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Abstract

This paper presents a method for photo-realistic animation of any face shown in a single image or a video. The

technique does not require example data of the person’s mouth movements, and the image to be animated is

not restricted in pose and illumination. Video reanimation allows for head rotations and speech in the original

sequence, yet neither of these motions is required.

In order to animate novel faces, the system transfers mouth movements and expressions across individuals, based

a common representation of different identities and facial expressions in a vector space of 3D shapes and textures.

This space is computed from 3D scans of different neutral faces, and scans of facial expressions.

The 3D model’s versatility with respect to pose and illumination is conveyed to photo-realistic image and video

processing by a framework of analysis and synthesis algorithms: The system automatically estimates 3D shape,

pose and other rendering parameters from single images, and tracks head pose and mouth movements in video.

Reanimated with new mouth movements, the 3D face is rendered into the original images.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

In terms of photo-realism, the most advanced examples of

talking faces so far have been produced with image-based

methods 5 � 9 � 13 � 8. Video Rewrite 5 re-arranges frames from

video footage to make a person utter new words. In that

work, the term reanimation has been coined for the modifi-

cation of mouth movements in a video sequence. To reduce

the number of frames to be stored, other methods morph be-

tween keyframes 9 showing visemes, which are the visual

analogue of phonemes. A sophisticated statistical analysis of

video footage has yielded other fundamental mouth shapes

that can be encoded as a vector space of warp-fields and tex-

tures 8. With iteratively optimized trajectories, this has pro-

duced highly realistic speech. The realism of 2D methods,

however, comes at a price: For the person to be animated,

images of all basic mouth shapes have to be provided, since

their appearance is not inferred from other individuals. The

output is restricted in pose and other imaging conditions to

what is found in the original video: Only small rotations can

be covered so far 5 � 13, assuming the mouth region to be flat.

The gradual occlusion of the teeth by the lips poses addi-

tional difficulties to 2D morphing.

In 3D animation, rotations and occlusions are straightfor-

ward to achieve. One class of methods involves manually

designed deformation patterns of a 3D mesh 22 � 23 � 26 � 1; Free

Form Deformations have been used to animate a person’s

face, given a front and a side view 12, or multiple stereo-pairs

or video frames 10. An alternative approach is to simulate

the physics of surface deformations caused by muscle forces
30 � 28 � 20 � 17. Given a neutral 3D range scan 28 � 20 � 17 or CT-scan
19, the physical model can predict that person’s facial ex-

pressions, and animate the face. In all these techniques, it

may be difficult to define deformation patterns, muscles and

tissue parameters that produce precisely the wrinkles found

on faces. In contrast, the strategy of example-based methods

is to learn deformations from real faces.

A number of example-based 3D methods analyze video

data from multiple viewpoints to estimate 3D shape of

fundamental expressions 15 � 24 � 25 � 27 or to learn the dynam-

ics of speech 4. Other methods have used either static 3D

scans of closed-mouth expressions 29 � 3, or time-sequences

of structured-light scans 18. Unlike performance-driven ani-

mation, all these techniques produce novel sequences, rather

than reproducing motion in 3D. Some systems can also

transfer motion to a novel, neutral face 15 � 29 � 3 � 4 � 27, while oth-

ers transfer high-level parameters, but not the appearance of
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Figure 1: In the vector space of faces, facial expressions are

transferred by computing the difference between two scans

of the same person (top row), and adding this to a neutral

3D face. To modify Leonardo’s Mona Lisa (second row), we

reconstruct her 3D face (third row), add the expression, and

render the new surface into the painting (second row, right).

expressions 24 � 25. Speech and expression can be applied to

single images 29 � 3 � 4 � 27 or video 25.

The main contribution of this paper is a framework that

combines the strengths of previous animation techniques:

the photo-realistic quality of 2D animation, the versatility

of a 3D model, the capacity to generate facial expressions

of individuals from their neutral faces, and the automated

learning technique of example-based methods.

What makes our framework stand out from existing tech-

nologies are the low requirements with respect to the input

data of the person to be animated: This may be a single im-

age or a video sequence, taken at a wide range of illumina-

tion conditions, poses, and mouth shapes. Unlike other meth-

ods, we compensate for rotation and speech in video, yet do

not need them to animate a given face. This flexiblity is cru-

cial for a wide range of applications, such as movie dubbing.

Our method is based on a common vector space of 3D

shapes and textures computed from a dataset of 35 laser

scans of facial expressions, and neutral faces of 200 per-

sons. In this vector space, expressions can be changed con-

tinuously along any trajectory in face space, and transferred

across individuals. An estimate of 3D shape from a single

image or a video frame is obtained by a fitting algorithm

that mimimizes the image difference between the synthetic

image, and the input image. The algorithm is more general

and more robust than previous systems 3, and it can also be

applied to non-neutral faces. In that case, setting the expres-

sion parameters back to zero produces an estimated neutral

shape. After changing facial expression, the 3D face is ren-

dered back into the original image or video for reanimation.

The new vector space representation of open-mouth scans

is an extension of previous work on closed-mouth faces and

facial expressions 29 � 3. The essential procedure of establish-

ing correspondence is significantly more difficult, and has

called for additional techniques. Recently, other methods

have formed vector spaces of facial expressions from snap-

shots of dynamic sequences 27 � 18 � 25. While some of them27 � 18

are based on 3D coordinates of sparse feature points (64 and

124, respectively), our face vectors from static scans include

all vertices of a high resolution mesh that captures wrinkles

and other subtle, yet highly expressive details.

To reanimate faces in video, we are tracking head rota-

tion in the presence of speech and facial expressions. Unlike

methods based on facial features (e.g. 15 � 28 � 12) or constrained

optic flow 6, we minimize image difference in an iterative

analysis-by-synthesis loop. Derived from static 3D shape es-

timation 3, our method is similar to 27 � 11 � 25.

In the following section, we introduce the representation

for face vectors with open mouths, and a method to establish

correspondence. In Section 3, we describe how the model

can be applied to animate faces in single images, and show a

set of results. Section 4 presents additional methods required

for video reanimation.

2. A Morphable Model of Mouth Configurations

The Morphable Model of 3D faces 3 is a vector space of

3D shapes and colors (reflectances). The vectors are defined

such that any linear combination of examples

S ✂
m

∑
i ✄ 1

aiSi ☎ T ✂
m

∑
i ✄ 1

biTi ✆ (1)

is a realistic face, given that S, T are within a few standard

deviations from their averages. In this paper, each vector Si

is the 3D shape of a human face, stored in terms of x ☎ y ☎ z-

coordinates of all vertices k ✝✟✞ 1 ☎✠✆✠✆✠✆✡☎ n ☛ of a high-resolution

3D mesh:

Si ✂✌☞ x1 ☎ y1 ☎ z1 ☎ x2 ☎✠✆✠✆✠✆✡☎ xn ☎ yn ☎ zn ✍ T ✆ (2)
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In the same way, we form texture vectors from the r☎ g ☎ b sur-

face colors of all vertices:

Ti ✂ ☞ R1 ☎ G1 ☎ B1 ☎ R2 ☎✠✆✠✆✠✆✡☎ Rn ☎ Gn ☎ Bn ✍ T ✆ (3)

Equation (1) defines a parametrization of the manifold of

faces. For animation, smooth motions are generated by any

continuous trajectory in ai ☎ bi ✝ IR. This property, however,

does not prevent structures, such as eyebrows, from disap-

pearing and reappearing somewhere else on the surface dur-

ing transitions. To avoid such artefacts, vector components

xk ☎ yk ☎ zk have to represent the same structure, such as the

corner of an eyebrow, in all vectors Si. We describe an algo-

rithm to establish this correspondence in Section 2.4.

2.1. Face Space, Individuality, and Expressions

Face space provides a representation not only for shapes and

textures of different persons’ faces 3, but also for changes

within one face, as the person speaks or acts. In this pa-

per, we construct a vector space of facial movements and

facial expressions recorded from one person, and combine

it with the vector dimensions of individuality. Individual-

ity and expressions form different subspaces in this common

face space.

Recorded from a single person, the expressions and mouth

movements can be transferred to another person’s neutral

face by simple vector space operations (Figure 1). This pro-

cedure assumes that the 3D displacements of surface points

are the same for all individuals: We ignore the slight varia-

tions across individuals that depend on the size and shape of

faces, characteristic patterns of muscle activation, and me-

chanical properties of skin and tissue. Therefore, our predic-

tions only approximate the true expressions of novel faces,

and a direct comparison might reveal minor differences. For

typical applications of facial animation, however, our results

indicate that the approximation is justified.

Each snapshot of a person’s face can be mapped to a

vector S, T. Depending on the desired quality of anima-

tion, we may or may not exploit the linearity of this space

in the following sense: (1) transitions between facial ex-

pressions follow a straight line in face space, and (2) all

possible expressions are in the linear span of a small ba-

sis of extreme shapes. The non-linear physical properties

of faces indicate that transitions are at least slightly non-

linear, and expressions form a curved manifold embedded

in a higher-dimensional space. We account for that by (1) in-

cluding many intermediate scans as basis vectors, and (2) us-

ing curved trajectories that follow these intermediate shapes

when morphing between extreme shapes. For transitions be-

tween visemes, straight-line trajectories with cosine-shaped

acceleration and deceleration seem sufficient.

Reference p, b, m ii,i uu, u

closed open kiss smile

Figure 2: Examples from the dataset of 35 static 3D laser

scans forming the vector space of mouth shapes and facial

expressions. All scans were from a single individual. Black

and white dots painted on the skin help to measure skin mo-

tion along the surface (chin and cheeks), and for precise

rigid alignment (forehead, nose). Hair was covered by a

bathing cap. 17 scans show different visemes, others show

the mouth opening gradually.

2.2. Database of Expressions and Mouth Shapes

In order to capture the degrees of freedom of mouth move-

ments for speech synthesis, we recorded a set of 35 static

laser scans (Figures 2, 4) of one person. The dataset contains

the visemes that will be used as morph-targets in animation,

and additional scans that vary systematically in the verti-

cal opening of the mouth, and the width of the mouth. We

recorded two additional scans (Figure 4) that display most

of the upper and lower jaw teeth. Even though markers are

dispensable for our algorithm, we painted white and black

spots on the skin to measure tangent motion along the sur-

face (cheeks), and achieve more precise 3D alignment (fore-

head). Red lipstip increased the contrast at the edge of the

lips. A bathing cap kept the hair off the face.

The 3D scans were recorded with a CyberwareT M 3030PS

laser scanner. In 512 steps in height h and azimuth φ, at a

spacing of about 0.6mm, the scanner records radius r ☞ h ☎ φ ✍
and coloured texture R ☞ h ☎ φ ✍ , G ☞ h ☎ φ ✍ , B ☞ h ☎ φ ✍ .

2.3. Reference Surface

The first step for constructing a vector space of shapes and

textures is to define a reference surface mesh. From this sur-

face, point-to-point correspondence to all other scans is es-

tablished. Selecting the reference shape, two issues have to

be considered: (1) To be able to establish correspondence

with little manual interaction, the reference surface has to be

as similar to the other scans as possible. (2) Only the sur-

face regions that are part of the reference face can be repre-

sented in novel linear combinations. The reference mesh has
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Figure 3: Top: Texture of the reference scan. Bottom: Tex-

tures of mouth configurations; Occlusions of teeth, tongue

and pharynx make it difficult to identify corresponding

points.

to contain whatever portion of the teeth is visible in speech

and facial expressions.

To fulfill the first requirement, we selected an intermedi-

ate mouth configuration (Figure 2) as a reference. Much of

the teeth is occluded in this shape, so we added teeth to the

referenced mesh in a later processing step (Section 2.5). The

combined reference mesh (Figure 4) has 90831 vertices at a

spacing of about 0.6 mm.

2.4. Correspondence between 3D Scans

The crucial step in forming a morphable model from a set of

surface scans is to identify corresponding points on the ex-

ample scans for all vertices of the reference mesh. To estab-

lish dense point-to-point correspondence on the entire sur-

face of the face, we compute the best match for all struc-

tures, rather than using a sparse set of features, or markers.

Our algorithm uses both shape and texture. However, we do

not match the teeth and the inner part of the mouth: Since

the teeth are connected to the skull and to the lower jaw,

their motion is simulated more directly (Section 2.5). Still,

the fact that teeth, tongue and pharynx are visible in some

scans and occluded in others pose difficulties to the optic

flow algorithm (Figure 3).

Unlike the fully automated procedure for neutral faces 3,

we have partitioned the scans into 3 batches, depending on

how similar they are to the reference. We perform bootstrap-

ping with minor manual interaction.

Figure 4: The reference shape, consisting of the face and

lips (top), the inner part of the mouth (center), and the teeth

(bottom). Upper and lower jaw teeth were taken from two

different scans (right, top and bottom).

The 11 scans of the first batch are reliably processed by

the automated algorithm based on optical flow 3: When ap-

plied to grey-level images I ☞ x ☎ y ✍ , I
� ☞ x �

☎ y
�

✍ , optic flow algo-

rithms compute correspondences ☞ x ☎ y ✍ ✁✂ ☞ x �
☎ y

�
✍ ; We use a

generalized algorithm3 to match laser-scans r ☞ h ☎ φ ✍ , R ☞ h ☎ φ ✍ ,

G ☞ h ☎ φ ✍ , B ☞ h ☎ φ ✍ (Section 2.2) with the reference scan. Sub-

sequently, they are converted into shape vectors Si (Equation

2).

Principal Component Analysis (PCA7) provides an or-

thogonal basis ui adapted to the statistics of the examples

Si, with basis vectors ordered according to the variance in

the dataset around the arithmetic mean u. For the next step,

it is important that linear combinations S ✂ u ✄ ∑γi ☎ ui can

produce shapes beyond the convex hull of examples, with

mouths more open or closed than those in batch 1.

For each scan in batch 2, we approximately reproduce

mouth shape by adjusting the coefficients γi in an interactive

tool. Correspondence from these closest linear combinations

to the original scans of batch 2 is then computed automati-

cally by the optic-flow-based algorithm, and batch 2 is added

to the vector space. Another iteration of this procedure adds

batch 3 to the space. The last bootstrapping iteration includes

teeth to make the correspondence problem easier (see Figure

3). The following section describes how the teeth are added.

2.5. Teeth

In the scans shown in Figure 2, part of the teeth is occluded

by lips. We therefore recorded two scans where most of the

teeth is visible (Figure 4), and manually extracted the poly-
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gons forming the teeth using an interactive tool. These poly-

gons are then added to the reference surface (Figure 4).

The motion of teeth is easy to simulate: The upper jaw

teeth are fixed relative to the upper part of the head, and the

lower jaw teeth are connected to the tip of the chin. We ex-

ploit these facts in the following way: Based on pairs of cor-

responding points on all faces, which are identified in Sec-

tion 2.4, we align all scans in space using the method of 3D-

3D Absolute Orientation 14, based on sets of corresponding

points on the upper part of the face. Keeping the upper jaw

teeth always at the position they have in the scan in Figure

4 (top, right) will then produce correct results for all linear

combinations of the example scans.

The lower teeth’s motion due to small rotations of the jaw

can be approximated by a linear 3D translation: In the orig-

inal scan (Figure 4, bottom, right), we measure the position

of the teeth relative to a point on the tip of the chin. We lo-

cate this point in all other scans using correspondence, and

shift the teeth to keep their relative position unchanged.

Finally, we add some polygons for the inner part of the

mouth extending from the lips back to the pharynx, and

intersecting some polygons of the teeth. In each scan, the

frontal edges of this surface are connected to the lips.

2.6. Combination of Individuality and Expression

To be able to transfer facial expressions across individuals

(Figure 1), we combine expression and individuality data by

converting face vectors of 200 individual neutral faces 3 into

the representation described above.

The identity space 3 did not contain a representation for

teeth, and was based on a closed-mouth reference surface.

We apply the correspondence algorithm (Section 2.4) to this

reference scan of the individuality space, and the the closed

mouth vector within the mouth-configuration space (Figure

2), to find a point-to-point mapping between the two refer-

ence surfaces. With this mapping, we can automatically re-

sample all individuals’ shape and texture data to obtain S and

T in the new format.

Information about shapes and positions of the 200 per-

sons’ teeth is unavailable, so we insert the same set of teeth

(Section 2.5) behind everyone’s closed lips. They are located

at a fixed position relative to the center of mass of three

points (the corners of the mouth and the center of the lipline)

which are located automatically, based on correspondence.

Within the common vector space, Principal Component

Analysis could be computed on the combined set of indi-

viduality and mouth shape vectors simultaneously. However,

the relative weight of variances caused by individuality and

mouth movements, respectively, would depend on the num-

ber of individuals and the number of mouth shapes included.

This factor, which doesn’t reflect a real property of faces,

would affect the result of PCA considerably. We therefore

prefer to keep both sets separate, which yields shape eigen-

vectors si for individuality and ui for mouth movements. We

use texture eigenvectors ti from the individuality set only.

3. Animating Faces in Still Images

Features Start Features only Illumination

Result Shape Textured Textured

Figure 5: Recovering a 3D face from E. Hopper’s self-

portrait: Initialized with manually labeled features (top, left)

and starting from a front view of the average face, the algo-

rithm automatically optimizes shape and texture of the mor-

phable model, and estimates pose, illumination, and other

parameters. The second row shows the result without (left)

and with (right) texture extraction.

In many applications, it is not enough to to animate a

given 3D face: First, we may not have a 3D scan of the face,

but only one or several 2D images. Second, photorealistic

animation often involves re-inserting the moving face into

the original scene. Fitting the Morphable Model of 3D faces

to the images, we handle both aspects of this problem: We

estimate a textured 3D surface from a single image of a per-

son. Moreover, the fitting procedure provides an estimate of

all relevant rendering parameters, which are used to render

the modified face back into the original image.

3.1. 3D Reconstruction of Non-Neutral Faces

Based on the combined vector spaces of individuality and

mouth movements, we estimate 3D shape from images of

non-neutral faces, extending an algorithm for neutral faces3.

The algorithm computes the optimal linear combination of

principal components for individual shape si, texture ti, and

expression ui:

S ✂ s ✄
m � 1

∑
i ✄ 1

αi ☎ si ✄
p

∑
i ✄ 1

γi ☎ ui ☎ T ✂ t ✄
m � 1

∑
i ✄ 1

βi ☎ ti (4)

The estimate is based on an iterative minimizaton of the dif-

ference EI between the synthetic image ☞ Ir ☎ Ig ☎ Ib ✍ model of the

3D face, and the input image ☞ Ir ☎ Ig ☎ Ib ✍ input :

EI ✂ ∑
x

∑
y

∑
c
✁✄✂

r☎ g ☎ b ✆
☞ Ic ☎ input ☞ x ☎ y ✍✞✝ Ic ☎model ☞ x ☎ y ✍ ✍ 2 ✆ (5)
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Figure 6: Reconstructed from the original images (left column), 3D shape can be modified automatically to form different

mouth configurations. The paintings are Vermeer’s “Girl with a Pearl Earring”, Tischbein’s Goethe, Raphael’s St. Catherine,

and Edward Hopper’s self-portrait. The bottom left image is a digital photograph. The wrinkles are not caused by texture, but

entirely due to illuminated surface deformations. In the bottom-right image, they are emphasized by more directed illumination.

Teeth are transferred from 3D scans (Figure 4). Note the open mouth in Vermeer’s painting, closed by our algorithm (top row,

second image).
submitted to EUROGRAPHICS 2003.
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Original Optimal linear combination

Synthetic neutral Synthetic neutral

Figure 7: Top row: 3D reconstruction from an open-mouth

image. Among the 11 feature points provided for initializa-

tion, only one was in the mouth region (on the upper lip).

Therefore, the algorithm must have relied on generic image

information to estimate mouth shape. The teeth are not in-

volved in matching currently. Bottom row: Setting the mouth

shape coefficients γi ✂ 0 generates a neutralized face (the

true neutral face is shown in Figure 6.)

If multiple images are available, EI is the sum of all image

differences. Minimization is achieved by stochastic gradient

descent, evaluating only a random subset of pixels at each

iteration.

Along with αi, βi, γi, the system automatically optimizes

all relevant imaging parameters: Three angles for pose, 3D

position, focal length of the camera, red, green, and blue in-

tensities of ambient and parallel light for one light source,

the direction of parallel light, color contrast, and gains and

offsets of the three color channels, which account for the

tone and contrast. Unlike previous algorithms 3 that did not

optimize focal length and illumination direction, and in-

volved manual pre-alignment of the average face for ini-

tialization, we spare this alignment, starting always with a

frontal view at standard size, position, and illumination. In-

stead, the algorithm is provided with a set of feature points.

The user selects between 7 and 20 feature points in the

image, such as the corners of the eyes, and clicks on the cor-

responding vertices on the 3D mesh. Feature points may also

be anywhere along occluding contours, such as the cheek

(Figure 5). For these, the algorithm finds temporary corre-

spondences that change during optimization as the face ro-

tates and deforms: The point in the image is assigned to the

closest surface point among those with a surface normal that

is orthogonal to the line of sight.

The image coordinates ☞ qx ☎ j ☎ qy ☎ j ✍ of feature points j

contribute to the cost function in the following way: Let

☞ px ☎ k j ☎ py ☎ k j ✍ be the image positions of the corresponding ver-

tices or triangles k j predicted by the model at the current

iteration, and

EF ✂ ∑
j

☞ qx ☎ j ✝ px ☎ k j ✍ 2 ✄ ☞ qy ☎ j ✝ py ☎ k j ✍ 2 ✆ (6)

The system optimizes a weighted sum of EF , EI , and a reg-

ularization term

EP ✂ ∑
i

α2
i

σ2
S ☎ i

✄ ∑
i

β2
i

σ2
T ☎ i

✄ ∑
i

γ2
i

σ2
M ☎ i

✄ ∑
i

☞ ρi ✝ ρi ✍ 2

σ2
R ☎ i

✆ (7)

that penalizes solutions with low prior probability, based on

the standard derivations σ of individual shape, texture, and

mouth shape estimated by PCA. ρi denotes the rendering pa-

rameters, ρi their starting values, and σR ☎ i are ad-hoc esti-

mates of their standard deviations. The weight of EI is zero

in the first iterations, and increased subsequently, while the

weight of EF is decreased and vanishes at the end. Figure 5

shows intermediate states of the fitting procedure. Fitting 99

principal components for individual shape and texture and

10 components for expressions takes 5 minutes on a 2GHz

Pentium 4 processor.

After optimization, the linear combination (4) provides

estimated albedoes for the entire surface. To capture details

such as scars or the strokes of the painter’s brush, we perform

an illumination-corrected texture extraction 3 on all texture

elements visible in the image: Inverting the effect of the es-

timated illumination, the albedoes of each point on the 3D

surface are computed from the pixel values in the image.

Weighted by the angle between the surface normal and the

viewing direction, this value replaces the previous estimate.

If several images are available, contributions are automati-

cally pasted into one texture.

Figure 6 shows novel mouth shapes and expressions gen-

erated automatically from images and a few feature point

coordinates. If the face is not neutral in the input image,our

algorithm automatically estimates its neutral shape.

3.2. Neutralization of Faces

Setting the coefficients γi ✂ 0 in Equation 4 after fitting

closes the mouth in the reconstructed face reliably, and pro-

duces a realistic appearance of the lips (Figure 7). The 3D

face is then a linear combination of neutral faces only. In
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Figure 8: Based on a segmentation into face and non-face

regions (left) provided by the fitting algorithm, the back-

ground texture is reflected beyond the contour (center) to

avoid artefacts in animation (see Section 3.3).

general, removing facial expressions in an image is more

difficult than adding new expressions, as it is necessary to

be able to synthesize the wrinkles and their shading very

precisely. Residual differences between the original and the

synthesized image will be falsely attributed to texture in the

texture extraction algorithm. Therefore, our algorithm does

not yet remove strong or unusual wrinkles completely.

3.3. Background Continuation in Still Images

Near the contour of a face, regions of the background that are

occluded in the original image may be revealed as the mouth

moves. We therefore replace part of the face in the original

image, continuing across the facial contour all structures ad-

jacent to the face. The animated 3D face is then rendered in

front of that modified background. The optimal strategy for

background continuation depends a lot on the background’s

structure. In our examples, it is important to retain the overall

structure of texture of the background, which may for exam-

ple be a strand of hair (Figure 8). We therefore cannot use

Image Inpainting algorithms such as 2. Pure texture comple-

tion, on the other hand, would require a uniform texture.

For background continuation, our system can rely on a

segmentation into face area and background (Figure 8, left)

from fitting the morphable model. For a stripe along the con-

tour just outside of the face region, our algorithm reflects all

pixel values to the inside, using a smooth warp field. This

method retains texture, while keeping discontinuities low.

The width of the stripe is calculated from the camera param-

eters and corresponds to 15mm in the 3D scene. To compute

the warp field, we use an iterative propagation algorithm to

compute the distance d ☞ x ☎ y ✍ from the boundary for all pixels

☞ x ☎ y ✍ within a stripe along the contour (Fig. 8, right). Then,

the normalized gradient of the distance map

�
g ✂ g

✁
g

✁ ☎ g ✂✌☞ ∂d

∂x
☎ ∂d

∂y
✍ T (8)

defines a warp field that reflects points across the edge:

☞ ∆x ☞ x ☎ y ✍ ☎ ∆y ☞ x ☎ y ✍ ✍ ✂ ✝ 2d ☞ x ☎ y ✍ ☎ ☞ gx ☞ x ☎ y ✍ ☎ gy ☞ x ☎ y ✍ ✍ ✆

4. Animating Moving Faces in Video

One of the main benefits of the 3D model as opposed to

example-based methods in 2D is the versatility with respect

to changes in head pose and illumination. These changes nat-

urally occur in video sequences. In this section, we address

the problem of making a person in a given video sequence

say a novel text, regardless of what he or she said in the orig-

inal footage, and retaining the original head movements.

Reanimating video involves the following steps:

1. Recover a textured 3D model from original video frames

(Section 3.) If the video contains no large in-depth rota-

tions, it is sufficient to build the face from the first frame

only. Otherwise, the precision of 3D shape is increased

and texture details from all sides are included by simul-

taneously fitting the model to two or three frames.

2. Track 3D head motion (Section 4.1).

3. Generate a trajectory in the coefficients of mouth con-

figurations from audio or text, for example by simple

keyframe interpolation.

4. Add the mouth configuration vector to the neutral 3D

model at each frame.

5. Render the modified shape on top of the original video

frame, using the pose and illumination parameters recov-

ered by the tracking algorithm.

Figure 9 shows 4 frames from a video recorded at 30fps

with a webcam (640x480 pixels). For 3D shape estimation,

we used frame 0, 44, and 66 (out of 150), showing the front,

the left and the right side of the face. We labelled 11, 15, and

17 feature points, respectively. No 3D scan of the person was

involved in any processing step.

4.1. Tracking

The rigid motion and mouth movements in the input video

can be tracked with a method similar to the 3D reconstruc-

tion algorithm described in Section 3.1: The algorithm fits

the morphable face model to consecutive frames by mini-

mizing image difference EI (Equation 5) and a regularization

term EP (7) 3 � 27 � 25. In each fitting process, the starting val-

ues, and the minimum of EP, are set to the previous frame’s

result, respectively. Keeping the person’s individual shape

and texture fixed, we only optimize for rigid transformation

and mouth movements (coefficients γi of the 4 most rele-

vant principal components (Equation 4). The feature point

method that was presented in Section 3.1 is not involved

in this process. Since all rendering parameters are estimated

from the first frame, no calibration is required. Reliability of

the algorithm has been increased significantly by a coarse-

to-fine strategy that starts with fitting a downsampled version

of the frame, and then proceeds to full resolution. Computa-

tion time is 16s per frame on a 2GHz Pentium 4.
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Frame 38 Frame 58 Frame 89 Frame 133

Figure 9: From each original frames of a video (top row), an estimate of pose and mouth shape was calculated (second row).

3D shape and texture were reconstructed from 3 selected frames. In the third row, the face with new mouth shapes is rendered

into the original image.

4.2. Background Completion in Video

... Setting of the problem: What is behind the face, given the

other frames? Assume static camera, otherwise additional

OF would be required. Difference to still images: (1) Must

be consistent from frame to frame: Individual filling would

cause flickering. (2) Tracking does not find the contour in a

reliable manner yet.

4.3. Speech Synthesis

16

5. Conclusions

We have presented a unified method to learn facial expres-

sions and individual neutral faces from 3D scans, and we

described a set of algorithms that apply this information to

animate a given face in an image and video.

With a larger dataset of expressions of different persons,

it is straightforward in our vector space representation to ap-

ply learning algorithms for a more precise prediction of a

novel individuals’ expressions. To account for differences in

shape and size, a future system could also incorporate geo-

metrical methods: Expression Cloning 21 adapts the direction

and length of shape deformations, which may be manually

designed or obtained from motion capturing, to the local ge-

ometry at each vertex.

The examples shown in this paper focus on mouth move-

ments as they occur during speech, and capture only a sub-

set of facial expressions. In particular, we deal with the ap-

pearance of the lips and the teeth as the mouth opens, and

wrinkles that form when the person smiles. Wrinkles due to

frowning have been achieved in previous work 3. The meth-

ods described in the paper can be used to capture the full

range of facial expressions.

So far, our visual speech synthesis uses simple keyfram-

ing and does not capture higher level effects in the dynamics

of speech, such as coarticulation 8. Since we model speech

as a trajectory in a vector space of mouth shapes, more so-

phisticated dynamic patterns can be easily implemented.

Our vector space of expressions is built from static scans.

With real-time 3D scanning devices becoming more and

more available, 3D snapshots and time-sequences will pro-

vide additional data that can be incorporated in our vector

space easily. With this, we can learn the dynamics of speech

and facial expressions from 3D data. Our current results in-

dicate that static scans already capture the relevant degrees

of freedom for speech and facial expressions.

Manifold is not a linear space. Parameterize !
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