
To appear in the IEEE/Eurographics Symposium on Interactive Ray Tracing 2007.

Realtime Ray Tracing on GPU with BVH-based Packet Traversal

Johannes Günther∗

MPI Informatik

Stefan Popov†

Saarland University

Hans-Peter Seidel∗

MPI Informatik

Philipp Slusallek†

Saarland University

Figure 1: The CONFERENCE, SODA HALL, POWER PLANT from outside, and POWER PLANT furnace scenes. Using our new BVH-based GPU ray tracer, we

render them at 6.1, 5.7, 2.9, and 1.9 fps, respectively, at a resolution of 1024×1024 with shading and shadows from a single point light source.

ABSTRACT

Recent GPU ray tracers can already achieve performance competi-
tive to that of their CPU counterparts. Nevertheless, these systems
can not yet fully exploit the capabilities of modern GPUs and can
only handle medium-sized, static scenes.

In this paper we present a BVH-based GPU ray tracer with a
parallel packet traversal algorithm using a shared stack. We also
present a fast, CPU-based BVH construction algorithm which very
accurately approximates the surface area heuristic using streamed
binning while still being one order of magnitude faster than pre-
viously published results. Furthermore, using a BVH allows us to
push the size limit of supported scenes on the GPU: We can now
ray trace the 12.7 million triangle POWER PLANT at 1024×1024
image resolution with 3 fps, including shading and shadows.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques Realism—Graphics data structures and data types I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1 INTRODUCTION

Lately, ray tracing systems running on graphics hardware have de-
veloped to a serious alternative to CPU-based ray tracers [PGSS07,
HSHH07]. However, even though optimized for the GPU architec-
ture, these implementations can still not utilize the full power of
modern GPUs.

To gain maximum performance from the GPU, two main prob-
lems need to be addressed. First, one needs to keep only a small
state per thread to allow for enough active threads to run to keep
the GPU busy. The ray tracer of Popov et al. required too many
live registers which resulted in a poor GPU utilization of below
33% [PGSS07]. Second, one needs to assure the coherent exe-
cution of threads running in parallel, due to the very wide SIMD
architecture of current GPUs (32–48 units execute the same in-

∗e-mail:{guenther,hpseidel}@mpi-inf.mpg.de
†e-mail:{popov,slusallek}@graphics.cs.uni-sb.de

struction [NVI]). Execution divergence (i.e. incoherent branching)
can limit performance of ray tracing to around 40% of the graphics
board’s theoretical potential [HSHH07].

Besides ray tracing performance there are several other issues
to keep in mind when designing a ray tracer running on the GPU.
Usually there is considerably less memory available on the GPU.
While a standard PC has typically 2GB (and easily up to 8GB)
of RAM the memory of standard graphic boards is still limited to
only 512-768MB. Thus, more compact data structures should be
preferred on the GPU. Furthermore, a ray tracing system – aiming
at real-time frame rates on the GPU – should support dynamically
changing scenes.

In this paper we present a novel GPU ray tracing implementa-
tion, addressing the above pointed problems and issues. We use a
new, parallel, and coherent traversal algorithm for a bounding vol-
ume hierarchies (BVH), based on a shared stack. Our method is
suited for the GPU as it requires less live registers and it exhibits co-
herent branching behavior. Furthermore, the choice of a BVH as an
acceleration structure has the additional advantage of requiring less
memory than the previously used kd-trees (especially when using
ropes [PGSS07]), and BVHs seem to be better suited for dynamic
scenes [WMG∗07] and for handling secondary rays [BEL∗07].

As a second main contribution we present a fast BVH construc-
tion algorithm for the CPU based on streamed binning [PGSS06].

2 PREVIOUS WORK

While the kd-tree remains the best known acceleration structure for
ray tracing of static scenes [Hav01] this is not that clear for dy-
namic scenes. Currently it seems that bounding volume hierarchies
(BVHs) are easier to update after geometry changes [LYTM06,
WBS07, YCM07]. Thus BVHs seem to be the better suited ac-
celeration structure for animated scenes [WMG∗07]. It has also
been shown that BVHs built according to the surface area heuris-
tic (SAH) [MB89] are quite competitive to kd-trees, in particular if
groups of rays are traversed together [WBS07].

2.1 Ray Tracing on GPUs

Ever since GPUs started to provide more raw computation power
than CPUs researchers tried to leverage this performance for other
task than the intended rasterization. Ray tracing has been among

1



To appear in the IEEE/Eurographics Symposium on Interactive Ray Tracing 2007.

these tasks from the very beginning, being both computationally
demanding and massively parallel.

The first step toward GPU ray tracing was made in 2002 with
the Ray Engine [CHH02], implementing only the ray-triangle
intersection on the GPU. Streaming geometry to the GPU be-
came quickly the bottleneck. To avoid this bottleneck Purcell et
al. [PBMH02, Pur04] moved essentially all computations of ray
tracing to the GPU: primary ray generation, acceleration structure
traversal, triangle intersection, shading, and secondary ray genera-
tion. This basic approach to ray tracing on the GPU was the base for
several other implementations, including [Chr05, Kar04, EVG04].
However, these approaches had limited performance, by far not
reaching frame rates of CPU-based ray tracers. The main prob-
lem at that time was the limited GPU architecture. Only small ker-
nels without branching were supported, thus many CPU-controlled
“rendering” passes were necessary to traverse, intersect and shade
the rays.

In particular the traversal of hierarchical acceleration structures
was difficult on the GPU, because it usually requires a stack,
which is poorly supported on GPUs. Therefore, Foley and Sug-
erman [FS05] presented two implementations of stackless kd-tree
traversal algorithms for the GPU, namely kd-restart [Kap85] and
kd-backtrack. Although better suited for the GPU, the high number
of redundant traversal steps lead to relative low performance.

Recently, Horn et al. [HSHH07] reduced the number of redun-
dant traversal steps of kd-restart by adding a short stack. With their
implementation on modern GPU hardware they already achieve
a high performance of 15–18M rays/s for moderately complex
scenes.

Concurrently Popov et al. [PGSS07] presented a parallel, stack-
less kd-tree traversal algorithm without the redundant traversal
steps of kd-restart. With over 16M rays/s on the CONFERENCE

scene, their GPU ray tracer achieves similar performance as CPU-
based ray tracers. However, both fast GPU ray tracing implementa-
tions [PGSS07, HSHH07] demonstrated only medium-sized, static
scenes.

Besides grids and kd-trees there are also several approaches that
use BVH as acceleration structure on the GPU. Carr et al. imple-
mented a limited ray tracer on the GPU that was based on geometry
images [CHCH06]. Therefore, it can only support a single triangle
mesh without sharp edges. The acceleration structure they used was
a predefined bounding volume hierarchy which cannot adapt to the
topology of the object.

Thrane and Simonsen [TS05] presented stackless traversal al-
gorithms for the BVH which allows for efficient GPU implementa-
tions. They outperformed both regular grids and the plain kd-restart
and kd-backtrack variants for kd-trees.

In our approach, we use SAH built BVHs and in contrast
to [TS05] we support ordered, view dependent traversal, thus heav-
ily improving performance for most scenes.

3 MODERN GPU DESIGN: THE G80

Recently, with the introduction of the G80 architecture, GPUs have
made a huge step ahead, not only in performance but in programma-
bility as well. Through their new programming platform [NVI],
NVIDIA’s G80 GPUs are much closer now to a highly parallel gen-
eral purpose processor with extensions for doing graphics, than to a
traditional GPU. Rather than targeting a wide range of compatible
graphics hardware, we developed our implementation specifically
for the G80 architecture, making use of most of the advanced fea-
tures it provides. The BVH traversal algorithm, presented in the
next section, will also work on any other parallel RAM (PRAM)
machine, with processors working in SIMD mode.

3.1 Hardware Architecture

The main computational unit on the G80 is the thread. As opposed
to other GPU architectures, threads on the G80 can read and write
freely to GPU memory and can synchronize and communicate with
each other.

To enable communication and synchronization, the threads on
the G80 are logically grouped in blocks. Threads in a block syn-
chronize by using barriers and they communicate through a small
high-speed low-latency on-chip memory (a.k.a. shared memory).

Physically, threads are processed in chunks of size 32 in SIMD.
The G80 consists of several cores working independently on a dis-
joint set of blocks. Each core can execute one chunk at any point
of time, but can have many more on the run and can switch among
them (hardware multi-threading). By doing this, the G80 can hide
various types of latencies, introduced for example by memory ac-
cesses or instruction dependencies. Threads never change cores,
and one block is always executed by the same core, until all threads
in it terminate. The chunks are formed deterministically, based on
the unique ID (number) of the threads in them. Thread IDs are
assigned sequentially by the hardware.

The memory of the G80 consists of a rather large on board part
(global memory), used for storing data and textures and small on-
chip parts, used for caching and communication purposes. Access-
ing the global memory is expensive in terms of the introduced la-
tency. However, if the consecutive threads of a chunk access con-
secutive memory addresses, the memory controller does a single
request to global memory and brings in a whole line, thus paying
the latency cost only once. The on-chip memory is divided be-
tween the shared memory and the register file. Each core has its
shared memory and accessing shared memory is as fast as using a
register, given that it is addressed properly. The shared memory is
partitioned among the blocks of threads local to a core. Each thread
of a block can access any memory element of its block’s partition,
but can not access the shared memory of other blocks. The register
file is partitioned among all the threads running on a core and each
thread has exclusive access to its partition.

The number of running threads (chunks) on a core is determined
by three factors: the number of register each thread uses, the size of
the shared memory partition of a block and the number of threads
in a block. Using more registers or larger shared memory parti-
tions limits the total number threads that a GPU can run, which in
turn impacts the performance, since multi-threading is the primary
mechanism for latency hiding on the GPU. An explanation of how
to best choose the block size, as well as an in-depth description of
the G80 architecture is available in [NVI].

The currently available consumer high-end G80 GPUs (GeForce
8800GTX) have 16 cores, an on-board memory of 768 MB and
16 kB of shared memory per core. Each core can run at most 768
threads and the maximum number of threads for the GPU can not
exceed 12k. The register file of each core can hold 8k scalar regis-
ters and 100% utilization can be accomplished if each thread does
not use more than 10 scalar registers and 5 words of shared memory.

Because the threads in a chunk are executed in SIMD, their
memory accesses are implicitly synchronized. Thus, the G80 can
be viewed as a CRCW PRAM machine [FW78] with 32 proces-
sors. All algorithms with coherent branch decisions designed for a
PRAM machine can directly be implemented on the G80.

3.2 Implications on Algorithm Design

To achieve full performance on the G80, algorithms should be able
to exploit fully its parallelism. Thus an algorithm should be able
to benefit from running with tens of thousands of threads. Further-
more, each thread should use as few resources as possible in order
to not limit the parallelism of the GPU. Because threads get exe-
cuted in SIMD chunks, they need to have coherent branch decisions

2



To appear in the IEEE/Eurographics Symposium on Interactive Ray Tracing 2007.

within a chunk. Otherwise, both branches will be executed by the
whole chunk.

For optimal latency coverage, the threads of the GPU need to
be compute intensive. Also, care should be taken when reading
or writing to memory, to exploit the grouping mechanism in the
memory controller of the GPU.

In this context, ray tracing can map very well to the parallelism
requirement of the GPU. On the other hand, ray tracing relies on a
precomputed spatial indexing structure used to accelerate ray-scene
intersections. Traversing the structure usually requires a per-ray
stack, which increases the per-thread state considerably. Thus, a
direct implementation of stack-based traversal on the GPU will be
slow and inefficient.

4 GPU RAY TRACING USING PARALLEL BVH TRAVERSAL

To avoid the per-ray stack, previous GPU ray tracing implemen-
tations augmented the spatial indexing data structure in a way
[PGSS07, TS05] such that they can directly traverse from one node
to another along the ray direction. Alternatively, they needed to
restart traversal after each visited leaf [FS05]. This resulted in either
a large spatial indexing structure [PGSS07] or sub-optimal traver-
sal [FS05].

4.1 Traversal Algorithm

We solve the above problems by taking a different approach. In-
stead of fully removing the stack, we trace packets of rays and
amortize the stack storage over the whole packet. We use a BVH as
an acceleration structure, because it is the only hierarchical struc-
ture that allows us to discard the per-ray entry and exit distances
(points), instead of storing them onto a per-ray stack.

The algorithm maps one ray to one thread and a packet to a
chunk. It traverses the tree synchronously with the packet. The
algorithm works on one node at a time and processes the whole
packet against it. If the node is a leaf, it intersects the rays in the
packet with the contained geometry. Each thread stores the distance
to the nearest found intersection. If the processed node is not a leaf,
the algorithm loads its two children and intersects the packet with
both of them to determine the traversal order. Each ray determines
which of the two nodes it intersects and in which it wants to go first
by comparing the signed entry distances of both children. If an en-
try distance of a node is beyond the current nearest intersection, the
ray considers the node as not being intersected. The algorithm then
makes a decision in which node to descend with the packet first by
taking the one that has more rays wanting to enter it. If at least one
ray wants to visit the other node then the address of this other node
is pushed onto stack. In case all rays do not want to visit both nodes
or after the algorithm has processed a leaf, the next node is taken
from the top of the stack and its children are traversed. If the stack
is empty, the algorithm terminates.

The decision, which node has more rays wanting to traverse it
first, is made using a PRAM sum reduction. Each thread writes a
1 in an own location in the shared memory if its ray wants to visit
the right one first, and -1 otherwise. Then, the sum of the memory
locations is computed in O(logN) – that is in 5 steps with 32 wide
chunks. The packet takes the left node if the sum is smaller than 1
and the right one otherwise.

We use the general packet intersection algorithm presented in
[KS06] for intersecting a ray with a triangle. We carry out all ray
independent pre-computations of the algorithm in 6-wide SIMD.
Working directly on the geometry allows us to discard the per-
triangle pre-computed data, used in conjunction with the fast pro-
jection intersection test [WSBW01]. Although this decreases ren-
dering speed by ca. 20%, it allows us to ray trace deformable scenes
as well as to store larger scenes in the GPU memory.

We implemented the above algorithm as part of a ray tracing
system, using NVIDIA’s CUDA [NVI]. We used a single kernel for

Algorithm 1: Shared Stack BVH Traversal

1: R = (O,D) ⊲ The ray
2: d← ∞ ⊲ Distance to closest intersection
3: NP← pointer to the BVH root

4: NL,NR : shared≡ Shared storage for N’s children
5: M[] : shared≡ Reduction memory
6: S : shared≡ The traversal stack
7: PID : const≡ The number of this processor

8: loop
9: if NP points to a leaf then

10: Intersect R with contained geometry
11: Update d if necessary
12: break, if S is empty
13: NP← pop(S)
14: else
15: if PID < size(NL,NR) then ⊲ parallel read
16: (NL,NR)[PID]← children(NP)[PID]
17: end if

18: (λ1,λ2)← intersect(R,NL)
19: (µ1,µ2)← intersect(R,NR)
20: b1← (λ1 < λ2)∧ (λ1 < d)∧ (λ2 ≥ 0)
21: b2← (µ1 < µ2)∧ (µ1 < d)∧ (µ2 ≥ 0)

22: M[PID]← false, if PID < 4
23: M[2b1 +b2]← true
24: if M[3]∨M[1]∧M[2] then ⊲ Visit both children
25: M[PID]← 2(b2∧µ1 < λ1)−1
26: PARALLELSUM(M[0 .. processor-count])

27: (NN ,NF )← pointer-to

{

(NL,NR) , if M[0] < 0
(NR,NL) , else

28: push(S,NF ), if PID = 0
29: NP← NN

30: else if M[1] then
31: NP← pointer-to(NL)
32: else if M[2] then
33: NP← pointer-to(NR)
34: else
35: break, if S is empty
36: NP← pop(S)
37: end if
38: end if
39: end loop

the whole ray tracing pipeline. Even though the CUDA compiler
was still in beta and did not aid us too much in reducing the reg-
ister count (as also reported by [PGSS07]), we were able to reach
63% occupancy of the GPU for primary rays with eye light shad-
ing and 38% with full Phong shading with shadows and mulitple
light sources. We did not tune our code additionally to reduce the
register count.

5 FAST BVH CONSTRUCTION

Inspired by [PGSS06] and [WBS07] we developed a fast, streaming
BVH construction algorithm that uses binning to approximate the
SAH cost function. The BVH variant we use is simply a binary tree
with axis-aligned bounding boxes (AABBs).

The SAH [GS87, MB89] estimates the ray tracing performance
of a given acceleration structure. This global cost CT of a complete

3



To appear in the IEEE/Eurographics Symposium on Interactive Ray Tracing 2007.

kd-tree or BVH T can be computed as

CT = KT ∑
N∈Nodes

SA(VN)

SA(VS)
+KI ∑

L∈Leaves

SA(VL)

SA(VS)
nL, (1)

where SA(V ) is the surface area of the AABB V , VS is the AABB
of the scene, KT and KI are cost constants for a traversal and an
intersection step, respectively, and nL is the number of primitives in
leaf L.

The goal of building good BVHs is to minimize this cost. How-
ever, solving this global optimization problem is impractical even
for smallest scenes. Fortunately, a local greedy approximation for
a recursive top-down BVH construction works well [WBS07]. For
each node N to be split into two child nodes Nl and Nr the cost CP

of each potential partition is computed according to

CP = KT +
KI

SA(N)
[nlSA(Nl)+nrSA(Nr)] , (2)

where nl and nr are the number of contained primitives in the re-
spective child nodes. We take that partition that has minimal local
cost CP – or terminate if creating a leaf, which has cost KI ·n, is
cheaper, with n = nl +nr being the number of primitives in the cur-
rent node.

This local optimization problem is now much smaller. However,
testing all possible 2n−1−1 partitions of the primitives of the cur-
rent node into two subsets is again impractical. Following [WBS07]
we use a set of uniformly distributed, axis-aligned planes to parti-
tion the primitives by means of their centroids.

5.1 Streamed Binning of Centroids

For each potential partition we need to compute Eq. (2), hence
we need to know the primitive counts and the surface areas
of both children. To compute these counts efficiently, Wald et
al. [WH06, WBS07] proposed to sort the primitives. However, a
much more efficient method was recently published, which avoids
sorting and which additionally features memory friendly access
patterns [PGSS06, HSM06]. For our BVH builder, we adapt the
streamed binning method of [PGSS06], which was originally pro-
posed for building kd-trees.

The idea is to iterate once over the primitives, to bin them by
means of their centroids, and by doing so, to accumulate their count
and extend in several bins. The gathered information in the bins is
then used to reconstruct the primitive counts and the surface areas
on both sides of each border between bins, and thus to compute the
SAH cost function at each border plane. Note that accumulating the
extent in the bins is necessary as well, because – unlike kd-trees –
the split plane location alone is not sufficient to compute the surface
areas of the child nodes – the AABBs of the children can shrink in
all three dimensions.

As Popov et al. [PGSS06] we minimize memory bandwidth by
performing the binning in all three dimensions for both children
during the split of the parent node.

5.2 Implementation Details

In this section we give some details of our implementation concern-
ing efficiency and robustness. The streamed binning BVH builder is
implemented on the CPU to run concurrently to the GPU ray tracer.

We extensively use SIMD operations to exploit instruction level
parallelism of modern CPUs, working on all three dimensions at
once during binning and during SAH evaluation.

Each bin consists of an AABB and a counter. The primitives are
represented by the centroid and the extent of their AABBs. For each
primitive we compute the indices of the bins of all three dimensions
from its centroid in SIMD. Then, the counters of all three bins are
incremented, and their AABBs are enlarged with the primitive’s
AABB using SIMD min/max operations.

We enhance the resolution of the binning by uniformly distribut-
ing the bins over the current interval of all the centroids rather than
over the the current bounding box of the primitives. This is espe-
cially important when there are large primitives.

After binning we evaluate Eq. (2) with two passes over the bins:
In the first pass from left to right we compute nl and SA(Nl) at the
borders of the bins by accumulating the counters and by succes-
sively enlarge the AABBs of the bins. In the second pass from right
to left we reconstruct nr and SA(Nr), and finally find the index imin

and dimension of the bin that has minimal cost CP.

Computing the split plane position from imin turned out to be
surprisingly difficult. Because of floating point precision problems
we cannot just invert the linear function used during binning. An
inaccurate split plane can not only lead to sub-optimal partitions.
In the worst case, an inaccurate split plane can even lead to an in-
valid partitions (one child is empty) if the split plane is computed to
be completely on one side of all centroids. Using double precision
only reduces the chances of invalid partitions but does not solve the
problem. Our solutions is to not compute the splitting plane from
imin at all, but to keep track of the centroids during binning. There-
fore each bin additionally stores the minimum of the coordinates
of all centroids that fell into it. Using the centroid minimum of
bin imin as split plane location then ensures consistent and robust
partitioning.

The number of bins is a crucial parameter controlling the con-
struction speed and accuracy. The more bins there are, the more
accurate is the sampling of the SAH cost function, but the more
work has to be done during calculation of the SAH function from
the binned data (the binning steps are independent from the num-
ber of the bins). There should be at most 256 bins per dimension
such that the binning data still fits into 64 kB of L1 cache. Addi-
tionally, binning becomes inefficient if the number of bins is close
to the number of to-be-binned primitives. Therefore we adaptively
choose the number number of bins k per dimension linearly depend-
ing on number of primitives n and bin-ratio r: k = n/r and clamp it
to [kmin,kmax]. We experimented with different parameter sets rep-
resenting a trade-off between speed and accuracy. The default
settings are kmax = 128, kmin = 8, and r = 6. The fast settings are
kmax = 32, kmin = 4, and r = 16.

6 RESULTS AND DISCUSSION

For measuring purposes we used an Intel 2.4GHz Core 2 worksta-
tion and a NVIDIA GeForce 8800 GTX graphics card.

6.1 Fast BVH Construction

Streamed binning for BVH construction is more computational de-
manding than for kd-tree construction, because one needs to keep
track not only of the primitive counts, but also of the surface areas of
the children. Additionally, the surface area cannot be incrementally
computed, because the AABBs may have changed in all three di-
mensions. Nevertheless, constructing an SAH BVH with streamed
binning can still be faster than constructing an SAH kd-tree for the
same scene: Because a BVH does not split primitives, less nodes
need to be created; and because a BVH node bounds in three di-
mensions whereas a kd-tree node bounds only in one dimension,
there are usually less tree levels in a BVH (given the same SAH
termination parameters), and thus the number of splits and binning
steps is lower.

These considerations are backed up by our measurements in Ta-
ble 1, where we compare, among others, the construction time of
kd-trees and BVHs. With our BVH builder we consistently out-
perform published constructions times for kd-trees that also use
the scanning/binning approach [PGSS06, HSM06], even though
[HSM06] used significantly fewer primitives (because they do not
tessellate quads into triangles).

4



To appear in the IEEE/Eurographics Symposium on Interactive Ray Tracing 2007.

scene #tris kd-tree size with ropes BVH size

SHIRLEY6 804 82.4 kB 266.3 kB 21.0 kB
BUNNY 69,451 6.9 MB 23.0 MB 2.14 MB
FAIRY FOREST 174,117 14.9 MB 47.9 MB 4.78 MB
CONFERENCE 282,641 27.8 MB 85.0 MB 7.62 MB
SODA HALL 2,169,132 — — 55.0 MB
POWER PLANT 12,748,510 — — 230 MB

Table 2: Comparing the size of different acceleration structures for GPU ray

tracing for several scenes. We list the sizes for a kd-tree, a kd-tree with ropes

(data from [PGSS07]), and for a BVH – all constructed according the greedy

SAH cost function. A BVH needs only 1/3–1/4 of the space of a kd-tree and

is one order of magnitude smaller than a kd-tree with ropes. Thus even the

12.7 million triangle POWER PLANT fits into graphics memory.

Our measurements in Table 1 include absolute construction time
and relative BVH quality (in SAH cost, Eq. (1)) for both, the
default and the fast parameter settings (see Section 5.2). Us-
ing the the fast settings BVH construction is about 20% faster at
the cost of slightly decreased BVH quality.

Comparing to previously published data of a sweep-based SAH
BVH builder [WBS07] our streamed binning approach is one order
of magnitude faster at almost the same BVH quality.

For their BVH-based ray tracer Lauterbach et al. [LYTM06] fa-
vored construction speed over ray tracing performance to support
dynamic scenes. With split-in-the-middle they chose the proba-
bly fastest approach to select a partition plane during BVH con-
struction, which unfortunately also decreases ray tracing perfor-
mance to 50%–90% compared to building the BVH according the
SAH [LYTM06]. Approximating the SAH with our binning ap-
proach achieves faster construction times (also due to faster hard-
ware) while retaining high ray tracing performance.

Interestingly, for some scenes the binning approximation of the
SAH cost function results in even better BVHs (quality > 100% in
Table 1) than when exactly evaluating Eq. (2). This is a strong con-
firmation that the local greedy SAH function is exactly that, a lo-
cal greedy optimization, failing to provide the global minimal SAH
cost (Eq. (1)).

Even though the 350 million triangle BOEING 777 model cur-
rently does not fit into GPU memory, we include construction times
showing that even for such a large scene our streamed binning con-
struction algorithm can produce a high quality BVH in less than
10 minutes.

6.2 Memory Requirements

In Table 2 we compare the size of a BVH with the size of both a
plain kd-tree and a kd-tree with ropes for stackless traversal on the
GPU [PGSS07]. Although a node of a BVH needs 28 Bytes (6 float
for the bounds and one pointer for the children) and is therefore
larger than a kd-tree node (8 Bytes), a BVH needs fewer nodes than
a kd-tree: Being an object hierarchy a BVH does not have empty
nodes and has at most as many inner nodes as there are primitives,
whereas a kd-tree can potentially finely subdivide the space taken
by primitives to cut off empty space. Thus a BVH is much more
frugal with memory for the same scene as a kd-tree, not to speak
of adding ropes. A kd-tree is between three and four times larger
than a BVH, augmenting a kd-tree with ropes adds another factor of
three. Given the notoriously stinted memory on GPU boards these
numbers strongly advice to use the BVH. Using a BVH with only
230 MB allows us to even ray trace the 12.7 million triangle POWER

PLANT scene on the GPU.

6.3 Ray Tracing Performance

Finally, in Table 3 we present the absolute ray tracing performance
(excluding BVH construction time) of our BVH-based GPU ray
tracer, in comparison with previously published performance data

[PGSS07] our GPU ray tracer
scene primary 2ndary primary +shadow

FAIRYFOREST 10.6 4.0 13.2 (14.6) 4.8
CONFERENCE 16.7 6.7 16 (19) 6.1
SODA HALL — — 13.6 (16.2) 5.7
POWER PLANT — — 6.4 2.9

Table 3: Absolute ray tracing performance for a 1024×1024 image in fps

of our BVH-based GPU ray tracer in comparison to the currently fastest, kd-

tree-based GPU ray tracer [PGSS07]. Primary rays are eye-light shaded and

additionally we report performance numbers when illuminating with a single

point light and tracing shadow rays. The numbers in brackets denote the fps

when using a precomputed triangle projection test [WSBW01].

Figure 2: Visualization of SIMD utilization during traversal of the complex

POWER PLANT scene for the same views as in Figure 1. The brightness of a

pixel indicates the percentage of inactive traversal steps.

of a kd-tree-based GPU ray tracer [PGSS07] running on the same
graphics hardware. Although kd-trees are usually more efficient
for ray tracing than BVHs [Hav01] we achieve comparable or even
slightly faster frame rates. The reason is that our parallel BVH
traversal algorithm is easier to implement and uses less live registers
and thus we get a higher GPU utilization of 63% compared to the
33% of [PGSS07] for primary rays.

The efficiency of our packet traversal algorithm also depends on
the coherence of the traversal decisions of the rays in a packet. In
Figure 2 we display the ratio of inactive traversal steps of a ray to
the number of all traversal steps of its packet. On object boundaries
incoherent traversal decisions are clearly visible. For the two shown
views of the complex POWER PLANT scene the average SIMD uti-
lization is still about 88% and 85%, respectively.

7 CONCLUSION AND FUTURE WORK

In this paper we demonstrated real-time GPU ray tracing with a
new, parallel BVH traversal algorithm that is suited for modern
graphics hardware. Although BVHs are usually slower for ray trac-
ing than kd-trees we can achieve at least the same performance as
kd-tree-based GPU ray tracers running on the same hardware. By
exploiting the compactness of BVHs and by directly operating on
triangle data without intersection acceleration structures we are able
to ray trace large models not seen on a GPU before. Additionally,
we presented a construction algorithm for BVHs based on streamed
binning that is both very fast and accurate.

As for future work we would like to implement the binning SAH
BVH construction on the GPU. Alternatively, we think of refitting
the BVH on the GPU to support dynamic scenes and rebuilding the
BVH asynchronously on the CPU to counter BVH degradation in
the sense of [IWP07].

5



To appear in the IEEE/Eurographics Symposium on Interactive Ray Tracing 2007.

published kd-tree data published BVH data our BVH measurements
2.6GHz Opteron 2.4GHz Core 2 2.8GHz P4 2.6GHz Opteron 2.4GHz Core 2

scene #tris [PGSS06] [HSM06] [LYTM06] [WBS07] exact SAH binning quality fast binning quality

BUNNY 69,451 513 ms 250 ms 90 ms — 168 ms 48 ms 99.8% 37 ms 98.9%
FAIRY FOREST 174,117 1.15 s 0.3 s — 2.8 s 0.47 s 0.12 s 100.2% 0.10 s 98.8%
CONFERENCE 282,641 1.41 s — — 5.06 s 0.80 s 0.20 s 99.4% 0.15 s 92.5%
BUDDHA 1,087,716 — — 1.7 s 20.8 s 4.38 s 0.84 s 100.0% 0.66 s 98.9%
SODA HALL 2,169,132 — 5.14 s — 53.2 s 8.78 s 1.59 s 101.6% 1.28 s 103.5%
POWER PLANT 12,748,510 — — — — 119 s 8.1 s 100.5% 6.6 s 99.4%
BOEING 777 348,216,139 — — — — 5605 s 667 s 98.1% 572 s 94.8%

Table 1: Comparing the (re)construction performance for kd-tree and BVH using different construction algorithms on similar hardware. Due to its huge size the

BOEING 777 was measured on a 2.0GHz Opteron with 64GB RAM, of which 35GB were consumed during construction. Note that [HSM06] supports quads

and thus uses considerable fewer primitives for construction. All acceleration structures are built according to SAH; [LYTM06] is one exception – they use quick

split-in-the-middle, which decreases the quality of the BVH and rendering speed to 50%–90% compared to using SAH. The reported quality of our proposed

binned BVH construction is measured in SAH cost Eq. (1) and is relative to the exact SAH evaluation. Binned BVH construction is both very fast and accurate.

REFERENCES

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS J.,

KAUTZ J., SHIRLEY P., WALD I.: Packet-Based Whitted

and Distribution Ray Tracing. In Proceedings of Graphics In-

terface 2007 (May 2007). 1

[CHCH06] CARR N. A., HOBEROCK J., CRANE K., HART J. C.: Fast

GPU Ray Tracing of Dynamic Meshes using Geometry Im-

ages. In Proceedings of Graphics Interface (2006), A.K. Pe-

ters. 2

[CHH02] CARR N. A., HALL J. D., HART J. C.: The Ray Engine.

In Proceedings of Graphics Hardware (2002), Eurographics

Association, pp. 37–46. 2

[Chr05] CHRISTEN M.: Ray Tracing auf GPU. Master’s thesis, Fach-

hochschule beider Basel, 2005. 2

[EVG04] ERNST M., VOGELGSANG C., GREINER G.: Stack Imple-

mentation on Programmable Graphics Hardware. In Proceed-

ings of the Vision, Modeling, and Visualization Conference

2004 (VMV 2004) (2004), Aka GmbH, pp. 255–262. 2

[FS05] FOLEY T., SUGERMAN J.: KD-tree Acceleration Structures

for a GPU Raytracer. In HWWS ’05 Proceedings (2005), ACM

Press, pp. 15–22. 2, 3

[FW78] FORTUNE S., WYLLIE J.: Parallelism in Random Access

Machines. In STOC ’78: Proceedings of the tenth annual

ACM symposium on Theory of computing (1978), ACM Press,

pp. 114–118. 2

[GS87] GOLDSMITH J., SALMON J.: Automatic Creation of Object

Hierarchies for Ray Tracing. IEEE Computer Graphics and

Applications 7, 5 (May 1987), 14–20. 3

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD thesis,

Faculty of Electrical Engineering, Czech Technical University

in Prague, 2001. 1, 5

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HANRAHAN P.:

Interactive k-D Tree GPU Raytracing. In I3D ’07: Proceed-

ings of the 2007 symposium on Interactive 3D graphics and

games (2007), ACM Press, pp. 167–174. 1, 2

[HSM06] HUNT W., STOLL G., MARK W.: Fast kd-tree Construction

with an Adaptive Error-Bounded Heuristic. In Proceedings of

the 2006 IEEE Symposium on Interactive Ray Tracing (Sept.

2006), pp. 81–88. 4, 6

[IWP07] IZE T., WALD I., PARKER S. G.: Asynchronous BVH Con-

struction for Ray Tracing Dynamic Scenes on Parallel Multi-

Core Architectures. In Proceedings of the 2007 Eurograph-

ics Symposium on Parallel Graphics and Visualization (May

2007). 5

[Kap85] KAPLAN M. R.: Space-Tracing: A Constant Time Ray-

Tracer. Computer Graphics 19, 3 (July 1985), 149–158. (Pro-

ceedings of SIGGRAPH 85 Tutorial on Ray Tracing). 2

[Kar04] KARLSSON F.: Ray tracing fully implemented on pro-

grammable graphics hardware. Master’s thesis, Chalmers

University of Technology, 2004. 2

[KS06] KENSLER A., SHIRLEY P.: Optimizing Ray-Triangle Inter-

section via Automated Search. In Proceedings of the 2006

IEEE Symposium on Interactive Ray Tracing (Sept. 2006),

pp. 33–38. 3

[LYTM06] LAUTERBACH C., YOON S.-E., TUFT D., MANOCHA D.:

RT-DEFORM Interactive Ray Tracing of Dynamic Scenes us-

ing BVHs. In Proceedings of the 2006 IEEE Symposium on

Interactive Ray Tracing (Sept. 2006), pp. 39–46. 1, 5, 6

[MB89] MACDONALD J. D., BOOTH K. S.: Heuristics for Ray Trac-

ing using Space Subdivision. In Graphics Interface Proceed-

ings 1989 (June 1989), A.K. Peters, Ltd, pp. 152–163. 1, 3

[NVI] NVIDIA: The CUDA Homepage. http://developer.

nvidia.com/cuda. 1, 2, 3

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRAHAN P.: Ray

Tracing on Programmable Graphics Hardware. ACM Trans-

actions on Graphics (Proceedings of ACM SIGGRAPH) 21, 3

(2002), 703–712. 2

[PGSS06] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.: Ex-

periences with Streaming Construction of SAH KD-Trees. In

Proceedings of the 2006 IEEE Symposium on Interactive Ray

Tracing (Sept. 2006), pp. 89–94. 1, 3, 4, 6

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.:

Stackless KD-Tree Traversal for High Performance GPU Ray

Tracing. Computer Graphics Forum 26, 3 (Sept. 2007). (Pro-

ceedings of Eurographics), to appear. 1, 2, 3, 5

[Pur04] PURCELL T. J.: Ray Tracing on a Stream Processor. PhD

thesis, Stanford University, 2004. 2

[TS05] THRANE N., SIMONSEN L. O.: A Comparison of Accelera-

tion Structures for GPU Assisted Ray Tracing. Master’s thesis,

University of Aarhus, 2005. 2, 3

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing Deformable

Scenes using Dynamic Bounding Volume Hierarchies. ACM

Transactions on Graphics 26, 1 (Jan. 2007), 6. 1, 3, 4, 5, 6

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for Ray

Tracing, and on doing that in O(N log N). In Proceedings of

the 2006 IEEE Symposium on Interactive Ray Tracing (Sept.

2006), pp. 61–70. 4

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOULOS S., IZE T.,

HUNT W., PARKER S. G., SHIRLEY P.: State of the Art

in Ray Tracing Animated Scenes. In STAR Proceedings of

Eurographics 2007 (Sept. 2007), Eurographics Association.

to appear. 1

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-

teractive Rendering with Coherent Ray Tracing. Computer

Graphics Forum 20, 3 (2001), 153–164. (Proceedings of Eu-

rographics). 3, 5

[YCM07] YOON S.-E., CURTIS S., MANOCHA D.: Ray Tracing

Dynamic Scenes using Selective Restructuring. Computer

Graphics Forum 26, 3 (Sept. 2007). (Proceedings of Euro-

graphics), to appear. 1

6

http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda

	1 Introduction
	2 Previous Work
	2.1 Ray Tracing on GPUs

	3 Modern GPU Design: The G80
	3.1 Hardware Architecture
	3.2 Implications on Algorithm Design

	4 GPU Ray Tracing Using Parallel BVH Traversal
	4.1 Traversal Algorithm

	5 Fast BVH Construction
	5.1 Streamed Binning of Centroids
	5.2 Implementation Details

	6 Results and Discussion
	6.1 Fast BVH Construction
	6.2 Memory Requirements
	6.3 Ray Tracing Performance

	7 Conclusion and Future Work

