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Abstract: Homologous recombination (HR) plays an important role in maintaining genomic integrity.

It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and

inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous

chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks. Defects

in HR often lead to genetic diseases and cancer. Rad52 is one of the key HR proteins, which is

evolutionarily conserved from yeast to humans. In yeast, Rad52 is important for most HR events;

Rad52 mutations disrupt repair of DNA double-strand breaks and targeted DNA integration.

Surprisingly, in mammals, Rad52 knockouts showed no significant DNA repair or recombination

phenotype. However, recent work demonstrated that mutations in human RAD52 are synthetically

lethal with mutations in several other HR proteins including BRCA1 and BRCA2. These new findings

indicate an important backup role for Rad52, which complements the main HR mechanism in

mammals. In this review, we focus on the Rad52 activities and functions in HR and the possibility of

using human RAD52 as therapeutic target in BRCA1 and BRCA2-deficient familial breast cancer and

ovarian cancer.

Keywords: genetic recombination; DNA double-strand break repair; DNA strand exchange; BRCA1;

BRCA2; RAD51; synthetic lethality

1. Introduction

Homologous recombination (HR) is a highly conserved pathway that plays a major role in repair

of double-strand breaks (DSBs), the most harmful type of DNA damage, which are induced by ionizing

radiation (IR), chemical agents or during repair of stalled replication forks and incomplete telomere

synthesis. HR is also important for faithful segregation of chromosomes in eukaryotes during meiosis.

HR is an error-free process because it utilizes an intact homologous DNA sequences as a template

for the repair of DSBs unlike alternate DSB repair pathways, non-homologous end joining (NHEJ) or

microhomology-dependent end-joining (MHEJ), that are error-prone [1,2].

The process of HR involves recognition and enzymatic processing of the DSB to produce 3’-ssDNA

tails, formation of Rad51-ssDNA filaments that search for homology and promote strand invasion

into the homologous duplex DNA-template leading to the formation of a displacement loop (D-loop)

intermediate, which provide a template for DNA polymerase to extend the invading DNA strand. After

D-loop formation, HR may proceed by two major alternative mechanisms. In the mechanism known

as synthesis-dependent strand annealing (SDSA), D-loops dissociate and the extended invading strand

re-anneals with the resected second end of DSB forming non-crossover recombinants (Figure 1A).

In contrast, in the canonical DNA double-strand break repair mechanism (DSBR), the displaced

strand of the D-loop may anneal with the second resected end of the DSB leading to formation of

double D-loops that are converted to Holliday junctions. Branch migration and resolution of Holliday
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junctions lead to formation of crossover recombinants (Figure 1B) [1,3]. While in generative cells

crossing over between homologous chromosomes is essential for their accurate segregation, in somatic

cells crossing over may lead to excessive loss of heterozygosity. The mechanisms were proposed that

channels HR intermediates from DSBR into SDSA mechanism reducing frequency of crossing overs.

Thus, Holliday junctions can be dissolved by action of BLM-Topo3α-RMI complex [4]. In addition,

double D-loops can be dissociated by Rad54 through its branch migration activity [5].
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Figure 1. The DNA double-strand break (DSB) repair by Homologous Recombination (HR). The initial

steps involve, 5’ to 3’ exonucleolytic processing of DSB ends to produce 3’-ssDNA tails, formation

of RAD51-ssDNA filaments, search for homology and strand invasion into the homologous duplex

DNA-template leading to the formation of displacement loops (D-loop). Then, HR may proceed either

by (A) SDSA forming non-crossover products or (B) DSBR forming crossover products. When DSB

are flanked by direct repeats, the break may be repaired by single strand annealing (SSA) mechanism

mediated by repeated DNA sequences (C).

In some cases, single-end DSBs are formed; for instance, during replication fork collapse. It was

proposed that these DSBs are repaired by the mechanism known as break-induced replication (BIR)

through strand invasion into a homologous dsDNA followed by replication to the chromosome end.
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Because BIR results in an extensive loss of heterozygosity, it thought that this mechanism is suppressed

when DSBs can be repaired by other more conservative HR mechanisms [6,7].

Rad52 (Radiation sensitive 52), an important HR protein, was initially identified in S. cerevisiae

during a genetic screen for mutants sensitive to IR [8]. A number of other HR proteins—Rad50, Rad51,

Rad54, Rad55, Rad57, Rad59, Mre11, and Xrs2—were also identified during the genetic screening;

they belong to the RAD52 epistasis group [8,9]. Among all the members of this group, Rad52 has the

strongest effect on HR and DNA repair in Saccharomyces cerevisiae. Moreover, rad52 mutants are most

IR-sensitive among all S. cerevisiae single mutants. Apart from defects in DSB repair, rad52 mutants

also show deficiency in mating-type switching [10], meiosis, spore viability [8,10], and homologous

DNA integration into genome [11].

Given an important role of Rad52 in yeast, it came as a surprise that Rad52 knockout mouse

showed nearly normal DNA repair and HR phenotype [12]. However, recent work from S. Powell’s

group demonstrated that Rad52 has an essential role maintaining the viability of mammalian

cells, when BRCA1, BRCA2 or several other HR proteins including PALB2 and RAD51 paralogs

(RAD51B, C, D, and XRCC2,3) are inactivated or depleted [13–15]. These data indicate a complex

organization of the HR machinery in mammalian cells and suggest that RAD52 may play a back-up

role, when an alternative HR mechanism(s) that depends on BRCAs and several other HR proteins

are unavailable. It is to note, that in contrast to many other eukaryotes S. cerevisiae genome does

not encode BRCA1 and BRCA2 homologs suggesting that Rad52 may perform their functions in

yeast. These findings also suggest that human RAD52 may present a therapeutic target in hereditary

BRCA1/BRCA2/PALB2/RAD51 paralogs-deficient breast cancer and ovarian cancer [16–19].

Despite extensive genetic and biochemical studies, the exact function(s) of Rad52 remains to be

elucidated. Furthermore, recent findings have extended the spectrum of possible Rad52 activities in

the cell. Thus, a new role of Rad52 in RNA-templated DNA repair has emerged [20]. Here, we review

the functions and new therapeutic applications of RAD52 in light of these new discoveries. More

comprehensive information on human RAD52 and its yeast ortholog may be found in a number of

excellent previous reviews [1,9,14,21,22].

2. The Role of RAD52 in HR in Mammals

Unlike yeast rad52 mutants which show strong deficiency in nearly all types of HR events

including DSB repair, RAD52−/− mice are viable, show only moderate decrease in HR, no DNA

damage sensitivity, fertile without abnormalities or cancer predisposition [12]. Similarly, Rad52−/−

chicken B-cell line DT40 cells also showed only moderate decrease in targeted integration frequency

with no significant DNA damage sensitivity [23]. Still, evidence exists that Rad52 plays a role in HR in

mammalian cells. Overexpression of Rad52 in monkey cells increases their resistance to IR, indicating

the importance of Rad52 in DSBs repair [24]. In addition, in murine fibroblasts it was found that in

response to DNA damage with IR or methylmethanesulfate (MMS) Rad52 fused with green fluorescent

protein (GFP) forms nuclear foci that partially overlap with either Rad50 foci or with Rad51 foci [25,26].

These results are consistent with the role of Rad52 in DNA repair in mammalian cells. Since Rad50

and Rad51 foci were shown to not overlap [27], these results, taken together, may indicate two distinct

modes of Rad52 action: Rad51-dependent and Rad51-independent.

Recently, the Powel’s group presented important evidence for the role of RAD52 in HR in human

cells. They demonstrated that depletion of human RAD52 is synthetically lethal with mutations in

any of several other members of the HR pathways including BRCA1, BRCA2, PALB2, and RAD51

paralogs [13,15,28]. These results, in parallel with the previous findings in chicken DT40 B-cells

that Rad52 mutations are synthetically lethal with Xrcc3 mutations [29], indicate that, at least,

two alternative HR mechanisms operate in mammalian/vertebrate cells, and that one of them, the

Rad52-dependent mechanism, is essential for cell viability in the absence of BRCA1, BRCA2, PALB2,

or RAD51 paralogs. However, the thorny question remains which of the Rad52 specific activities are

responsible for viability of the cells deficient in BRCAs and several other HR proteins.
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Several Rad52 activities were previously identified. First, Rad52 promotes annealing of

complementary ssDNA or ssRNA strands [30–32] and DNA strand exchange (DNA pairing) between

homologous DNA [33,34]. In addition, yeast Rad52 facilitates loading of Rad51 on ssDNA covered

by Replication Protein A (RPA), a ubiquitous ssDNA binding protein [35–37]. The latter activity,

known as a mediator activity, may seem to be the most relevant to the function of human RAD52

in BRCA2-deficient cells, because it may substitute for the known mediator activity of BRCA2 [38].

However, in contrast to yeast Rad52, the mediator activity was not demonstrated for human RAD52

in biochemical studies [39]. Below we review possible contribution of Rad52 activities to HR in

mammalian cells.

3. Activities of Rad52 Protein

3.1. ssDNA Annealing Activity

Both yeast and human RAD52 promote annealing of complementary ssDNA strands [30–32].

While ssDNA annealing activity is quite common among HR protein, in most cases, e.g., for the

members of RECQ family, it is abolished in the presence of RPA [40,41]. In contrast, Rad52 ssDNA

annealing occurs in the presence of RPA, which may indicate the biological role of this Rad52 activity

in the cell [31]. Two non-exclusive mechanisms were proposed for ssDNA annealing by human RAD52.

First, it was suggested based on the structural and biochemical data that RAD52-ssDNA complex,

in which the ssDNA bases are displaced outward, interacts with uncoated ssDNA or with ssDNA-RPA

complex [42]. Second, it was proposed that ssDNA annealing involves interaction between two or

more RAD52-ssDNA complexes [42,43]. In addition, the RAD52 secondary DNA binding site may

play a role during ssDNA annealing by binding complementary ssDNA [33,44] (see DNA invasion or

strand exchange section below).

In yeast and mammalian cells, Rad52 ssDNA annealing activity is likely responsible for the

Rad51-independent DSB repair pathway through single strand annealing (SSA) between repeated DNA

sequences (Figure 1C) [2,45,46]. Like in SDSA or DSBR mechanisms (Figure 1A,B), in SSA the DSBs

undergo exonucleolytic resection, but instead of invading homologous DNA templates, the resected

ends anneal to each other in a case where DSBs are flanked by fortuitous repeated sequences, e.g., Alu

repeats. The SSA is an error-prone process because it results in deletion of DNA sequences between

the direct repeats and also one of the repeats [30,32,47–49]. Using the chromosomally integrated DSB

repair reporters containing repeated sequences of the GFP gene, Stark et al., provided evidence that

the mammalian Rad52, is involved in repairing DSBs by SSA in an Rad51-independent manner [45].

In contrast to Rad52, Rad51 was shown to suppress SSA, but promote HR through SDSA. When the

activity of Rad51 or BRCA2 is impaired, the repair of DSBs is shifted towards SSA indicating interplay

between two different HR sub-pathways [45]. However, when BRCA1 was inactivated, it results in a

decrease of Rad52 mediated SSA [45], which likely reflects the role of BRCA1 in exonucleolytic DSB

end processing that is required for both SDSA and SSA [50] (Figure 1). Still, disruption of BRCA1

has an even stronger inhibitory effect on Rad51-dependent recombination. Overall, based on these

data, one may suggest that Rad52 annealing activity contributes to the SSA error-prone mechanism

that plays a relatively larger role in BRCA-deficient cells compared with normal cells. However, it is

unclear whether this Rad52 activity alone is sufficient to support the viability of BRCA-deficient cells.

Apart from SSA, ssDNA annealing activity of Rad52 was suggested to play a role in the second

DNA end capture during Rad51-dependent DSB repair [51]. After the initial strand invasion mediated

by Rad51, Rad52 may bind to the resultant displaced ssDNA strand and promote its annealing to

the resected second end of DSB, which results in formation of double D-loops and consequently of

double Holliday junctions (Figure 1B). In vitro reconstitution studies with purified Rad52 and other

HR enzymes support this model [5,51,52]. However, the fact that Rad52-knockout mice are fertile

indicates that their meiotic recombination is largely intact and that Rad52 ssDNA annealing activity is

not critical for double-Holliday junction formation. Nevertheless, the role Rad52 in the second end
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capture cannot be excluded; this Rad52 activity may merely be masked by similar activities of other

proteins that remain to be identified. BRCA2 apparently does not possess this activity [38].

Recently, it was shown that both yeast and human RAD52 can also promote annealing between

complementary ssDNA and ssRNA strands [20]. Importantly, this Rad52 activity is not abolished in

the presence of RPA, indicating its possible biological role. It was suggested that Rad52-promoted

annealing between ssRNA and ssDNA contributes to the Rad52 role in a novel mechanism of

RNA-dependent DSB repair [20]. However, the role of this Rad52 activity in viability of BRCA-deficient

cells remains to be elucidated [20].

3.2. Stimulation of Rad51

Both yeast and human RAD52 stimulate DNA strand exchange activity of their Rad51

counterparts [35–37,53], although stimulation of human RAD51 by human RAD52 was reported

only for condition when RAD51 is only partially active or present in sub-optimal amounts [53].

Two modes of stimulation were reported: (i) Rad52 may act as a mediator that alleviates an inhibitory

effect of RPA during Rad51 filament assembly on ssDNA [35–37,54]; and (ii) Rad52 stimulates Rad51

in an RPA-independent manner [37,53,55], perhaps by stabilizing the Rad51-ssDNA filament [55].

RPA plays a dual role in HR. Being added after Rad51 to ssDNA substrate, it stimulates DNA

strand exchange between long (plasmid size) DNA molecules. Two mechanisms of stimulation

were reported. RPA promotes formation of the Rad51-ssDNA filament, an active species of DNA

strand exchange [56] by removing DNA secondary structures [57]. RPA also binds the ssDNA strand

displaced during DNA strand exchange preventing the reversal of the reaction [57]. However, when

RPA binds to ssDNA prior to Rad51, the order of protein addition that likely mimics the in vivo

situation, it competes with Rad51 for ssDNA binding inhibiting nucleoprotein filament formation and

DNA strand exchange [57]. This inhibitory effect of RPA is alleviated by Rad52 [35–37,58,59], which

interacts with both RPA [46,60] and Rad51 [36,37,61] acting as a mediator in promoting recruitment

of Rad51 to the RPA-coated ssDNA. Interestingly, the mediator activity was demonstrated in vitro

for S. cerevisiae Rad52, but not for the human ortholog, even though both yeast and human RAD52

physically interact with their Rad51 and RPA counterparts [62–64]. In humans, RAD51 loading on

RPA-covered ssDNA was shown to be mediated by BRCA2 [38,65].

3.3. DNA Invasion or Strand Exchange

Although Rad52 bears no structural homology to Rad51, it is able to promote DNA strand

exchange between ssDNA and short linear dsDNA or supercoiled plasmid dsDNA, albeit less

efficiently than RAD51 [33,34,66]. In contrast to Rad51/RadA/RecA family of recombinases, Rad52

does not hydrolyze or bind ATP or other nucleotide cofactors. Thus, Rad52 adds to the list of

structurally unrelated proteins including Escherichia coli RecT and eukaryotic Hop2 that promote

DNA strand exchange in an ATP-independent manner [67–69]. In contrast to Rad51, Rad52 does not

form helical filaments with ssDNA. Instead, it forms heptameric rings with a central channel [70].

On ssDNA Rad52 forms nucleoprotein structures that are composed of stacked rings or edge-to-edge

rings [66]. Still, Rad52 shares many properties with Rad51/RecA recombinases. For instance, human

RAD52, similar to Rad51/RecA, contains two DNA binding sites that are required for DNA strand

exchange [33,71]. The primary site responsible for formation of RAD52-ssDNA complexes forms a

deep positively charged groove that runs around the outside of the ring [42]. The secondary site is

closely aligned with the primary site and is responsible for interaction with dsDNA during DNA

strand exchange or with ssDNA during DNA annealing [33]. In addition, similar to Rad51/RecA,

human RAD52 unwinds dsDNA [33]. Furthermore, during the search for homology, both Rad51/RecA

and human RAD52 form large co-aggregates containing ssDNA and dsDNA [72–74]. Important details

of the mechanism of RAD52-promoted DNA strand exchange remain to be elucidated, including the

forces that drive the reaction forward and cause RAD52 dissociation from the product.
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DNA strand exchange (DNA pairing) activity of RAD52 suggests that it may play a role of an

alternative recombinase in vivo, at least in some HR events. Some published data are consistent

with this RAD52 activity. For instance, it was reported that in BRCA1- and PALB2-depleted cells,

DSB-induced recombination between chromosomally integrated directly repeated sequences of the GFP

gene (DR-GFP) was decreased further approximately 10-fold, when RAD52 was knocked down [13].

In addition, RAD52 may promote RAD51-independent break-induced replication (BIR) by catalyzing

ssDNA invasion (DNA strand exchange) into duplex DNA [7]. However, currently there is no direct

evidence for the role of RAD52 DNA strand exchange activity in vivo.

4. Role of the Structural Domains of Rad52

Structural studies and mutational analysis provided a physical framework for the DNA strand

exchange, ssDNA/ssRNA annealing, and the mediator activity of Rad52 [33,75–77]. Rad52, whose

size varies in different species from 504 aa (S. cerevisiae) to 418 aa (humans), consists of two domains,

the N-terminal domain (NTD) and C-terminal domain (CTD), that divide the protein in two roughly

equal parts (Figure 2A).
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Figure 2. Structure of human RAD52: (A) The domain map of human RAD52. The N-terminal domain

(NTD) contains the DNA binding region, a self-associating region; the C-terminal domain (CTD)

contains RPA and RAD51 interacting regions and a nuclear localization signal. (B) The structure of the

undecamer ring formed by RAD52 NTD1–212(PDB ID:1KN0) [75]. (C) The structure of RAD52 NTD1–212

monomer. Amino acid residues marked with red bind to both ssDNA and dsDNA; amino acid residues

marked with blue bind to ssDNA only. Structures in B and C were prepared using PyMOL Molecular

Graphics System, Version 1.2r3pre, Schrödinger, LLC.
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The Rad52 NTD is well-conserved among eukaryotes; for instance, the NTDs of S. cerevisiae and

humans share 42% of identity (Figure 3). In contrast, the CTD is poorly evolutionarily conserved [78–81].

NTD and CTD play different roles in the Rad52 functions: NTD is involved in binding to ssDNA

and dsDNA and Rad52 multimerization (Figure 2) [66,77,82], whereas the CTD is responsible for

interaction with RPA [64] and Rad51 [63] (Figure 2A).
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Figure 3. Sequence conservation of RAD52 orthologs. The RAD52 aa sequences from

Saccharomycescerevisiae, Saccharomyces pombe (RAD22), frog (Xenopus laevis), zebrafish (Danio rerio),

chicken (Gallus gallus), mouse (Mus musculus), monkey (Macaca mulatta), and humans (Homo

sapiens)were analyzed using multiple sequence alignment program, T-coffee [83]. Pink, yellow, green,

and blue colored regions show high, low, very low, and no conservation among sequences, respectively.
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4.1. DNA Binding

Using a filter binding and mobility shift assays it was shown that both yeast and human RAD52

bind various types of DNA with the following preference: ssDNA > tailed dsDNA >blunt-ended

dsDNA [46,84,85]. Binding to supercoiled φX174 dsDNA was about twice as efficient as that to

linear dsDNA.

Using CTD-truncated human RAD52 protein it was shown that the NTD is responsible for DNA

binding [66,86]. Structure based alanine scan mutagenesis of RAD52 NTD residues revealed five amino

acids, Arg55, Tyr65, Lys152, Arg153 and Arg156, that are directly responsible for DNA binding, with

Arg55 and Lys152 being specifically required for ssDNA binding and Tyr65, Arg153, and Arg156 for

binding to both ssDNA and dsDNA [75]. Alanine replacements of Phe79 and Tyr81 also resulted in a

strong ssDNA binding deficiency [77], however their effect on DNA binding may be indirect [19,77].

More recently, a putative secondary RAD52 DNA binding site was identified that is comprised of

Lys102, Lys133, Lys169, and Lys173 [33] (Figure 2B,C).

In yeast Rad52, but not in human RAD52, a site that binds both ssDNA and dsDNA was identified

in the CTD [87]. It was suggested that this site corresponds to the secondary DNA binding site of

human RAD52 located in the NTD [44]. In support of this hypothesis, it was demonstrated that the

CTD truncation of yeast Rad52 reduces the efficiency of ssDNA annealing, whereas the CTD truncation

of human RAD52 has no effect on ssDNA annealing [44].

Using fluorimetric method with chemically modified etheno ssDNA (εDNA) the binding site size

of yeast Rad52 was estimated to be 10 nt per Rad52 monomer [46]. Using hydroxyl-radical footprinting

or FRET assay the binding site size was estimated to be 4 nt per monomer of human RAD52, either full

length or the NTD1–209 [42,43,88]. The cause for this discrepancy is unknown. Although species-specific

features of Rad52 orthologs may play a role, it is possible that the fluorimetric method detects εDNA

binding to both the primary and the secondary Rad52 DNA binding sites, whereas other methods

visualize only primary site binding.

4.2. RAD52 Multimerization

Electron microscopy studies showed that human RAD52 forms heptameric rings with a large

central channel [70,72]. The RAD52 NTD domain retains the ring structure [66,86], but form

undecameric (11-mer) rings (Figure 2B) [42,75]. Yeast Rad52 also forms rings, however their detailed

structure remains to be determined [46]. In the presence of ssDNA, RAD52 forms filamentous

complexes composed of stacked rings or edge-to-edge packed rings [66,89]. RAD52 also forms

higher order structures composed of multiple heptameric rings, which is mediated by the presence of

self-association region in the CTD (residues 193–418) [86]. Thus, the NTD and CTD have different roles

in RAD52 multimerization. NTD is responsible for the formation of a heptameric ring of the full-length

RAD52 and undecameric ring in the absence of CTD. The CTD, which does not form ring structures, is

responsible for the formation of higher order complexes. Since NTD can promote ssDNA annealing

and DNA strand exchange alone, formation of higher order complexes seems to be not essential for

these RAD52 activities. However, quantitative studies are needed to determine the effect of the CTD

on the rate and extent of these reactions.

4.3. Interactions of RAD52 with RPA, RAD51 and MUS81

Both yeast and human RAD52 interacts with their RPA [46,60,64] and RAD51 [36,37,61,63]

counterparts. In yeast, genetic studies demonstrated that deleting the Rad51 and RPA interacting

regions of the yeast Rad52 protein partially impairs the recombination activities in vivo [90,91]. In vitro

and in vivo studies demonstrated that human RAD52 CTD regions spanning 221–280 aa and 291–330

are essential for interaction with RPA [64] and RAD51 [63], respectively (Figure 2). Furthermore, it was

shown that the RQK motif of human RAD52 (residues 261–263) is important for interaction with

RPA [43]. Previously, the RQK motif responsible for interaction with RPA was also identified in human
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DNA annealing helicase SMARCAL1 [92]. RPA is a trimeric protein that consists of RPA70, RPA32 and

RPA14 subunits [41,93]. Immunoprecipitation and ELISA-based assays revealed strong interaction of

human RAD52 with RPA32, weak interaction with RPA70 and no interaction with RPA14 [64,94]. Using

light scattering analysis, it was shown that the binding of RPA trimer to RAD52 CTD (residues 218–418)

results in disruption of the higher order RAD52 structures [94].

MUS81 is a structure specific endonuclease with a preference for nicked Holliday junctions,

D-loops, or three way junctions [95,96]. It was shown in pull-down experiments that purified

His-tagged RAD52 interacts with MUS81 in HeLa nuclear extracts [97]. Moreover, RAD52 and

MUS81 functionally interact to promote cell viability in checkpoint-deficient cells under replication

stress; simultaneous loss of both these proteins leads to cell death that can be rescued by depletion

of RAD51. These data indicate a role of RAD52 during repair of stalled replication forks. The link

between Mus81 and Rad52 orthologs in repair of damaged replication forks was also reported in

S accharomyces pombe [98,99].

4.4. Nuclear Localization Signal: Cellular Localization of RAD52 and its Truncated Isomers

The C-terminal domain contains a stretch of eight amino acids (residues 411–418), which is

important for RAD52 nuclear localization [100]. Deletion of these eight residues abolished its

recruitment to DSBs. In contrast to the yeast RAD52 gene, which has no introns, the open reading

frames of the human RAD52 are divided into 12 exons. Splice variants of human RAD52 have been

isolated from cDNA libraries derived from both brain and testes tissues [101,102]. The RAD52 β, γ

and δ isoforms have C-terminal truncations and consist of 226-, 139- and 118-aa residues, respectively.

The C-terminal ends of the isoforms comprise unique sequences resulted from alternative splicing.

The truncations resulted in complete loss of RPA and RAD51 binding domains and partial loss of

self-association domain. Thus, the β, γ and δ isoforms are unable to interact with each other and

also with RAD52α, but retain their ssDNA and dsDNA binding activities [101]. The full-length

RAD52 protein (RAD52 α) due to the presence of nuclear localization signal is confined to the nucleus.

The isoforms localize to both the cytoplasm and nucleus, because being smaller in size they can

penetrate the nucleus through the nuclear pore. The functional role of the RAD52 isomers is yet to

be determined. Interestingly, in parallel with human RAD52 isoforms, S. serevisiae carries the Rad59

protein of 339 aa, which has significant homology with the Rad52 NTD and shares some of the Rad52

in vivo functions and in vitro activities including ssDNA annealing [103–106].

5. Regulation of RAD52 in the Cell

5.1. Cell Cycle Regulation of RAD52 Protein

In response to DNA damage, RAD52 forms nuclear foci, which are thought to represent the sites

of DNA repair [25]. In yeast and mammals, RAD52 foci formation in response to DNA damage is

under control of cell cycle; it gradually increases when cells enter S phase, reaches its peak in S phase

and then fades out as the cell enters G2 phase [25,107,108]. In contrast, non-homologous end-joining

(NHEJ) is the dominant repair pathway in G1 and G2 phases. In yeast, where the process was studied

in detail, Rad52 recruitment to DSB sites does not depend on DNA replication per se, as cells that

have entered S phase, but have not replicated their DNA, readily form Rad52 foci in response to

DNA damage [109]. However, CDK1-cyclin B kinase activity is required for the Rad52 recruitment.

The mechanism how CDK1 regulates this process is unknown; CDK1 may act directly on the Rad52 or

phosphorylate an upstream factor like RPA.

5.2. Post-Translational Modification of RAD52

Several studies analyzing the role of RAD52 in yeast and higher eukaryotes have revealed

post-translational modifications of RAD52, although the role these modifications may vary in different

species. In S. cerevisiae, Rad52 is constitutively phosphorylated at serine and/or threonine residues
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through the cell cycle and additional phosphorylation occurs in S phase, but not after gamma

irradiation [110]. The phosphorylation was not observed in the Rad52 truncation mutant lacking

the CTD, however, the exact phosphorylation sites are yet to be determined. In S. cerevisiae, the

biological role of Rad52 phosphorylation remains to be determined. In S. pombe Rad52 phosporylation

was induced under conditions of oxidative stress or in cells deficient in Rad51 or Mus81 [111,112].

Similar, in humans RAD52 is phosphorylated in response to DNA damage at Tyr104 by c-ABL tyrosine

kinase in an ATM and DNA-PKcs dependent manner [113]. Phosphorylation led to enhanced RAD52

activities; it stimulated RAD52 foci formation [113] and ssDNA annealing activity [114]. By using a

stable phosphotyrosine analog p-Carboxymethyl-L-phenylalanine (pCMF) incorporated into RAD52,

Honda et al., examined the mechanism of how phosphorylation by c-ABL kinase affects the activity of

RAD52 [114]. They found that incorporation of pCMF (RAD52Y104pCMF) increases a RAD52 binding

preference for ssDNA compared to dsDNA, and stimulates its ssDNA annealing activity.

In S. cerevisiae, S. pombe, and humans, RAD52 is also modified by post translational addition of

small ubiquitin-like modifier (SUMO). In S. cerevisiae Rad52 sumoylation is induced by DNA damage

and triggered by formation of MRE11-Rad50-Mrx2 complexes with DSBs both in meiotic and mitotic

cells [115]. The residues involved in sumoylation, Lys10, Lys11, and Lys220, lie in a relatively less

conserved region of NTD, suggesting that modifications may not perturb the essential functions of this

domain [115]. Although sumoylation-defective Rad52 is proficient in HR, sumolyation stimulates its

function by protecting Rad52 against proteasome-mediated degradation [115,116]. Sumoylation of

Rad52 also stimulates its interaction with Rad51, whereas cell cycle dependent kinase Cdc48 disrupts

SUMO-Rad52-Rad51 complexes [117]. Furthermore, sumoylation of Rad52 is also responsible for

exclusion of Rad52 foci from the nucleolus, which thereby suppresses deleterious ribosomal DNA

recombination [118].

Sumoylation of human RAD52 was also observed in HEK293T cells [115]. Using

SUMO-expressing E. coli, sumoylation of the RAD52 was detected and the site of sumoylation was

mapped at the putative nuclear localization region [100,119]. These data indicate a potential role of

sumoylation in the nuclear transport of RAD52. Recently, it was reported that PTEN, an important

tumor suppressor, physically interacts with RAD52 in response to DNA damage and is involved in

regulation of RAD52 sumolyation in the nucleus [120].

6. RAD52 in RNA-directed DNA Repair

Storici et al. demonstrated that synthetic RNA oligonucleotides can act as a template in DSB

repair in yeast [121]. In human cells, using an I-Sce endonuclease induced DSB repair system it was

also found that DSBs can be repaired using template RNA oligonucleotides [122]. However it was

not known whether or not RNA can be used as a template directly, without reverse transcription

into DNA.

Recent work by Keskin et al. demonstrated using reverse-transcription defective yeast strain and

endogenous RNA transcripts that RNA can be directly used as a template for DSB repair, without a

reverse transcription step [20]. However, this process could only be efficient in the absence of RNases

H1/2 that disrupt the RNA-DNA hybrids, an intermediate in RNA-dependent DSB repair. In these

experiments, it was also demonstrated that Rad52 plays an important role in RNA-templated DSB

repair; RNA transcript-dependent repair was inhibited in Rad52-deficient cells. In parallel, it was

shown that in vitro both yeast and human RAD52 promotes annealing between homologous ssDNA

and ssRNA, a likely step of RNA-directed DSB repair [20]. The data from human cells that show

an RNA-dependent localization of RAD52 at sites of DSBs are consistent with the role of RAD52 in

RNA-dependent DSB repair also in humans [123]. Thus, RNA can potentially mediate DSB repair by

serving as a template in both yeast and mammals and RAD52 plays a role in this process.
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7. RAD52 as a Therapeutic Target

New findings that RAD52 is essential for cell viability in BRCA1-, PALB2- and BRCA2- and RAD51

paralog-deficient cells, but not in normal cells, suggested that RAD52 may represent an attractive

therapeutic target for killing hereditary breast cancer and ovarian cancer cells.

The Skorski’s group targeted RAD52 in BRCA-deficient cancer cells using a small peptide

aptamer [19]. They designed a 13-aa peptide containing RAD52 sequence surrounding Phe79, which

is thought to prevent RAD52 from ssDNA binding by disrupting the assembly of the RAD52 ring

structure. It was shown that the aptamer caused synthetic lethality in those selected leukemia patient

cells that had a low expression level of BRCA1 or RAD51C. The lethality in these cells was reverted by

expression of ectopic BRCA1 or RAD51C indicating specific targeting of RAD52 in human cells. It was

also shown that the aptamer enhanced the effect of conventional therapy of leukemia cells with ABL1

tyrosine kinase inhibitors, like imatinib, or cytotoxic agents.

Small molecule inhibitors were also developed to target RAD52 using different approaches [16–18].

Using molecular docking, Sullivan et al. performed a virtual computer screening of libraries of

140,952 FDA approved drugs and drug-like compounds in a search for potential inhibitors of DNA

binding by RAD52 [18]. The screening in combination with gel-retardation assay yielded nine small

molecule inhibitors of RAD52. One of these compounds, adenosine 5’-monophosphate (A5MP),

selectively inhibited the growth of BRCA1-deficient HCC1937 breast carcinoma cells (adenosine

was added to the cells and phosphorylated intracellular), even though that RAD52 does not have

a nucleotide binding site. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) 5’ phosphate

(ZMP), a compound that mimics A5MP, also disrupted RAD52-ssDNA interactions. AICAR showed

biological activity in human cells by selective inhibition of growth of BRCA1-deficient HCC1937 breast

carcinoma cells, BRCA1-deficient BCR-ABL1-positive leukemia cells, and BRCA2-deficient Capan-1

pancreatic adenocarcinoma cells. AICAR also inhibited formation of RAD52 foci induced in response

to cisplatin treatment.

High throughput screening (HTS) was used by two groups to identify RAD52 inhibitors [16,17].

The Pomerantz’s group used fluorescence polarization to screen libraries of 19,584 drug-like and

pharmacologically active compounds for inhibitors of RAD52 binding to ssDNA [16]. The identified

compounds were further analyzed for their ability to selectively inhibit SSA in human cells using a

GFP reporter system [124]. As a result, a single RAD52 inhibitor, 6-OH-dopa, was identified. Further

analyses demonstrated that 6-OH-dopa inhibits RAD52 ssDNA binding by disrupting formation

of RAD52 rings and superstructures in vitro. The authors demonstrated the biological effect of the

inhibitor in mammalian cells. 6-OH-dopa inhibited RAD52 foci formation in response to DNA damage

in murine hematopoietic cells deficient in BRCA1 and selectively killed BRCA1 and BRCA2-deficient

human cancer cells.

Our lab in collaboration with the Broad Institute screened libraries of 372,903 compounds

including Broad’s diversity-oriented synthesis (DOS) library for inhibitors of RAD52 ssDNA annealing

and DNA strand exchange activities [17]. Overall, as a result of the HTS and several confirmatory

and selectivity assays, 14 specific inhibitors of RAD52 were identified. Five of these compounds

representing 3 different chemotypes selectively inhibited growth of BRCA1-, BRCA2-deficient human

cancer cells and BRCA1-deficient (with low expression level) primary cells from leukemia patients.

Two of these compounds with the strongest inhibitory effect were studied further. Using Surface

Plasmon Resonance (SPR) they were shown to directly interact with RAD52. In cells, they inhibited

RAD52 foci formation induced by cisplatin, but not RAD51 foci formation, indicating specific targeting

of RAD52 in the cell. Finally, one of the compounds selectively inhibited the RAD52-dependent SSA

in human cells. Further work is needed to demonstrate the efficacy of RAD52 inhibitors in killing

BRCA1- and BRCA2-deficient cancer cells in vivo.

While this paper was under review, another study involving development of RAD52 small

molecule inhibitors was published by the Spies’s group [125]. Using a FRET-based assay, they

screened a library of 2320 drug and drug-like synthetic and natural products for their ability to
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inhibit RAD52-ssDNA binding and ssDNA annealing. Two inhibitors were selected (“1” and “6”)

and their physical interaction with RAD52 was demonstrated. Molecular docking predicted binding

of these compounds to the ssDNA binding groove of RAD52 ring. Based on the structure of the

proposed RAD52-inhibitor complex an additional RAD52 inhibitor was identified by in silico screening.

In cells, it was shown that the inhibitors act additively with depletion of BRCA2 and MUS81 indicating

specificity of RAD52 inhibition.

8. Conclusions

RAD52 is an evolutionarily conserved protein. In yeast, it plays a major role in all types of

recombination events. In contrast, in mammals, the RAD52 knockouts do not show significant

deficiency in HR or DSB repair. Recent discoveries, which demonstrated an essential role of RAD52

for viability in BRCA-deficient cells and a novel role of RAD52 in RNA-dependent DSB repair, have

an invigorating effect on the recombination field and strongly stimulated research on the functions

of RAD52 in mammalian cells. They also prompted development of RAD52 inhibitors, which could

lead to novel cancer therapies against hereditary breast cancer and ovarian cancer and other types of

cancers in which RAD52 is essential for cell viability due to various deficiencies in HR.
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