
REAPER: A Reflexive Architecture for Perceptive Agents

Bruce A. Maxwell, Lisa A. Meeden, Nii Saka Addo, Paul Dickson, Nathaniel Fairfield, Nikolas Johnson,
Edward G. Jones, Suor Kim, Pukar Malla, Matthew Murphy, Brandon Rutter, Eli Silk

Swarthmore College, 500 College Avenue, Swarthmore, PA 19081
maxwell @ swarthmore.edu

Figure 1 Alfredo (center) the maitre’d and his two "sons" Mario (left) and Santino (right). Mario is in his search and
uniform, while Santino is ready to serve hors d’oeuvres.

Abstract

For robots to interact naturally with people and their envi-
ronment they need to have a variety of perceptual abilities.
They need to be able to see, hear, feel and otherwise sense
the world around them. The problem is not giving them the
sensors, but rather giving them the ability to process and use
the sensory information in’ real time. We have developed a
platform independent modular sensory architecture that per-
mits us to smoothly integrate multiple sensors, navigation,
and communication systems. The architecture gives each
module local control over a sensor or system. These modules
act as filters between the sensor and a central controller that
reacts only to higher level information and gives only high
level commands. Using this architecture on multiple, com-
municating robots we were able to develop a unique trio of
characters for the AAAI Hors d’Oeuvres Anyone event as
well as an entry in the Urban Search and Rescue event.

1 Introduction

In 1999, Swarthmore’s waiter robot, Alfred, won the Amer-
ican Association for Artificial Intelligence [AAAI] "Hors
d’Oeuvres Anyone?" robot competition. This year, Alfred
graduated to italian restaurant owner--changed his name to
Alfredo--and went back to the competition with his "sons"
Santino and Mario. Alfredo was the maitre’d, Santino the
waiter, and Mario the bus-boy. They are shown in Figure 1.

This year Alfredo was not a mobile robot, but a computer
with a large monitor placed at the waiter’s refill station. He
had speakers and a video camera, and would respond to dif-
ferent kinds of visual input. The monitor displayed a talking
face, whose lips move in synchronization with the speech.
He had three special capabilities: 1) he could tell when you

held your palm in front of the camera and would give you a
palm reading. 2) he would comment on the color of your
shirt (based on analysis of the video image), and 3)
would comment if you stayed in front of the camera too
long. Otherwise, Alfredo would talk about various things,
responding to what he saw in the camera.

Santino, the waiter, was a Nomad Super Scout II, a
medium size mobile robot with an on-board computer. San-
tino was also outfitted with two cameras, a microphone,
speakers, a 6" LCD display and a mechanical arm that
could raise a tray up and down. Santino used the two cam-
eras to look for people, look for brightly colored badges,

and to check when his tray was empty. He would come up
to a person, ask if they wanted an hors d’oeuvre and then
lift the tray if they said yes. When his tray was empty, he
would make his way back to the refill station. When San-
tino was happy a face on the LCD screen would smile.
When he was grumpy or angry, it would frown.

Mario, the bus-boy, was a Real World Interfaces [RWI]
Magellan Pro, a short mobile robot with a camera and
speakers. His job was to provide entertainment by running
around in the crowd. During the competition, he also had a
plate of cookies on his back. In addition, he would shuttle
back and forth between Santino and Alfredo, attempting to
strike up conversations with them. The two mobile robots
could identify one another by a red, white, and green flag
that each carried (one with the red side up, one with the red
side down).

This year Swarthmore not only competed in the "Hors
d’Oeuvres Anyone?" event, but also in the Urban Search
and Rescue [USR] event on a standard course prepared by
the National Institute of Standards and Technology [NIST].

From: AAAI Technical Report WS-00-09. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

(Communicatio~

State

Speech

Vision)

Shared

Navigation Monitor)

Figure 2 Logical diagram of the REAPER Architecture. Each module takes inputs from and writes its outputs to the shared
memory. The State module is the central controlling unit.

The robot Mario explored one section of the course autono-
mously, built a map, and connected annotated 360* pan-
oramic images of the scene to map locations. The
annotations identified image areas of interest by highlight-
ing motion and skin-color. Mario then made its way out of

the course within the allotted time limit (25 minutes).
Even with ten undergraduate students working on the

project for eight weeks, doing both events at this level of
performance was difficult. What made it possible, let alone
successful, was that each of the agents used the same over-
all software architecture for integrating navigation and con-
trol with perceptual processing. Furthermore, this
architecture was designed to be largely platform indepen-
dent and modular, permitting different agents--including
non-mobile agents--to use different capabilities with few
changes to the overall system.

Using the same architecture for each agent allowed us to
distribute our efforts and focus on common capabilities
such as visual information processing modules and facial
animation modules that could be used on several platforms.
This permitted us to give each agent a wide range of abili-
ties and then integrate them together effectively. The unique
aspects of our hors d’oeuvres entry this year included:

¯ The integration of multiple sensors and modes of inter-
action in a single agent,

¯ A powerful, general purpose, real-time color vision
module,

¯ Fast, creative, entertaining, and robust human-agent
interactions,

¯ Facial animation--including tracking faces with the
eyes--in sync with the text,

¯ Shirt color detection and identification,
¯ Fast, safe navigation in a crowded space using a reac-

tive algorithm, and
¯ Communication and interaction between agents.

The same architecture also managed our USR entry. The
only difference between Mario the bus-boy and Mario the

rescue robot were the controlling modules. Otherwise, the
vision, speech, and navigation modules were identical. The
strengths of our USR entry were:

¯ Completely autonomous function,
¯ A robust reactive wander mode and "get out" mode,

¯ Building a map of the environment with connected
annotated images, and

¯ The effective use of the same overall architecture.

The rest of this paper examines the overall architecture
and highlights the most important pieces.

2 REAPER: an Intelligent Agent Architecture
The system architecture--hereafter referred to as

REAPER [REflexive Architecture for PErceptual Robot-
ics]--is based on a set of modules. The purpose of each
module is to handle one of: sensing, reflexes, control, com-
munication, and debugging. The fundamental concept
behind REAPER is that the central control module--
whether it is a state machine or other mechanism--does not
want a flood of sensory data. Nor does it want to have to
make low-level decisions like how fast to turn each wheel
ten times per second. At the same time it does need real-
time updates of symbolic information indicating what the
world around it is doing. The sensor and reflex modules
gather and filter information, handling all of the preprocess-
ing and intermediate actions between high-level commands
or goals. This is similar to the way our brain deals with a
request to pick up an object. While we consciously think
about picking up the object, our reflexes deal with actually
moving our hand to the proper location and grasping it.
Only then does our conscious mind take back control to
decide what to do next. A graphical representation of the
architecture is shown in Figure 2.

The two sensing modules handle all vision and speech--
based interaction. Their main task is to act as filters
between the sensory data and the symbolic information
required by the rest of the system. The reflex modules--nav-
igation and face--handle the motion and appearance of the

robot. The navigation module also incorporates sensing
(sonar and infrared sensors), but its primary task is to con-
trol the motion of the robot, not to filter the sensory infor-
mation. Central control of the robot is handled through a

state module, and communication between robots is han-
dled through its own module. Finally, we created two mod-
ules for debugging purposes. One--the monitor--shows text
fields that represent all of the information available to the
system. The other--the visual monitor--is designed to
graphically show the information being provided by the
vision module.

The modules on a robot communicate through a shared
memory structure, which provides an efficient means of
sharing information. They are based on a common frame-
work for communicating and programming that uses a
handshaking protocol to ensure that information and com-
mands are passed and read correctly. Communication
between robots occurs through sockets between the com-
munication modules over a wireless ethernet system.

Central control of the robot was handled by a controller

module, or state module. This module was started first, and
it would start up all of the other modules it needed--each
which of which was its own program. The state module
would then initiate a state machine process that specified
how the robot would interact with the world, what sensing
and interaction modalities it would use, and what kinds of
navigation it needed to accomplish. To specify what the
other modules should do it used a handshaking protocol to
send information and commands to them. The other mod-
ules, in turn, would maintain blocks of output information
that could be used by the state machine to determine what
to do next and when certain actions were complete.

The state machine design and implementation required
careful planning and thinking. The most difficult aspect of
developing them was synchronization and timing. The state
machine used a handshake protocol involving two counters-
-one controlled by the state machine, one by the module--to
synchronize commands with a given module and ensure it

didn’t send commands too quickly. The state machine also
had to be carefully constructed so that it didn’t switch
between states too quickly. Since the state machine did not

include any of the low-level sensing or interaction, it iter-
ated extremely quickly and could move between states
before other modules had any chance to react to the previ-
ous state. Thus, it had to watch flags from the other mod-
ules to determine when actions completed before moving
on or making a decision. The strength of this approach is
that the state machine can sit back and sample high-level
information asynchronously, reacting to changes in the
world smoothly and quickly.

2.1 Overall module structure

The non-controller modules all contained the same basic
program structure. After startup and initialization, each

would enter an event loop--initially in an idle state. Each
time through the event loop, the module would first test if
the controller had issued a command. If so, the transition to
executing that command would take place. Otherwise, the
module would process the current command. When it com-
pleted the current command, the module would transition
itself back to an idle state and indicate to the controller via a

flag that it was in an idle state. In some cases, such as sens-
ing commands, the module would continue to process and
update sensory information until told to do something else.

The goal of all of the modules was to make the event
loop as fast as possible. In the navigation module, the goal
was to maintain a control loop of at least 10Hz; in the
vision module, the goal was to maintain 30Hz, or real-time
visual processing.

2.2 Reflexes: Navigation

The navigation modules on the Scout and Magellan had
to be platform-specific because of the differences between
the two robot’s low level interfaces. From the point of view
of the controller modules, however, they appeared similar.
Different groups developed the navigation modules, so,
while they are both reactive, they differ in their specifics.

2.2.1 Seout Navigation The navigation requirements for
the scout were simple. It had to move slowly and safely, be
able to get to a goal location, and be able to avoid obstacles.
In addition, it had to have a mode where it actually stopped
for an obstacle in case it was a person to serve.

The navigation module was setup as a 2-layer reactive
system. The sensors available to the navigation module
were the sonars and bump sensors, including five bump sen-
sors on a low front bumper we added to Santino. The bot-
tom layer contained a set of behaviors that reacted directly

to these inputs. These behaviors included the following.

¯ Goal achieving

¯ Obstacle avoidance

¯ Wander
¯ Free-space finding
¯ Front bumper reaction

Each of these behaviors would return a fuzzy priority,
speed, and heading. The controller layer would then com-
bine the speed and heading values based on its mode and
the currently active behaviors.

The modes/commands for the navigation system
included: Idle, Stop now, Stop slowly, Goto avoid, Goto
attend (stop for obstacles), Put the arm up, Put the arm
down, Wander, Track attend, Track avoid, and a set of com-
mands for setting the odometry and controlling orientation.

The most interesting of these modes were the track
modes. The intention here was to create a mode that would
directly connect the vision system and the navigation sys-
tem without controller intervention. It could be used to fol-
low a judge’s name-tag badge or track a target in real-time.
Once the vision module found a badge or target, the con-
troller could initiate the mode in both the vision and naviga-

tion modules. Once initiated, the vision module would
continue to track the object and update the object’s position.
The navigation module, in turn, would react as quickly as
possible to the visual information and try to orient and fol-
low the target. It would continue to track the target until
either the target was lost, the controller ended the tracking,
or an obstacle appeared (in the case of Track Attend).

2.2.2 Magellan Navigation The Magellan Pro--Mario--is

a small round robot with symmetrically opposed wheels
which allow it to rotate on its axis. The basic sensor array
consists of a three rings of 16 bump (contact), sonar, and

3

sensors mounted around the sides of the robot. In addition
Mario has a Sony DV30 pan-tilt camera and external speak-
ers. The on-board computer is a Pentium II running Linux

2.2.10, and communicates with the robot’s rFlex controller
over a 9600 baud serial line.

Because of the lack of a low-level software library, we
developed an interface for the Magellan which we called
Mage. Mage communicates directly with the rFlex control-
ler of the robot. The rFlex accepts a simple set of motor
control commands and is also responsible for transmitting
the sensor data of the robot back over the serial line. We
were able to extract or deduce most of the protocol for this
communication from some example code that RWI pro-
vides for updating the CMOS on the rFlex. At our request,

RWI sent us code snippets containing information relevant
to the IR sensors, which allowed us to enable and read the
IR range values. During this time we also developed and
integrated a controller for the Sony pan-tilt-zoom camera,
which was controlled over a separate serial line.

In general the Mage API closely resembles the API for
the Nomad SuperScout (due to the fact that we have exten-
sive experience with the scouts), although we implemented
a simplified command set and decided to make the units of
distance thousandths of meters and the units of rotation
thousandths of radians.

In keeping with the Nomad API, all sensor and motor
control data is maintained in a large state vector. For exam-
ple, the statement State[STATE_SONAR_0] returns the

most recent value of the forward-pointing sonar sensor.
This state vector is updated continuously by a thread ,;vhich
handles new data passed from the robot controller.

Although the rFlex controller supports a request-based pro-
tocol, the simpler method is to ask it to continuously stream
data from the sensors as fast as it can. This approach
ensures that the sensor data is as up to date as possible. In

order to send motor commands, the API includes a method
which sets the contents of an output buffer. The same thread
which handles incoming data also watches this buffer and

transmits its contents to the rFlex controller. As a note, this
motor data is transmitted immediately if it changes and then
transmitted periodically to keep the rFlex controller alive.
The serial communications to the pan-tilt-zoom mount of
the camera is implemented in the same way.

The navigation module sits on top of the Mage API and
is responsible for reporting the basic sensor data and for
actually getting the robot from point A to point B without
running into anything. In our implementation, the nav mod-
ule had several different modes, but they were all based on a

reactive kernel. The robot decided how much to translate
and rotate based on four lines of code.

¯ Translate = Translate - Distance to closest front objecl~

¯ Translate = Translate + Distance to closest rear object
¯ Rotate = Rotate - Distance to nearest object to the right

(assuming clockwise rotation)

¯ Rotate = Rotate + Distance to nearest object to the left

To make the robot wander, we just had to give Translate a
forward bias. To go to a goal point, we calculated the Trans-
lation, Rotation bias required to push the robot towards the

goal point. To track an object, the navigation module moni-
tored the relative position of the object (stored in the vision
module), and fed this information straight into the biases.

This approach proved to be very robust as long as the biases
did not exceed the maximum repulsion of obstacles.

To build a map in the USR event, the navigation module
used an evidence grid approach (Moravec and Elfes, 1985).
We integrated sonar readings into a probabilistic map that
could then be classified into free space and obstacles for
interpretation by a person. The evidence grid technique

worked well in our test runs, but in the actual event small
objects on the floor and tight paths between obstacles
caused sufficient wheel slip to significantly throw off the
odometry. Thus, local areas of the map were correct, but
globally it did not reflect the test situation.

2.3 Reflexes: Face

Robot-Human interaction is the key component that dis-
tinguishes the Hors d’Oeuvres Anyone? competition from
other robot competitions, the goal of creating a fully-func-
tional intelligent agent with the capabilities of any average
human is far from realized. Yet our robot team this year
began to make strides in developing our own synthetic char-
acter to better solve the difficult task of the competition by

incorporating an animated, 3-D graphical model of a human
head with interactive capabilities.

A growing amount of work has been dedicated to the cre-

ation of synthetic characters with interesting interactive
abilities. Each year the competitors in the robot contest find
better ways to explicitly display complex interaction s with
humans. We considered a number of graphical models with
the capability to display emotion and the flexibility to add
increasingly more complex abilities. The Dragon Wing, for
example, is a facial modeling and animation system that
uses hierarchical b-splines for the generation of complex
surfaces (Forsey and Bartels, 1988). The technique provides
an incredible amount of flexibility, but was too complicated

for our needs. Instead we utilized a muscle model for facial
animation and facial geometry data available on the web
(Parke and Waters, 1996). We ported the system to OpenGL
on Linux (Neider, Davis, and Woo, 1993).

The facial model is a simple polygon representation that
uses 876 polygons. Only half the face is actually described
in the input data file since symmetry is assumed between
the right and left sides. Reading the data and rendering it is
straightforward in OpenGL. The system we developed per-
mitted the user to view the face data in a number of ways,
including: transparent, wire frame, flat shading, and smooth
shading. In addition, the face could be oriented and rotated
by the user.

The model we used included a simple muscle model to
animate the face. A second data file defines the muscles by
specifying the beginning and ending points, as well as a

zone of influence. Each muscle can be relaxed or con-
tracted, affecting all those vertices within its specific zone
of influence. We created a set of predefined expressions
which consisted of a set of contractions for each muscle in
the facial structure. We could move between expressions by
interpolating the differences in the expression vectors. Our
system used a total of 18 different muscles and 6 unique
expressions. Each of the expressions is shown in Figure 3.

Beyond the structure of the face, we added a couple of
features to increase the interactivity of the system. First, we
gave the jaw the ability to move in order to synchronize

Figure 3 The faces of Santino. From left to fight: anger, disgust, fear, happy, sad, surprised.

mouth movement along with speech generation. The jaw
was able to rotate vertically by specifying jaw polygons and
then rotating them about a central axis. The mouth was also
able to move horizontally from puckered lips to a wide
mouth by adding a virtual muscle that contracted the poly-
gons of the mouth. Our speech generation program, IBM’s
ViaVoiceTM Outloud, generated a mouth data structure--
containing mouth height and width--in parallel to the sound
synthesis. We passed this information to the face module

and used it to update the mouth state in synchronization
with the robot’s speech.

The second capability we added was to give the face

eyes--half-spheres colored appropriately with an iris and
pupil. We then transformed the eyes according to the output
of the vision module. This simulated the effect of the eyes
tracking people’s faces or focusing on their conference
badges.

We presented the f0ces on Santino and Mario using color
LCD displays at a resolution of 640x480 in 8-bit color. On
Alfredo--a dual processor workstation--we presented the
face on a 17" monitor with 8-bit color at a resolution of
800x600 pixels. The complete animation capabilities were
only used on Alfredo because of the more limited process-
ing power on the mobile robots. On Alfredo, with the full
capabilities--and the vision module running simulta-
neously--the rendering system was able to run at approxi-
mately 9 Hz, which was at the low end of acceptable
quality.

Overall, the facial animation system greatly enhanced the
interactively capability of the trio of intelligent agents. It
gave people a central focus when interacting with the robots
and helped to keep their interest throughout the interaction.

2.4 Senses: Speech

To serve people, a server must be capable of interacting
with those being served. This interaction can take several
forms, but somehow communication must take place. The
server must signal his/her presence and offer the objects
being served, the servee must be able to signal acceptance,
and the server must serve. On Santino, we chose to make
the main modality of communication speech. To create a
full interaction, we wanted Santino to be capable of asking
people if they wanted an hors d’oeuvre, and responding
correctly to their response. This required that we use both
speech generation and recognition. We elected to use com-
mercially available development software to accomplish
both of these goals. For recognition, we elected to largely
build on the development done for Alfred at the 1999 com-
petition, development based on ViaVoiceTM SDK for Linux.
For speech synthesis, we decided that ViaVoiceTM Outloud

enabled us to do all the things we wished to do in addition
to being easy to integrate with the ViaVoiceTM recognition
system.

There were several major problems to be overcome in
developing the complete speech module. We decided that
doing speech recognition in the actual competition was
extremely important, though very difficult. ViaVoiceTM

software is designed for highly specific circumstances: a
single person speaking clearly into a microphone in a
mostly quiet room. The hors d’oeuvres competition was
certainly not that. Instead, we could expect several hundred
people chatting amongst themselves, and some people not
knowing to speak directly into the microphone. Therefore,
we needed to keep recognition interactions extremely brief

and do whatever we could to get a clear sound signal for
recognition.

Given that recognition even on monosyllables was going
to be difficult, we wanted to make sure that the robot could
be an interesting conversationalist. We wanted to avoid a
stereotypical robotic voice, yet enable dialogue to be easily
written and added. Additionally, it was important to us that
the voice be able to express different emotions, especially
as we planned to closely link speech with the expressive
face module. Fortunately, Outloud enabled us to implement
all these synthesis features.

Finally, we needed to make generation and recognition
work on the actual mobile robot, with little processing
power, system noise, and a poor sound card. Making Via-
VoiceTM and Outloud work together with poor audio pro-
cessing equipment turned out to require extra levels of care.

2.4.1 Santino’s speech module Our approach to recogni-
tion was much the same this year as in 1999 (Maxwell et
al., 1999). Though ViaVoiceTM can be made to recognize
complex grammars with large vocabularies, it has difficulty
with recognition in noisy environments. Therefore, doing
anything approaching complex speech recognition was not
reasonable under the competition circumstances. We
decided therefore that the robot primarily needed to under-
stand simple yes-no type responses, and simple polite
words, like please or thanks. Therefore we tailored our
efforts in recognition towards getting high recognition rates
on these monosyllables, rather than attempt to hold a more
complex conversation.

One of the major improvements on the speech system
that was suggested by last year’s hors d’oeuvres competi-
tion was to allow our robotic waiter agent be able to detect
when the background noise exceeded a threshold and made
it undesirable for speech recognition. With this added abil-
ity, we could program our robotic waiter to simply shut
down its speech recognition component and switch into a

different mode that only used speech synthesis. This noise
detection ability would greatly improve speech recognition
rates since the robot would attempt recognition only in rea-
sonable environments.

We were able to implement this background noise detec-
tion feature through a simple signal processing technique
(Ifeachor and Jervis, 1995). We implemented a routine that
calculated the average power of a ten second sound record-
ing from an omni-directional microphone and compared it
to threshold values. These threshold values were deter-
mined at the conference hall some minutes before the com-
petition. In determining appropriate threshold values, the
peak power of a sound waveform was used as a guide to
prevent us from specifying a threshold that would never be
exceeded. Our threshold value was such that speech recog-
nition could still occur with some amount of background
noise.

In addition to making our speech module more robust, a
simple Finite Impulse Response band-pass filter was imple-
mented to eliminate frequencies that were beyond a speci-
fied range (~200Hz - 2kHz) (Ifeachor and Jervis, 1995).
Mechanical objects--like ventilation fans in a conference
hall--mainly produce the low frequencies, while high fre-
quencies occur from electrical interference in the sound
card--which is integrated on a single board computer. To
ensure module independence and speed, we modified the

ViaVoiceTM Speech Recognition audio library to include the
band--pass filtration. This bypassed the necessity to first
record the speech utterance to a pulse code modulated
(PCM) wave file, perform filtration and then pass the output
to the recognition engine.

The most important part of the competition for Santino
was interacting with a person during a serving scenario. As
doing complex speech recognition was not a possibility, we
devoted most of our energy to developing the robots spoken
personality. We attempted to make the robot sound emo-
tional, and to say properly emotional things. Originally, we
planned to make emotion a very important part of speech,
and have the robot enter each interaction with an emotional
state, perhaps even having that emotional state change as a
result of the interaction. In the end, we did not have enough

time to tie emotions to causes within the environment,
though that will certainly be a future goal. The robot still
sounded emotional, and said emotionally charged things,
but the emotional state was randomly determined.

There were several classes of spoken phrases used during
the each serving scenario. When the state machine signaled
speech to begin an interaction, it would say something that
asked the person if they would like something to eat, often
in an interesting and occasionally rude way. When the robot
finished speaking, the recognition engine would be given
control of the sound device, to record the response of the
person. If a yes or no response was registered, the speech
module would report the response to state, who would then
instruct speech to respond appropriately and end the inter-
action. If there was a failed recognition, the robot would
either say something about the color of the persons shirt--if
vision had managed to detect shirt color--or something non-
committal. Santino would then ask the person again if they
wanted an hors d’oeuvre and listen for a response. A second

failure would cause speech to say something to just get out

of the interaction, and state would look for someone else to

serve. If the robot heard nothing at all, the speech module
would comment that the person was probably a box being

mistakenly served and move on.
When Santino was not in an interaction, he muttered,

which was a running commentary about whatever the robot
was doing at that moment. When the robot was in the
GOTO_SERVE state and not serving anyone, it would mut-
ter about all the food that it had to give. In the
GOTO_REFILL state, it would mutter and tell people to not

bother it; there was no food to be had. We had to overcome
several problems to get this to function properly on the
actual robot. In particular, we had to make synchronous
calls to both ViaVoiceTM programs telling them to stop con-
trolling the audio device in order to deal with a slow turn-
around time switching from input to output on the sound
card.

The speech module acquitted itself very well at the com-
petition. Recognition rates in the crowded hall were fairly
high, at about 70-75%, which included misrecognitions of
people not talking into the microphone, or saying some-
thing with absolutely no resemblance to yes-no responses.
Given the loudness and the large numbers of people, the
robot did just a little worse than a human might have in the

same circumstance. The worst mistakes were made when it
appeared that a variable was not getting properly cleared,
causing the robot to respond to a no response as if it were a
yes response, but this only seemed to happen once or twice.
Most problems had been isolated during extensive testing
of speech apart from the other modules, where it performed
almost perfectly.

2.4.2 Maria’s speech module Because Maria did not
attempt speech recognition, its speech module was a simpli-
fied version of Santino’s. The speech module mainly served
a diagnostic function, encoding information about the inter-
nal state of the robot into natural-sounding phrases, as well
as a means for the robot to communicate its goals and inter-
act with humans. The speech output is expressed as strings
and then we render the speech using IBM’s ViaVoiceTM

Outloud. Although the speech module does have the func-
tionality to read and speak a phrase directly from the state
module, we often used a more flexible mutter mode. In the
mutter mode the speech module monitors the shared mem-

ory information fields and makes its own decisions about
what to say. Once properly configured, the mutter mode
picks an appropriate phrase out of a pool of possibilities
every few seconds. To a practiced ear this is informative

about the robot’s internal state but at the same time it
reduces the risk of hearing the same boring phrase over and
over.

2.5 Senses: Vision

Being able to sense the visual world gives numerous
advantages to a robot, especially one involved in human
interaction. Visual capability allows the robot to find and
locate objects, detect motion, and identify visual object
characteristics. One of our goals in both contests was to
make the robots react to their world as quickly as possible.
Thus, the navigation module maximized the number of
times per second it executed the control loop. Likewise, our
goal in the vision module was to maximize the frame rate

while still providing a rich array of information.

The structure of the vision module was similar to the oth-
ers. After initialization, the event loop checked if there was

a pending command from the controller. If there was, it
would transition to the new state according to the com-
mand. Otherwise, it would continue to execute the current
command set.

The vision module included a rich set of operators for
converting images into symbolic information. The three
general classes of operators were: object detection, motion
detection, and ’object characteristic analysis. Each com-
mand to the vision module indicated a general mode and
the set of operators that should be turned on. The controller
could then scan the relevant output fields of the vision mod-

ule for positive detections, motion, or object characteristics.
Each output field included information about where an
object was detected in the image and when it was detected
as determined by a time stamp. The controller could then
decide what information required a response.

The set of operators we implemented included:

¯ Person detection based on skin color and gradients

¯ Motion detection across multiple frames
¯ Color blob detection, focused on conference badge

detection
¯ P-similar pattern detection
¯ Red, white, and green flag detection
¯ Palm detection
¯ Orange arrow detection
¯ Shirt color analysis)
¯ Person identification
¯ Calculation of how much food was on the robot’s tray

(using the tray camera)
¯ Take a panoramic image (on Mario only)

Which operators were available depended on the mode
the controller selected. The modes relevant to the competi-
tion were: IDLE, LOOK, TRAY, and PANO. The LOOK
mode was the primary mode of operation and permitted all
but the last two operators to be active. The TRAY mode

activated the second camera input and analyzed how much
of the tray was filled. The PANO mode worked with the
pan-tilt-zoom camera on Mario to generate a 180° pan-

oramic image that concatenated eight frames together while
simultaneously applying the motion and person detection

operators.
While in the LOOK mode, there was clearly no way we

could maintain a high frame rate and execute all of these
operators on each image. Our solution was to devise a
scheduling algorithm that only applied a few operators to
each frame. This came about because of the realization that
the controller didn’t really need to know that there was a
badge in view--or whatever other object--30 times per sec-
ond. That was a lot faster than the robot could react to
things since reactions generally involved physical actions or
speaking. Running the badge detection 2-6 times per sec-
ond was probably still overkill. Likewise, most of the other
operators did not benefit from continuous application. Since
we supplied a time stamp with each piece of information,
the controller could decide based on the time stamp
whether a piece of information was recent enough to war-
rant a response.

Our scheduling algorithm was based on the premise run-
ning two operators per frame would not reduce the frame
rate. This put an upper bound on operator complexity,
although in ihe case of motion analysis we got around the
limitation by pipelining the process. In the standard LOOK
mode, the module would randomly select two of the active
operators based on a probability distribution. To create the
probability distribution, each process was weighted, with
processes requiring higher frame rates receiving higher
weights. Most of the operators received small, relatively
equal weights. Once selected, the module would execute
the two operators and update the relevant information. On
average, each operator would be executed according to the
probability distribution.

The motion detection operator was the most difficult
operator to develop within this framework because it
requires multiple frames--at least three for robust process-
ing--and requires a significant amount of processing for
each frame. Our algorithm used Sobel gradient operators to
calculate edge images, and then subtracted adjacent (in
time) edge images to locate edges that moved. It then
located the bounding box of areas of motion that exceeded a
certain threshold. We have found this algorithm to be quite
successful at locating people in the hors d’oeuvres event
(Maxwell et al., June 1999)(Maxwell et al., July 1999).

We didn’t want to break the overall structure, so we pipe-
lined the algorithm across multiple event loops. The motion
algorithm took five event loops to calculate a result--with
the first three capturing images and calculating the Sobel
results. To ensure the motion algorithm was called fre-
quently enough, we gave it a high weight in the probability
distribution. On average, the motion algorithm produced a
result 5-6 times per second. When it was active, it was usu-
ally selected as one of the two scheduled operators.

A secondary mode with the LOOK mode permitted
tracking using one operator in addition to looking for other
objects. To engage tracking, the controller would specify a
single tracking operator and the regular list of other active
operators. The operator scheduler would then put the track-
ing operator in one of the two execution slots and randomly
select the other operator from the active list. This guaran-
teed that the vision module would look for the object being
tracked every frame, providing the fastest update rate possi-
ble. As noted above, in the tracking mode the navigation
module could look directly at the vision module output and
adjust its control of the robot accordingly. Mario used this
ability to follow badges during the competition.

The scheduling algorithm and overall structure were
extremely successful as a way to manage a robot vision sys-
tem. Even with all of the other robot modules running, the
vision module was able to maintain a frame rate of at least
20Hz. Information updates occurred regularly enough that
the robot was able to attend to multiple aspects of its envi-
ronment with real time reactions.

The new capabilities and algorithms we developed this
year were: person detection and identification, shirt color
identification, food tray analysis, and Italian flag detection.
For details on the motion, color blob, and P-similar pattern
detection see (Maxwell et al., June 1999), (Maxwell et al.,
July 1999), and (Scharstein and Briggs, 1999). Examples
each of the new capabilities are shown in Figure 4.

(a) (b)

(c)

(d)

Figure 4 Examples of the vision module in action. A) Successful face detection and the corresponding box used for shirt color
and person identification. B) Successful flag detection. C) Training system for face detection system. D) Panoramic image
from the USR contest: the green and blue boxes indicate possible motion and skin color respectively. Note that the skin-color
on the manniquin’s arm--on which we trained--is grey, which is why the walls and floor get highlighted.

2.5.1 Person detection and identification Person detec-
tion is one of the most important capabilities for an interac-
tive robot to possess. We used two independent techniques
to accomplish this: motion and face detection. Our motion
detector was straightforward, but we took a slightly novel
approach to face detection that resulted in a fairly robust
technique in the hors d’oeuvres domain.

The basis of our face detection system is skin-color blob
detection. The key to skin detection is effective training,
since lighting conditions can strongly affect the appearance
of colors. We developed a fast, interactive training algo-
rithm that gives the user direct feedback about how well the
system is going to perform under existing conditions. The
output of the training algorithm is an rg fuzzy histogram,
where r and g are defined as in (1).

R G
r - R+G+B g - R+G+B" (1)

A fuzzy histogram is a histogram with entries in the

range [0, 1] that indicate membership in the colors of inter-
est. You can create a fuzzy histogram by taking a standard

histogram--which counts the occurrences of each rg pair--
and dividing each bucket by the maximum bucket value in
the histogram (Wu, Chen, and Yachida, 1999).

We use fuzzy histograms to convert standard images into
binary images that contain only pixels whose colors have
high fuzzy membership values. For skin-color blob detec-
tion we train the fuzzy histogram on skin-color regions of
some training images and then keep only pixels with mem-
bership values above a specified threshold. To get blobs we
run a 2-pass segmentation algorithm on the binary image
and keep only regions larger than a certain size.

The result of blob detection is a set of regions that con-
tain skin-color. In previous competitions we ran into trouble
using just blob detection because the walls of the competi-
tion areas in 1998 and 1999 were flesh-tones. While this

was not the case in 2000, there were other sources of skin-
color besides people in the environment.

Our solution to this problem was to multiply a gradient
image with the skin-color probability image prior to seg-
mentation. The gradient image, however, was pre-filtered to
remove high gradient values (i.e. strong edges). The result

was a gradient image where mild gradients were non-zero

and all other pixels were zero or close to it. Faces are not
fiat and contain mild gradients across most of their surface.
However, they do not tend to contain strong edges. Thus,
including the gradient values effectively eliminated walls--
which are fiat and tend to be featureless--but left faces. We
found the combination to be robust and it reduced our false
positive rate to near zero while still locating people.

In the 1999 competition our robot--Alfred--tried to

remember people based on texture and color histograms.
This worked ok at the competition, but it relied on the per-
son standing directly in front of the camera, which was
rarely the case. This year we decided to integrate the person
identification with the face detection and shirt color identifi-
cation. We also decided not to store a permanent database

of persons, but instead to only recall people for a short time
period. The purpose, therefore, of the person identification
was to discover if a particular person was standing in front
of the robot/agent for an extended period of time.

After a successful face detection, if the memory feature
was activated and called then the memory algorithm
extracted a bounding box around the person’s body based

on the location of their face. It then extracted a short feature
vector from that box to represent that person’s identity. The
feature vector was the top five buckets in an rg histogram--
as defined in (1)--the top five buckets in an IB (Intensity,
Blue) histogram, the average edge strength as determined
by X and Y Sobel operators, the number of strong edge pix-
els, and the number of significant colors in the rg histogram.
These 12 numbers provide a nice key with which we can
compare people’s appearance.

Once the system extracted a key, it compared the key to
all other keys recently seen. The system stored the 100 most
recent unique keys. If it found a probable match, then it
would send this to an output filter. If it found no match, it
would add the key to the data base and then call the output
filter. The output filter simply returned the most common

key identified in the past 10 calls. If no single key had at
least three matches in the past 10, a null result (no match)
was returned. The output filter guaranteed that, even in the
presence of a person’s motion and schizophrenic face detec-
tion results (jumping between people), if a person was
standing in front of the camera for an extended period of
time their key would register consistently.

We ended up using this information with Alfredo. If a
person was standing in front of Alfredo for a minimum
period of time, he would comment that they should go do
something else. Clearly there are other applications, but we
could not pursue them for lack of time.

2.5.2 Shirt color identification The shirt color recognition
depended upon a successful face (skin) detection. Once
face was detected, the algorithm selected a section of the
image below the face that corresponded to the person’s
shirt. The algorithm then analyzed a histogram of this
region to determine the dominant color. The difficult

aspects of this task were selecting a histogram space to use,
and attaching color labels to regions of that space.

Based on experimentation, we selected the rgI histogram
space to represent color, where

= I(R + G + B) (2)I
.3

I is intensity, and r and g are the normalized coordinates
defined by (1).

(R, G, B) are the raw pixels values returned by the cam-
era for a given pixel. The benefit of using the rgI space is
that the color--represented as rg--is then independent of the
intensity--represented in the I axis. We used 20 buckets in
each of r and g, and 4 buckets in I.

Because different camera settings and different lighting
affect where a color sits in the rgI space, we calibrated the
system using a MacBethTM color chart prior to each situa-
tion in which the robot would interact. Using a picture of
the color chart under the appropriate illumination we identi-
fied the centroid in the rgI space for each of the 24 colors on
the color chart.

After identifying the region of interest--i.e, the shirt
region--the system identified the most common color in the
rgI histogram. The system then found the closest--in a
Euclidean sense--color centroid and returned its text color
label as the output. Alfredo used this system to great effect
during the competition. It correctly identified numerous
shirts, including Dr. Maxwell’s mother, who was wearing a
purple shirt. It made the computer appear cognizant of its
surroundings in an engaging manner.

2.5.3 Food tray analysis The food tray analysis was a sim-
ple, but effective algorithm. We used an Osprey 100
framegrabber card with multiple composite video inputs.
Upon entering the TRAY mode, the vision module would
switch to analyzing the input from a small greyscale camera
mounted on the tray. We used a white napkin to cover the
tray and served dark brown or black cookies.

The tray analysis algorithm worked on the middle 1/2 of
the image, in which the tray dominated the scene. Then we
simply counted the number of dark pixels and calculated
the percentage of the visible tray that was full. By having
pre-calculated minimum and maximum value, we could
control a flag that specified FULL, EMPTY, or a percentage
in between. This turned out to be a good proxy for how
many cookies remained. Since the small camera included
an auto-gain feature, this method worked even when some-

one blocked the direct lighting by leaning over the tray or
standing so it was in shadow.

Based on the percentage full values returned by the
vision module, the controller was able to smoothly transi-
tion from pure serving, to serving while heading towards
the refill station, to heading directly to the refill station
because the tray was empty.

2.5.4 Vertical Italian flag (red-white-green) detection

One of the capabilities we gave the robots for the hors
d’oeuvres event was the ability to strike up conversations
with one another. To make this realistic it should only hap-
pen when the robots are close to one another. To ensure this
we decided to give the robots the ability to recognize one
another. We originally considered putting p-similar pat-
terns--easily recognizable targets--on each robot. However,
this would have detracted from the robot’s appearance,
which was something close to formal dress.

Since our theme was an Italian restaurant, we decided to
use the italian flag colors--red, white, and green--as our
identifying feature. Santino had a flag draped vertically
from his serving tray, and Mario had one placed on an
antenna about 4 feet above the ground. Alfredo could also

initiate conversations when he saw one of the mobile robots
in his camera. To differentiate the two we reversed the order
of the colors for Mario and Santino from top to bottom.

The technique we used for recognition was based on tra-
versing columns--since the colors were arranged vertically.
Along each column a state machine tracked the order of the
pixels. The state machine would only output a positive
identification if it found a vertical series of red, white, and
green pixels (or in reversed order). Each color had to
mostly continuous and contain a sufficient number of pix-
els. The state machine allowed a certain number of invalid
(not red, white, or green) pixels as it traversed the colors.
However, too many invalid pixels invalidated that particular
state traversal.

This method, since it was based on single columns,

turned out to be extremely robust and could execute in real
time. The recognition system worked well both in test runs
and in the competition. Because Santino was almost contin-
uously engaged in serving during the competition, however,
it was never able to respond to Mario. For us, watching the
robots engage one another prior to the competition was one
of the highlights of the experience.

3 Lessons learned and looking to the future

The products of our experience that we will continue--
and are continuing--to use are the overall architecture, the

navigation modules, the face module, and the vision mod-
ule. All of these provided us with generic scaffolding on top
of which we are building other capabilities and systems. All
of them are extendable and easily integrated with one
another. We also now have excellent debugging tools that
permit us to track all of the information and messages that
pass between modules during execution. For us, this infra-
structure is the real outcome.

What we also learned is that designing the controller
module is still more art than science. From a practical point
of view, if we continue to use the state machine approach
we need to build a set of standard techniques for managing
and passing information around the system. Some of this
we have started, but it needs to be approached in a more for-
mal manner. One alternative is to develop a generic state
controller that uses a knowledge management system and a
set of rules to determine its actions. This method would
implement a three-layer architecture where the controller
sits between a reactive system and a deliberative symbolic
system (Kortenkamp, Bonasso, and Murphy, 1998).

Looking to the future, if the Hors d’Oeuvres Anyone?
event continues then the challenge is to push the envelope.
On the interaction front, one challenge is to develop a more

generic speech interaction system that can engage in and
follow conversations, albeit within a limited domain. A sec-
ond is to fully implement an emotional subsystem that can

affect the whole range of robot behaviors. A third is to more
closely link visual recognition of features--such as shirt
color--with the interactions in a natural manner. We came
close to that goal this year, but to be smooth it must be inte-
grated with a more generic speech interaction system.

On the navigation front, coverage of the serving area has
only been achieved by Mario, mostly because he never

stopped to talk. Combining Mario’s ability to move in a

crowd with a more effective Santino will be difficult,
because the robot has to take the initiative and move on.

Finally, the multi-robot system proved to be both enter-
taining and successful at solving the task. Future competi-
tions should encourage multiple robot interaction--two
teams attempted it this year. They will have to deal with the
fact that it is difficult for the robots to get to one another,
but it should be possible.

In the USR task, the challenge is clear. The autonomous
entries covered only a small amount of the test area, mostly
because of limitations in their ability to sense and interpret
the realities of the situation. The tele-operated entry, on the
other, did not give much responsibility to the robots. Build-
ing meaningful maps, correctly flagging features or injured
people, and simply getting out of the test area within the
time limit should be minimal goals for future entries. We
believe the techniques exist to accomplish these goals, but
their integration in a single package has yet to be done.

References

[1] D.R. Forsey and R. H. Bartels, "Hierarchical B-
spline refinement", in Computer Graphics (SIG-
GRAPH ’88), 22(4):205-212, August, 1988.

[2] IBM ViaVoiceTM Outloud APl Reference Version 5.0,
November 1999.

[3] E.C. Ifeachor and B. W. Jervis, Digital Signal Pro-

cessing. A Practical Approach, Addison Wesley Pub-
lishing Company, 1995.

[4] D. Kortenkamp, R. P. Bonasso, and R. Murphy (ed.),
Artificial Intelligence and Mobile Robots, AAAI
Press/MIT Press, Cambridge, 1998.

[5] B.A. Maxwell, L. A. Meeden, N. Addo, L. Brown, P.
Dickson, J. Ng, S. Olshfski, E. Silk, and J. Wales,
"Alfred: The Robot Waiter Who Remembers You," in
Proceedings of AAAI Workshop on Robotics, July,
1999. Submitted to J. Autonomous Robots.

[6] B. Maxwell, S. Anderson, D. Gomez-Ibanez, E. Gor-
don, B. Reese, M. Lafary, T. Thompson, M. Trosen,
and A. Tomson, "Using Vision to Guide an Hors
d’Oeuvres Serving Robot", IEEE Workshop on Per-
ception for Mobile Agents, June 1999.

[7] H.P. Moravec, A. E. Elfes, "High Resolution Maps
from Wide Angle Sonar", Proceedings oflEEE lnt’l
Conf. on Robotics and Automation, March 1985, pp
116-21.

[8] J. Neider, T. Davis, and M. Woo, OpenGL Program-
ming Guide: The Official Guide to Learning
OpenGL, Addison-Wesley, Reading, MA, 1993.

[9] F.I. Parke and K. Waters, Computer Facial Anima-
tion, A. K. Peters, Wellesley, MA, 1996.

[10] D. Scharstein and A. Briggs, "Fast Recognition of
Self-Similar Landmarks", IEEE Workshop on Per-
ception for Mobile Agents, June 1999.

[11] H. Wu, Q. Chen, and M. Yachida, "Face Detection
From Color Images Using a Fuzzy Pattern Matching
Method", IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 21, no. 6, June 1999.

10

