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Summary. A methodology is developed for making inference about parameters of a possible
covert chemical or biological atmospheric release from sensor readings. The key difficulty in
performing this inference is that the results must be obtained in a very short timescale (5 min) to
make use of the inference for protection. The methodology that is developed uses some of the
components in a sequential Monte Carlo algorithm. However, this inference problem is different
from many other sequential Monte Carlo problems, in that there are no state evolution equations,
the forward model is highly non-linear and the likelihoods are non-Gaussian.The algorithm that
is developed can use stored output from complex physics models for more rapid update of the
posterior from new data without having to rerun the models. The use of differential evolution
Markov chain sampling allows new samples to diverge rapidly from degenerate sample sets.
Results for inferences made of atmospheric releases (both real and simulated) of material are
presented, demonstrating that the sampling scheme performs adequately despite constraints
of a short time span for calculations.

Keywords: Differential evolution Markov chain; Likelihood calculations; Metropolis
acceptance; Realtime computation; Sequential Monte Carlo methods

1. Introduction

Standard Bayesian analysis normally relies on Monte Carlo algorithms to perform thousands

of likelihood calculations. In situations where likelihood calculations are computationally

expensive and there are time or processor constraints, standard approaches may prove infeasible.

There are several new Monte Carlo techniques which allow Bayesian computation when there

are computational constraints including sequential Monte Carlo (SMC) methods (Doucet et

al., 2000, 2001), approximate Bayesian computation (Beaumont et al., 2002; Sisson et al., 2007)

and SMC samplers (Del Moral et al., 2006; Peters, 2005; Peters et al., 2008).

In this paper, we use components from these approaches and combine them with some

innovative, problem-specific techniques, to make inference about a highly complex multimodal

posterior distribution where likelihood calculations are computationally expensive and sequen-

tial information about an event in the past is received in realtime.

The motivating example for this work is determining the static source of an atmospheric

pollutant from inexact sensor readings.

Previous work in the static parameter setting includes the development of an efficient SMC

scheme for problems that require inference in addition to evolving state variables (Liu and West,

2001). This approach uses parameter shrinkage and automatic kernel calculation. Alternatively,

Chopin (2002) proposed a ‘black box’ framework with a Metropolis–Hastings ‘move’ kernel
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and suggested better performance than common estimation procedures in terms of robustness

and execution time.

One method of addressing the source term estimation problem is to precompute dispersion

runs which fill the parameter space and interpolate between them. However, this requires large

amounts of processing power and storage and therefore is not suitable for this application. A

second option is to undertake standard parameter inference. In this case the likelihood would

be recalculated by using the physics model after each new piece of data becomes available; this

would again result in significant processing requirements and so is also unsuitable.

Our methodology proposes the combination of Markov chain Monte Carlo (MCMC)

sampling with aspects of an SMC algorithm. This approach is designed to minimize the

computational burden of evaluating a time-dependent posterior and to minimize the likelihood

of becoming ‘stuck’ in a local minimum.

The integration of alternative MCMC methods into the SMC algorithm has been previously

suggested by Fearnhead (2002), Berzuini et al. (1997) and Gilks and Berzuini (2001). The

standard Metropolis–Hastings acceptance scheme that was used in these references is modified

for our particular problem, so that poorer source term estimates are rejected before the need to

run the costly dispersion model. In this way, the computation time is better used for more likely

estimates.

A crucial issue in Monte Carlo algorithms is the choice of proposal distribution. Details of

this problem have been discussed at length in several references (Roberts and Rosenthal, 2001;

Gelman et al., 1996) and are therefore not dealt with here. To overcome the proposal choice

problem in this particular application we adopt the method of ter Braak (2006) and employ

differential evolution Markov chain (DEMC) methods. A local differential evolution optimi-

zation algorithm (Storn and Price, 1997) is developed into an MCMC algorithm. This idea

allows the proposal to be drawn by using current samples and allows a natural scaling of the

proposal distribution, thus eliminating the precise tuning of proposal distribution parameters

and associated inefficiency.

Further, part of the likelihood calculation for this problem requires running a complex physics

simulation. It would be prohibitively time consuming to rerun these simulations for all samples,

for every new piece of data. Since it is possible to run simulations into the future, we shall save

the output for inexpensive likelihood calculations from future data.

We shall also propose retaining reweighted source term estimates rather than discarding them

as in previous static parameter SMC schemes. This will further help to minimize costly likelihood

calculations.

The overall aim of this work is to detect jointly as well as to estimate the source parameters. The

problem has many similarities to the recursive track-before-detect method that was described in

Ristic et al. (2004), except that the likelihood functions are different and we treat the problem as

a static parameter estimation problem. In previous approaches (Ristic and Gunatilaka, 2008),

to perform detection of a source term, an additional binary random variable indicating the

absence or presence of the source is employed. Joint detection and estimation is then treated

as a hybrid (continuous–discrete) estimation problem. Alternatively, we shall incorporate the

detection of the source term with the determination of the mass. This will further maximize the

use of existing calculations and determine the source term existence directly from the core filter.

A detailed description of the motivating problem is given in Section 2. A derivation of the

models that we shall use is given in Section 2.2. Owing to the nature of the problem there will

be separate models for each type of sensor from which we receive data about a possible release.

The necessary complexity of the models makes Monte Carlo computation the only practical

approach for inference. However, standard computational techniques such as MCMC and SMC
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sampling are unsuitable on their own. We outline the computational approach that is taken in

Section 3. Finally, the results for both real and simulated data are presented in Section 4, with

conclusions drawn in Section 5.

2. Motivating example

If a hazardous pollutant is released into the atmosphere either from an industrial accident or

a deliberate attack there is an urgent requirement to warn surrounding populations. This is

achieved through hazard predictions that are obtained from dispersion models. However, to

run a dispersion model we must infer the location and type of release (a source term) from

continuously monitored sensor data. In addition, it is necessary to determine whether such a

release has actually occurred.

Several methods of source term estimation have been proposed. However, the techniques

that are implemented for posterior estimation require either the simplifying assumption of a

continuous release (Thompson et al., 2007) or allow a relatively large computational overhead

(Delle Monache et al., 2008). In addition, algorithms to update directly an estimate of the current

position of a cloud of radioactive material dispersed from a facility whose location is known

have been presented by Smith and French (1993) using sequentially arriving data.

In this example, we consider the source term θ to consist of location in two dimensions (l1, l2),

release time t and mass m, i.e. θ = .l1, l2, t, m/. These parameters are highly correlated; a more

massive release further back in time and further away from the sensors may produce similar

sensor readings to a small release closer to the sensors. Sensor readings will be received at

arbitrary time intervals and will have uncertainty associated with them. A requirement for the

inference system is that it can run continuously, i.e. it makes the most efficient use of computing

resources before an event and has the ability to reset itself a predetermined length of time after

data arriving at the system no longer correspond to the release.

2.1. Prior model

We cannot proceed to make inferences about source term values unless we first determine its

existence. If the incoming data do not support this hypothesis, then erroneous inferences will be

made. As a consequence, and to simplify the sampling, we shall use a surrogate mass parameter

mÅ that can assume negative values and define all sampled parameter sets with mÅ � 0 as no

release with m = 0. The prior on the surrogate mass is a double-exponential distribution as

follows:

p.mÅ/=
1

2µmÅ
exp

(

−
|mÅ|
µmÅ

)

: .1/

The mean µmÅ is determined according to operational information about likely release masses.

When the surrogate mass parameter mÅ � 0, then the other parameters, θ=m = .l1, l2, t/, are

irrelevant. This use of a surrogate mass prior variable is a computational convenience that

simplifies the sampling process (see Section 3.2) and removes the requirement for an explicit

trans-dimensional sampling scheme.

We shall assume inference over a 30 km × 30 km square domain and assign a uniform prior

distribution; additional narrow half-normal tails will allow the mode of the posterior to be

outside the parameter space if the data suggest.

We apply a uniform prior for release times between the current time T and an hour into

the past; a half-normal tail into the past, with a standard deviation of half an hour, is further

appended. Note that this prior moves with the passage of realtime (see Section 3.5).
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2.2. Likelihood model

We build a likelihood model to determine the source term parameters, with components of a

sensor model and a dispersion model. Dispersion is a stochastic process in nature. Therefore,

the physics models that are developed to represent dispersion tend to be ensemble models which

account for atmospheric turbulence. In this application, we use a Gaussian dispersion model

owing to the relatively fast run time in comparison with other models. This model assumes that

the concentration c, given mean µ and variance σ2 at a given location, is described by a clipped

normal distribution (Lewellen and Sykes, 1986), with distribution function

F.c|µ, σ/=
{

0 c< 0,

Φ{.c−µ/=σ} c�0,
.2/

where Φ is the standard normal distribution function.

Calculation of the dispersion parameters is undertaken by using a complex physical model

which is implemented as a deterministic simulation code. Therefore the mean and variance of the

clipped normal distribution .µ, σ2/ and the source term parameters .l1, l2, t, m/ are interchange-

able via the simulation, assuming that the meteorological environment is well characterized. We

shall refer to µ and σ2 as the source term for the likelihood calculations; however, this is purely

a notational convenience. The simulation is treated as a ‘black box’ to allow different dispersion

models to be used. The equations underlying the model that is used in this paper can be found

in Cimorelli et al. (2004). The dispersion model that is used is also similar to that described in

Smith and French (1993).

The only data that we receive about the source term is from downwind sensor readings. There-

fore, to create a likelihood model for µ and σ2, we need to develop sensor models from which

we can determine the probability of a sensor reading given a particular concentration. These

sensor models will obviously be specific to the technology that is used. The inclusion of a natural

background will also be dependent on the ability of the sensor to distinguish a release from the

background. We shall denote a generic sensor reading by x. The true value of the concentration

is never directly observed and is therefore integrated out of the likelihood model,

p.x|µ, σ2/=
∫

p.x|c/
︸ ︷︷ ︸

measurement
density

p.c|µ, σ2/
︸ ︷︷ ︸

concentration
density

dc: .3/

An example of a sensor model which can discriminate a signal from a background is given in

Appendix A.1 and a model of a sensor which cannot discriminate a signal from the background

is given in Appendix A.2.

3. Computation

We propose a posterior sampling algorithm that can make use of stored data from physics mod-

els using recent temporally varying information. The algorithm shares some of the attributes of

an SMC method (Doucet et al., 2001); knowledge of the posterior is represented by a discrete

approximation of samples and weights as usual. However, the algorithm differs in that there

are no equations for state prediction, and weighted samples from the posterior are retained as

data are processed, rather than discarded, to reduce the cost of the likelihood computations.

A step-by-step description of the full method is presented in algorithmic form in Appendix

C and described in the following sections.

We denote the current time as T and define a data window [T −TD, T ] over which data will

be considered. Data afore T − TD are considered obsolete. Thus, a maximum for likelihood



Sequential Inference of Static Parameters 645

computation complexity can be specified given a constant rate of data. As an alternative, a

maximum number of data could be specified, thereby guaranteeing constant complexity when

the data arrive at varying rates. However, we use time as a criterion because data may be delayed

in transmission from the sensor to the inference system and arrive out of sequence.

When the inference engine is not processing incoming data, new samples are generated accord-

ing to the current posterior distribution. We shall propose new samples by using a DEMC

algorithm (ter Braak, 2006). This algorithm is a combination of differential evolution genetic

optimization (Storn and Price, 1997) with standard random-walk Metropolis MCMC sampling

(Metropolis et al., 1953).

For each unique new sample, the dispersion model is run and the concentration probability

density parameters µ and σ are stored at regular time intervals in [T −TD, T +TD]. This allows

likelihood calculations for existing samples to be rapidly evaluated on receipt of new data without

rerunning the dispersion model. Storing output that is associated with times in the future ensures

that the likelihoods and weights of samples generated at time T can be updated from any new

data arriving up to TD in the future.

The unnormalized posterior probability of the sample proposed is calculated by using the

product of the prior distribution and the likelihoods given all the data xi currently stored, where

the data are assumed conditionally independent given the source term parameter:

p.θ|x/∝p.θ/
Nx∏

i=1

p.xi|θ/, .4/

where Nx is the number of data points.

3.1. Data processing

On the receipt of new data several tasks are performed.

(a) Owing to the temporal nature of the inference, both samples and data will become obsolete

and are removed according to the algorithm below. Define the time at which a sample θ.i/

ran the dispersion code as τ .i/ and the time at which data xj were measured as ψj.

(i) For all pairs {θ.i/, τ .i/}, i=1, . . . , N, if τ .i/ <T −TD then remove θ.i/.

(ii) For all pairs {xj, ψj}, j =1, . . . , Nx, if ψj <T −TD then remove xj.

If some data xj are removed, the samples that are left have their likelihoods divided by

the likelihood component due to the data being removed p.xj|θ/. This ensures that each

sample has its total likelihood calculated from the same amount of data.

(b) If the sampler becomes overwhelmed with the overhead of updating its list of samples with

data (i.e. the system is struggling to update a large number of samples with a small effective

samples size in realtime), the sample list is trimmed by using sampling–importance

resampling (Gordon et al., 1993). Thus, the number of samples is constantly changing

given computational constraints and the rate of incoming data.

(c) The weights of all the stored samples are multiplied by the likelihood of the new data given

the stored model outputs. The stored total likelihood of each sample is also multiplied by

the likelihood of the new data for use in the DEMC algorithm.

(d) After every data update, the DEMC chain ends are randomly redistributed among the

existing samples according to their weights (see Section 3.4).

3.2. Adding new samples between data

The resample–move SMC algorithm of Berzuini et al. (1997) proposed to use a Metropolis–

Hastings MCMC step to add diversity to a parameter estimation SMC scheme. In that case,
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MCMC sampling is used to sample from the state evolution equations. In our application, there

are no state evolution equations as the source term is a fixed event in space and time. However,

as we have defined a finite amount of data to use in our inference, we can sample directly from

the posterior.

In general, the random-walk Metropolis accept–reject MCMC (O’Hagan and Forster, 2004)

framework is a popular choice for an MCMC algorithm; however, the success of this depends

on determining a suitable value for the size of the random steps. In the multivariate normal

case, this amounts to defining the covariance matrix Σ. In our problem, the form of the

posterior probability density is a function of the available data and various scenario parameters,

in particular the local time varying meteorology. Therefore, it is difficult to specify a proposal

distribution that will be suitable for all scenarios at all times. This restricts the use of more general

and potentially more efficient algorithms, e.g. Metropolis–Hastings algorithms (Hastings, 1970).

For these reasons, an adaptive scheme was required whereby the proposal distribution can be

automatically modified according to the current posterior samples.

In DEMC sampling, several parallel MCMC chains are generated simultaneously. The

population of current Markov chain states, θ.i/, i= 1, 2, . . . , NDEMC, is used to generate jump

proposals:

θÅ.i/ =θ.i/ +γ.θ.j/ −θ.k//+ ", i �= j �=k, .5/

where " is a narrow normally distributed multivariate parameter and γ is a scalar indicating the

size of jumps relative to the Markov chain differences.

In the source term estimation model, the indices j and k are chosen randomly from the NDEMC

chain ends. The index i may be iterated or chosen randomly. We choose the former. DEMC

sampling allows the jump proposal to adapt itself to the current estimate of the posterior and

so removes the responsibility of the user to provide a reasonable jump sampling distribution.

As the indices j and k are chosen randomly and " is symmetric, this algorithm is a special case

of the random-walk Metropolis MCMC algorithm.

The DEMC algorithm is much more aggressive at expanding posterior sample sets than other

resampling methods (ter Braak, 2006), e.g. mixtures of normal distributions. This property is

useful when the samples become degenerate. It also means that the behaviour of the sampler is

not very sensitive to the choice of " as long as it is smaller than the target distribution.

After ter Braak (2006), we shall use

γ =2:38=
√

.2d/, .6/

where d =dim.θ/=4. We use independent normal variates for the components of " with standard

deviations of 1 m for the location parameters .l1, l2/, 1 s for the time parameter t and 1% of the

surrogate mass parameter mÅ. These values are smaller than the accuracy to which we would

hope to make inference in the best of cases. We shall use NDEMC =10d =40 as suggested by ter

Braak (2006).

Use of a surrogate mass mÅ and maintaining the rest of the parameter vector for no-release

samples simplifies the sampling algorithm by allowing the DEMC algorithm to jump between

release and no release without having explicitly to jump between two models of different

dimensionality.

3.2.1. Two-step acceptance

The optimal acceptance ratio for random-walk Metropolis MCMC algorithms is 0.234 (Roberts

et al., 1997) for multivariate normal target distributions with identical marginal densities. In

general, the optimal acceptance ratio may be anywhere between 0.1 and 0.4 (O’Hagan and
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Forster, 2004). Assuming an acceptance probability of about 0.25, approximately three out of

every four computationally expensive dispersion model calculations would be wasted. We first

note that, before a source term release, the posterior probability is dominated by the prior.

As the prior distribution of a sample does not require a dispersion model calculation for its

evaluation, we thus carry out the accept–reject stage of the sampling in two steps; we initially

accept or reject on the prior distribution,

uniform.0, 1/<p.θ′/=p.θ/: .7/

If the sample is accepted according to the prior, we carry out a dispersion calculation and

continue to accept if

uniform.0, 1/<
Nx∏

i=1

p.θ′|xi/

/
Nx∏

i=1

p.θ|xi/, .8/

although a dispersion calculation is only required for this likelihood calculation if the new

surrogate mass mÅ > 0.

When the posterior probability is dominated by the prior, the majority of model calculations

are stored and not wasted, because the likelihood in the region of the prior is flat and nearly all

the proposals which pass the prior accept–reject stage also pass through the likelihood accept–

reject stage. This means that a larger population of samples that have used recent meteorological

information is available to the system when data indicating a release is first received. Proof that

this method satisfies the detailed balance equation is given in Appendix B.

3.3. Relative weighting of blocks of differential evolution Markov chain samples

Each block of samples that is created in between updates is an unbiased estimator of the true

posterior whether the block has been created solely from MCMC sampling or a combination

of MCMC sampling followed by multiple reweightings. Thus we are free to choose any mixture

of these sample blocks as our total unbiased posterior estimator

Ê[g.θ̂/]=
Nx∑

i=1

βiÊ[g.θ̂i/], .9/

within the constraints βi > 0 and Σβi =1.

Clearly, some choices of βi will be better than others. Early blocks are likely to have smaller

effective sample sizes N̂
.i/

eff (Kong et al., 1994) than later blocks.

N̂
.i/

eff =1

/
Ni∑

j=1

w.ij/2

: .10/

The latest block of samples which is derived solely from MCMC sampling will have an effec-

tive sample size equal to the total number of samples in the block as all the weights are equal.

We choose a heuristic scheme such that block weights βi are updated recursively according to

their effective sample size. For instance, if a single datum x1 has been processed and MCMC

sampling has continued into a second block, the relative weight of the first block is

N̂
.1/

eff =1

/
N1∑

j=1

w.1j/2
: .11/
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Therefore, the normalized block weights are

β1 =
N̂

.1/

eff

N̂
.1/

eff +N2

, .12/

β2 =
N2

N̂
.1/

eff +N2

: .13/

In general, after a datum xNx , the new block weights β′
i are calculated as follows. First we

calculate the effective sample size of all the updated blocks by using their block weights βi

calculated after the previous datum xNx−1:

N̂
.1:::Nx/

eff =1

/
Nx∑

i=1

{
Ni∑

j=1

.βiw
.ij//2

}

: .14/

Then, the normalized block weights are

β′
i =

βiN̂
.1:::Nx/

eff

N̂
.1:::Nx/

eff +NNx+1

, i=1, . . . , Nx, .15/

β′
Nx+1 =

NNx+1

N̂
.1:::Nx/

eff +NNx+1

: .16/

We use this sample block weighting scheme whenever inference is required. It is also used for

the sampling–importance resampling in the case of data overwhelming the system (Section 3.1,

point (b)) and the importance resampling of the DEMCs after data updates.

3.4. Restarting the differential evolution Markov chains after a datum update

After every data update xi, the DEMCs are randomly redistributed between the existing

samples according to their weights. For each chain, we first sample a block i∈{1, . . . , Nx} and

0
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Fig. 1. Assumed distribution of the time prior relative to the current system time T
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then choose a θ.ij/ by using w.ij/. This is an importance sampling of the posterior approximation.

Thus, for each block of samples between data updates, the chains start with an approximation

of the current posterior distribution and therefore have equal weight.

3.5. Calculation of the time prior

The time prior is specified relatively to the current time T. This means that, as a function of

absolute time, the prior distribution is evolving (Fig. 1). If we consider a sample with a time

parameter 1 h in the past relative to the current time, this sample will have a time prior of

1. If, 10 min later, we proposed a new sample at the same absolute time, i.e. now 1 h 10 min

ago, the prior would be much lower, leading to low acceptance probability if the latter sample

is proposed from the former. Therefore, the time component of the prior for existing samples

must be recalculated by using the current realtime for each instance that the prior is required

for Metropolis sampling. Accordingly, weights of existing samples should be modified with the

passage of time for use in inference. This is achieved by recalculating the time prior each time

that a sample weight is required and modifying the weight. This applies the prior twice, which

is irrelevant when the time prior is mostly uniform.

3.6. Calculation of the probability of release

To model the presence or absence of a release may seem to require an alternative model where

the release parameters .l1, l2, t, m/ are no longer relevant. If a trans-dimensional model was

constructed, an algorithm would be required to transition from the no-release model to a release

model whereby .l1, l2, t, m/ must be generated. Instead, our surrogate mass parameter model

is more akin to the product space formulation of trans-dimensional MCMC sampling (Carlin
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and Chib, 1995) whereby .l1, l2, t/ are maintained even when mÅ �0, using the actual priors as

the pseudopriors. This maintains a constant dimensionality thus allowing DEMC sampling to

be used with no further complication. Note that the surrogate mass parameter mÅ could be

considered as the product of a release indicator variable r ∈{1, −1} and a strictly positive real

release mass m.

The likelihood for no release is inexpensive to calculate because µ = σ2 = 0, requiring no

dispersion calculations and an analytic likelihood calculation; the concentration distribution is

now a δ-function at zero instead of the clipped normal distribution in equation (2).

In an operational system, the prior on release p.r =1/ is likely to be small, which would lead

to a proliferation of no-release samples which, in turn, could be a large computational and

storage overhead despite their individually small storage requirements. The prior on release is

therefore ignored for sampling as it is independent of all the other parameters and only applied

when inferences are required. The value p.r =1/=0:1 has been used for illustrative purposes to

calculate the results in this paper.

We calculate the posterior probability of release as follows:

p.r =1|x/=

p.r =1/
Nx∑

i=1

(
∑

j∈Mi
+

βiw
.ij/

)

p.r =1/
Nx∑

i=1

(
∑

j∈Mi
+

βiw.ij/

)

+{1−p.r =1/}
Nx∑

i=1

(
∑

j∈Mi
−

βiw.ij/

) , .17/

where Mi
+ = {1, 2, . . . , Ni : mÅ

ij > 0}, Mi
− = {1, 2, . . . , Ni : mÅ

ij � 0} and mÅ
ij are the surrogate

mass parameters of the samples θij.
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Fig. 4. Difference between the true source parameters and four model runs for a variety of possible sources
(the results are shown at intervals after the first positive sensor reading;all the graphs show actual value minus
predicted values and the zero line would represent perfect results; all distances are measured in kilometres):
(a) instantaneous; (b) 5 min; (c) 10 min

4. Results

To test the sampling algorithm that was described above, it has been implemented in C++ on a

desktop personal computer as a static library within a multithreaded message passing simulation

environment that has all the necessary probabilistic algorithms and dispersion code to stimulate

the sampler with realistic sensor messages. In the following sections, we describe a performance

against simulated data and an inference that was made by using real data from an atmospheric

release experiment using a harmless tracer gas.

4.1. Convergence

Owing to the sequential nature of this problem any standard convergence tests are difficult to

employ. We first show marginal posterior statistics (mode, median and fifth and 95th percentiles)
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of the location parameters .l1, l2/ in Figs 2 and 3. The time axis in these plots starts from receipt

of the first data indicating a release. Inspection of the parameter statistics as a function of time

indicates that, although the posterior probability distribution does change with the passage of

time, the majority of that change occurs within the first 10 min. The modes of the parameter

values do tend towards the true values. The difference in the median and the modal values shows

the extreme skew of the posterior distribution.

4.2. Performance of the source term estimator with simulated data

To analyse the performance of the source term estimator, the system has been stimulated with

realistic simulated data to mimic operational usage as closely as possible. The results of trials

using synthetic data can be seen in Fig. 4. These data are generated from an arrangement of

36 sensors placed over a 2 km-diameter circular area. Sources were placed between 1 and 10

km from the central sensor location. A value of 1000 kg was used for the prior mean surrogate

mass parameter µmÅ . The data are presented to the source term estimator in realtime by using

concurrent programming threads. The number of DEMC iterations between sensor data is

therefore unpredictable. The approximate number depends on the following factors: whether

the posterior is dominated by the prior; whether the dispersion code requires running; how much

simulation time is required to run the dispersion code from the release time t to T + TD; the

complexity of the simulated environment and the temporal spacing of the data. Typical values

are between 20 and 50 iterations per second, with each sensor sending data at 60-s intervals.

The plots show the difference between best parameter estimates and true values immediately

after a positive sensor reading and at 5- and 10-min intervals after this time. It is clear that the
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Fig. 5. Marginal probability densities for all the source term parameters estimated from simulated data,
immediately after the first non-zero datum (all parameters are measured in Système International units): j,
true value
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Fig. 6. Marginal posterior distribution for the location parameters immediately after the first non-zero datum
(the centre of the sensor network was arbitrarily set as location (0,0) and all values are measured in metres;
the wind direction is from the top down): , true location
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estimates improve over time, as would be expected; however, the improvement between 5 and

10 min is small, indicating that convergence is being approached in the required 5-min interval.

Inference is more accurate for the cross-wind parameter. This can be explained by consider-

ation of the problem space. There is a far more direct relationship between cross-wind position

and which sensors receive positive concentrations. In addition, inference on the cross-wind

position is mostly independent of the other release parameters. In the along-wind direction

there is a correlation with mass and time (a small release closer to the sensor and nearer in

time is similar to a larger release further away and further back in time, given early data). This

correlation adds further marginal uncertainty in these dimensions. In general the source term

estimator performs better when the true source is closer to the sensors, as is illustrated by the

reduction in spread around the zero lines for small distances from the centre of the sensor

arrangement. This is to be expected as the further away a source is from the sensors the more

uncertainty there is in possible location as the material has had more time to disperse and be

affected by random perturbations.

The marginal posterior probability densities for one of these inferences are displayed for the

same three times as the summary plots in Figs 5–10. In Figs 5 and 6 it is clear that the inference

engine is suffering severe sample impoverishment. However, the samples that are present

represent a high level of uncertainty about the true answer and provide useful locations in

the parameter space for the DEMC sampling to proceed. Figs 7 and 8 show the marginal

posterior distributions 300 s after the first non-zero datum. The samples provide a reasonable

representation of the posterior probability distribution and are unbiased. The spread in the

-50

4000

3500

3000

1e-009

5e-010

0

0 50

l1

l2

100

Fig. 8. Marginal posterior distribution for the location parameters 300 s after the first non-zero datum (the
centre of the sensor network was arbitrarily set as location (0,0) and all values are measured in metres; the
wind direction is from the top down): , true location
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posterior distribution is sufficiently small to provide useful information for hazard prediction.

Figs 9 and 10 show the marginal posterior distributions 600 s after the first non-zero datum.

The samples now have a very small spread and remain unbiased. This demonstrates that the

inference engine can converge to the correct answer in a timely fashion when presented with a

large amount of data.

4.3. Performance of the source term estimator with real experimental data

To test this algorithm against real data, we use sensor readings from the dipole pride data set

(Biltoft, 1998). The portion of the total data set that was used provides high frequency sensor

readings, following a release of a tracer gas, from a single row of sensors.

In this example the sensor readings were passed to the source term estimator in time order. A

value of 100 kg was used for the prior mean of the surrogate mass, µmÅ . A full posterior estimate

was then generated 5 min after the first positive sensor reading. The marginal probability density

plots for l1, l2, t and m can be seen in Fig. 11.

The actual posterior distribution is multimodal, but in all cases the true values lie within the

support of the posterior probability distribution. Fig. 12 gives a clearer indication of the form of

the posterior distribution for the location parameters and shows that, although the true release

location lies within the posterior, there is a large amount of correlation along the wind direction.

The wind is in the direction of the superimposed arrow. This is consistent with distributions

that are observed in the simulated data.

Atmospheric dispersion is naturally chaotic and therefore exact inference cannot be achieved.

In light of this the source term estimator has exceeded expectations in that within the allocated
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timeframe of 5 min a posterior distribution has been generated which contains the true source

parameters and is significantly smaller than the prior distribution. This information would then

be adequate to produce hazard estimates as required.

5. Conclusions

We have presented a sampling algorithm that yields rapid inferences when likelihood calculation

requires output from complex models and the data arrive sequentially after the event of interest,

but the parameters to be estimated are not evolving in time. We obtained reasonable sampling

of the posterior probability density and subsequent inferences given the data received in a short

timeframe.
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Appendix A: Sensor likelihood models

A.1. A discriminating sensor
We model a sensor that returns a substance type and a bar reading indicating the concentration in a
sampled volume of air. The thresholds for the bars are spread logarithmically. This sensor can measure
substances of interest regardless of other substances in the atmosphere. We assume that the sensors send
data at 60-s intervals to avoid correlation between sensor readings; any data at higher frequency are not
used in the inference. Previous research (Jones, 2002) has shown that the assumption of independence is
valid for this timescale under the assumptions that we have already made about the parameter space.

We model the internal process of obtaining a bar reading from the sensor as

p.V/=
1

√
{2π.κc+J/}

exp

{

−
1

2

.V − c/2

κc+J

}

.18/

where V is an internal signal in the sensor, which is a representation of the concentration c at a given point
in time and is normally distributed with a measurement error of

√
.κc+J/. We assume that the variance

on the sensor reading is proportional to the concentration, with the constant of proportionality denoted as
κ. To allow for the fact that there will never be a zero variance a small constant J is then added. The values
of κ and J are assumed to be known. The sensor produces one of a fixed number B of bar readings, so the
measurement is thresholded between perfectly known limits .C1. . . CB/; uncertainty in the threshold values
is accounted for in the uncertainty of the signal voltage. We can then obtain the likelihood of obtaining a
particular reading given a particular concentration by integrating the distribution that is given in equation
(18) between the appropriate concentration thresholds Ci for the respective bars (bari):

p.bari|c/=
1

√
{2π.κc+J/}

∫ Ci+1

Ci

exp

{

−
1

2

.V − c/2

κc+J

}

dV: .19/

The likelihood from the sensor must be combined with the likelihood from a dispersion model as described
in Section 2.2. This results in the model

p.bari|µ, σ2/=
∫ ∞

0

1
√

{2π.κc+J/}

∫ Ci+1

Ci

exp

{

−
1

2

.V − c/2

κc+J

}

dV

×
[

Φ

(−µ

σ

)

δ.c/+
1

σ
√

.2π/
exp

{

−
.c−µ/2

2σ2

}]

dc: .20/

The term in square brackets is the probability density function of the clipped normal distribution that
is defined in equation (2). The integral is precomputed for a range of values of bari, µ and σ2 by using
Romberg numerical integration (Press et al., 2002) and stored for interpolation.

A.2. A non-discriminating sensor
Non-discriminating sensors pose further difficulties in that they cannot distinguish between a naturally
occurring background measurement and a measurement that is attributable to a release of interest, e.g. a
simple particle counter. A particle counter returns the number of particles that are seen in a set time period
in a known volume of air. These particles are a combination of those generated by a release of interest and
those that are present naturally in the atmosphere.

For a sensor to be able to distinguish a release of interest from background particle counts, a statistical
model of the background must be estimated. The simplest background model configuration would be
a single scalar probability construct for all the sensors; however, this would not account for variation
between sensors as a consequence of their location. The most flexible model would be a multivariate joint
probability construct for the entire network of sensors; however, this poses large complexities in model
implementation. We therefore use a single scalar model for each sensor.

The actual number of particles that are sampled at the sensor is assumed to be Poisson with mean nT ,
where nT =np +b; here np is the mean number of release particles in a sampled volume of air and b denotes
the background. We assume that the background can be modelled as a stationary or at least very slowly
varying distribution compared with the signal from a release. An exponentially weighted moving average
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(Hull, 2005) model is used to calculate an estimate b̂ of the current value of b:

b̂T = .1−λ/b̂T−1 +λnT .21/

where nT denotes the particle count from the sensor at time T. The value λ is calculated dynamically by
assuming that the characteristic timescale of the fastest variation in background can be estimated as ∆T :

λ= exp

(

−
δT

∆T

)

.22/

where δT is the time between sensor readings, which need not be constant.
To compensate for a release signal changing the estimated mean and variance of the background dis-

tribution, the probability that a new sensor reading is derived solely from the background distribution
is calculated. If this probability is more than an arbitrary value of 5 standard deviations away from the
background model it is not updated with the new particle count. The value of 5 standard deviations can
be adjusted according to the type of background that is encountered.

The particle counters are assumed to be perfectly efficient so all particles entering the counter are counted
successfully, with no omissions or double counts. The value b̂T is an estimate for the true background bT ,
which adds an uncertainty of magnitude σb̂T

. The full likelihood integral should therefore be

p.nT |b̂T , σb̂T
, µ, σ2/=

∫ ∞

0

∫ ∞

0

Po.nT |np +bT / N.bT |b̂T , σ2

b̂T
/CN.np|µ, σ2/dbT dc, .23/

where CN denotes the clipped normal probability density.
The uncertainty σb̂T

on the estimate of the background is ignored to avoid the calculation of a complex
double integral. For a reasonable rate of data (i.e. δT ≪∆T ), the uncertainty in the background estima-
tion should be a small factor in the likelihood calculation compared with the uncertainty in the mass
concentration c; thus uncertainty in b̂T is also ignored. In addition, the Poisson distribution is replaced by
a normal distribution, which is a reasonable approximation if np + b̂T is large. This results in the following
model for a non-discriminating sensor, where V denotes the volume of air sampled and µp denotes the
mean mass of a release particle.

p.nT |b̂T , µ, σ2/=
∫ ∞

0

N

(

nT |np + b̂T ,
cV

µp

+ b̂T

)

CN.np|µ, σ2/dc: .24/

The appearance of the mean number of particles in a volume of air, np, in the variance of the normal
distribution prevents this integral from being evaluated analytically. The integral is evaluated by using
Romberg (Press et al., 2002) integration with finite bounds calculated to contain the domain where the
integrand is significant.

Appendix B: Proof of detailed balance for two-step rejection

The basic equation for detailed balance is (O’Hagan and Forster, 2004)

p.θ|θ′/π.θ′/=p.θ′|θ/π.θ/, .25/

where π.θ/ is the desired probability density function and p.θ′|θ/ the probability density function of making
a new sample θ′ from a current sample θ. We define π.θ/ as a posterior probability density function
composed as the product of a prior p.θ/ and a likelihood p.x|θ/ divided by a normalizing constant:

π.θ/=
p.x|θ/ p.θ/

∫

p.x|θ/p.θ/dθ

: .26/

Substituting this into equation (25) we obtain the equation for two-step detailed balance:

p.θ|θ′/p.θ′/p.x|θ′/=p.θ′|θ/p.θ/p.x|θ/: .27/

We define the proposal distribution as g.θ′|θ/. To prove that condition (27) is satisfied, it is necessary to
consider four sampling possibilities:

(a) p.θ/>p.θ′/ and p.x|θ/>p.x|θ′/;
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(b) p.θ/>p.θ′/ and p.x|θ/<p.x|θ′/;
(c) p.θ/<p.θ′/ and p.x|θ/>p.x|θ′/;
(d) p.θ/<p.θ′/ and p.x|θ/<p.x|θ′/.

B.1. Case (a): p(θ)>p(θ0) and p(x j θ)>p(x j θ0)
In the forward step, θ →θ′, the algorithm definitely accepts θ′ so

p.θ′|θ/=g.θ′|θ/: .28/

In the reverse step, θ′ →θ, so θ ∼g.θ|θ′/ with probability

min

{

1,
p.θ/

p.θ′/

}

min

{

1,
p.x|θ/

p.x|θ′/

}

=
p.θ/

p.θ′/

p.x|θ/

p.x|θ′/
.29/

in this case. It follows that

p.θ|θ′/=
p.θ/

p.θ′/

p.x|θ/

p.x|θ′/
g.θ|θ′/: .30/

Substituting equations (30) and (28) back into equation (27) yields

g.θ′|θ/ p.θ/p.x|θ/=
p.θ/

p.θ′/

p.x|θ/

p.x|θ′/
g.θ|θ′/ p.θ′/ p.x|θ′/, .31/

which is satisfied for g.θ|θ′/=g.θ′|θ/.

B.2. Case (b): p(θ)>p(θ0) and p(xjθ)<p(xjθ0)
In the forward step, θ→θ′, the algorithm definitely accepts on the first step and then accepts with proba-
bility

min

{

1,
p.x|θ′/

p.x|θ/

}

=
p.x|θ′/

p.x|θ/
, .32/

in this case. Therefore,

p.θ′|θ/=g.θ′|θ/
p.x|θ′/

p.x|θ/
: .33/

In the reverse step, θ′ →θ, the algorithm accepts in the first step with probability

min

{

1,
p.θ/

p.θ′/

}

=
p.θ/

p.θ′/
, .34/

in this case and then definitely accepts in the second step. Therefore,

p.θ|θ′/=g.θ|θ′/
p.θ/

p.θ′/
: .35/

Substituting equations (33) and (35) back into equation (27) yields

g.θ|θ′/
p.x|θ/

p.x|θ′/
p.θ′/p.x|θ′/=g.θ′|θ/

p.θ′/

p.θ/
p.θ/p.x|θ/, .36/

which is satisfied for g.θ|θ′/=g.θ′|θ/.

Cases (c) and (d) follow by symmetry (simply replace θ by θ′ and vice versa in cases (a) and (b)). Thus de-
tailed balance is demonstrated for the two-step rejection method by using Metropolis acceptance at each
step.

Appendix C: Step-by-step description of source term estimation algorithm

Step 1: initialization—

(a) for i=1, . . . , N, sample θ.i/ ∼π.θ/; assign initial weights w.i/ ∝1, for i=1, . . . , N; set Nx =0;
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(b) select NDEMC chain indices jk according to weights {w.i/}; set θ
.k/

DEMC = θ.jk/ for k = 1, . . . ,
NDEMC.

Step 2: update—if new sensor data xnew received, set Nx =Nx +1.

(a) For each {θ.i/, τ .i/}, i=1, . . . , N, if τ .i/ <T −TD, remove θ.i/.
(b) For each {xj , φj}, j =1, . . . , Nx, if φj <T −TD, remove xj ; reweight according to

w̃
.i/ =w.i/=

∏

j:φj<T−TD

p.xj|θ.i//

for all i=1, . . . , N; modify total likelihoods

L.i/ =L.i/=
∏

j:φj<T−TD

p.xj|θ.i//

for all i=1, . . . , N.
(c) Update total likelihoods Π

Nx

j=1p.xj|θ.i// for each i = 1, . . . , N; reweight according to w̃
.i/ =

w̃
.i/

p.xnew|θ.i// for i = 1, . . . , N; normalize in blocks wij = w̃
.ij/

=Σ
Ni

j=1w̃
.ij/ for i = 1, . . . , Nx for

j =1, . . . , Ni.
(d) Importance resample new DEMCs: select i according to block weights βi (Section 3.3); select

sample j from block i according to weights {w.ij/}; set θ
.k/

DEMC =θ.ij/.

Step 3: resample—if the system is ‘overwhelmed’ then retain {θ.ij/, w.ij/} with probability

βiw
.ij/= max

ij
.βiw

.ij//

for i = 1, . . . , Nx for j = 1, . . . , Ni; recalculate βi = Ni=Σi=1
Nx Ni for i = 1, . . . , Nx; normalize in blocks

wij =1=Ni for i=1, . . . , Nx for j =1, . . . , Ni; resample DEMCs as in step 2(d).
Step 4: proposal—generate a new sample point according to DEMC sampling, θ′ =θ

.i/

DEMC +γ.θ
.j/

DEMC −
θ

.k/

DEMC/+ ", for i, j, k ∈{1, . . . , NDEMC} and i �= j �=k.
Step 5: two-step Metropolis sampling—set θ.N+1/ =θ′ and θ

.i/

DEMC =θ′ with probability

min{1, p.θ′|X/=p.θ
.i/

DEMC|X/};

otherwise set θ.N+1/ =θ
.i/

DEMC.
Step 6: loop—repeat from step 2 until convergence.
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