
SOFTWARE Open Access

REAPR: a universal tool for genome assembly
evaluation
Martin Hunt1, Taisei Kikuchi1,2, Mandy Sanders1, Chris Newbold1,3, Matthew Berriman1 and Thomas D Otto1*

Abstract

Methods to reliably assess the accuracy of genome sequence data are lacking. Currently completeness is only

described qualitatively and mis-assemblies are overlooked. Here we present REAPR, a tool that precisely identifies

errors in genome assemblies without the need for a reference sequence. We have validated REAPR on complete

genomes or de novo assemblies from bacteria, malaria and Caenorhabditis elegans, and demonstrate that 86% and

82% of the human and mouse reference genomes are error-free, respectively. When applied to an ongoing

genome project, REAPR provides corrected assembly statistics allowing the quantitative comparison of multiple

assemblies. REAPR is available at http://www.sanger.ac.uk/resources/software/reapr/.
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Background
The volume of genome sequence data continues to

increase exponentially yet methods that reliably assess the

quality of assembled sequence are lacking. In an attempt

to categorise the quality of genome assemblies, Chain

et al. [1] proposed a series of qualitative descriptions.

Although these serve as a useful guide, they do not provide

statistical or numerical comparisons of data quality apart

from the extreme case of a ‘finished’ sequence. The recent

advent of so-called next generation sequencing (NGS) has

seen a dramatic increase in the rate of production of new

genome sequences, with a growing proportion of genome

projects classified as ‘permanent draft’ [2]. Moreover, most

published assemblies do not get classified but are in fact

also of ‘draft’ quality [3], which is the least accurate of all

the categories. Relatively few reference genomes undergo

continuous and rigorous quality improvement to repair

errors. Two notable exceptions are the human genome [4]

and the Plasmodium falciparum genome [5], where ver-

sioned error correction allows the comparison of sequence

improvements over time. The reliability of reference

sequence data is crucial for the interpretation of down-

stream functional genomic analysis and thus a metric

indicating the genome wide accuracy of the reference

sequence is essential.

Over 35 different tools (’assemblers’) are available to

perform de novo genome assembly [6]. The assembly of

the short reads produced by NGS technology is however

known to be problematic [7,8], despite the high coverage

and range of insert sizes available. The precise behaviour

of assemblers on a given genome is hard to predict with-

out prior knowledge of its base composition, size, repeti-

tive sequences and levels of polymorphism. Often the

solution is to run assemblies with multiple tools or para-

meters and pick the best one based on summary statistics.

Frequently, contig or scaffold N50 sizes are reported (the

contig/scaffold size above which half the genome is repre-

sented) but although these are supposed to indicate conti-

guity (and certainly not accuracy), the frequent inclusion

of incorrectly joined sequences provides a false boost to

N50s despite reducing the accuracy of the genome con-

sensus sequence. A better approach is to make a more

informed decision on the best assembly by considering the

real contiguity together with the errors in each assembly.

Recent assembler evaluations GAGE [9] and Assembla-

thon 1 [10] highlighted the variability in performance of

assemblers when given different input data or when chan-

ging their parameters. However, studies such as these

require a known reference genome in order to assess the

assemblies - a luxury that is unavailable when producing

a de novo assembly.
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The development of genome assembly analysis tools that

do not require the use of a reference sequence for compar-

ison is currently an active area of research, with a few tools

already available. All tools share the similarity that they

use the position of read pairs within an assembly to per-

form their analysis. Amosvalidate [11] was developed

before the introduction of NGS, requires a file format pro-

duced by few assemblers and does not scale well to the

large volumes of data typified by modern genome projects.

Subsequent tools were recently introduced to work with

NGS, all of which analyse assemblies using remapped

reads and are effective at determining the best assembly

from a set of assemblies of the same data. CGAL [12] and

ALE [13] both produce a summary likelihood score of an

assembly, with ALE also reporting four likelihood scores

for each base. FRCbam [14] uses many metrics to identify

‘features’, which correspond to erroneous regions of an

assembly and are used to plot a feature response curve

[15]. The best assembly can be determined by overlaying

these curves.

However, all of these tools lack the crucial ability to

transform metrics into accurate error calls, or to report a

single score for each base that defines whether the assembly

is correct or wrong at any given position. Therefore we

developed a reference-free algorithm (REAPR - Recognition

of Errors in Assemblies using Paired Reads), applicable to

large genomes and NGS data, with two principle aims: to

score every base for accuracy and to automatically pinpoint

mis-assemblies. The output is aimed to be as useful and

informative as possible to the end-user and includes the

bases identified as ‘error-free’ (see later for a definition), the

location of assembly errors, and a new assembly that has

been broken at points of assembly error. This information

allows the N50 to be recalculated into the corrected N50

metric, similarly to previous studies that required a refer-

ence sequence [9,10]. Thus, the combination of the number

of error-free bases and the corrected N50 can now provide

an effective summary of any genome assembly.

Results and discussion
Overview of the REAPR pipeline

The REAPR pipeline uses the inherent information con-

tained within sequencing reads mapped to an assembly

(Figure 1, Additional file 1, Figure S1). Size-selected DNA

fragments are typically sequenced from either end, result-

ing in paired reads separated by a space determined by the

fragment size and sequencing technology. Our algorithm

uses mapped paired-end reads to test each base of a gen-

ome sequence in two different ways. Small local errors

(such as a single base substitutions, and short insertions or

deletions) are detected within the mapped reads them-

selves and structural errors (such as scaffolding errors) are

located using changes to the expected distribution of

inferred sequencing fragments.

Base-by-base analysis

A range of metrics, described in depth later, is extracted

from the mapping information (Figure 1b) at each base

of the genome assembly. Each read must be accurately

mapped independently of its mate, so that a read pair is

not artificially forced to map as a proper pair (in the cor-

rect orientation and separated by the correct distance,

determined by the library type), otherwise the sensitivity

in identifying assembly errors is reduced. The most

important metric is derived from an analysis of fragment

coverage, where a fragment is defined to be the region of

the genome between the outermost ends of a proper read

pair (Additional file 1, Figure S2). At a given base of the

assembly, REAPR constructs a plot called the fragment

coverage distribution (FCD) of the fragment depth arising

from only the fragments that are mapped to that base

(Figure 1b(v)). The difference between the theoretical

and observed FCD, called the FCD error, is measured by

taking the area between the two plots. REAPR uses the

per-base FCD error to pinpoint assembly errors by

reporting regions of the assembly containing a run of

high FCD errors. The cutoff in FCD error, above which a

base is called as incorrect, is automatically determined by

sampling windows in the genome to determine how

many windows fail at a range of cutoff values (Figure 2).

The idea is to capture the plot’s turning point, to the left

of which the majority of windows fail due to background

noise (see online Methods for a complete explanation).

Since a read cannot map to a sequencing gap (a region

of ambiguous bases, or Ns), the theoretical FCD changes

in the presence of a gap and a correction is applied to the

FCD error calculation (Figure 1b(v), Additional file 1,

Section 2.3), enabling the identification of scaffolding

errors. In this way, REAPR scans along the entire genome,

constructing the FCD at each base (Additional file 2),

calculating the FCD error and identifying mis-assemblies.

In order to measure local accuracy REAPR uses proper

read pairs that map to just one position of the assembly,

with their entire length matching perfectly, to generate

the read depth at every base of the assembly. By default, a

given base is designated as locally error-free if it has at

least five such reads aligned to it, but this is a parameter

that can be changed by the user.

REAPR keeps track of several other metrics at every

base of the genome. In terms of mis-assemblies, the most

important of these is the fragment coverage where a

value of zero returns an error. If it is non-zero then the

value of the FCD error is taken into account. Any region

that has no fragment depth, or has fragment distribution

around a base that causes an FCD error, is reported as a

mis-assembly. If this region contains a gap then it is likely

to have arisen because two contigs have been falsely

joined by read pairs that we term a scaffolding error,

otherwise it is a simply an error in the assembled block
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of sequence that we term a contig error. In short, an

assembly error call is triggered by either a lack of - or

irregular - fragment coverage.

REAPR also outputs a warning for each of the following

types of less serious inconsistencies in the assembly. A

small deletion or insertion error often causes reads to be

‘soft-clipped’ (that is, some terminal bases ignored) in

order for them to align to the assembly at the position of

the error (see Additional file 1, Figure S2). Regions within

an assembly where reads mapped in the wrong orienta-

tion, or as singletons, can aid in accurately determining

the position of an FCD error caused by a scaffolding

error or an incorrect assembly of a repetitive sequence.

The latter pose a major challenge to assemblers, often

resulting in collapsed repeats assembled into fewer copies

than exist in the real genome. A region is flagged as a

repeat by REAPR if the observed coverage is more than

twice the expected coverage, after correcting for any GC

bias present in the reads mapped to the assembly (Addi-

tional file 1 Figure S3d).

Scoring each base of the assembly

REAPR assigns a score to every base of the assembly, with

priority given to the perfect and unique read-pair coverage

and the FCD error over other metrics. A given base is con-

sidered to be error-free, scoring one, if its FCD error is

sufficiently small (see online Methods) and it is locally

error-free (based on perfectly and uniquely mapped read

depth, as defined above). This combination captures both

the local accuracy and the presence of larger scale errors

in an assembly, so that error-free bases represent the

regions of the assembly that are extremely likely to be

b  Compute per-base statistics 

i read coverage

ii type of read coverage, on each strand

iii read clipping

iv fragment coverage

v FCD error

a  Map read pairs to assembly
Compute fragment coverage distribution (FCD)

error at a given base

Break assembly

c  Score each base

If the base of interest lies in a gap 

 No gap present 

NNNNNNNNNNNNN

NNNNNNNNNNNNN

FCD error

FCD error

Figure 1 Overview of the REAPR pipeline. (a) The input is a BAM file of read pairs mapped to the assembly. (b) Statistics are calculated at

each base of the genome: (i) Read coverage per strand, and any perfect and uniquely mapped read coverage is incorporated; (ii) The type of

read coverage on the forward (upper plots) and reverse (lower plots) strand: proportion of reads that are properly paired (red), orphaned (green),

and in the wrong orientation or exceed the fragment size range (not shown); (iii) The number of reads soft-clipped at each base; (iv) The

fragment coverage, determined by the properly paired reads; (v) FCD error, taking into account the presence of a gap. Boxed are: FCD

calculation at a given base. The fragments covering that base, shown in red, are used to construct a fragment depth plot (red). The FCD error is

the area (grey) between the observed (red) plot and ideal plot (green). Since no read can map to a gap in the assembly, the calculation is

corrected when a gap is present. (c) The statistics at each base are used independently to assign a score to each base of the assembly and also

to break the assembly at scaffolding errors.
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correct. Otherwise a score from zero to one is assigned,

based on the number of other metrics that fall outside

acceptable limits, with zero being the worst score. Briefly,

the metrics used are the read depth and type of paired

mapping, such as orphaned reads or reads in the wrong

orientation, fragment depth and the presence of soft clip-

ping (see online Methods for full details).

Analysis of reference genomes

In order to evaluate the ability of REAPR to score each base

of a genome and deduce the number of error-free bases, we

applied it to two manually curated genomes of different iso-

lates of Staphylococcus aureus (TW20 [16] and that of the

GAGE dataset [9]) and to the Plasmodium falciparum gen-

ome, with its extreme base composition of only 19% GC

(Table 1, Additional file 1 Tables S1-3). Both S. aureus

reference genomes were found to be 98% correct (that is,

98% of bases were scored 1 by REAPR). Of the remaining

2% of bases, 96% fall within repeats. For P. falciparum, two

successive public releases of the P. falciparum genome

were analysed, with 94.4% error-free bases called in v2.1.4

and 94.9% in v3. We verified that REAPR correctly identi-

fied the changes that had been incorporated into the later

version of the P. falciparum genome (Additional file 1

Table S4). These comprised a rearrangement between

chromosomes 7 and 8 and a deletion in chromosome 13

and have been independently discovered using an optical

map of the genome [17]. The corresponding breakpoints

were all flagged by REAPR in version 2.1.4 of the genome.

Further to the known errors in the P. falciparum genome

sequence, four new collapsed repeats were discovered by

REAPR (Additional file 1, Table S5). One of these collapsed

repeats contains a gene previously reported to have a differ-

ent copy number from that of the reference genome [18]

(fully discussed in Additional file 1). Correcting another

one of these regions resulted in the discovery of two new

members of the var gene family (Additional file 1, Figure

S4), an important and extensively studied family involved

in malaria pathogenesis [19]. This error and the deletion in

chromosome 13 were not detected during the significant

amount of manual finishing work undertaken on the

genome.

Next we applied REAPR to the C. elegans reference

genome using a large insert size library that was derived

from whole genome amplified (WGA) DNA. Ninety per-

cent of the genome was reported to be error-free. The

FCD error metric flagged up 842 errors, with manual

analysis revealing that many of these error calls were

caused by extremely uneven coverage across the genome.

This unevenness was presumably a result of the WGA

step used in the sequencing protocol (Additional file 1,

Figure S5). However, the 20 regions with the largest FCD

error were chosen for further analysis by PCR (Additional

file 1, Figure S6, Table S6). Of the eight loci we were able

to amplify, seven had a different size (>1.5 kb) from that

predicted by the reference genome. Therefore REAPR
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Figure 2 Automatic calculation of the FCD error cutoff. (a) S. aureus de novo assembly (k-mer of 71). (b) P. falciparum de novo assembly (k-

mer of 55). In each plot, the black line shows the proportion of windows that would be called as an error for a range of cutoff values. The

green and blue lines are the first and second derivatives of the black line, normalised to lie between -1 and 1. The vertical red line marks the

FCD error cutoff, automatically determined by REAPR as the first FCD score corresponding to first and second derivatives ≥0.05.
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successfully identified these regions as incorrect in the

reference genome.

REAPR also scales to the human and mouse genomes,

requiring less memory and CPU time than that of the

mapping step (Additional file 1, Table S7). Ignoring

sequencing gaps, we found 86% and 82% of bases to be

error free, in the reference genomes of H. sapiens and

M. musculus, respectively.

Application to de novo assemblies

To test the supposition that REAPR should be able to

find most types of assembly errors, first we applied it to

the S. aureus dataset used in the GAGE paper, which

contains several de novo assemblies and a comparison of

each against the reference [9]. REAPR was run on all

assemblies (Additional file 1, Tables S1-3), and the

assembly containing the most errors was analysed in

depth by manually comparing the GAGE assembly with

the reference sequence using ACT [20] (Figure 3).

REAPR correctly identified all 24 scaffolding errors in the

assembly, with no false-positives (Additional file 1, Table

S8). Next, we applied REAPR to de novo assemblies of

the S. aureus genome. In each case, the availability of

high quality reference genomes, with a reasonably small

size, meant that we could validate error calls by manual

comparison of the de novo assembled and reference

sequences using ACT. We produced several assemblies

of S. aureus, using a range of k-mer lengths. Manual

inspection of the k=71 de novo assembly of S. aureus,

showed that REAPR identified all 16 scaffolding errors,

with only two false-positives (Additional file 1, Table S9).

We finally tested REAPR’s applicability to a more

challenging genome project by applying it to a de novo

assembly of P. falciparum, which contained 11,636

sequencing gaps. In this case 55 scaffolding errors, again

manually verified, were correctly identified with only

one false-positive reported (Additional file 1, Table S10).

It should be noted that the ability of REAPR to detect

errors is inherently limited by aspects of the sequencing

technology such as insert size and read length meaning that

some assembly errors remain unreported (see Additional

file 1 for a full explanation). Further it should also be noted

that assemblies of diploid (or polyploid) genomes still pre-

sent a considerable challenge. Depending on the divergence

between haplotypes, sequences may assemble separately or

merge together. REAPR will call errors at the boundaries of

regions where sequence-coverage differs, such as the

boundary between merged and separated haplotypes. How-

ever, fully testing this functionality remains an area for

future development alongside the development of assembly

technologies that allow the sequences of homologous

chromosomes to be assembled independently.

Corrected assembly statistics

The accuracy of REAPR allows the specific position of

an error to be located in a scaffold. Using this informa-

tion, scaffolds can be automatically broken wherever a

scaffolding error occurs and contiguity statistics (N50,

and so on) can be recalculated for the new improved

assembly, thus providing a more accurate description of

assembly contiguity (Figure 4, Additional file 1 Table

S1). For example, although the original N50 of the k=51

and k=71 S. aureus assemblies were nearly identical at

206 kb, REAPR showed that the k=71 assembly was in

fact significantly better with a corrected N50 of 172 kb,

compared to 120 kb for the k=51 assembly. The result-

ing improved assembly, although more fragmented than

the original, will be a better representation of the real

genome sequence. For the P. falciparum assemblies,

k=55 gives the best corrected N50, however larger

Table 1 A summary of REAPR results on a range of genome sequences.

Scaffold errorsa

Genome assembly Total length
(Mb)

Gaps
(n)

Total gap
length
(bp)

Original
N50
(Mb)

Corrected
N50b

(Mb)

Called by
REAPR

False
+ve

False
-ve

Error-free bases
(%)

S. aureus TW20 k71 3.0 31 249 0.2 0.2 18 2 0 98.2

S. aureus, GAGE Velvet 2.9 128 17,688 0.8 0.2 24 0 1 89.5

P. falciparum de novo k55 23.8 11,636 2,638,349 0.4 0.3 56 1 8 81.2

P. falciparum v2.1.4 23.3 160 947 1.7 1.7 4 1 0 94.5

P. falciparum v3 23.3 0 0 1.7 1.7 NA NA NA 94.9

C. elegans WS228 100.3 0 0 17.5 17.5 NA NA NA 90.3

M. musculus GRCm38 2725.5 522 77,999,939 130.7 100.2 41 ND ND 80.1

H. sapiens GRCh37 3095.7 360 234,350,278 155.3 146.4 6

ND ND 79.1

aScaffold errors are not applicable (NA) when the assembly contains no gaps. Where a second genome sequence was unavailable for comparison, false-positives

and false-negatives were not determined (ND).
bCorrected N50 refers to the N50 of the assembly after breaking the original assembly at breakpoints called by REAPR.
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Figure 3 Visualization of REAPR output after analysing a de novo assembly. The results of running on the GAGE S. aureus Velvet assembly are

shown (partly displayed using Circos [36]). Similarity by BLAST between the reference (grey) and the assembly (blue) is marked with blue bands. Only

the BLAST hits to the largest scaffold from the assembly are shown, representing approximately 30% of the genome. One megabase of reference

sequence that does not match the assembly supercontig of interest has been removed. The top plot shows the score output from REAPR, with the

highest values corresponding to error-free bases. Error calls are marked with blue circles. The second plot shows the FCD error, with peaks

corresponding to the error calls and low score regions. Next, heatmaps of the type of read coverage are shown for the forward and reverse strand:

proper read pairs (red), orphaned reads (green), reads mapped too close or too far apart (blue) and reads oriented incorrectly (purple). The bottom

plot shows the fragment coverage. (a, b) show zoomed in regions of the figure. (a) A deletion from the assembly, where the score drops, the FCD

error increases and most reads flanking the deletion are orphaned. (b) A region of the assembly containing many repeats.
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Figure 4 N50 statistics of various assemblies before and after correcting with REAPR. Blue bars show the N50 of the assembly input to

REAPR, green bars show the corrected N50. (a) De novo assemblies of S. aureus. (b) P. falciparum de novo assemblies. (c) B. pahangi assemblies

at four different stages of the genome project (see Additional file 1 for details).
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values of k give more fragmented but also more accurate

assemblies (Figure 4b).

Therefore, when applied to each of a series of de novo

assemblies, REAPR arms the user with a robust method of

comparing the output of different assemblers, so that the

best assembly can be chosen for publication using stan-

dard but corrected metrics. To demonstrate this we

applied REAPR to an ongoing genome project on the

nematode Brugia pahangi. Figure 4c compares the pro-

gress of the assembly when monitored by standard N50

and REAPR corrected statistics at different steps of the

improvement pipeline. Although the N50 itself does not

increase at each stage, the corrected N50 shows a consis-

tent increase and we see that genuine improvements have

been made to the assembly.

Conclusions
Here we have described the first algorithm that translates

per-base metrics into error calls of reference sequences

and de novo assemblies using NGS data. Establishing the

quality of those sequences will become increasingly impor-

tant as the assembly process shifts to more automated

methods [3]. For example, REAPR correctly identified

the ALLPATHS assembly to be the best of the GAGE

S. aureus assemblies, without using a reference sequence.

This assembly had the fewest error calls, the greatest num-

ber of error-free bases and the fewest warnings reported

by REAPR (Additional file 1, Tables S1-3). Therefore we

propose that REAPR should be applied to all genome pro-

jects prior to computing standard contiguity statistics

(such as the N50). In this way the quality of assemblies

and performance of assemblers can be compared robustly

via a method that produces metrics that are constant

between methodologies or datasets. By also providing a

per base value for the accuracy of a sequence, that can be

easily overlaid and viewed by the end-user, different gen-

omes or assembly versions can be accurately compared

and downstream analysis enhanced by enabling the end-

user to be aware of regions of questionable accuracy.

Materials and methods
Read mapping

The read mapper SMALT [21] was used in all examples to

map sequencing reads to assemblies. The entire command

lines used are given in Additional file 1, but we note that

the -x option was always used, so that each read in a mate

pair was independently mapped thereby avoiding the false

placement of a read near to its mate, instead of elsewhere

with a better alignment. The -r option was also always

used to randomly place reads which map repetitively, to

prevent all repetitive regions of the reference sequence

from having zero read coverage. After mapping, duplicate

read-pairs were marked using the MarkDuplicates func-

tion of Picard version 1.47 [22].

REAPR pipeline

The assembly analysis algorithm was implemented in a

tool called REAPR: ‘recognition of errors in assembly

using paired reads’. The pipeline is simple to run, requir-

ing as input an assembly in FASTA format and read pairs

in FASTQ format. Alternatively, the user can map the

reads to the assembly and provide a BAM file [23]. The

steps in the pipeline are outlined in Figure 1 and described

below (see Additional file 1 for full details of each stage).

Initially, input to the REAPR pipeline must be gener-

ated, starting with the unique and perfectly aligned read

coverage of a high quality set of paired reads. For small

genomes (<100 MB), this is calculated using the extre-

mely fast but high memory tool SNP-o-matic [24]. For

large genomes, the coverage is extracted from a BAM

file of reads mapped using SMALT. This perfect and

unique mapping information, together with a BAM file

of the larger insert size reads mapped to the genome, is

used as input to the REAPR pipeline. REAPR version

1.0.11 was used in all cases, with the default parameters.

The pipeline begins with a pre-processing step that

estimates various statistics, such as average fragment

length and depth of coverage, using a sample of the gen-

ome. In particular, GC bias is accounted for by calculat-

ing the expected fragment coverage at any given value

of GC content. This correction to the fragment coverage

is applied in subsequent stages of the pipeline. The

method used is to take a LOWESS line through a scat-

ter plot of fragment coverage versus GC content (see

Additional file 1, Figure S3d).

The next stage calculates statistics at each base of the

assembly, using the information in the input BAM file and

the perfect and uniquely mapped read depth. These statis-

tics are used to call errors in the assembly and to score

each base of the assembly. We shall use ‘inner fragment’

to mean the inner mate pair distance or, equivalently, a

fragment without including the reads (see Additional file 1

Figure S2a). The metrics calculated are read depth and

type of read coverage, inner fragment coverage, error in

inner fragment coverage (corrected for GC content), FCD

error and amount of soft clipping. The metrics are

explained in more detail below and in Additional file 1.

Recall that the FCD error at each base of an assembly is

taken to be the area between the observed and ideal frag-

ment coverage distributions (see Figure 1c). It is normal-

ized for both fragment depth and mean insert size so that

results are comparable for data from different libraries. A

correction is made for the presence of the nearest gap, if

it lies within one insert size of the base of interest (see

Additional file 1). If a base has zero fragment coverage

then this metric cannot be used and the assumption is

that the assembly is incorrect. The exception to this is

where a gap has length longer than half the average insert

size, in which case it is impossible to determine if this
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scaffolding is correct and therefore no further analysis is

performed.

In addition to the absolute count of read coverage, the

type of read coverage is considered. At each base, and for

each strand, the proportion of reads of the following types

is calculated: proper read pairs, defined to be in the correct

orientation and insert size, which should be in the majority

if the genome is correct; orphaned reads, whereby a read’s

mate is either unmapped or mapped to a different chro-

mosome; reads with the correct orientation but wrong

insert size; and read pairs with an incorrect orientation.

Most read mapping tools are capable of soft-clipping

reads, where most of a read is aligned to the genome, but

a few bases at either end of the read do not match. In this

case the read is still reported as mapped, but the mis-

matching bases are not considered as part of the align-

ment and designated as soft-clipped (Additional file 1,

Figure S2c). At each base, the number of alignments is

counted that start or end at that base due to a soft-clipped

read.

In order to call assembly errors from a given metric, a

minimum window length is considered and appropriate

minimum and maximum values. Any region of length no

smaller than the window length and with at least 80% of

the bases falling outside the acceptable range is reported.

For example, a collapsed repeat is called if the relative

error in fragment coverage is at least two for 80% of the

bases in a stretch of at least 100bp. The default choice of

parameter for each metric is described in the Additional

file 1. In the actual implementation, the user can choose

all parameters.

As described earlier, each base scores one if it is covered

by at least five perfect and uniquely mapped reads, and the

FCD error is acceptable. If either of these tests fail, then

the score is set to the number of tests that pass (consider-

ing all per-base metrics) scaled from zero to one, that is, a

base scores zero if every test fails. The FCD error cutoff is

chosen by sampling windows from the genome, then for

each window the cutoff in FCD error needed to call that

window as an error is calculated. In other words, for each

window we find the value c such that 80% of the values in

that window are greater than c. The proportion of failed

windows as a function of cutoff value is plotted (Figure 2).

The cutoff value for the FCD error is chosen to be the first

value found, working from largest to smallest, such that

the magnitude of the first and second derivatives (normal-

ized to have a maximum magnitude of 1) of the plot are

both at least 0.05.

REAPR output

REAPR reports assembly errors and warnings in a GFF

file, compatible with most genome viewers such as Arte-

mis [25]. Regions with a high FCD error or low fragment

coverage are reported as an error, whereas regions that

fail any other tests are output as warnings for manual

inspection. A summary spreadsheet is produced contain-

ing error counts, broken down in to each type of error,

for each contig and for the whole assembly. REAPR also

produces a new assembly based on the error calls by

breaking the genome wherever an error is called over a

gap. Error regions within contigs are replaced with Ns,

enabling them to be accurately reassembled locally by a

gap closing tool [26,27]. A second run of REAPR can be

performed after gap closing to verify any new sequenced

added to the assembly. REAPR also generates plot files,

compatible with Artemis, of all the statistics examined at

each base for easy visualisation (see Additional file 1,

Figure S7 for an example).

De novo assemblies

The de novo assemblies of S. aureus and P. falciparum

were produced using similar methods (see Additional file

1 for full details). Short insert Illumina reads were

assembled using Velvet [28] version 1.2.03. These assem-

blies were scaffolded iteratively with SSPACE [29] version

2 using the short insert reads, followed by further rounds

of scaffolding with larger insert reads, where available.

Assembly analysis

Manual comparison between the de novo assemblies and

reference genomes of S. aureus and P. falciparum were

performed using ACT [20]. BLAST hits between the

sequences were generated for viewing in ACT using blas-

tall version 2.2.15 with the settings -p blastn -W 25 -F T

-m 8 -e 1e-20.

When counting scaffolding error calls in S. aureus, the

Velvet assembly was found to contain three problematic

regions, with many gaps and errors due to repetitive

sequences. Each of these regions was counted as one

scaffolding error for the purpose of calculating REAPR’s

performance at error calling.

The read sets used for P. falciparum assemblies were

Illumina 500bp insert, Illumina 3 kb insert and 454 8 kb

insert reads. The short insert Illumina reads were used to

generate perfect and uniquely mapped read depth, and

also to call collapsed repeats. All other errors were identi-

fied using the 454 reads.

Perfectly mapped and unique read depth was generated

for the C. elegans genome (WS228) using three Illumina

lanes combined and the larger insert size dataset com-

prised four combined Illumina lanes. Prior to mapping

the latter reads, inner adaptor sequences were removed

using in-house scripts based on SSAHA2 [30], retaining

read pairs where each mate of the pair had a length of at

least 35bp. PCR primers were designed to amplify the top

20 FCD error regions using AcePrimer 1.3 [31].

High coverage Illumina data [32] were used to analyse

the human and mouse reference genomes. For each
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organism, the dataset comprised short insert data and

more than one 2-3 kb insert ‘jumping’ library. The short

insert data were used to compute the perfect and

uniquely mapped read depth and the 2-3kb libraries

were combined to obtain enough coverage for analysis

with REAPR.

Software

REAPR is open source and runs under Linux, with mod-

est run time and memory requirements (Additional file 1,

Table S7). It is written in C++ and Perl, relying on exist-

ing open source tools [23,33,34] and the BamTools C++

API [35]. A virtual machine is provided to enable

Windows and Mac users to run REAPR.

Data availability

The primary data for Brugia pahangi are available at the

Short Reads Archive (SRA) under accession codes ERR

070030 and ERR068352.

Other publicly available datasets used in this manuscript

can be found in SRA under the accession codes: ERR14

2616 and SRR022868 (S. aureus); ERR034295, ERR16

3027-9 and ERR102953-4 (P. falciparum); ERR068453-6

and ERR103053-5 (C. elegans); SRR0676 (M. musculus);

and SRR067577-9 and SRR0677 (H. sapiens).

Additional material

Additional file 1: Supplementary information. Detailed methods,

analysis and results to support the main text.

Additional file 2: Movie of the fragment coverage distribution over

an assembly error.
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