions into two parts and show that under the given conditions the
scene depth can be estimated solely by estimating the scaling factor of image
regions. The transformation of an image point for a pure translation using (1)
becomes

x(t + τ) =
f

Z(t + τ)

(
X(t + τ)
Y (t + τ)

)
=

f

Z(t) + TZ(t, τ)

(
X(t) + TX(t, τ)
Y (t) + TY (t, τ)

)
(3)

=
Z(t)

Z(t) + TZ(t, τ)︸ ︷︷ ︸
s(t,τ)

f

Z(t)

(
X(t)
Y (t)

)
︸ ︷︷ ︸

x(t)

+
f

Z(t) + TZ(t, τ)

(
TX(t, τ)
TY (t, τ)

)
. (4)

It should be pointed out, that we use absolute image coordinates and not
velocities for computation. With a correctly given vehicle translation and dis-
placement of image points, scene depth can be directly calculated over large time
scales. As only the translation in depth TZ(t, τ) is known, a single observation is
not sufficient to determine scene depth. With the assumed model though, front
faces of obstacles have equal Z coordinates and therefore multiple observations
in an image region can be used to solve an over–determined equation system for
the scaling factor and the translation.

The key for depth reconstruction is to use the scale s(t, τ) directly obtained
by the used region tracking over multiple frames to calculate scene depth:

d ≡ Z(t) =
s(t, τ)

1 − s(t, τ)
TZ(t, τ) . (5)

Distance histogram. For reconstructing scene depth we observe the image
region to which obstacles in 30m distance with 0.9m height are mapped (com-
pare Fig. 4). This region is divided up into n overlapping image regions {Ri}n

i=0,
which are individually tracked until their correlation coefficient surpasses a fixed
threshold. The estimated distances of the tracked regions are projected onto the
x–axis in image space (which can be regarded as a discrete resolution of the
viewing angle) to receive a distance histogram. Projected obstacle distances are
weighted by distance from region center. An appropriate weighting function is
the triangular hat function ΔRi defined on the region width. With the image
region distance d(Ri) and the characteristic function χRi(x) = 1 ⇔ x ∈ R this
results in the following distance histogram (see Fig. 5):

d(x) =
1∑

i χRi(x)ΔRi (x)

∑
i

χRi(x)ΔRi(x)d(Ri) . (6)
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Error in depth estimation. In this paragraph we will show how depth
variance can be calculated by error propagation taking into account errors due
to rotation as well. In real case scenarios rotational effects occur as steer angle,
shocks and vibrations experienced by the vehicle can introduce rapid and large
transients in image space.

Recalling that (2) involves velocities, we use explicit Euler integration for
modeling the incremental rotational transformation. For the analysis of rota-
tional errors the translational part can be set to zero leading to:

x(t + τ) = x(t) + τ

⎛
⎝ Ω̇X(t)x(t)y(t)

f + Ω̇Y (t)
(
f + x(t)2

f

)
+ Ω̇Z(t)y(t)

Ω̇X(t)
(
f + y(t)2

f

)
+ Ω̇Y (t)x(t)y(t)

f + Ω̇Z(t)x(t)

⎞
⎠ . (7)

The constant terms in (7) will influence only the translation estimation and
therefore keep the scaling factor unchanged. The influence of the roll rate (Ω̇Z)
when looking at each image coordinate equation by itself is constant, too. The
yaw rate (Ω̇Y ) and pitch rate (Ω̇X) are linear and quadratic in the image coor-
dinates and therefore will influence the scale factor. Let s be the estimated scale
factor, es the error in scale estimation, and ŝ the true scale with zero rotation.
From (7) it follows that

s = ŝ + es + cx + cy . (8)

However, assuming the yaw and pitch angle to be bounded by ±10◦ and the
focal length to be greater than 800px leads to

c ≡ τΩ̇

f
∈ [−2.2 · 10−4, 2.2 · 10−4

]
. (9)

The limited image size (of 640 × 480 pixel) and the bounded values of the ro-
tation parameters therefore limit the effect on estimation of region scale. With
known scale variance from tracking σ2

s and variance in translation σ2
TZ

the depth
variance can be calculated by error propagation from (5) and (8) via:

σ2
d =

1
(1 − s)2

TZ (σs + xσc + yσc)2 +
s

1 − s
σ2

TZ
. (10)

It has to be pointed out that the relative error in scale estimation becomes
smaller as the scale factor increases, such that the influence of rotation on the
scaling factor becomes negligible over large time scales (see Fig. 3).

The next section deals with obstacle detection based on the distance histogram
from (6). The separation between depth estimation and obstacle detection allows
for usage of distance histograms generated by alternative sensors (e.g. a scanning
radar) for a sensor–fusion. Results obtained from depth estimation can be found
in Sect. 4.
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3 Obstacle Detection by Hypothesis Verification

The distance histogram from the previous section can serve to find potential ob-
stacles. If any entry in the image distance histogram falls below a fixed distance
threshold, an obstacle hypothesis is created. As pointed out in [6], robust com-
puter vision algorithms should provide not only parameter estimates but also
quantify their accuracy. Although we get the distance accuracy of an obstacle
hypothesis by error propagation from tracking, this does not evaluate the prob-
ability of an obstacle’s pure existence. This section describes obstacle detection
by hypothesis testing resulting in a quality specified output.

Let d be the distance of an obstacle hypothesis drawn from the distance
histogram. With the known camera translation in depth TZ the transformation
of the obstacle in image space using (5) is

x′ = V (x) =
(

d−TZ

d 0
0 d−TZ

d

)
x . (11)

The counter hypothesis of a free driveway with plane equation e2 = −Y0 will
be transformed in image space using homogeneous coordinates according to

x′ = Q(x) =

⎡
⎣1 0 0

0 1 0
0 TZ

Y0
1

⎤
⎦x . (12)

Obviously this is only true for the ground plane up to the projected horizon.
The hypothesis no obstacle above the horizon is set to be the identity (as this
is equivalent with obstacles being infinitely distant).

Hypothesis testing. Let F (x) and G(x) be the intensity value for the initial
image and the image after vehicle translation respectively. We assume a Gaussian
distribution of the intensity values and fixed standard deviation, thus for an
image transformation function f corresponding to an image region R we get

pR(f) ∝ e−|G−F |2 (13)

with |G − F |2 being the sum of squared differences defined as

− log(pR(f)) =
∑
x∈R

(G(x′) − F (x))2 . (14)

p is maximal if the intensity value differences are minimal and vice versa. The
scope of hypotheses verification is finding the transformation with higher prob-
ability. Let p1 = pR(V ) and p2 = pR(Q), it then follows

p1 > p2 ⇔ log p1 > log p2 ⇔ log p1 − log p2 > 0 . (15)

Therefore hypothesis testing boils down to calculating the SSD–difference for
the two transformation assumptions. The absolute distance from zero represents
the reliability of the result.
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Fig. 2. Difference between flow field from planar ground (no flow above horizon) and
obstacle in 30m distance (planar motion parallax) for different camera translation in
depth. The brightness corresponds to the length of the flow difference vector. Clearly,
the challenge to distinguish between an obstacle and the planar ground near the focus
of expansion by relative image motion becomes visible (camera focal length 689 pixel).

In practice, vehicle translation is not solely restricted to translation in TZ .
However, the motion parameters not included in the model can be compensated
for the most part by estimating an extra region shift. Nevertheless, over larger
time scales, hypothesis verification becomes more and more prone to errors due
to lighting changes and the unmodelled motion.

Therefore, in the verification case, we restrict ourselves to time scales of
20 frames (in practice this corresponds to camera translations of more than 2m).
As indicated in Fig. 2 and by our experimental results, such a translation pro-
vides a sufficient difference between the two transformation assumptions and
allows for reliable hypothesis testing.

4 Experimental Results

The proposed algorithm has been tested on real roads. The results are given in
the following.

Comparison with distance from radar. A textured wall with a corner
reflector behind the wall represents the obstacle. Due to the breadboard con-
struction the distance measurement from radar is taken as the reference value
and compared to distance from depth tracking. The results in Fig. 3 show, that
distance measurement by scale is error-prune around the initial frame. This is
not surprising as the scale factor is close to 1 and therefore division by 1 − s in
(5) for distance computation leads to high inaccuracies. However, distance com-
putation becomes quickly stable with greater vehicle translation. This clearly
shows that distance estimation over large time scales is indispensable.

Obstacle detection performance. In the remaining part of this section we
show three exemplary sequences from our test series on real roads to demonstrate
hypotheses generation and testing. Figure 4 shows the first frame for each of these
sequences. Notice that obstacle edges are present close to the focus of expansion
what makes detection quite challenging.

The sequences are taken from a camera with 8.4mm focal length (8.4mm
corresponds to 840pixel) and 1.1m camera height. The correlation threshold for
replacing a depth tracker is set to 0.8. The threshold for hypothesis verification
in the distance histogram is set to 70m and restricted to the driving corridor.
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Fig. 3. Distance from radar compared to distance from region scale. Distance
from scale plus and minus its standard deviation is represented by the gray area.
The thumbnail image was taken at 50m obstacle distance. The plot shows, that depth
tracking allows to accurately estimate depth for distant obstacles.

These settings have been fixed in all three experiments showing the robustness
of such parameters.

The first sequence shows an approach to a crash scene more than 100m away.
The vehicle speed is approximately 10m/sec. The algorithm detects the station-
ary obstacle already at 69m distance. Obstacle verification is error prone at such
distances leading to a low value for the SSD difference. At 45m distance (see
Fig. 5) the obstacle is verified and horizontal obstacle boundaries are successfully
detected such that a driver assistance system can safely evade this hazardous
situation.

The middle set of images proves the reliable testing of obstacle hypotheses.
The two trucks influence depth tracking and generate an obstacle hypothesis in
the distance histogram for the free region amongst them (see Fig. 5 black line).
Obstacle verification clearly rejects this hypothesis verifying a free corridor. As
the vehicle approaches closer to the hazardous scene, the distance histogram
adopts to the true observations picking up the bushes in the background as
obstacles.

The right example deals with an obstacle boundary close to the focus of ex-
pansion. Note that the truck trailer has no texture making it hard for structure
from motion algorithms to detect the vehicle in general. Nevertheless, the truck
is detected and verified successfully at 67m. Obstacle boundaries are close to
ground truth. At such a large distance, the two trucks on the right influence hy-
pothesis verification and lead to obstacle assumptions. Obviously the verification
is correct but not for the given hypothesis distance. As the vehicle approaches
the hazardous object in Fig. 5, the obstacle boundary is estimated precisely al-
though it runs next to the focus of expansion. The image shows the truck still
50m away. Experiments on several test sequences show, that robust object detec-
tion and verification can be reached with the proposed basic approach. Further
quantitative studies on larger test data bases are the focus of ongoing research.



Realtime Depth Estimation and Obstacle Detection from Monocular Video 483

Fig. 4. Initial frames. The white box indicates the cropped image size shown in
Fig. 5. The black box marks the area used for depth tracking.
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Fig. 5. Obstacle detection with distance histogram (black, scale on the left) and
hypotheses verification (white, logarithmic scale, obstacle verified if above dashed
line). The images show, that robust obstacle detection and verification is reached.

5 Conclusions

We have presented an algorithm for static obstacle detection in monocular image
sequences. The scene depth is estimated by the change of region scale in image
space; obstacle hypotheses are generated if depth estimation falls below a fixed
threshold. To verify these hypotheses we check whether the observed transfor-
mation in image space is more likely to be generated by a static object or by the
flat ground.

We implemented the algorithm on a Pentium IV with 3.2GHz and achieved
a framerate of 23 frames per second for the distance histogram calculation. The
distance histogram and verification computation together run at approximately
13 frames per second. To the authors’ knowledge, this is the fastest monocular
motion–base obstacle detection algorithm in literature for obstacles close to the
focus of expansion. The approach is easily applicable to other motion based
distance measurements for obstacle detection and verification.

Further research will concentrate on speed gain. A wide range of algorithms
in literature was proposed to speed up and stabilize tracking in image space. To
name one possibility, pixel selection can be used to reduce computation time in
region tracking. It is in the focus of ongoing studies to intelligently distribute
the single regions used for depth tracking in image space. Although the de-
scribed system works well in unknown environments we believe that optimizing
the distribution and number of the tracked regions with respect to the cur-
rently observed scene will lead to even better results and less computation time.
Moreover, we will investigate means to improve obstacle detection by method
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of segmentation [4] and globally optimized optic flow estimation [2] forced into
distinction of vertical and horizontal planes.

It also remains an open problem to detect moving obstacles in a monocular
scenario. However, to pick up the threads given in the introduction, moving
objects are well detected by common radar sensors therefore a sensor fusion
combining measurements from an active radar and passive visual sensor is a
promising field for further research.
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