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Reappraisal of metabolic dysfunction 
in neurodegeneration: Focus on mitochondrial 
function and calcium signaling
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Abstract 

The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial fail-

ures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypothe-

ses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur 

early in many neurodegenerative diseases (NDDs), including Alzheimer’s disease, Parkinson’s disease, Huntington’s 

disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogen-

esis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic 

dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the 

literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and 

other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of 

mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
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Introduction

�e brain consumes 20% of the body’s ATP at rest, 

although it accounts for only 2% of body mass [1]. �e 

high-energy requirements of the brain support neuro-

transmission, action potential firing, synapse develop-

ment, maintenance of brain cells, neuronal plasticity, and 

cellular activities required for learning and memory [2, 

3]. In neurons, most of the energy is consumed for syn-

aptic transmission. Action potential signaling represents 

the second-largest metabolic need, and it is estimated 

that ~ 400–800  million  ATP molecules are used to rees-

tablish the electrochemical gradient  (Na+  out,  K+  in, at 

the plasma membrane) after production of the single 

action potential [4]. �e energetic demand of neurons 

results in a substantial dependence on mitochondria 

for ATP production through oxidative phosphoryla-

tion (OxPhos) [4]. Any dysfunction in mitochondria can 

lessen the energetic capacity of OxPhos and may elicit a 

metabolic switch from OxPhos to glycolysis (Warburg-

like effect) as a compensatory attempt to maintain cel-

lular ATP in the context of neurodegenerative stress [5, 

6]. However, a long-term OxPhos-to-glycolysis shift can 

result in a bioenergetic crisis and make neurons more 

vulnerable to oxidative stress and neuronal cell death [7, 

8].

Neurodegenerative diseases (NDDs) are character-

ized by numerous cellular features, including the loss of 

neurons, neuronal dysfunction in specific brain regions, 

aggregation of distinct protein(s), impaired protein 

clearance, mitochondrial dysfunction, oxidative stress, 

neuroinflammation, axonal transport defects and cell 
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death. �e myriad of cellular pathologies suggest that 

there are common/central molecular mechanisms driv-

ing NDDs [9, 10]. In addition to ATP production, the 

mitochondrion is an epicenter of many metabolic path-

ways and important cellular functions, including the 

fine-tuning of intracellular calcium (iCa2+) signaling, 

regulation of cell death, lipid synthesis, ROS signaling, 

and cellular quality control [11]. Disruption in mito-

chondrial function and metabolism appears to underlie 

several NDDs such as Alzheimer’s disease (AD), Par-

kinson’s disease (PD), Huntington’s disease (HD), and 

others [12, 13]. At present, most therapies for NDDs 

provide only symptomatic relief, and there remain no 

drugs to inhibit neurodegeneration [14–16]. Mitochon-

drial alterations/impaired brain energetics are thought 

to present in the asymptomatic stage of disease prior to 

the onset of clinical symptoms [14, 17, 18]. �is sup-

ports the notion that mitochondrial metabolic defects 

may be drivers or even initiators of the neurodegen-

erative process. In addition, several therapeutics that 

improve mitochondrial function have been reported to 

be efficacious in NDD models [19–21].

Mitochondrial calcium (mCa2+) is a critical regulator 

of mitochondrial function. In the matrix, mCa2+ tightly 

regulates TCA cycle activity and augments metabolic 

output. However, an excess of mCa2+ can impair mito-

chondrial respiration, enhance reactive oxygen species 

(ROS) production and activate cell death [22]. Here, we 

hypothesize that dysfunction in mCa2+ is an early com-

mon cellular event that impairs mitochondrial metab-

olism and drives and exacerbates neuropathology. 

Defining the molecular basis of mitochondrial function 

and metabolism in NDDs will help define novel cel-

lular events and pathways and their temporal occur-

rence in NDD progression to identify new therapeutic 

targets for various neurological conditions. Here, we 

review recent advancements in our understanding of 

the essential role of mitochondrial metabolism and dis-

cuss how impaired mCa2+ signaling may be causal and 

central in neurodegeneration.

Evidence for impaired mitochondrial metabolism 

in NDDs

Strategies to combat NDDs have generally been unsuc-

cessful and are focused on reducing symptoms and 

disease modification. Both clinical and experimen-

tal studies suggest that impaired energy metabo-

lism correlates with various neurological deficits, 

highlighting new therapeutic opportunities [14]. 

Here we outline various mitochondrial metabolic 

defects that are strongly linked to the progression of 

neurodegeneration.

Alzheimer’s disease (AD)

AD is the most common form of dementia and is char-

acterized by irreversible memory loss due to neuronal 

dysfunction, dysconnectivity, and cell death. Familial 

AD (FAD) is caused by pathogenic mutations in amy-

loid precursor protein (APP) or presenilin (PS1 and PS2) 

that lead to overproduction, improper cleavage, and the 

accumulation of amyloid-beta (Aβ). Prognostic disease 

phenotypes are associated with the formation of Aβ 

plaques, neurofibrillary tangles (NFTs, consisting of the 

microtubule protein tau), synaptic failure, reduced syn-

thesis of the neurotransmitter acetylcholine, and chronic 

inflammation [9]. Most therapeutic strategies have been 

focused on Aβ metabolism and clearance due to exten-

sive preclinical and clinical data in support of a causal 

role in AD progression [23, 24]. According to the “amy-

loid cascade hypothesis,” Aβ aggregation can initiate a 

series of events, including tau pathology, oxidative stress, 

inflammation, neuronal calcium  (Ca2+) dysregulation, 

and metabolic alterations, which culminate in neuronal 

cell loss and AD pathogenesis [25]. However, this hypoth-

esis does not fully explain the etiology of sporadic forms 

of AD (SAD) that account for 90–95% of AD-associated 

dementia.

An alternative hypothesis is that the microtubule-asso-

ciated protein tau becomes hyperphosphorylated, result-

ing in axonal transport defects of organelles (including 

mitochondria), synaptic dysfunction, and cell death [26]. 

In cortical brain tissue from AD patients and mouse 

models, tau is reported to interact with mitochondrial 

transporters and complexes, resulting in mitochondrial 

dysfunction and AD pathology [27, 28]. However, there 

appears to be a limited correlation between the severity 

of cognitive decline and amyloid or tau plaque formation 

[29, 30], suggesting Aβ/tau metabolism and processing 

may not be the cause, or at least the singular cause, of 

disease. Consistent with previous studies, RNA-sequenc-

ing data from AD patients also suggest that Aβ and tau 

accumulation may not be mediators of the disease [31, 

32]. Also, clinical trials of therapies targeting Aβ/tau 

production, metabolism, and clearance have universally 

shown little efficacy making it likely that other proximal 

mechanisms of AD pathogenesis exist [33, 34].

Mitochondrial dysfunction appears to be a primary 

occurrence in AD that precedes Aβ deposition, synap-

tic degeneration, and NFTs formation. In support of 

this concept, cytoplasmic hybrid cells (cybrids) gener-

ated from platelet mitochondria of SAD patients were 

reported to have a deficiency in complex I and complex 

IV of the electron transport chain (ETC), reduced mito-

chondrial membrane potential (Δψm), altered mito-

chondrial morphology, increased Aβ generation and 

tau oligomerization (reviewed in [35]). Transmission 
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electron microscopy (TEM) showed smaller mitochon-

dria with altered cristae structure and a decrease in mito-

chondrial content both in AD mice and patients [36–38]. 

Furthermore, fibroblasts derived from SAD patients also 

showed impaired mitochondrial dynamics, bioenerget-

ics, and  Ca2+ dysregulation [17, 39]. �is change in mito-

chondria morphology in AD may be due to a shift in the 

mitochondrial fission/fusion balance and a decrease in 

biogenesis [40].

Importantly, experimental evidence suggests that bio-

energetic alterations in AD precede the formation of Aβ 

plaques [41]. Data supporting metabolic deficits in AD 

were first published in the early 1980s from 2-[18F] fluoro-

2-deoxy-D-glucose (FDG) positron emission tomography 

(PET) studies, which showed reduced glucose metabo-

lism in the parietal, temporal and frontal cortex of AD 

patients [42–44]. Postmortem brain tissue isolated from 

AD patients displays reduced mitochondrial metabolic 

enzyme activity for pyruvate dehydrogenase (PDH) [45, 

46], alpha-ketoglutarate dehydrogenase (α-KGDH) [46], 

isocitrate dehydrogenase (ICDH) [47], and complex IV 

or cytochrome-c-oxidase (COX) [48–50]. In addition, 

succinate dehydrogenase (SDH) and malate dehydroge-

nase (MDH) activity are increased in AD patient’s brains 

[51]. Microarray data [52] and bioinformatics analysis of 

four transcriptome datasets [53] suggests a significant 

downregulation in nuclear-encoded OxPhos genes in the 

hippocampus of AD patients. More recent data confirm 

impaired ATP synthase activity due to loss of the oligo-

mycin sensitive conferring protein subunit in the brain of 

FAD and SAD patients [54].

Diminished PDH function, as noted in AD, limits the 

shuttling of pyruvate into the TCA cycle, causing pyru-

vate accumulation and favoring anaerobic metabolism. 

Anaerobic metabolism leads to the production of lactic 

acid and further reduces acetyl-CoA availability, which 

subsequently decreases OxPhos. �ese observations 

suggest a metabolic shift from OxPhos to glycolysis 

may occur with AD progression. �is shift is perhaps a 

compensatory response to enhance energy production 

through glycolysis, which is noteworthy in the context 

of mitochondrial dysfunction [5, 6]. Interestingly, PDH, 

α-KGDH, and ICDH activity are all reported to be cal-

cium-controlled, suggesting a clear link between mCa2+ 

levels and AD pathogenesis, which will be discussed in 

the upcoming section. A recent study also indicates that 

reduced mitochondrial pyruvate uptake in FAD-PS2-

expressing cells may elicit impairments in bioenergetics 

and mitochondrial ATP synthesis [13]. �e mechanism 

for defective mitochondrial pyruvate flux is associated 

with the hyper-activation of glycogen-synthase-kinase-3β 

(GSK3β), which decreases hexokinase 1 association 

with mitochondria and destabilizes the mitochondrial 

pyruvate carrier complexes [13]. Similarly, α-KGDH 

is sensitive to oxidative stress, and its reduced activity 

in PS1 mutant (M146L) fibroblasts suggests a possible 

mechanism for ROS-dependent metabolic deficiencies 

[18, 55]. Oxidative stress, as seen in AD brains [56], is 

reported to increase the expression of SDHA (one of the 

four nuclear-encoded subunits of complex II, SDH) [57, 

58], and the activity of MDH [59]. In summation, altera-

tions in key metabolic enzymes may compromise the 

neurons’ ability to generate ATP via OxPhos and be an 

early driver of cellular stress in AD.

Beyond energetic compromise, diminished acetyl-CoA 

supply caused either by a reduction in glucose metabo-

lism or by reduced PDH activity impairs the synthe-

sis of the neurotransmitter acetylcholine (ACh). ACh 

is generated from choline and acetyl-CoA by choline 

acetyltransferase. After synthesis, ACh is transported 

via an ATP-consuming process and stored in synaptic 

vesicles [60]. �e loss of ACh synthesis in AD results in 

defective cholinergic neurotransmission [61, 62]. �is 

provides another tangible link between energetic com-

promise and neuronal dysfunction in AD.

Several of the mitochondrial dehydrogenases men-

tioned above (PDH, α-KGDH, and ICDH) are known to 

be regulated by the  Ca2+ concentration within the mito-

chondrial matrix [63–65]. �e reactions catalyzed by the 

 Ca2+-regulated mitochondrial dehydrogenases are rate-

limiting steps in the TCA cycle, and therefore free-Ca2+ 

content in the mitochondrial matrix is a major regula-

tor of metabolic output. PDH activity increases upon 

dephosphorylation of its E1α subunit, which is mediated 

by the  Ca2+-sensitive phosphatase (PDP1) [64]. In neu-

rons,  Ca2+ influx through voltage-dependent  Ca2+ chan-

nels is required for the fusion of synaptic vesicles with 

the plasma membrane and release of neurotransmitters 

at the synaptic cleft [66, 67]. Neuronal communication 

through synaptic transmission is an energy-demanding 

process, and mitochondria have a critical role in this pro-

cess by providing ATP (via OxPhos) and by buffering syn-

aptic  Ca2+/iCa2+ to modulate neurotransmitter release 

[68]. �e efficient regulation and buffering of iCa2+ is 

critical to prevent neuronal excitotoxicity. Mitochondria 

and the endoplasmic reticulum (ER) both are significant 

modulators of iCa2+ signaling and the role of ER in neu-

ronal iCa2+ buffering is well known [69, 70]. However, 

our understanding of mCa2+ buffering in neurons is lim-

ited and evolving.  Ca2+ enters the mitochondrial matrix 

through the mitochondrial calcium  uniporter channel 

(mtCU) [71, 72] and is extruded via the mitochondrial 

 Na+/Ca2+  exchanger (NCLX) [73, 74]. Any dysfunc-

tion in mCa2+ exchange or matrix buffering capacity can 

lead to impairments in mitochondrial  Ca2+ homeostasis 

resulting in mCa2+ overload, oxidative stress, metabolic 
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dysfunction, and cell death that can cause or precede 

AD-pathology [75–78]. We and others have reported 

that mitochondrial and metabolic dysfunction is a pri-

mary contributor to AD pathogenesis, with dysfunction 

observable before the appearance of Aβ aggregates and 

NFTs [18, 77, 79, 80]. We found alterations in the expres-

sion of mCa2+ handling genes in samples isolated from 

the brains of SAD patients post-mortem and in the tri-

ple transgenic mouse model of AD (3xTg-AD) prior to 

observable AD pathology [77]. Our observations suggest 

mCa2+ overload caused by an age-dependent remodeling 

of mCa2+ exchange machinery contributes to the pro-

gression of AD by promoting metabolic and mitochon-

drial dysfunction. We also found a decrease in OxPhos 

capacity in APPswe cell lines (K670N, M671L Swed-

ish mutation), providing further evidence of impaired 

mitochondrial metabolism in AD [77]. Importantly, 

the genetic rescue of neuronal mCa2+ efflux capacity by 

expression of NCLX in 3xTg-AD mice was sufficient to 

block age-dependent AD-like pathology [77]. Employing 

quantitative comparative proteomics strategies in AD 

mice, other groups have reported significant alterations 

in the mitochondrial proteome, including the citric acid 

cycle, OxPhos, pyruvate metabolism, glycolysis, oxida-

tive stress, ion transport, apoptosis, and mitochondrial 

protein synthesis well before the onset of the AD pheno-

type [79–81]. Further evidence of mCa2+ dysregulation 

is from metabolomics in an Aβ-transgenic C. elegans 

model (GRU102), wherein the authors showed a reduc-

tion in TCA cycle flux before the appearance of signifi-

cant Aβ deposition, with the greatest reduction observed 

in α-KGDH activity. Knockdown of α-KGDH in control 

worms elicited reductions in both basal and maximal res-

piration like that observed in the AD worm model [18]. 

�ese observations suggest that reduced α-KGDH activ-

ity alone is sufficient to recapitulate the metabolic deficits 

observed in AD and is in line with a study by Yao et al. 

[46] wherein 3-month old 3xTg-AD mice were found to 

have reduced mitochondrial respiration and PDH activ-

ity, coupled with increased ROS generation [46]. Alto-

gether, these data indicate that mCa2+ dysregulation is 

likely an early event in AD.

Mitochondria are highly dynamic, and exhibit cell 

type-specific metabolism in the brain [37, 82]. Axonal 

mitochondria appear small and sparse whereas den-

dritic mitochondria are elongated and more densely 

packed [82]. To ensure appropriate energy supply, 

especially in distal regions of the axons, mitochon-

dria must be properly positioned. Indeed, mitochon-

dria undergo bi-directional axonal transport including 

anterograde transport  (from cell body to axon) and 

retrograde transport  (from axon to cell body) [83, 84]. 

Axonal transport is mediated by ATP‐hydrolyzing 

motor proteins (kinesin‐I for anterograde and dynein 

for retrograde) to move cargo along microtubule tracks 

[85] and defects in transport seem to present before 

evident AD hallmarks [86, 87]. Defects in anterograde 

transport result in an insufficient supply of ATP at the 

synapse, resulting in synaptic starvation and dysfunc-

tion, an early pathological feature of AD [36]. Similarly, 

defective retrograde transport can lead to the accumu-

lation of damaged mitochondria, which can compro-

mise mitochondrial quality control mechanisms, which 

is also noted to occur in AD [88]. Recently, data from 

the APP-PS1 mouse model showed a reduction in neu-

ronal mitochondria density around amyloid plaques, 

suggesting impaired mitochondrial transport and/

or quality control in  AD [37]. Further, several studies 

indicate that axonal transport of AD-associated pro-

teins becomes defective early in disease progression, 

resulting in the accumulation of toxic cargo which can 

elicit protein aggregation, axonal swellings, and neu-

ronal dysfunction [36, 87]. �e mechanisms regulating 

axonal transport are not completely understood but 

some studies suggest that it is mediated by the interac-

tion of kinesin motor protein with the mitochondrial 

adaptor proteins, Miro and Milton (known as trafficking 

kinesin protein (TRAK) family) [89]. Miro is a GTPase 

with two  Ca2+  binding EF-hand domains and is local-

ized to the outer mitochondrial membrane (OMM) and 

has an essential role in  Ca2+-dependent regulation of 

mitochondrial transport. Intriguingly, Miro1 may also 

serve as a cytoplasmic  Ca2+ sensor and may increase 

mCa2+ uptake via interaction with MCU’s N-terminal 

domain [90, 91]. An increase in mCa2+ has been shown 

to inhibit mitochondrial axonal transport and blocking 

mCa2+ influx into mitochondria by direct MCU inhibi-

tion enhances mitochondrial trafficking in axons [90].

While multiple molecular mechanisms likely contrib-

ute to AD pathogenesis, the data suggest that neuronal 

mCa2+ overload is a primary mediator of AD progres-

sion, causing impaired mitochondrial metabolism and 

ATP production, mitochondrial transport, and increased 

mitochondrial permeability transition pore (mPTP) 

opening (Fig.  1). �is in turn results in loss of synaptic 

function, amyloid deposition, tau pathology, and cell 

death.

Parkinson’s disease (PD)

PD is the second most common NDD afflicing ~ 1% of 

the population above 60 years of age [92]. It is clinically 

characterized by both motor dysfunction such as tremor 

(involuntary shaking), bradykinesia (slowness of move-

ments), rigidity (resistance to movement), and akinesia, 

as well as non-motor disturbances such as depression, 

anxiety, fatigue, and dementia. �ese symptoms  are 
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caused by a diminishment of the neurotransmitter dopa-

mine due to degeneration of dopaminergic neurons in 

the pars compacta of the substantia nigra in the midbrain 

and the deposition of intraneuronal proteinaceous inclu-

sions known as Lewy bodies that are mainly composed 

of α-synuclein [93]. Most PD cases are sporadic with no 

known singular cause. Familial PD is associated with 

mutations in many genes including: SNCA (α-synuclein) 

[94], PRKN (parkin) [95], PARK7  (DJ-1) [96], LRRK2 

(leucine-rich repeat kinase 2) [97], and PINK1 (phos-

phatase and tensin homologue (PTEN)-induced kinase 1) 

[98]. Studies suggest that homozygous mutations in Par-

kin are the most common cause of juvenile PD, but their 

role in idiopathic PD is unclear. Mutations in Parkin are 

not reliably associated with Lewy body pathology. Post-

mortem examination of patients with Parkin mutations 

shows a clinical phenotype of dopaminergic neuronal loss 

and gliosis but lacking Lewy body pathology. However, 

this remains controversial as a few case reports demon-

strate the presence of Lewy pathology in patients with 

Parkin mutations. Further studies are needed to define if 

parkin and Lewy body pathology are in linear pathways 

(reviewed in [99]).

Drug therapy for PD is limited and is primarily focused 

on enhancing dopamine levels via administration of 

l-3,4-dihydroxyphenylalanine (L-DOPA or Levodopa), 

which is metabolized to dopamine after crossing the 

blood–brain barrier [100, 101]. However, this therapy is 

only effective in the early stages of disease, and provides 

symptomatic relief with many adverse side effects, and is 

insufficient to block the progression of PD [15, 102], sug-

gest a crucial need for new, effective therapies [103, 104]. 

Although the exact mechanisms of PD pathogenesis are 

not clear, many possible molecular events have been pro-

posed to contribute to this process.

Mitochondrial dysfunction and impaired cellular bio-

energetics have emerged as likely mechanisms driving 

PD pathogenesis in several studies [105, 106]. Dopa-

minergic neurons consume ~ 20-times more energy as 

compared to other neurons because of their anatomical 

Fig. 1 Hypothetical mechanisms of mCa2+ overload-induced cellular dysfunction in AD progression. Loss of NCLX and remodeling of the mtCU 

causes mCa2+ overload that leads to mPTP opening, loss of ATP, and interrupted axonal transport, resulting in AD progression
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structure (extensive long and branched axons), greater 

number of transmitter release sites, and their pacemak-

ing activity [107]. �e high-energetic demand of dopa-

minergic neurons makes them more susceptible to 

mitochondrial dysfunction and eventually to cell death 

in comparison to other neuronal cells [108, 109]. Defects 

in mitochondrial respiration are supported by findings 

of reduced glucose utilization in PD patients [110], as 

well as reduced pyruvate oxidation in fibroblasts derived 

from PD patients [111], which suggest reduced acetyl-

CoA entry into the TCA cycle. �e first study showing 

that defects in mitochondrial respiration may be causal 

in PD came in the early 1980s. In this study, experimen-

tal inhibition of complex I (NADH-ubiquinone reduc-

tase) of the ETC was sufficient to cause parkinsonism 

[112, 113]. �is is consistently supported by observa-

tions of a profound reduction in ETC activity, mostly 

complex I, in the substantia nigra, platelets, and skeletal 

muscle of PD patients [114]. Furthermore, inhibitors of 

complex I, such as  MPP+ (1-methyl-4-phenylpyridin-

ium), 6-hydroxydopamine, rotenone and annonacin all 

elicit PD-like phenotypes, suggesting that mitochondrial 

dysfunction is sufficient to promote neuronal dysfunc-

tion in PD [115–117]. Complex I is a key entry point for 

electrons into the respiratory chain and is responsible 

for ~ 40% of mitochondrial ATP production [118, 119]. In 

addition to complex I, a reduction in complex II and III 

activity and the mitochondrial DNA (mtDNA) transcrip-

tion factor, TFAM, has also been reported in PD patients 

[120–122]. Reduced ETC capacity in PD may cause a 

significant reduction in ATP [123] resulting in a cellular 

energy crisis that can impact various processes including: 

(1) ATP-dependent proton pumps that drive vesicular 

accumulation of dopamine [124, 125]; (2) axonal trans-

port of cargo [126]; (3) mitochondrial dynamics (fusion, 

fission, turnover, biogenesis and transport) [127, 128]; 

and (4) ATP-dependent protein degradation systems 

(e.g. ubiquitin–proteasome and autophagy) [129, 130]. 

In addition, complex I and III deficiency in PD is linked 

with increased production of free radicals that further 

impair mitochondria function, drive protein aggregation 

and culminate in cell death [131–133]. Dopamine is very 

unstable and sequestered inside synaptic vesicles via the 

ATP-dependent vesicular monoamine transporter. If not 

sequestered, it is metabolized by monoamine oxidase to 

the toxic dopamine metabolite 3,4 dihydroxyphenylac-

etaldehyde, which contributes to oxidative stress, mPTP 

opening, and dopaminergic neuronal cell death [134]. 

Over the past decades, many PD-associated genetic 

mutations have been found to elicit changes in mitochon-

drial function and metabolism, supporting the notion 

that mitochondrial dysfunction is implicated in neuronal 

cell loss associated with familial PD and vice versa [98]. 

Mutant α-synuclein localizes to the inner mitochon-

drial membrane [135] and inhibits complex I activity, 

and promotes oxidative stress [136]. �e interaction of 

α-synuclein with mitochondria can result in cytochrome 

c release, increased mCa2+ levels, changes in mitochon-

drial morphology, and a decline in mitochondrial res-

piration. α-synuclein-mitochondrial interplay may also 

inhibit autophagic clearance and increase its aggregation 

propensity (reviewed in [137]).

A recent study suggested that mitochondrial impair-

ments occur with Lewy body formation [138]. Fur-

thermore, loss of function mutations in DJ-1 caused 

impairments in OxPhos, and complex I assembly result-

ing in decreased ATP production, oxidative stress, and 

increased glycolysis [139, 140]. �ese findings raise the 

possibility that mitochondrial dysfunction is causal in 

maladaptive protein aggregation. Furthermore, Parkin, 

as an E3 ubiquitin ligase, is directly involved in the pro-

teasomal degradation of protein aggregates. It localizes to 

mitochondria and prevents cytochrome c release, mito-

chondrial swelling, and the accumulation of α-synuclein, 

which may protect dopaminergic neurons from mito-

chondrial and neuronal dysfunction [141–143].

Parkin and PINK1 are required for mitochondrial 

quality control [144, 145]; thus, loss of Parkin/PINK1 

function is hypothesized to cause the accumulation of 

dysfunctional mitochondria that impair neuronal func-

tion. Previous work revealed that PINK1 deficient neu-

rons display reduced NCLX-dependent mCa2+ efflux 

resulting in matrix  Ca2+ overload and subsequent mPTP 

opening, mitochondrial oxidative stress, lower Δψm, 

and diminished OxPhos [146]. Furthermore, fibroblasts 

derived from patients with PINK1 mutations also exhib-

ited impaired mitochondrial metabolism, low Δψm, and 

low respiration, which was linked to reduced substrate 

availability [147]. In addition, the activation of NCLX 

via protein kinase A (PKA)-dependent phosphorylation 

of serine 258, a putative NCLX regulatory site, increases 

mCa2+ efflux and protects PINK-1 deficient neurons from 

mitochondrial dysfunction and cell death [148]. �is par-

adigm fits with previous reports where mCa2+ overload 

caused by increased mCa2+ uptake (via ERK1/2-depend-

ent upregulation of MCU) caused dendritic degeneration 

in a late-onset familial PD model (mutation in Leucine-

Rich Repeat Kinase 2) [149], and a report of MCU over-

expression eliciting excitotoxic cell death [78]. Along the 

same line, inhibition of  MCU is protective in zebrafish 

models of PD [150, 151]. �ese findings suggest mCa2+ 

overload is a contributor to PD progression.

In summary, increasing evidence supports the central-

ity of impaired mitochondrial function and metabolism 

in both sporadic and familial PD, resulting in oxidative 

stress, ETC dysfunction, defective mitochondrial quality 
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control, protein aggregation, progressive cellular dys-

function, and neurodegeneration.

Huntington’s disease (HD)

HD is an autosomal-dominant neurodegenerative disease 

resulting from an expansion of cytosine–adenine–gua-

nine (CAG) repeats (> 35 bp) within the coding sequence 

of the huntingtin gene (HTT). Mutant huntingtin protein 

(mHtt) is prone to proteolytic cleavage, misfolding, and 

aggregation. Clinically, HD is characterized by progres-

sive motor, cognitive, and behavioral dysfunction largely 

due to the loss of γ-aminobutyric acid (GABAergic) 

medium spiny neurons in the striatum [152]. �e energy 

impairment hypothesis of HD was first proposed in the 

early 1980s from clinical observations, which revealed 

deficits in brain glucose utilization and weight loss in HD 

patients  [153, 154]. Consistently, compelling evidence 

from PET studies suggests decreased glucose utilization 

in HD brains [155, 156], suggesting a defect in metabo-

lism. In addition, compared to a control population, pre-

symptomatic HD children, with no manifest symptoms, 

revealed a lower body mass index suggesting energy dys-

regulation and impairments in anabolic growth [157].

In HD patients, many key enzymes of the TCA cycle 

and ETC display reduced expression, including PDH, 

SDH, complex II, III, and IV [158]. In addition, HD 

patients increase lactate production in the pre-symp-

tomatic phase of HD, indicating a possible reduction in 

oxidative mitochondrial metabolism and metabolic shift 

from OxPhos to glycolysis [159–162]. Irreversible inhi-

bition of SDH by chronic administration of 3-nitropro-

pionic acid in both rodents and non-human primates 

elicited regional lesions in the striatum accompanied by 

HD-like pathology [163–165]. �ese results suggest that 

defects in key TCA cycle enzymes are sufficient to drive 

HD-pathology. Furthermore, treatment of an HD mouse 

model with coenzyme Q and creatine for energy supple-

mentation resulted in increased longevity and improved 

motor function [166, 167], suggesting that  improving 

mitochondrial function and cellular bioenergetics is a 

viable therapeutic approach to treat HD.

Various other changes in mitochondrial function have 

been reported in HD. Recently, an examination of HD 

patient-derived induced pluripotent stem cells (iPSCs) 

and differentiated neural stem cells revealed altered 

mitochondria morphology (round and fragmented struc-

ture), lower mitochondrial respiration, decreased ATP 

levels and complex III activity, activation of apoptosis, 

and increased glycolysis [168]. Proteomic analysis in 

undifferentiated human HD embryonic stem cells found 

a decrease in key proteins involved in the ETC before 

observable differences in huntingtin protein [169]. �ese 

studies suggest that mitochondrial function is impaired 

early in HD pathogenesis. Also, mitochondrial dysfunc-

tion is linked with glutamate-mediated excitotoxicity in 

HD, and this is linked to defects in mCa2+ homeostasis. 

Studies indicate early abnormalities in mCa2+ that con-

tribute to HD pathology [170]. For example, mitochon-

dria from HD patients have an increased probability 

of mPTP opening, mitochondrial swelling, oxidative 

stress, and mCa2+ overload [170, 171]. As in other NDDs, 

impaired axonal transport is also reported in HD [172] 

and may be caused by mitochondrial dysfunction and 

impaired ATP production. Overall, these findings sup-

port a prominent role for mitochondrial and metabolic 

defects in HD pathogenesis.

Altogether, numerous studies support that mitochon-

drial dysfunction and energy impairments occur before 

overt pathological symptoms and appear to be central 

in driving the progression of various NDDs. We hypoth-

esize that metabolic and mitochondrial dysfunction is a 

result of iCa2+ dysfunction and remodeling of the mCa2+ 

exchange machinery, which, although initially meant to 

be compensatory, causes a series of events that culminate 

in neurodegeneration (Fig. 2).

Molecular mechanisms of altered metabolism 

in NDDs

Above we outlined experimental evidence linking 

impaired energy metabolism to the initiation or progres-

sion of NDDs. �is has led to the hypothesis that defects 

in mitochondrial energy production initiate a cascade 

of events that causes the neuronal cell death observed 

in NDDs [173]. However, additional work has raised the 

possibility that primary defects in other cellular processes 

may secondarily impair mitochondrial bioenergetics and 

contribute to NDD pathogenesis [10, 174]. Potential 

mechanisms that may alter metabolism in NDDs (Fig. 3), 

and the significance of such altered metabolism for 

NDDs etiology, are discussed below.

Calcium signaling

Calcium signaling is required for neuronal function and 

regulates a range of processes, including neuronal excitabil-

ity, neurotransmitter release, mitochondrial metabolism, 

and cell death. Tight control over iCa2+ flux is therefore 

essential for coordinated activity and neuronal homeosta-

sis. As discussed above, altered  Ca2+ homeostasis has been 

reported in NDDs and may contribute to neuronal dysfunc-

tion and death (reviewed in [175]). �is section discusses 

the impact of altered  Ca2+ handling in various subcellular 

compartments and its impact on metabolism.

Intracellular calcium

Perturbation of global iCa2+ homeostasis alters  Ca2+ 

content in compartments, including the ER and 



Page 8 of 31Jadiya et al. acta neuropathol commun           (2021) 9:124 

Fig. 2 Mitochondrial and metabolic dysfunction in neurodegeneration. Mitochondrial dysfunction and energy impairments are central events in 

neurodegeneration

Fig. 3 Calcium-centric view of impaired mitochondrial metabolism in NDDs. (1–2) An increase in intracellular calcium by different  Ca2+ transport 

systems in the plasma membrane and the endoplasmic reticulum promotes its entry into the mitochondrial matrix via the mtCU. (3) mCa2+ 

enhances the activity of key TCA enzymes, leading to elevated OxPhos and ATP generation. On the other side, insufficient or excessive mCa2+ 

content can impair mitochondrial metabolism in NDDs. The ER plays a crucial role in regulating cellular energetics via the regulated release of  Ca2+ 

near sites of ER-mitochondrial contact to support ATP production. (4) The changes in mitochondrial dynamics alter respiratory complex assembly 

and affect the coupling between respiration and ATP synthesis. (5–8) The production of ROS and activation of AMPK signaling by  Ca2+ and insulin 

signaling also constitute the diverse array of signaling pathways that elicit transcription regulation of energy metabolism genes
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mitochondria. Both organelles are implicated in the 

pathophysiology of NDDs, thus altered iCa2+ levels may 

contribute to NDD progression. Indeed, iCa2+ overload is 

a widely accepted feature of NDDs and is a likely cause 

of dysfunction and death of the neuronal populations 

affected by these diseases [176].

Elevated iCa2+ content is a common feature of AD and 

is especially pronounced in neurons containing NFTs 

[177]. Elevated iCa2+ in AD can exert detrimental effects 

by altering  Ca2+-dependent signaling. Two examples of 

 Ca2+-dependent proteins in neurons are the phosphatase 

calcineurin and  Ca2+/calmodulin-dependent protein 

kinase II (CaMKII). Altered calcineurin and CaMKII 

signaling have been linked to memory impairment, syn-

aptic loss, and neurodegeneration, all features of AD 

progression [178]. Such findings have inspired the “Ca2+ 

hypothesis of AD,” which proposes that cellular  Ca2+ dys-

regulation is a central driver of disease progression [179, 

180].

While  Ca2+ dysregulation likely precedes neurode-

generation, several reports describe mechanisms by 

which Aβ directly elevates iCa2+ content, suggesting a 

vicious positive feedback loop that reinforces  Ca2+ over-

load. First, Aβ can promote ROS production and sub-

sequent oxidation of membrane lipids that can disrupt 

cellular ion transport [181]. Second, Aβ peptides may 

form  Ca2+-permeable pores in the plasma membrane, 

allowing for direct influx of  Ca2+ into the neuron [182]. 

�is idea is supported by the observation that neurites 

with more Aβ have greater levels of iCa2+ [183]. Aβ is 

also proposed to stimulate  Ca2+ uptake through L-type 

voltage-gated  Ca2+ channels [184], but this notion is 

still debated [185]. Finally, Aβ may hyperactivate the 

NMDA receptor, leading to cellular  Ca2+ overload [186]. 

Dysregulated  Ca2+ handling is also implicated in the 

pathophysiology of PD [187]. Neurons with α-synuclein 

mutations have increased plasma membrane ion perme-

ability, possibly due to the formation of pores by mutant 

α-synuclein [188]. Pharmacologic inhibition of Cav1.3 

L-type  Ca2+ channels is protective in animal models of 

PD [189], suggesting that increased ion channel activity 

contributes to excess iCa2+ entry. Store-operated calcium 

entry is also impaired in PD and leads to the depletion 

of ER  Ca2+ content [175]. Likewise, neuronal  Ca2+ dys-

regulation is a common feature of HD [190]. mHtt can 

stimulate NMDA receptors in medium spiny striatal 

neurons, potentially leading to excess iCa2+ [176]. Also, 

mHtt binds to and potentiates  IP3 receptor signaling, 

enhancing  Ca2+ release from the ER [191]. �ese com-

bined effects all tend to deplete the ER of  Ca2+ and can 

ultimately enhance store-operated  Ca2+ entry [192], set-

ting up a continuous cycle that promotes increased iCa2+ 

load.

ER calcium

Alterations in iCa2 handling in NDDs can cause sec-

ondary changes in ER  Ca2+ load. �e ER plays a critical 

role in regulating cellular energetics via the regulated 

release of  Ca2+ near sites of ER-mitochondrial contact. 

In brief, these discrete sites of ER-mitochondrial appo-

sition (examined further below under “MAMs” or mito-

chondrial associated membranes) create a microdomain 

where  Ca2+ concentration can rise to levels as much 

as 20 × greater than in the bulk cytosol [193, 194]. �is 

localized, high  Ca2+ concentration is required for the 

activation of the mCa2+ uptake machinery (gating of the 

mtCU) and efficient ER-to-mitochondria  Ca2+ trans-

fer [195]. Inter-organelle  Ca2+ transport is especially 

important in regulating iCa2+ homeostasis in neurons 

and is implicated not only in energetic homeostasis but 

also vesicle trafficking and neurotransmitter release [196, 

197]. �us, any structural disruption in ER-mitochon-

drial contact sites in NDDs and subsequent perturbation 

in ER-mitochondrial  Ca2+ transfer has the potential to 

exacerbate iCa2+ stress and accelerate disease progres-

sion. Moreover, altered ER  Ca2+ content and ER  Ca2+ 

release will affect mCa2+ content. As discussed in the next 

section, either insufficient or excessive mCa2+ content 

can impair mitochondrial metabolism and signaling, thus 

underlying the significance of altered ER  Ca2+ handling 

for cellular bioenergetics in NDDs.

Mitochondrial calcium

Given the central role of mCa2+ in regulating cellular 

metabolism and survival, it is not surprising that altered 

mCa2+ handling is reported in cellular NDD models. 

NDDs are universally associated with mCa2+ overload, 

which can impair cellular metabolism by inducing oxi-

dative stress, which itself can impair OxPhos; and by 

inducing mPTP, which compromises ATP production by 

collapsing Δψm [198, 199].

In AD, mCa2+ overload can result from excessive ER-

to-mitochondrial  Ca2+ transfer induced by Aβ oligom-

ers [200]. �ere are also reports that Aβ accumulates in 

mitochondria and interacts with the matrix mPTP regu-

lator cyclophilin D, thus increasing permeability transi-

tion [201, 202] and impairing mitochondrial energetics 

in a  Ca2+-independent manner. More recent results from 

our laboratory indicate that mCa2+ efflux is compromised 

in AD, due to downregulation of NCLX, which further 

promotes mCa2+ overload [77].

Signs of mCa2+ overload are observed in cellular mod-

els of PD induced by expression of mutant α-synuclein. 

�ese include loss of Δψm, cristae structure, and ATP 

content, features that are exacerbated by simultaneous 

expression of mutant PINK1 and rescued by pharmaco-

logic blockade of mCa2+ uptake [203]. α-synuclein can 
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accumulate within mitochondria and increases mCa2+ 

content, leading to increased ROS production [204]. 

However, conflicting reports [205] suggest that the effects 

of α-synuclein on mCa2+ homeostasis may be more 

nuanced. In some cases, α-synuclein may be beneficial by 

promoting ER-mitochondrial contacts to enhance ER-to-

mitochondrial  Ca2+ transfer and support mitochondrial 

bioenergetics [206]. Altered mCa2+ handling has been 

suggested in HD, but existing reports have yielded dis-

parate conclusions on this point. �e reader is referred 

to a recent review by Cali et al. [198] for a more detailed 

discussion.

Mitochondrial-associated membranes

Mitochondrial-associated membranes (MAMs) are 

regions where the ER is in close proximation with the 

outer mitochondrial membrane to allow crosstalk 

between these organelles. MAMs are particularly impor-

tant for the exchange of  Ca2+ and phospholipids, both 

of which impact ER/mitochondrial function and thus 

have profound effects on cellular metabolism and over-

all homeostasis (reviewed in [207]). MAMs are required 

for the synthesis of lipids such as phosphatidylcholine 

[208], with the mitochondrion serving as the site of phos-

phatidylethanolamine (PE) generation, an intermediate 

in phosphatidylcholine production. In turn, PE is cru-

cial for overall mitochondrial morphology and function 

[209]. MAMs are also enriched for proteins involved in 

mitochondrial fission and fusion [210, 211], and so can 

influence mitochondrial dynamics, morphology, and 

biogenesis. Likewise, MAMs are important sites for the 

regulation of mitophagy and the clearance of defective 

mitochondria [212].

MAMs are often found at synapses, where they may 

modulate synaptic activity [213]. Efficient ER-to-mito-

chondria  Ca2+ transfer is necessary for ATP production 

and may be especially important for meeting the high 

energetic demands of synaptic transmission [214] and/

or serve as an important mechanism to buffer synaptic 

 Ca2+. �e ER and mitochondrial membranes are held 

in apposition at MAMs via a network of tether proteins 

[215, 216], some of which have been implicated in NDDs.

ER-mitochondrial tethers include the ER-mitochon-

dria encounter structure (ERMES), which was identi-

fied in yeast [217]. Mammalian counterparts to the 

ERMES complex are still being validated, but may 

include the  IP3 receptor, phosphofurin acidic cluster 

sorting protein-2 (PACS-2), B-cell receptor associated 

protein 31 (Bap31), PDZD8 in the ER, the mitochon-

drial fission protein Fis1, and the outer mitochondrial 

membrane protein VDAC [218]. PDZD8 is required 

for ER-mitochondria tethering, and loss of PDZD8 is 

sufficient to impact ER-mitochondrial  Ca2+ dynamics 

in mammalian neurons [219]. Mitofusin 2 has also 

been proposed as a MAM tether [220], but this idea 

remains controversial [221, 222]. Additional proposed 

tethers include the oxysterol binding-related proteins 

ORP5 and ORP8, which can interact with mitochon-

drial protein tyrosine phosphatase interacting protein 

51 (PTPIP51) [223]. �e OMM protein synaptojanin 

2 binding protein (SYNJ2BP) and the ER protein ribo-

some-binding protein 1 (RRBP1) are proposed to medi-

ate specific interactions between the rough ER and 

mitochondria [224]. Finally, a tethering complex that 

may have particular importance in NDDs is comprised 

of the ER vesicle-associated membrane proteins-asso-

ciated protein B (VAPB) and mitochondrial PTPIP51 

[225, 226].

Altered ER-mitochondrial contacts in NDDs may con-

tribute to disease pathology [227, 228]. Loss of MAM 

tethers can disrupt ER-mitochondrial  Ca2+ transfer and 

so impair mitochondrial metabolism, leading to cellular 

energy depletion and the activation of autophagy [229, 

230]. MAM disruption in NDDs could also lead to ener-

getic compromise by impairing the synthesis of phospho-

lipids important for mitochondrial membranes, such as 

cardiolipin [208, 231, 232]. �is species is enriched in the 

mitochondrial inner membrane and is critical for proper 

ETC and ATP synthase function [233–236]. Finally, ER-

mitochondrial associations regulate a number of pro-

cesses that are commonly disrupted in NDDs such as 

 Ca2+ handling, inflammation, axonal transport, and 

mitochondrial function [237]. �ese observations sup-

port the hypothesis that altered ER-mitochondrial com-

munication is a common mechanism underlying NDDs.

�e AD-related proteins APP and γ-secretase are 

all enriched at MAMs [238]. Observations of altered 

lipid metabolism and  Ca2+ handling in both FAD and 

SAD suggest that these proteins may be associated with 

MAM dysfunction [228, 239]. Altered iCa2+ handling 

in AD could result from enhanced ER-mitochondrial 

 Ca2+ transfer. �e finding that ER  Ca2+ concentration is 

increased in AD supports this view. Finally, altered lipid 

homeostasis resulting from dysfunctional ER/mitochon-

drial tethering may also impair mitochondrial energetics 

in AD. �e MAMs of AD brain tissue and cells exhibit 

increased sphingomyelin hydrolysis by sphingomyeli-

nase, which leads to increased ceramide content [240]. 

Increased ceramide content in AD appears sufficient to 

impair mitochondrial respiration [241, 242], as pharma-

cologic reduction of ceramide levels in AD models can 

rescue mitochondrial respiration [240]. Specific mecha-

nisms by which elevated ceramide content in mitochon-

drial membranes may impair respiratory function and 

cellular bioenergetics have been detailed elsewhere [173].
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Furthermore, altered ER-mitochondrial contacts and 

signaling are reported in PD, leading some to propose 

that disrupted MAMs are a significant contributor to 

PD pathogenesis [228, 237]. Proteins that are implicated 

in familial PD such as α-synuclein, PINK1, and Parkin 

all alter ER-mitochondrial signaling [243–245]. How-

ever, the specific consequences of these alterations on 

PD pathology are still the subject of active investigation 

[207].

�e protein α-synuclein localizes to MAMs [245] and 

is thought to influence  Ca2+ signaling [205, 206] and 

lipid metabolism [246], ultimately leading to defective 

ER and mitochondrial function [206]. Whereas wild-

type α-synuclein promotes ER-mitochondrial contacts 

[206], the association of familial PD mutant α-synuclein 

with MAMs is disrupted. �is change may represent one 

mechanism for compromised MAM structure and func-

tion in PD [246]. However, conflicting data suggest that 

overexpression of either wild-type or mutant α-synuclein 

can disrupt ER-mitochondrial contacts by binding to 

VAPB on the ER membrane and interfering with VAPB-

PTPIP51 interactions [245]. Disruption of this tether 

complex can impair mitochondrial energetics because it 

compromises  Ca2+ exchange between the two organelles 

[245]. Similar mechanisms may explain how DJ-1 muta-

tions contribute to early-onset PD [247]. DJ-1 is normally 

localized to MAMs where it promotes ER-mitochondrial 

association and facilitates mCa2+ uptake [248]. Mutant 

DJ-1, as seen in PD, may disrupt MAM structure, ER-

mitochondrial contacts, mCa2+ uptake, and mitochon-

drial bioenergetics [249]. In addition, mutations in Parkin 

and PINK1 may initiate PD pathogenesis via effects at 

MAMs. PINK and Parkin are recruited to sites of contact 

between ER and defective mitochondria to coordinate 

their autophagic clearance [244, 250]. �us, defective 

PINK or Parkin may disrupt mitochondrial quality con-

trol mechanisms that rely on MAM interactions. Over 

time, this could impair cellular metabolism and contrib-

ute to PD pathology due to the accumulation of dysfunc-

tional mitochondria.

Mitochondrial structural defects

Mitochondrial structure is determined by a precise bal-

ance between mitochondrial fusion and fission and mem-

brane dynamics that are mediated by several proteins 

including mitofusin 1 (MFN1), mitofusin 2 (MFN2), 

optic atrophy 1 (OPA1), dynamin-related protein 1 

(DRP1), mitochondrial fission factor (MFF), and fission 1 

protein [251]. During fasting or starvation mitochondria 

tend to fuse [252] due to inhibition of Drp1 by PKA and 

AMPK [253, 254]. �ese changes in mitochondrial struc-

ture alter respiratory complex assembly and affect the 

coupling between respiration and ATP synthesis [252], 

thereby increasing ATP production efficiency when fuel 

is scarce.

Defective mitochondrial fission and fusion have been 

implicated in NDDs [251], and abnormal mitochondrial 

structure and morphology are reported in AD, PD, and 

HD [255]. Increased mitochondrial fragmentation is 

often observed in these conditions. At first considera-

tion, this finding might indicate that neurons in NDDs 

are well-supplied with metabolic fuels and are fully capa-

ble of breaking them down to meet cellular demands for 

ATP. However, increased mitochondrial fragmentation 

may instead reflect or even contribute to metabolic dys-

function in NDDs. Cells adapt to prolonged starvation or 

chronic defects in metabolism with increased mitophagy, 

which requires mitochondrial fragmentation [256]. 

�erefore, excess mitochondrial fragmentation may 

reflect increased stimuli for mitophagy in NDDs (i.e., 

impaired fuel utilization and/or mitochondrial dysfunc-

tion). �is is perhaps coupled with impairments in the 

mitophagic machinery and the consequent accumula-

tion of fragmented organelles. According to the model in 

which mitochondrial fusion enhances ATP production, a 

shift in mitochondrial dynamics that favors fission could 

limit mitochondrial bioenergetics and exacerbate meta-

bolic stress in NDDs.

Several mechanisms are proposed to explain the accu-

mulation of fragmented mitochondria in NDDs. In AD, 

some reports indicate that net mtDNA content and ETC 

protein expression are increased [257, 258], suggestive 

of a net increase in cellular mitochondrial content. �is 

could occur with an increase in mitochondrial biogenesis 

and/or a decrease in clearance of defective, fragmented 

mitochondria. For example, APP mutant transgenic mice 

show upregulation of ETC genes, and Aβ has been shown 

to increase cellular mtDNA content [258, 259]. On the 

other hand, other studies report reduced mtDNA content 

and ETC gene expression in AD brains [260–262]. �ese 

disagreements likely reflect differences in the stage of 

disease examined in these reports. We observed a slight, 

but non-significant age-dependent decrease in mito-

chondrial content in AD-mice compared to control mice 

[77]. Finally, experiments in animal models of AD reveal 

increased S-nitrosylation of Drp1, which causes hyper-

activation of Drp1 and excessive mitochondrial frag-

mentation [263]. Similar effects of hyperactivated Drp1 

have been found in postmortem brain samples from AD 

patients [263].

�e accumulation of fragmented mitochondria in PD 

could result either from primary mutations in PD-asso-

ciated genes such as PINK and Parkin [264] or from the 

pathogenic milieu associated with disease progression. 

PINK and Parkin cooperate to identify defective mito-

chondria and target them for degradation via mitophagy 
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[265]. �erefore, impaired clearance and eventual accu-

mulation of dysfunctional mitochondria may be a pri-

mary consequence of PD mutations. PINK1 also controls 

structural plasticity of mitochondrial crista junctions 

via phosphorylation of the inner mitochondrial mem-

brane protein MIC60/mitofilin [266]. Mutation in PINK1 

could impact the PINK1-Mic60 interaction and prevent 

the recruitment of Parkin to damaged mitochondria in 

PD. Further, excessive reactive nitrogen species (RNS) 

production in PD may contribute to the accumulation 

of fragmented mitochondria by modifying the activ-

ity of proteins involved in mitochondrial fission/fusion 

and mitophagy. For example, S-nitrosylation of Par-

kin decreases it E3 ubiquitin ligase activity [267], lead-

ing to stabilization of its target, Drp1, which promotes 

mitochondrial fission [268]. Similarly, S-nitrosylation of 

PINK1 can impair mitophagy [269] and thereby allow 

fragmented mitochondria to accumulate.

�e mechanisms behind altered mitochondrial struc-

ture in HD have received less attention. Studies in a 

transgenic mouse model expressing mutant human HTT 

suggest a direct transcriptional repression of PGC1α, 

which could impair mitochondrial biogenesis [270]. 

Like in AD, increased S-nitrosylation and activation 

of Drp1 is observed in mouse models of HD [271], and 

causes excessive mitochondrial fragmentation similar to 

that seen in HD brains [272]. Recent work suggests that 

mutant HTT impairs mitophagy in neurons [273], which 

would also favor the accumulation of dysfunctional mito-

chondria in HD.

Oxidative stress

Impaired metabolism in NDDs is linked to the produc-

tion of RNS and ROS. Multiple hallmarks of NDDs 

including mitochondrial dysfunction, misfolded proteins, 

and inflammation are known consequences of elevated 

RNS/ROS production [274]. �e relationship between 

mitochondrial dysfunction, aberrant ROS signaling, and 

neurodegeneration has been reviewed elsewhere [275]. 

Elevated RNS production in NDDs is thought to occur as 

a result of elevated iCa2+ concentration, which increases 

nitric oxide (NO) production by neuronal nitric oxide 

synthase (nNOS) and endothelial nitric oxide synthase 

(eNOS). Excess NO in turn promotes mitochondrial dys-

function, which can exacerbate bioenergetic compromise 

and accelerate neurodegeneration [276]. �is may occur 

through reversible S-nitrosylation of cysteine residues 

on proteins important for mitochondrial homeostasis 

such as Parkin and Drp1, as well as proteins such as Pro-

tein disulfide isomerase (PDI) that help to ensure proper 

protein folding (reviewed in [276]). Nitric oxide can 

also react with superoxide to form peroxynitrite, which 

irreversibly modifies tyrosine residues via tyrosine nitra-

tion [277].

Nitric oxide inhibits numerous proteins involved in 

metabolism, providing a mechanistic link between ele-

vated iCa2+ levels and altered metabolism in NDDs. NO 

attenuates glycolysis and fatty acid oxidation via inhibi-

tory S-nitrosylation of key enzymes in these pathways 

such as GAPDH [274, 276]. Such effects would impede 

metabolism by limiting carbon input into the TCA cycle. 

Furthermore, S-nitrosylation of the TCA cycle enzymes 

citrate synthase, aconitase, isocitrate dehydrogenase, 

alpha-ketoglutarate dehydrogenase, succinyl-CoA syn-

thetase, succinate dehydrogenase, and malate dehydroge-

nase has been observed [278, 279] and is often inhibitory 

[280, 281]. In particular, isocitrate dehydrogenase is a 

rate-limiting step within the TCA cycle [282], and inhibi-

tory S-nitrosylation of this enzyme could limit TCA 

cycle flux and overall mitochondrial metabolism. Down-

stream of the TCA cycle, S-nitrosylation can inhibit ETC 

complexes I [283–285], IV [286], and V (ATP synthase) 

[287]. Tyrosine nitration also inhibits all ETC complexes 

[288, 289]. �us, excessive RNS production in NDDs can 

impair mitochondrial metabolism by direct action on 

multiple targets and pathways.

Much remains to be determined regarding the spe-

cific role of mitochondrial RNS stress in the progression 

of NDDs. Some recent studies support a link between 

increased NO production and altered mitochondrial 

activity. Induced pluripotent stem cells expressing the 

A53T mutation in α-synuclein, which causes familial PD, 

exhibit decreased mitochondrial respiration that is attrib-

uted to aberrant S-nitrosylation of the transcription fac-

tor MEF2C, which leads to impaired PGC1α expression 

[290]. A similar effect of abnormal MEF2 S-nitrosylation 

is associated with neurodegeneration in AD [291]. Any 

initial impairment of mitochondrial respiratory activ-

ity can trigger excess ROS and RNS production, leading 

to further oxidative or nitrosative stress [112, 292, 293] 

that feeds back to impair mitochondrial metabolism. Fit-

ting with this notion, increased ROS production by the 

ETC is indeed observed in neurodegeneration [274, 294]. 

While increased ROS production in NDDs may be a 

direct consequence of increased mCa2+ concentration, it 

is tempting to speculate that increased cellular NO pro-

duction may also contribute to this effect by initiating 

ETC dysfunction.

Finally, it is worth noting that data also exist supporting 

a neuro-protective role for nitric oxide in some NDDs. As 

reviewed by Calabrese et  al., within the context of nor-

mal physiology, NO can exert neuro-protective effects via 

several mechanisms including stimulation of pro-survival 

Akt and cyclic-AMP-responsive-element binding protein 

(CREB) signaling pathways, S-nitrosylation of the NMDA 
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receptor to limit cellular  Ca2+ uptake and excitotoxicity, 

inhibitory S-nitrosylation of caspases, and the upregula-

tion of heme oxygenase 1 to stimulate cellular antioxi-

dant production [295].

Transcriptional regulation

Several observations indicate that changes in transcrip-

tional programs contribute to altered metabolism in 

NDDs. �e expression of key energy and metabolism 

genes, such as components of the ETC, are reduced 

at both the mRNA and protein level in autopsied AD 

brains [262]. Furthermore, transcriptional repression 

of PGC-1α, a transcription coactivator with a central 

role in mitochondrial biogenesis, is observed in mouse 

models of HD [270]. �ese examples illustrate a general 

phenomenon, common to NDDs, of decreased transcrip-

tion of genes involved in mitochondrial and oxidative 

metabolism [296]. Much work remains to determine the 

mechanisms responsible, but some evidence supports 

the notion that restoration of transcription is beneficial 

in NDDs. Specifically, activation of transcription fac-

tors including CREB, NF-κB, and NRF2 are protective in 

murine models of these diseases (reviewed in [174, 297]). 

It is interesting to note that exercise and aerobic activity 

can activate some of these neuroprotective transcription 

factors [174]. �us, an interesting question is whether 

impaired locomotion and reduced physical activity in 

some NDDs diminish the activation of beneficial tran-

scriptional programs, and so drive further transcriptional 

and metabolic defects.

One example of how metabolic gene transcription may 

become disrupted in NDDs is by impairment of Peroxi-

some proliferator-activated receptor (PPAR)-γ co-activa-

tor 1α (PGC-1α). As reviewed elsewhere [298], PGC-1α 

is activated by AMPK during times of metabolic stress, 

and in concert with the transcription factor NRF-1 

increases the expression of nuclear genes involved in 

mitochondrial biogenesis [299, 300]. PGC-1α also upreg-

ulates mitophagic genes [301, 302] and thus can impact 

mitochondrial quality control, turnover, and net mito-

chondrial content. NDDs are generally associated with 

reduced expression of PGC-1α, which likely represents a 

common mechanism for metabolic impairment in these 

diseases.

Reduced expression of PGC-1α is observed in Alzhei-

mer’s patients and in the TG2576 mouse model of AD 

(transgenic expression of the APP Swedish mutation) 

[303]. Mutant forms of presenilin associated with famil-

ial AD are associated with reduced PGC-1α expression 

[304], while in  vitro restoration of PGC-1α in AD cell 

lines improves overall function [303, 305]. �is sug-

gests that diminished PGC-1α function, and perhaps 

subsequent mitochondrial impairment, contributes to 

AD pathogenesis. Similar evidence for reduced PGC-1α 

activity is reported in Parkinson’s disease. PD patients 

exhibit reduced expression of PGC-1α target genes, such 

as components of the ETC [306]. In cell and animal mod-

els, loss of PGC-1α increases susceptibility to PD [307, 

308], while overexpression of PGC-1α protects against 

neuronal death [306, 309]. Recent work indicates that the 

protein PARIS (ZFN746 gene), which is normally ubiqui-

tinated by Parkin, can repress PGC-1α expression [310]. 

�us, loss of Parkin in PD may elicit the accumulation of 

PARIS and downregulation of PGC-1α. In support of this 

notion, stereotactic injection of recombinant PARIS into 

the substantia nigra of mice causes neuronal death, but 

this is prevented by simultaneous injection of exogenous 

recombinant PGC-1α [310]. Together, these data support 

the idea that downregulation of PGC-1α is secondary to 

causative NDD gene mutations, but reduces mitochon-

dria content and disrupts quality control, thereby fur-

thering neuronal dysfunction and disease progression.

Huntington’s disease is more closely linked to defects in 

PGC-1α signaling than other NDDs. Deletion of PGC-1α 

in mice causes neurodegeneration and recapitulates 

symptoms of HD [311, 312], and induction of PGC-1α 

can rescue HD symptoms in mice[313]. Predictably, HD 

patients and mouse models display reduced PGC-1α 

expression and reduced expression of mitochondrial 

genes [314]. �ese features can be explained by binding 

of mutant huntingtin protein to the PGC-1α promotor, 

which represses PGC-1α transcription [270]. Deletion of 

PGC-1α in HD mouse models exacerbates neurodegen-

eration, whereas striatal overexpression of PGC-1α is suf-

ficient to protect against neuronal atrophy [270]. Overall, 

PGC-1α likely plays a central role in the progression of 

NDDs, and so is an attractive therapeutic target.

Insulin signaling

Multiple studies support an association between altered 

insulin signaling and NDDs. Altered glucose metabolism 

is common in both AD and PD [174, 315], and both of 

these diseases are linked to type 2 diabetes [316–318]. 

Indeed, many of the same risk factors for developing 

obesity or diabetes (lack of physical activity, excess calo-

rie consumption, etc.) predispose to the development of 

NDDs, especially AD and PD [319]. Variants in insulin 

signaling pathway genes, such as AKT [320] and GSK3β 

[321], increase the risk for PD. �us, it is possible that 

diminished insulin responsiveness and impaired glucose 

utilization contribute to impaired neuronal metabolism 

in some NDD patients. �is represents further evidence 

that a decline in metabolic health may initiate NDD 

development.

�e glucose transporters GLUT1 (insulin-insensitive) 

and GLUT3 (insulin-sensitive) are decreased in AD 
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brains [322, 323]. �ese changes may limit brain glucose 

uptake and contribute to cognitive impairments in AD 

[324]. A report that reducing GLUT1 expression in AD 

mouse models worsens amyloid burden, neurodegen-

eration, and cognitive function [325] supports this idea. 

Additionally, insulin deficiency favors phosphorylation 

of tau and the development of neurofibrillary pathology 

[326], reinforcing the notion that disrupted insulin sign-

aling promotes AD progression.

In agreement, impaired glucose metabolism is a well-

documented feature of PD brains [174], and lower lev-

els of pyruvate oxidation are observed in PD fibroblasts 

[111]. �ese effects are recapitulated in animal models 

of PD [327–329] and may reflect impaired insulin signal-

ing. Activation of AKT, a classical downstream target of 

insulin signaling, is reduced in the substantia nigra of PD 

brains and in in  vitro cellular models of PD [330–333]. 

Genetic mutations in proteins linked to PD, including 

DJ-1 and PINK1, are also associated with diminished 

AKT signaling [334] and provide further evidence for 

altered insulin responsiveness in this disease. To the 

extent that altered insulin/AKT signaling limits carbon 

(i.e., glucose) metabolism within neurons, it would limit 

fuel input to the TCA cycle and decrease mitochondrial 

ATP production [335]. Limited mitochondrial energet-

ics may be just one consequence of diminished glucose 

uptake or utilization in PD. Dopaminergic neurons do 

not tolerate glucose starvation [336], and glucose dep-

rivation in vitro is sufficient to cause α-synuclein aggre-

gation and death of dopaminergic neurons [337]. �ese 

data support the idea that impaired glucose utilization is 

an early driver of PD pathology, and may lead not only to 

impaired mitochondrial metabolism, but also to amyloi-

dosis and neuronal death.

Altered glucose metabolism is an early feature of HD, 

even though the expression of glucose transporters is 

normal in initial stages of the disease [153, 338, 339]. 

�is defect is explained by diminished localization of the 

glucose transporters at the neuronal plasma membrane 

[340]. Interestingly, defects in metabolism are observed 

prior to striatal atrophy, and reduced glucose metabolism 

strongly correlates with HD progression [341–343]. �e 

finding that increasing expression of GLUT3 or enzymes 

involved in glucose metabolism can protect against the 

progression of HD [344, 345] strengthens this view.

AMPK

AMP-activated protein kinase (AMPK) is a master cel-

lular energy sensor and has a critical role in maintaining 

metabolic homeostasis. AMPK is activated in response 

to changes indicative of energetic stress (e.g. increased 

AMP/ATP ratio, hypoxia, a drop in cellular pH, increased 

iCa2+ concentration, etc.) and via phosphorylation by 

the kinases LKB1, CaMKKβ, and TAK-1 (reviewed in 

[346, 347]). AMPK exerts multiple effects to stimulate 

ATP production, such as stimulating glucose uptake, gly-

colysis, and glucose and fatty acid oxidation, while at the 

same time limiting cellular ATP consumption by inhib-

iting fatty acid and cholesterol production [298, 347]. 

AMPK also promotes long-term increases in mitochon-

drial energy production by phosphorylating PGC-1α and 

the fork-head box O (FOXO) transcription factor to stim-

ulate mitochondrial biogenesis [299, 300, 309, 348–351].

AMPK is activated by ROS, which as previously 

detailed are elevated in many NDDs [352, 353]. Since 

AMPK activation can exacerbate ROS production, this 

may set up a positive feedback loop leading to further 

oxidative stress and metabolic impairment [354]. �us, 

AMPK has the potential to exert both positive and det-

rimental effects in NDDs. Data supporting both posi-

tive and negative aspects of AMPK activation exist for 

most NDDs, and the net positive versus detrimental out-

comes of AMPK activation likely varies between different 

disorders.

Elevated AMPK activity has been reported in the 

brains of the APPswe/PS1dE9 and APPswe,ind, mouse 

models of AD [355, 356]. Several mechanisms have been 

proposed to explain how this occurs. First, any exist-

ing mitochondrial dysfunction due to Aβ accumulation 

[201, 357, 358], or decreased mitochondrial biogenesis 

and increased fragmentation [359], could cause energetic 

stress and AMPK activation. Second, Aβ causes exces-

sive iCa2+ flux due to activation of the NMDA receptor, 

which can activate the AMPK-kinase, CaMKKβ [355, 

360]. �ird, elevated ROS production [201] and elevated 

iCa2+ [361] downstream of mitochondrial dysfunction 

can increase AMPK activity in AD. Finally, increased 

NADPH oxidase activity is observed in AD brains and is 

proposed to activate AMPK [362].

Although AMPK activation may initially be an adap-

tive response to alleviate energetic stress in AD, most 

data indicate that abnormal AMPK activation eventually 

turns detrimental. For example, AMPK can increase Aβ 

expression, and Aβ can further activate AMPK, which 

can suppress long-term potentiation and impair memory 

[298]. Similarly, AMPK activation increases the phospho-

rylation of tau [363] and reduces the binding of tau to 

microtubules [360, 363], potentially accelerating tauopa-

thy. �ese effects help explain why pharmacologic inhibi-

tion of AMPK with compound C or genetic ablation of 

AMPKα2 subunits is beneficial in the APPswe/PS1dE9 

mouse model of AD [364]. Further data in support of 

a detrimental role of AMPK in AD comes from stud-

ies showing that treatment of AD mice with the AMPK 

activator metformin results in transcriptional upregula-

tion of β-secretase, leading to increased Aβ formation 
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and worsened memory [365, 366]. �ese studies suggest 

that AMPK activity furthers metabolic impairment and 

AD progression by contributing to, or propagating, the 

pathogenic milieu. It is worth noting that some benefi-

cial effects of AMPK activation have also been observed 

in AD models. In Drosophila, Aβ suppresses AMPK 

signaling [367], suggesting that insufficient rather than 

excessive AMPK activity may contribute to AD progres-

sion. Consistent with this notion, activation of AMPK 

by AICAR in rat cortical neurons decreases Aβ content, 

and knockout of the AMPKα2 subunit increases Aβ pro-

duction [368]. AMPK activation in response to leptin 

signaling reduces tau phosphorylation [369, 370], and 

compounds that activate AMPK, such as resveratrol and 

metformin, stimulate Aβ metabolism, reduce mitochon-

drial dysfunction, and improve AD pathology [371–373]. 

�e conflicting data regarding the beneficial versus det-

rimental roles of AMPK in AD may reflect disparities 

among the various models and cell types studied with 

respect to differential expression of AMPK subunit iso-

forms and their regulation, relative activity, and specific 

cellular targets, or may be due to temporal differences in 

disease progression.

AMPK likely also has divergent effects on energetics 

and neurodegeneration in PD depending on the model 

or stage of the disease [374]. AMPK is activated in mice 

treated with  MPP+, a common in vivo model for PD, as 

well as in SH-SY5Y cells (human neuroblastoma cell line) 

treated with  MPP+ in vitro [375]. �e available data sug-

gest that AMPK activation is beneficial and promotes cell 

survival [375, 376]. For example, pharmacologic inhibi-

tion of AMPK increases neuronal cell death in response 

to  MPP+ treatment, whereas AMPK overexpression 

promotes cell survival [375]. In line with these findings, 

AMPK cooperates with Parkin to maintain mitochon-

drial quality control and promote neuronal survival [374]. 

However, the possibility of detrimental effects of AMPK 

activation to cellular energetics and survival in PD can-

not be fully excluded. For instance, AMPK activation in 

response to cellular ATP depletion is implicated in the 

degeneration of dopaminergic neurons [377]. �us, more 

work is needed to elucidate the precise role of AMPK 

activation in PD and clarify whether it promotes or 

impairs metabolic function and overall cellular viability.

�e brains of HD patients and HD mouse mod-

els exhibit excessive AMPK activation [354, 378, 379]. 

Both mitochondrial dysfunction and oxidative stress 

are reported in HD [380], and these defects may both 

contribute to AMPK activation, or vice-versa be conse-

quences of excessive AMPK activity. mHtt protein likely 

initiates metabolic stress leading to downstream AMPK 

activation. mHtt can aggregate on mitochondrial mem-

branes and disrupt mCa2+ flux, causing  Ca2+-dependent 

oxidative stress [381, 382]. mHtt aggregates also decrease 

Complex II and Complex III activity [170, 383, 384] and 

impair mitochondrial trafficking [385]. All these effects 

can disrupt cellular energy balance and trigger AMPK 

activation. �e existing literature suggests that AMPK 

activation is detrimental in HD, culminating in neuronal 

apoptosis [354, 379]. �is effect may be related to the 

suppression of the survival gene Bcl-2 [379]. Whether 

excess AMPK activity is also toxic due to metabolic per-

turbations remains to be determined.

Neuroin�ammation

Previous studies have indicated that optimal brain func-

tion requires coordinated signaling between neurons and 

glial cells, and disturbances in paracellular communica-

tion can contribute to NDDs development. In addition, 

the inflammatory hypothesis suggests that the activation 

of microglia is a driving force for neuroinflammation and 

mitochondrial dysfunction in NDDs. In turn, mitochon-

drial dysfunction can promote inflammation (reviewed in 

[386, 387]).

Microglia are specialized  brain macrophages with a 

primary function in host defense including the removal 

of cellular debris, metabolic waste, pathogens, and neuro-

toxins [388]. Microglia are dynamic cells that can change 

their shape and undergo phenotypic transformation 

(activation) in response to infection or injury. In the rest-

ing homeostatic state, microglia exhibit a ramified struc-

ture with branching processes for surveillance of the local 

environment [389]. After activation, microglia become 

highly mobile, assuming an amoeboid form with short 

thickened processes, and phagocytose cell debris, secrete 

proinflammatory mediators, such as cytokines, and gen-

erate ROS to potentiate acute inflammation [389]. While 

thought to serve a protective role during acute inflam-

mation, persistent microglia activation contributes to 

chronic neuroinflammation and redox imbalance associ-

ated with NDDs, resulting in mitochondrial dysfunction 

[390, 391]. �is elicits a positive feedback loop where 

mitochondrial-generated superoxide potentiates micro-

glial activation, initiating further ROS production. As 

previously discussed ROS can promote posttranslational 

modifications of TCA cycle enzymes and induce mtDNA 

mutations, which in turn can compromise energetics and 

trigger mitochondrial dysfunction [392].

Fuel sources are thought to be altered in NDDs, result-

ing in cell-specific metabolic shifts to maintain ATP 

production [393]. �e minimal experimental data avail-

able suggests that similar metabolic pathway switching 

occurs during microglial activation. Transcriptomic stud-

ies suggest that microglia express all the required genes 

for OxPhos and glycolysis [394]. Limited data suggest 
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that microglia undergo reprogramming during activation 

to favor glycolysis over OxPhos [395–397]. Lipopolysac-

charide (LPS) activation of transformed mouse micro-

glial cells (BV-2 cells) decreased OxPhos and lowered 

ATP production with a concomitant increase in lactate 

production [397]. �ese observations are bolstered by 

the finding of increased lactate production and glu-

cose uptake (high expression of GLUT1 and GLUT4) in 

activated microglia, favoring aerobic glycolysis and an 

increase in pentose phosphate pathway flux [396].

Multiple inflammatory mediators resulting from 

chronic neuroinflammation can affect mitochondrial 

energy metabolism and mitochondrial dynamics, thereby 

contributing to NDDs (reviewed in [387]). However, the 

direct molecular mechanisms are still not precise in neu-

ronal and glial cells by which these inflammatory factors 

impact mitochondrial metabolism. Few reports in non-

neuronal cells suggest that inflammatory mediators, TNF 

and IL-1β, reduce the activity of TCA cycle enzymes 

including PDH and α-KGDH, with a concurrent reduc-

tion in Complex I and II activity [398]. α-KGDH activity 

is reported to be reduced by an inflammation-derived 

oxidant, myeloperoxidase, that is upregulated in micro-

glia in AD brain tissue [399]. �is suggests that inflam-

matory factors can impact mitochondrial metabolism in 

glial cells in AD. In addition, TNF has been reported to 

reduce the expression of PGC-1α in non-neuronal cells 

[400]. However, the direct interplay between neuroin-

flammation and mitochondrial metabolism in different 

NDDs remains poorly understood and thus warrants fur-

ther investigation.

Peroxisomal lipid metabolism

Metabolic dysregulation associated with peroxisome dys-

function may contribute to the development of NDDs. 

Peroxisomes are highly dynamic and important metabolic 

organelles that can directly communicate with mitochon-

dria and contribute to cellular lipid metabolism, e.g., the 

oxidation of very-long-chain fatty acids (VLCFAs), syn-

thesis of phospholipids, such as plasmalogen/ether lipids 

(myelin sheath lipids) and docosahexaenoic acid (DHA), 

and the regulation of redox and inflammatory signaling. 

Furthermore, the brain is a lipid-rich organ, and myelin 

sheaths are rich in plasmalogens/ether lipids synthesized 

in peroxisomes. �erefore, slight alterations in peroxiso-

mal lipid metabolism may represent significant mecha-

nisms contributing to changes in neuronal function 

(reviewed in [401]).

In AD, alternations in lipid homeostasis/peroxisome 

function include significantly decreased levels of plasm-

alogens and DHA and increased levels of VLCFA. �e 

severity of these alternations correlates with the progres-

sion of disease [402, 403] and has been shown to change 

cell membrane properties and increase intracellular 

cholesterol levels. �ese changes increase β-secretase 

and γ-secretase activities, resulting in enhanced Aβ gen-

eration, tau hyperphosphorylation, synaptic dysfunction, 

and neuroinflammation [404, 405]. In addition, peroxi-

somal β-oxidation inhibition increased Aβ generation in 

rat brains (reviewed in [405]). Similarly, severe alterations 

in lipid composition (reductions in DHA and plasmalo-

gens) of frontal cortex lipid rafts from PD patients have 

been reported [406]. Reductions in ether lipids decreased 

 Ca2+-dependent neurotransmitter release and the respir-

atory capacity of synaptic mitochondria [407]. �erefore, 

it is possible that the decrease of ether lipids in mito-

chondrial membranes might disrupt OxPhos complexes 

and thus ATP generation sufficiently to compromise neu-

rotransmission. However, overall the role of peroxisomal 

lipid metabolism in NDDs is poorly described. Further 

studies are required to determine whether peroxisomal 

lipid dysfunction directly contributes to disease etiol-

ogy or is a secondary phenomenon. We refer the reader 

to another recent review for a detailed overview of the 

peroxisomal lipid metabolism in NDDs and its metabolic 

cooperation with mitochondria [405, 408].

Modulation of mitochondrial function as a possible 

therapeutic target for neurodegeneration

As discussed earlier, dysregulation in mCa2+ homeostasis 

might be an upstream event causing mitochondrial dys-

function in NDDs. For this reason, various combinations 

of modulators aimed at targeting or correcting defects 

in mCa2+ exchange or restoring mitochondrial function/

energy metabolism may serve as therapies to prevent the 

development of NDDs. Possible therapeutic strategies, 

summarized in Table 1, include reducing mCa2+ uptake, 

enhancing mCa2+ efflux, and preserving mitochondrial 

architecture/functions (such as the assembly of respira-

tory chain complexes and the ATP synthase), bioenerget-

ics, axonal transport of mitochondria, and mitochondrial 

proteostasis. However, it is still unclear whether increas-

ing mCa2+ efflux or reducing mitochondrial mCa2+ 

uptake will be superior for neuroprotection. Both are 

sufficient to limit mCa2+ overload and correct mCa2+ dys-

regulation. Still, a few points need careful consideration, 

such as if modulators of mitochondrial mCa2+ homeo-

stasis will negatively impact  Ca2+-dependent physiologi-

cal functions, such as TCA cycle flux and mitochondrial 

dynamics. It should also be noted that different NDDs 

might have disease-specific regulation of mtCU chan-

nel activity, which requires more detailed experimenta-

tion. Beyond this, cellular heterogeneity in mitochondrial 

function should also be considered; for example, axonal 

and synaptic mitochondria are reported to be involved 

in  Ca2+ buffering and presynaptic transmission, whereas 
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the soma is the primary site for mitochondrial quality 

control. �erefore, a proper understanding and regula-

tion of the mtCU, or a combination of modulators that 

aim to increase mCa2+ buffer capacity and still maintain 

energetics may be necessary to maintain efficient synap-

tic transmission and effectively treat NDDs.

Challenges, conclusions, and future research 

directions

A more detailed and nuanced understanding of the cel-

lular and molecular mechanisms altering neuronal mito-

chondrial metabolism in NDDs is still needed. Several 

challenging questions remain to be answered, such as 

(1) How can mitochondrial defects be central in so many 

different NDDs with diverse etiologies and pathologies? 

(2) How does mitochondrial dysfunction contribute to 

protein aggregation? (3) Do metabolic defects cause neu-

rodegeneration, or does neuronal dysfunction result in 

metabolic defects? (4) What are the cellular and molecu-

lar events that initiate mitochondrial dysfunction in neu-

rodegeneration? (5) How do neurons sense bioenergetic 

crisis during stress or in pathology? (6) How do cell spe-

cific metabolic profiles impact cellular crosstalk in the 

context of disease progression? 8) What upstream and 

downstream signaling pathways are involved at the time 

of bioenergetic crisis in different NDDs? 9) What are the 

best models to decipher these events for translation into 

humans?

Here we summarized how numerous cellular events 

that are compromised during neurodegeneration all 

require high levels of ATP (e.g., postsynaptic signaling, 

axonal transport, protein clearance mechanisms and 

neurotransmission). We also reviewed the evidence that 

supports the notion that mCa2+ and metabolic impair-

ments are primary cellular defects in NDD pathogen-

esis. Interestingly, all NDDs share common mechanisms 

of disease pathology and mitochondrial defects may be 

a central mechanism in NDD progression. However, it 

remains enigmatic how mitochondrial dysfunction con-

tributes directly to protein aggregation and brain region- 

and cell type-specific dysfunction in NDDs and whether 

mitochondrial dysfunction is causal or the consequence 

of the underlying pathology. Here, we propose a posi-

tive feedback loop between mitochondrial defects and 

disease pathology that explains numerous mechanisms 

of NDDs. It’s plausible that early mitochondrial dysfunc-

tion directly affects protein aggregation through ATP-

dependent proteostasis machinery (protein synthesis, 

folding, and degradation) together with oxidative stress 

and inflammation and promotes cell-type-specific loss 

due to mitochondrial death signaling or due to metabolic 

and energetic dysfunction. Recent reports suggest that 

aggregation-prone proteins shuttle to mitochondria and 

mitochondrial protein quality control may alleviate pro-

tein aggregation. Mitochondrial dysfunction leading to 

the failure of mitochondrial proteostasis could be another 

crucial factor for pathology-specific protein aggregation. 

For a detailed mechanism by which mitochondrial dys-

function leads to protein aggregation, we refer the reader 

to other recent reviews [409, 410]. A cell type/brain 

region-specific regulation of mitochondrial function 

and mCa2+ signaling is lacking and how this contributes 

to different disease pathologies is entirely unexplored. A 

complete understanding and precise regulation of mtCU 

function in different NDDs could eventually help define 

mechanisms in tissue- and cell-type-specific NDDs.

Another major challenge in NDDs research is selecting 

experimental models that recapitulate the pathological 

features of human disease. For decades, animal models 

have been essential because they are sufficient to recapit-

ulate human genetic mutations and mimic critical clini-

cal features. �ese model systems have provided access 

to define in vivo systemic interactions, and study devel-

opmental, metabolic, and behavioral outcomes, which 

is not possible in cellular systems or patients. Arguably, 

discoveries in animal models have led to a better under-

standing of the molecular mechanisms of disease patho-

genesis but failed to translate in humans. However, the 

failure to translate insights gained from mouse mod-

els into humans is not always due to flaws of the animal 

model per se. For example, many of these studies lacked 

detailed causal experimentation and did not exclude 

other variable factors. Other viable alternatives that can 

help recapitulate human pathophysiology such as the 

study of postmortem human brains and human iPSCs, 

and organoids may help as translational stepping stones 

to therapy. �e postmortem human brain is particularly 

helpful to quantify cellular and molecular markers of dis-

ease and the pathology of neural processes. However, the 

access of these samples is limited, and the quality of the 

tissue is impacted by the donor’s condition pre-mortem, 

postmortem interval, collection time, and maintenance 

conditions all of which can introduce confounding vari-

ables. Human iPSCs are a versatile tool to model human 

neurons and suitable for human in vitro studies, such as 

high-throughput drug screening. Still, they cannot ena-

ble in  vivo cellular physiology which takes into account 

organ and cellular crosstalk and the complex milieu 

of the complete organism. We believe an assortment 

of models, including robust animal models and three-

dimensional cellular systems, will help better define the 

pathogenesis of NDDs and enable more thorough testing 

of drugs and therapies for clinical translation. Indeed, it is 

critical to generate robust animal models that phenocopy 

either the familial or non-familial forms of these disor-

ders. An increase in proper causal experimental design 
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using robust engineered animal models that recapitulate 

the complexity of an entire nervous system, including 

a full complement of neuronal circuits, glial complex-

ity, and the vascular and immunologic components, will 

provide valuable insight into how mitochondrial metabo-

lism impacts disease pathogenesis. In conclusion, a better 

understanding of metabolic regulation, identification of 

mitochondrial targets (see Table 1), and determining the 

precise temporal order of pathological cellular events is 

of paramount importance to development of novel thera-

peutic targets to combat NDDs.
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