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Abstract

Sarcomas are cancers of the bone and soft tissue often defined by their gene fusions. However, the 

timing, context, and processes by which these pathogenic fusions arise are unknown. We explored 

this in Ewing sarcoma, a cancer driven by EWSR1-ETS fusions, with very few cooperating 

mutations. Combining whole-genome sequencing with enhanced informatics, we found that the 

EWSR1-ETS fusion arose from striking rearrangement clusters in 42% of cases (52/124). Notably, 

these were organized in loops that universally contained the fusion at their center, while also 

weaving up to 18 genes together with it. We found the same pattern of rearrangements in three 

additional types of sarcoma. From these data, we define a new signature for sarcoma fusions that 

precedes other somatic changes, in the earliest replicating DNA of the genome. This dramatic, 

sudden process impinges on many genes – generating multiple coding changes that profoundly 

affect the transcriptome, with the disease-defining gene fusion at its core. These rearrangement 

loops arise in an early ES clone from which both the primary tumor and the lethal relapse 

emerged, and then evolved in parallel until clinically detected.

Genomic rearrangements (structural variants) are a ubiquitous source of somatic mutation in 

human cancer. They arise from breaks in chromosomes, which are aberrantly rejoined. 

Rearrangements may occur in isolation or in the context of complex genomic catastrophes 
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that shatter (chromothripsis (1)) or join chromosomes in chains or loop-structures 

(chromoplexy (2)). Rearrangements can generate cancer-driving mutations through several 

mechanisms, including the formation of gene fusions. Typically, fusions are fashioned by 

translocations that are often reciprocal. An exception is the prostate cancer fusion gene, 

TMPRSS2–ERG, that can occur in the context of chromoplexy(2).

Oncogenic gene fusions are particularly common in leukemia and bone and soft tissue 

tumors (3), often acting as the sole driver mutation and delineating clinically relevant tumor 

entities and subgroups. In leukemia, RAG-mediated recombination has been identified as the 

leading mutational process that creates canonical gene fusions and drives oncogenesis 

through translocations and deletions (4). Here, we sought to investigate processes and timing 

of oncogenic fusions in human bone and soft tissue tumors.

The starting point of our investigation was Ewing sarcoma (ES), a bone and soft tissue 

cancer predominantly diagnosed in adolescents and young adults. It represents the 

prototypical fusion-driven sarcoma, defined by fusions between EWSR1 and an ETS 

transcription factor, including FLI1 and ERG (5). Although the downstream consequences of 

EWS-ETS are well established (6), the timing and mechanism by which it arises are 

unknown.

Burden and signatures of small mutations in Ewing sarcoma

We sequenced the gene-containing portions of, or whole genomes of 50 ES tumors and their 

matched normal DNA (complete sequencing details in table S1). We used a conventional 

analysis pipeline to call somatic substitutions and rearrangements, with additional custom 

software to remove recurrent artefacts and sources of false positives (see Methods and fig. 

S1). Overall, and consistent with previous reports (7–10), the ES genome is genetically 

quiet, with few somatic substitutions identified (Median: <1 Mut/Mb; Fig. 1A). The number 

of small coding mutations was also low.

We next asked if the collection of all mutations, when considered together, could help 

highlight consistent mutagenic processes in ES. We extracted mutational signatures using an 

established method that allows for the discovery of new signatures. Despite their young age 

and quiet genomes, ES patients’ tumors contained at least seven distinct signatures, all of 

which matched patterns found in adult cancer (COSMIC # 1, 2, 5, 8, 13, 18 and 31; Fig. 1B, 

fig. S2A) (11, 12). Two of these (#1 and 5) were nearly universal, and associated with 

patient age. Signature 1 generated a steady rate of 7 mutations per Gb per year, which is 

similar to that of adult ovary and breast cancer (fig. S2B) (13). An overview of the somatic 

architecture and mutational signatures of each tumor in our discovery cohort is shown in Fig 

1A-C (left panels, Toronto Cohort).

Chromoplexy rearrangement loops are common in aggressive Ewing 

sarcoma

Having observed few small mutations, we then focused our attention on structural 

rearrangements. We applied a bespoke analysis tool to detect clustered rearrangements from 
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whole-genome data, defined as having an inter-rearrangement distance of <10 kbp (see 

Methods). Using a computational data structure that modeled adjacent breakpoints as 

vertices and inter-connected rearrangements as edges in a graph, we uncovered several 

distinct configurations of rearrangement clusters (Fig. 1D). As expected, one configuration 

of rearrangement clusters was a result of reciprocal rearrangements, where there is an equal 

exchange of genetic material and overlapping breakpoints. These were isolated 

rearrangements that occurred without additional breakpoints nearby. A second configuration, 

seen in 15/24 tumor genomes, was a distinctive pattern of focal clustered events with nearly 

overlapping junctions, organized as closed loops (distance < 30 bp; Fig. 1D, red 

distribution). That is, if one follows these complex rearrangements across their multiple 

constituent chromosomes, one is ultimately brought back to the point of departure. 

Importantly, the loops were nearly always centered on EWSR1-ETS (Fig. 1E). These 

abutting rearrangements that occur in a loop resemble a pattern of chromoplexy, akin to the 

loops of the prostate cancer fusion gene, TMPRSS2–ERG. Of note, the EWSR1-ERG fusion 

was always generated by a complex mechanism, whereas EWSR1-FLI1 arose with or 

without this mechanism (fig. S3A). This is likely due to the opposite gene orientation of 

EWSR1 relative to ERG on their respective chromosome arms. A simple two-chromosome 

break rearrangement cannot place the genes in the correct transcriptional orientation, 

necessitating more complex chromosomal rearrangements for fusion formation. Besides this, 

ERG and FLI1-driven chromoplexy were highly similar (fig. S3B).

In all cases, we resolved the breakpoints and found, primarily, positions consistent with 

‘Type I’ or ‘Type II’ ES (14). In the most complex case of chromoplexy, up to 18 genes were 

brought together with the canonical fusion on the same derivative chromosome (fig. S3C, the 

full list of genes affecting all samples is shown in fig. S3D). We validated chromoplectic 

looped rearrangements by deep sequencing or by cytogenetic analysis using standard G-

banding and spectral karyotyping (Methods and fig. S4). Using RNA sequencing, we found 

that chromoplectic loops universally disrupted the reciprocal fusion (FLI1-EWSR1); 52% of 

the cancers with simple rearrangements expressed the reciprocal fusion, but none of the 

chromoplectic tumors expressed it (n=27, fig. S5). For further validation of chromoplexy in 

ES, we re-analyzed a published, independent cohort of 100 ES genomes using our 

informatics pipeline (10). The somatic architecture and mutational signature of the 

validation cohort is shown in Fig. 1 (right panels, Validation Cohort). Both cohorts harbored 

copy number profiles consistent with previous reports (fig. S6)(10). With this series, the 

aggregated prevalence of chromoplectic EWSR1-ETS gene fusions was 42% (52/124).

The survival for relapsed ES is poor and new prognostic markers are needed. We evaluated 

the association between chromoplexy, patient outcomes, as well as known markers of worse 

prognosis. We found that higher overall genomic complexity, a marker of aggressive ES (10, 

15), was almost completely explained by chromoplectic rearrangements (Fig. 1F). In 

contrast, there was no difference in the burden of non-chromoplectic rearrangements. 

Similarly, TP53 mutations, another established marker of poor prognosis (10, 16), were 

enriched in chromoplexy ES (16% vs. 3%, p < 0.05). There was no enrichment for 

CDKN2A or STAG2 mutations (fig. S7). Finally, and consistent with the above, patients 

with chromoplexy ES were more likely to relapse (54% vs. 30%, p < 0.05), strongly 

suggesting that it marks a more aggressive variant of ES.
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Chromoplexy generates the key fusion in many cancer types

We next widened our search across four different benign and malignant bone and soft tissue 

tumor types, for which canonical gene fusions have been identified (table S2). We subjected 

13 tumors to high or low coverage whole genome sequencing, plus RNA sequencing where 

feasible. In three tumor types - chondromyxoid fibroma, synovial sarcoma, and phosphaturic 

mesenchymal tumors - we found that chromoplectic rearrangements (occurring in a similar 

looped formation) did indeed generate canonical gene fusions (Fig. 2). Furthermore, in one 

of the chondromyxoid fibroma cases, the fusion emerged from chromothripsis across seven 

different chromosomes (fig. S8, CMF #2). Chromothripsis was seen in five ES cases, of 

which four involved the canonical fusion. Taken together, these findings in human bone and 

soft tissue tumors show that canonical gene fusions are frequently caused by complex 

rearrangement processes, predominantly chromoplexy, but also chromothripsis.

We examined the microanatomy of chromoplexy fusion loops at base pair resolution, 

comparing ES to a published series of prostate cancers (2). EWSR1-ETS Ewing loops were 

less complex than TMPRSS2–ERG prostate cancer loops with fewer rearrangements and 

individual loops involved in their generation (2 to 10 rearrangements in 1- 2 loops compared 

with up to 130 rearrangements in up to 25 loops in prostate cancer). This may be a 

consequence of the ES genome having a shorter time frame to mutate compared to prostate 

cancer patients. Consistent with this proposition, multiple independent chromoplexy loops 

can exist in older prostate cancers, compared to the one simple loop seen in ES (17). In 

contrast to ES, where chromoplexy is virtually synonymous with the disease-defining fusion, 

several chromoplexy fusion loops occur in prostate cancer without necessarily forming the 

TMPRSS2–ERG fusion. When a loop was present in ES, it almost always generated the 

EWSR1-ETS fusion (47/52 cases, 90%) (Fig. 3A-B, fig. S9 and S10).

Significant transcriptional disruptions are associated with chromoplexy

These loops also led to targeted disruptions or fusions between genes brought together 

directly through chromoplexy (n=168 gene disruptions and n=47 fusions; Fig. 3C). Given 

that chromoplexy appeared to mark an aggressive form of ES, we wondered if its gene 

expression program was globally different - above and beyond the immediate, focal, 

structural consequences listed above. We identified 504 differentially expressed genes in 

chromoplexy compared to simple ES (p < 0.001, Fig. 3D). Gene set enrichment analysis of 

well curated pathways (18), uncovered a significant enrichment of dysregulated genes in 

established cancer hallmark pathways (table S3).

Both prostate cancer and ES loops were characterized by focal intra-chromosomal 

rearrangements - deletion bridges (2) - that acted as local mediators of large-scale loops 

(illustrated in fig. S11). We found deletion bridges in ~60% (30/52) of chromoplectic ES. 

Unlike prostate cancer, more than a third of bridges are utilized in ES in a highly consistent 

manner. That is, if a deletion bridge was found in one component of the loop, it would occur 

on all chromosomes. For example, in sample 2226 we observed 13 rearrangements, spanning 

three chromosomes, all of which involved deletion bridges. These bridged chromoplectic 

rearrangements fused EWSR1-FLI1, and disrupted the neighboring gene, AP1B1, as well as 
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the known cancer gene, ARID1B. Thus, deletion bridges can create further oncogenic 

disruptions.

We also observed a remarkable pattern of splicing, whereby the transcriptional machinery 

further refined the looped rearrangements found in the genome. In chondromyxoid fibromas 

with chromoplectic GRM1 fusions (3/4 cases), the rearrangement breakpoint did not 

actually reside within the GRM1 gene body. Rather, the breakpoint was instead found in the 

upstream gene, SHPRH, within a narrow window (fig. S8). Thus, chromoplexy plus 

conventional splicing leads to the promoter swap that is characteristic of this cancer (see 

(19)). Interestingly, we also observed the transcriptional generation of gene fusions in ES. 

Examination of the transcriptomic consequences of loops showed that genes that were 

unconnected at the DNA level were brought together, in cis, at the mRNA level. This 

included examples of the EWSR1-ETS fusion itself (Fig. 3D, fig. S12). In the cases reported 

here, no direct rearrangement links EWSR1 and FLI1, however they are linked via two 

rearrangements to a third locus. In this way, chromoplexy generates the canonical fusion 

driver via a chromoplexy scaffolding event.

Chromoplexy is among the primary, clonal, mutations in Ewing sarcoma, 

and enriched in early-replicating regions of the genome

Our next line of enquiry examined the timing of chromoplexy rearrangements in tumor 

evolution. Chromoplexy may arise from a one-off sudden event, generating many 

breakpoints simultaneously, or through step-wise progressive bursts of mutations in 

succession (2). To differentiate between these two modes of evolution, we used DNA copy 

number profiling associated with the breakpoints of chromoplexy rearrangements to assess 

the copy number of neochromosomes. A low number of copy number state (three or fewer) 

is associated with a one-off mutational event because breakage and ligation can only involve 

a small number of chromosomes inside a cell at any given time (20, 21). In contrast, 

stepwise progression would result in multiple copy number states due to the possibility of 

copy number alterations arising within older copy number alterations. Chromoplectic 

breakpoints involve many chromosomes and are not associated with any copy number 

alterations (fig. S13). That is, these looped rearrangements across the genome are balanced. 

In addition, using a novel algorithm, we found that the allele frequency of chromoplectic 

breakpoints was higher than that of simple structural rearrangements, providing further 

evidence that these breakpoints occurred together and early in tumor development (Methods 

and fig. S14). Given their extremely tight clustering, low number of copy number state 

transitions, and consistent clonal variant allele frequency, EWSR1-ETS loops are likely to 

have arisen from singular bursts of rearrrangements.

We then examined whether genomic regions of loop breakpoints share genomic properties 

predisposing these regions to simultaneous rearrangement. We performed a comprehensive 

analysis of 38 genomic properties, including adjacency to histone marks, association with 

replication timing, as well as proximity to genes, repetitive or transposable elements (table 

S4). Of these properties, early replicating DNA, and features consistent with this, were the 

most strongly associated with chromoplexy loops (p < 1.0 x 10-36, Fig. 4A-B). In stark 

Anderson et al. Page 6

Science. Author manuscript; available in PMC 2019 February 28.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



contrast, neither non-looped simple breakpoints of ES, nor simulated simple breakpoints, 

were significantly associated with replication timing, or indeed any other feature (see 

Methods). Replication timing is known to be strongly correlated with gene activity, 

chromatin accessibility and nuclear position (22). Accordingly, chromoplectic breakpoint 

positions were also strongly associated with high gene density and high GC content (fig. 

S15A). Conversely, lamina-associated domains, enriched in late-replication regions and 

repressive chromatin environments, were found to be negatively associated with 

chromoplectic rearrangements. These significant associations were upheld when breakpoints 

directly residing in EWS, FLI1 or ERG were removed from the analyses. Remarkably, the 

same associations were found for looped rearrangements of ETS+ prostate cancers, but not 

for simple prostate cancer rearrangements (fig. S15B). Of further interest, we noted that the 

genes impacted by chromoplexy, were amongst the most highly expressed in ES, across all 

patients (top 20%; fig. S16). Most expressed genes are found in early replicating DNA (23). 

These data are consistent with the proposed model of chromoplexy where DNA is co-

localized in transcription hubs allowing for multiple genes from many chromosomes to be 

broken, shuffled and aberrantly ligated, as proposed (2).

Mutation Patterns of Relapsed and Metastatic Ewing sarcoma

Taken together, we have seen that chromoplexy arises early in the evolutionary history of 

ES, through a replication-associated mechanism, portending a worse prognosis and possible 

relapse. However, the genetic makeup of relapsed ES is unknown, since standard of care for 

ES does not typically involve re-biopsy of the cancer when the disease returns or has 

metastasized. Therefore, whether further mutations - chromoplectic or otherwise - emerge at 

relapse is unknown, since very few samples have been available. However, re-biopsies were 

performed for a small number of our patients, which we profiled by WGS and performed 

full mutation and signature analysis (Fig. 5A). Strikingly, every relapse or metastatic tumor 

contained the chromoplexy-associated fusion, whether it was from a metastasis at the time of 

diagnosis or a relapse arising later (Fig. 5B). The pattern of point mutations was also 

distinct. There was an enrichment of signatures 8 and/or 18, in addition to the clock-like 

signature seen at diagnosis, suggesting that new processes drive relapse and metastatic ES 

(Fig. 5B). For example, in one patient’s tumor we found a striking increase of COSMIC 

Signature 31, which has been recently associated with exposure to platinum therapy in 

chronic myelomonocytic leukemia (24). Notably, our patient had been treated with 

carboplatin for an early retinoblastoma three years prior to their ES. At least three other 

patients in the validation cohort had a similar signature in their ES, which we believe were 

also treatment induced (Fig. 1B).

Early divergence and parallel evolution of Ewing sarcoma tumors

The most commonly held model for progression of cancer is that a metastasis originates 

directly from the primary tumor - it may have acquired new mutations but, since it derived 

by linear clonal evolution, most of the properties of the primary will be found in the 

metastasis (25). A different model was suggested in ES, proposing that the metastasis 

diverged early, based on mutation data from two primary-metastasis pairs whose exomes 

were sequenced, although the timing of this divergence was not established (8). We 
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compared coding, non-coding and structural rearrangements across the genome within four 

ES pairs. As is the cases in most tumor types, relapse and metastatic ES tumors acquired 

many new mutations (average 50% private). A strikingly high number of clonal mutations 

from the primary were lost in the relapse (average 20%), confirming that the latter diverged 

early, evolving in parallel. For example, a disruptive clonal PTEN inversion was found in all 

tumor cells of one primary ES, but was absent from the relapse (Fig. 5C). We also confirmed 

the same model of parallel evolution in one additional primary-metastatic pair, profiled using 

microarrays (fig. S17). The clinical implication for this model is that one should also be 

searching for therapeutically targetable mutations arising in parallel to the primary ES, using 

methods like circulating tumor DNA, not necessarily in the primary tumor itself.

To determine when the divergence of the lethal clone occurred, we used the number of 

COSMIC Signature 1 mutations, which emerge at a steady rate in ES (see Methods and fig. 

S18). We first confirmed our approach by comparing the number Signature 1 mutations 

between established time intervals, such as the dates of diagnosis and recurrence. In all 

cases, the observed number of mutations was extremely close (75-90%) of what would be 

expected (fig. S18). Using the established rate, we calculated the amount of time between 

the divergence of the primary and relapse / metastatic tumors. Notably, the common ancestor 

in ES clonally diverges 1-2 years before diagnosis. Therefore, the cells that give rise to the 

primary and relapse tumor can exist in the patient years before diagnosis, providing a 

window for early cancer detection and surveillance. ES is often difficult to diagnose and 

time-to-diagnosis is notoriously long (26). These findings provide a plausible biological 

mechanism for this latency.

Discussion

Overall, our analyses have revealed rearrangement bursts (chromoplectic loops) as a source 

of gene fusion in human bone and soft tissue tumors. It is known that ES with complex 

karyotypes have worse prognosis, and here we show chromoplexy as the mechanism in 42% 

of tumors (27). It is possible that it is the chromoplectic tumor’s additional gene disruptions 

and fusions that contribute to this survival difference. Our whole genome data supports a 

model in which there is an early clone of ES, containing EWS-ETS and chromoplexy, 

arising at least 1 year pre-diagnosis, which gives rise to both the primary and metastatic or 

relapse tumors (Fig. 5D). Whether the bursts described here are chance events or driven by 

specific mutational processes, akin to RAG-machinery operative in leukemia, remains to be 

established. As an increasing and diverse number of tumor genome sequences become 

available, we may be able to define further rearrangement processes that underlie fusion 

genes and thus unravel the causes of fusion-driven human cancers.

Materials and Methods

Patient and sample collection

Ewing sarcoma tumor and matched blood samples were collected from the Hospital for Sick 

Children (SickKids) and Mount Sinai Hospital in Toronto, Canada in accordance with each 

institution’s Research Ethical Board (REB) guidelines. Detailed clinical information (age at 

presentation, gender, tumor site, stage, etc.) were obtained from the corresponding 
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institutional tumor banks (table S5). Overall, the patients’ clinical features and 

demographics were typical of Ewing sarcoma: the average age of diagnosis was 14.8 years 

(2.8 to 36.6 yrs.); the male to female ratio was 1.38:1; and 14 patients had relapsed, with 13 

having died from their disease. Additional samples (n=3) were also obtained from 

Universitätsklinikum Erlangen, Erlangen, Germany. All metastatic or relapse Ewing 

sarcoma tumors were collected from SickKids tumor bank or the SickKids clinical cancer 

sequencing program (KiCS). Detailed information on KiCS is available at https://

www.kicsprogram.com.

Of the 25 high-coverage genomes sequenced, EWSR1-ETS fusions were detected in all 

patients except for a 37-year-old who was instead found to have a FUS-ERG translocation. 

This patient’s gene expression profile (by RNA-Seq) was also discrepant and so they were 

removed from subsequent analyses (fig. S19). One additional genome was removed due to 

poor sequencing quality. We also performed low pass (~10X) rearrangement screens on 19 

ES samples. However, as we required breakpoint resolution, all but one of the rearrangement 

screens were excluded from this study due to insufficient coverage (see Table S1, orange 

row). Taken together, our discovery cohort consisted of 23 standard genomes (30-60X) and 

one rearrangement screen genome (20X). The validation cohort consisted of 119 tumor-

normal samples sequenced by Tirode F. et al (10), which we downloaded from the European 

Genome-phenome Archive (accessions: EGAS00001000855 and EGAS00001000839). Of 

these, 19 patient samples were omitted either because the EWSR1-ETS fusion was not 

detected by our pipeline and manual inspection of the aligned reads, or because they 

harbored an excess of artefactual small inversions or deletions.

Code availability

Custom code described here is available at github.com/shlienlab

High-throughput sequencing and alignment

Exome, genome and transcriptome (RNA-Seq) sequencing were performed using 

established protocols on Illumina instruments. For exome and genomes, paired-end FASTQ 

files were aligned to the human genome (hg19/GRCh37) using BWA-MEM (v.0.7.8), Picard 

MarkDuplicates (v.1.108) was used to mark PCR duplicates. Indel realignment and base 

quality scores were recalibrated using the Genome Analysis Toolkit (v.2.8.1).

Detection of high quality somatic substitutions and rearrangements

We detected somatic mutations using established tools (MuTect2 (part of GATK v.3.5) (28) 

and Delly v.0.7.1 (29)). To evaluate and validate our WGS substitution pipeline, we used a 

“gold standard” cancer genome tumor/normal dataset, COLO829 (30). Using this somatic 

reference standard, we determined our precision to be 0.885 and our sensitivity to be 0.971. 

Copy-number was detected for genomes and rearrangement screens using BIC-seq v.1.2.1 

(31). When no matched normal was available (in the case of rearrangement screens), an 

Ewing sarcoma normal was used. We then developed custom code to increase specificity of 

putative substitution and rearrangement detection, as follows:
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1. Somatic and Depth Filter. No mutation should exist in the matched-normal 

sequence. For substitutions, we removed common single-nucleotide 

polymorphisms (SNPs) as previously described (32) and a required >10X 

coverage at the mutated locus (10 kb window), in both tumor and normal. For 

rearrangements, this filter required >= 4 discordant read-pairs in the tumor. We 

then directly interrogated the normal BAM file, at each putative somatic 

rearrangement; to ensure no germline variants existed near the breakpoint, on 

either side of the rearrangement.

2. Panel of Normals Filtering. To remove common germline variants, we created a 

panel of normal, non-neoplastic, samples that had been sequenced using the 

same technology and to a similar depth of coverage (n=133). We removed any 

putative substitutions or rearrangements if present in ≥ 2 normals. For 

rearrangements, breakpoints must exist on both sides of the junction within a 1 

kb window. We found that as we increased the number of normals in our panel, 

our specificity increased (fig. S1C).

3. Quality Control Filtering. Putative rearrangements were removed if supported by 

reads with MAPQ < 30. Both putative rearrangements and substitutions were 

also removed if they met any two of the following criteria:

A. Non-unique mapping. <70% of the reads at the locus map uniquely.

B. Multi-mapping clusters. At the same locus (200 bp up and 

downstream), a pattern of multiple overlapping groups of discordant 

reads whose paired-ends align to different chromosomes (> 3 reads in 

each group, mapping to > 4 chromosomes). Seen in both the tumor and 

paired normal.

C. High depth. Excessively high depth alignments in difficult to align 

regions of the genome, as described (33). We apply a maximum depth 

threshold of d+4*sqrt (d), where d is the average normal mean read 

depth of the chromosome in the corresponding normal.

D. Low-complexity regions. Overlap with a highly repetitive sequence 

(using DUST (34) with score > 60).

Mutation signature extractions and analysis

First, a de novo extraction was performed on the catalogue of Ewing sarcoma point 

mutations to produce novel consensus mutational signatures. These signatures were 

deciphered using a previously described computational framework that optimally explains 

the proportion of each mutation type found in the catalogue and then estimates the 

contribution of each signature to the mutation catalogue (11). Overall, we identified 11 

consensus mutational signatures. 4 of these signatures were previously found to be attributed 

to sequencing artefacts. We then compared our true consensus mutational signatures to the 

previously curated COSMIC list and quantified their similarity using a cosine similarity as 

previously done (13). We report > 0.9 cosine similarity between the Ewing signatures and 

the COSMIC list.
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Validation by targeted custom-capture sequencing

A custom targeted-capture enrichment system was designed to capture 1 Mb of DNA 

(Nextera, Illumina) with custom probes for the whole of EWSR1, FLI1, and ERG genes as 

well as the exons of TP53, STAG2 and ATRX. We also targeted known complex breakpoints 

from the discovery cohort, achieving between 900 to 1000-fold coverage. We reasoned that 

paired end sequencing would capture any locus joined to the three core genes, even if the 

panel did not specifically target it. In this way, we validated rearrangements in samples 

where chromoplexy was already known from the whole genome, and uncovered new 

instances in samples that had not been whole genome sequenced (n=7 and 4, respectively). 

Each tumor had three or four rearrangements validated using the panel. All had the same 

breakpoint (as found by the whole genome sequence) and were found to harbour looped 

rearrangements are on the same derivative chromosomes.

Validation by FISH, G-banding or Spectral Karyotyping

We further validated these looped rearrangements by karyotyping Ewing sarcomas using 

standard G-banding as well as spectral karyotyping (n=17 and 3; fig. S4). By cytogenetics 

we found additional complexity - beyond the canonical chr22-chr11 translocation - in eight 

cases. Of these, six tumors had been sequenced and found to be complex. Additionally, there 

were 5 cases for which chromoplexy was detected by genome sequencing yet not found by 

cytogenetics techniques, indicating that routine cytogenetics may miss chromosomal 

complexity present in these genomes due to the nature of these submicroscopic complexities 

(fig. S20).

Timing of rearrangements using breakpoint allele fraction

To determine the timing of the chromoplectic loops, we developed a tool to accurately 

measure the breakpoint allele fraction (BAF) of each rearrangement. The BAF is the 

proportion of reads containing a rearrangement breakpoint divided by the total number of 

reads, analogous to the variant allele fraction (VAF) for point mutations (illustrated in fig. 

S14A). This is analogous to the variant allele frequency of substitution mutations and, 

similarly, can be used to infer the relative order of rearrangement mutations. The tool 

accurately counts all reads supporting each rearrangement, even if these had not been used to 

nominate the rearrangement in the first place. From the raw aligned reads, we first collected 

all split reads near the breakpoint (within 20 bp) from one side of the rearrangement. Next, 

we extracted the clipped sequence (i.e. the non-aligned portion) from these reads and 

attempted to map it to the other side of the rearrangement (within 70 bp of the breakpoint) 

using a Smith-Waterman algorithm (35). Clipped sequences shorter than 5 bp were 

discarded, as were those that failed to map to the other side of the rearrangement (<= 80% 

similarity). Since the retained sequences can map at slightly different position, due to 

microhomology near the breakpoint, we considered all those close to one another as 

supportive of the same rearrangement. Overall, we found that most rearrangements are 

supported by re-mapped reads that less than 10 bp apart. Finally, the total number of split 

and realigned reads were divided by the average coverage between the two breakpoints per 

side of each rearrangement. This allowed us to arrive at an accurate measure of the 

breakpoint allele fraction. To validate our tool, we applied it to a curated list of known 
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polymorphic copy number variants (CNVs) (36). As expected, the BAF of germline CNV 

deletions followed a bimodal distribution with peaks at 0.5 and 1.0, for heterozygous and 

homozygous rearrangements, respectively (fig. S14B, green line). We then compared the 

BAF of somatic rearrangements in chains to those without. Chained rearrangements had 

higher BAFs than simple structural variants (fig. S14B, red vs blue line), confirming that 

chromoplectic rearrangements are in fact earlier.

Detection of Breakpoint Clusters of Chained Rearrangements

Using their inter-breakpoint distance, we identified rearrangements within 10 kbp of one 

another. Using these, we created an undirected graph in which two rearrangement 

breakpoints within 10 kbp of one another (a breakpoint cluster) were represented as a vertex 

and connected to other breakpoint clusters (rearrangements are edges in the graph). We 

selected connected components of the graph, and identified components with greater than 

one vertex as inter-connected rearrangements. In most of our cases, these interconnected 

rearrangements formed chains or loops, where one could follow the edges around the graph 

and return to the initial vertex of departure. These were further filtered for reciprocal 

rearrangements or overlapping intra-chromosomal rearrangements. Chromoplexy 

rearrangements were validated by manual inspection and using the ChainFinder algorithm 

(2).

Association of Rearrangements with Genomic Features

We formally evaluated the association of rearrangement position with 38 properties of the 

human genomes (table S4). We separately evaluated these each of these associations in 1 kb 

bins across the genome. Feature density properties were calculated as densities in various 

sliding windows (1kb, 10 kb, 100kb, 1 MB) centered on each 1 kb bin or as the log2 

distance, as indicated in table S4. The positions of Ewing sarcoma rearrangements were 

compared to million random positions that had been uniformly sampled from regions of the 

genome where confident genotypes could be determined (i.e. the “callable” genome). We 

limited our analysis to chromosomes 1 to 22 and X. To test for significant associations 

between our rearrangements and these genomic properties, we performed a Mann Whitney 

U test and Benjamin and Hochberg FDR correction to raw p-values. We used the Cohen’s d 

metric to determine the effect size between the two groups to account for differences in 

sample size. We applied an absolute Cohen’s d cut-off of 0.3, a medium effect size (37, 38). 

Genomic properties were considered significantly different between rearrangements and 

random positions if absolute (d) >= 0.3 and the corrected p < 0.05.

Detection of Gene Fusions

We detected gene fusions in regions of genomic complexity using an approach that 

integrates multiple independent fusion algorithms, and then removes those found in normal 

tissue (Fuligni et al., Under preparation). Putative fusions were validated by de novo 

assembly. A total of 1277 normal (non-neoplastic) samples from 43 different tissues were 

obtained from the NHGRI GTEx consortium (database version 4) and used to remove 

artefacts. All fusions were visually inspected if one or both genes involved chromoplexy or 

were adjacent (up to 1 Mbp). Fusions were further filtered by quality of the realigned 

transcript, breakpoint coverage and gene expression.
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Detection of Gene Expression

Gene expression for fusions, differential gene expression analysis, and principal component 

analysis was performed using HT-Seq (39) to count the reads aligning to every gene. PCR 

duplicates and reads mapping to ribosomal RNA, miRNA and small nucleolar RNA were 

removed. We used Trimmed Mean of M-value (TMM) method in the EdgeR package to 

perform normalization on genes with at least 1 read per million bases in at least 3 samples 

(40, 41). Differential expression analysis in chromoplexy vs non-chromoplexy samples was 

performed using a Generalized Linear Model (GLM) likelihood ratio test, taking in 

consideration different sources of variation like batch, gender and age. P-values for GLM 

test were adjusted for multiple testing using the Benjamini and Hochberg method for 

controlling the False Discovery Rate (FDR). Differentially expressed genes in chromoplexy 

vs non-chromoplexy were considered statistically significant if FDR <= 0.05 and absolute 

value of log(Fold Change) >=1. Pathway analysis was performed on genes differentially 

expressed in samples with and without chromoplexy using Gene Set Enrichment Analysis 

(GSEA) software (javaGSEA v2.2.4). Cancer gene signatures were selected from the 

hallmark collection from the Molecular Signature DataBase (MsigDB)(18). Enrichment 

scores for the hallmark pathways were considered statistically significant if FDR < 0.01.

Evaluation of Replication Timing in Prostate Cancer Rearrangements

We obtained prostate cancer rearrangements, including chained and others, from the Baca et 

al. publication (Supplemental table S3C and S5 from (2)). Samples were annotated as ‘ETS

+’ or ‘ETS-’ using Supplementary Table 1. ETS+ fusions include any ETS fusion detected 

by sequencing (including ERG and ETV1). Using this list we performed the same test for 

genomic property enrichment as we did in Ewing sarcomas.

Molecular Inversion Probe (MIP) Microarray

Raw MIP data from three additional primary-metastatic ES pairs were obtained from the 

Huntsman Cancer Institute, Salt Lake City, Utah (42). The original source material was 

clinically-archived, formalin-fixed paraffin-embedded (FFPE) scrolls that were retrieved 

from 3 individual patients diagnosed with ES. Primary tumor samples were from diagnostic 

biopsies prior to chemotherapy. The raw MIP data from the completed assay was loaded into 

Nexus Copy Number (BioDiscovery, Inc., El Segundo, CA) for copy number detection using 

default settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

Disease-defining fusions in sarcoma frequently emerge by rearrangement burst, creating 

complex genomic loops and disrupting additional genes, in an early clone that may 

develop multiple years before diagnosis.
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Fig. 1. Mutation Landscape of Ewing Sarcoma.
The initial cohort consisted of 50 primary ES tumors, of which, 23 underwent whole 

genome sequencing (Toronto cohort, left). One rearrangement screen sample (sample 4462) 

is included in this figure. The validation cohort consisted of 100 ES whole-genomes from 

Tirode et al. 2014 (right). (A) Somatic mutation burden for Ewing sarcoma. The mutation 

burden of all genome samples are shown. Three outlier samples with >2 mutations/MB, are 

indicated by the red line. (B) Ewing sarcoma mutation signatures. Mutation signature 

analysis, defined by the proportion of 96 possible trinucleotides, identified common 
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mutation patterns in most samples (Age-associated, “clock-like” signature 1). Other 

signatures included #2, 5, 8, 13, 18, and 31. Signatures 2 and 13 are associated with the 

activity of the AID/APOBEC family of cytidine deaminase, while Signature 5 is also clock-

like in some cancers, but not ES (11, 13). Signatures 8 and 18 have an unknown molecular 

aetiology, however it has been suggested that Signature 18 is caused by reactive oxygen 

species (ROS)(43). Signature 31 is believed to be the result of exposure to platinum-based 

antineoplastic therapy (24).(C) Rearrangement profiles for Ewing sarcoma. Shown are 

the burden of deletions (blue), duplications (red), inversions (green) and translocations 

(purple) in individual ES genomes. Samples with chained complex rearrangements (looped 

rearrangements) are highlighted by red arrows (14/24 for Toronto, 38/100 for Validation, 

aggregated prevalence: 52/124). (D) Rearrangement breakpoint clusters. The aggregated 

density distributions of the genomic distance between consecutive rearrangement 

breakpoints are shown. Reciprocal breakpoints are close together (~102 bp) because there is 

an equal exchange of genetic material arising from a single break on each chromosome. 

Chromoplectic rearrangements (red) overlap this range due to the proximity breakpoints 

involved in looped rearrangements. Deletion bridge (DB) chromoplexy (purple) are looped 

rearrangement clusters in which a deletion spans two breakpoints, resulting in breakpoint 

distances that are farther apart (illustrated in fig. S11). Non-complex breakpoints (simple 

structural variants) are far apart (~108 bp). (E) Schematic diagram of chromoplexy fusion 
loops. Illustrative example of chromoplexy in Ewing sarcoma shows three chromosomes 

undergoing double-strand breakage, shuffling and religation in an aberrant configuration. 

This phenomenon generates the canonical fusion, EWSR1-FLI1 (ERG or ETV1) and 

disrupts a third locus, X, in a one-off burst of rearrangements. In reality, up to 8 

chromosomes may be disrupted in this looping pattern. A representative genome-wide 

Circos plots depicting genomic rearrangements in an Ewing sarcoma tumor (from the 

discovery cohort), which are organized in a loop. (F) Genomic correlates and clinical 
impact of looped rearrangements. In genomes without rearrangement loops, only simple 

structural variants (SSV) exist with an average rearrangement burden of 7 rearrangements/

sample. This rate is similar to the background SSV rate (determined by removing 

rearrangements involved in a loop) in genomes with rearrangement bursts (compare the two 

red lines). The additional complexity of looped rearrangements results in higher genomic 

instability in these tumors. The most common genomic alterations include somatic TP53 

mutations, which are rare, but enriched in patients with complex genomes (top pie chart, p < 

0.05). EWS-ERG fusions are also rare, as they represent 10% of all Ewing sarcoma 

diagnoses, however all EWS-ERG fusion Ewing tumors are either chomothriptic or 

chromoplectic (middle pie chart). Lastly, patients with complex genomes tend to relapse 

(bottom pie chart, p < 0.05). All the markers of aggressive disease (high genomic instability, 

somatic TP53 and relapse) are present in tumors with complex genomes.
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Fig. 2. Genomic Catastrophes are Common in Sarcomas.
Copy number profile for fusion-driven sarcomas with chromoplexy are shown. 

Rearrangements are colored red, and the loci with the canonical fusion are highlighted (blue 

box) and enlarged on the right. (A) Chrondromyxoid fibroma (CMF) with chromoplexy. 
The genomic breakpoint lies in the upstream SHPRH gene, while the BCLAF1-GRM1 

fusion was detected by RNA sequencing. Further complex CMFs, which also show a 

SHRPRH genomic breakpoint but GRM1 fusion, can be found in fig. S8. (B) Synovial 
sarcoma with chromoplexy. Chromoplexy generating the SS18-SSX1 pathognomonic 
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canonical fusion is shown. (C) Phosphaturic mesenchymal tumor (PMT) with 
chromoplexy. Genome sequencing of PMTs revealed deletion bridges occurring across the 

genome at chromoplectic loci, generating the canonical FN1-FGFR1 fusion.
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Fig. 3. Characterizing chromoplexy loops that generate EWSR1-ETS in ES.
(A) Patterns of looped rearrangements. Chromoplexy circos webs demonstrate that 

patterns of looped rearrangements are conserved across samples, while different genes or 

loci are affected in each cancer (black panels). In each web, individual samples are denoted 

using a different color (and named in the grey panel). In all cases, central to chromoplexy 

fusion loops were the key driver genes: EWSR1 (blue), FLI1 (green) and ERG (purple). The 

most frequent patterns of chromoplexy in Ewing sarcoma are those with a three-way looping 

structure as well as the presence of deletion bridges. For those with deletion bridges, “adj” 
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refers to adjacent loci affected. An enlarged Circos web can be found in fig. S9 for 

readability. Three samples have structures only involving EWSR1, FLI1 and adjacent loci. 

Sample 4004 has deletion bridge chromoplexy and is described in fig. S3C. (B) Summary 
of chromoplexy types. Bar chart showing the number of rearrangements in a loop (x-axis) 

and the number of samples with that rearrangement pattern. Other chromoplexy web 

structures can be found in fig. S10. (C) Transcriptional consequences of chromoplexy: 
gene expression. Volcano plot illustrating the differential gene expression in chromoplexy 

vs non-chromoplexy ES, revealing 504 differentially expressed genes. Points greater than 1 

or less than -1 and above the 1.3 (as indicated by the red lines) are genes that are 

significantly differentially expressed (blue dots). Red dots highlight genes that are 

differentially expressed and involved in a cancer hallmark pathway. (D) Transcriptional 
consequences of chromoplexy: gene disruptions and fusions. There are three mechanisms 

of gene dysregulation via RNA fusion when chromoplexy occurs. The first involves two 

genes (blue and purple boxes) brought together by chromoplectic rearrangements (black 

arrowed lines) leading to gene disruptions (top scenario) and novel inframe fusions (2nd 

from top scenario). This was detected in the 3/10 cases where there was genome 

(+chromoplexy) and transcriptome sequencing available. When RNA sequencing was not 

available, these are predicted to cause fusions (n=47, excluding the EWSR1-ETS driver) and 

gene disruptions by fusing genes in opposite transcriptional orientation or fusing a gene to 

an intergenic sequence (n=168). The second mechanism involves two chromoplexy genes 

brought together by a rearrangement at the genomic level, but one of the partner’s 

neighboring genes (green box) is transcriptionally fused to the other chromoplexy partner in 

its place (3rd from top scenario). This is also the predominant mechanism of GRM1 fusion 

generation in chrondromyxoid fibromas (fig. S8). Lastly, the final mechanism of gene 

dysregulation occurs when chromoplexy facilitates the production of a fusion by acting as a 

molecular scaffold (bottom scenario; illustrated in fig. S12). Two genes are both rearranged 

to a third locus (orange) and are then, transcriptionally, fused together. No direct genomic 

link exists between these two genes. These phenomena can only be detected if both whole-

genome and RNA-Seq are available.
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Fig. 4. Early Replicating DNA and Chromoplexy.
(A) Heatmap of genomic property associations. The genomic properties listed in 

supplementary table 4 were calculated for all rearrangements in both cohorts. Complex 

rearrangements (chromoplexy and chromothripsis), exclusively, are strongly associated with 

early replication timing, and other genomic features consistent with this feature (gene 

density, CpG density, Alu density etc.). Table values are indicative of FDR-corrected p-

values compared to a million random points in the genome. Blue highlights are indicative of 

a Cohen’s d equal to or greater than 0.3. Bold boxes indicate a positive (red, enrichment) or 
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negative (blue, depletion) association with the feature. All features were evaluated in 1 kb 

bins across the genome. For feature density metrics, associations were calculated in 1MB 

sliding windows centered in 1 kb bins. (B) Density distribution of the average wavelet-
smoothed signal and SNVs on representative chromosome. The average wavelet-

smoothed signal, of replication timing, is plotted for a subset of chromosome 6 to illustrate 

changes between early and late replication timing and the co-association with mutations in 

ES. The positional variation of replication timing across the chromosome is depicted as 

changes in density and color. Point mutations peak in late-replicating regions (dip in WSS, 

light purple), whereas complex rearrangements peak in regions of early replication timing 

(peak in WSS, dark purple).
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Fig. 5. Mutation Signatures and Relapse and Metastatic ES Tumors.
(A) Prevalence of mutation signatures in relapse and metastatic tumors. Shared and 

private mutations for four primary-metastatic or relapse pairs are shown (first four columns). 

Signatures 1 and 5 are common throughout, with signature 5 contributing significantly to the 

mutations that arise at relapse. Signature 8 was also common throughout the cohort. One 

metastatic tumor (no paired primary) is also shown to have similar mutation signature 

patterns as other metastatic/relapse tumors. Lastly, a secondary Ewing sarcoma tumor to a 

primary retinoblastoma (germline RB1 mutation identified) was also sequenced in this 
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cohort. This patient harbored the rare Signature 31, which likely resulted from the patient’s 

prior exposure to carboplatin for their primary RB (only patient to receive this treatment in 

the Toronto cohort). (B) Phylogenetic trees of primary-relapse/metastatic ES. Using the 

shared and private mutations, we identified the mutational order in ES. Known cancer-driver 

mutations (IDH1, TP53 etc.) arise early (shared branches). (C) A clonal PTEN inversion. A 

PTEN inversion was found only in the primary and not in the relapse tissue, suggesting the 

inversion arose after early divergence of a common clonal ancestor. However, a pathogenic 

PTEN SNV can be found in the relapse tissue. Together, these point towards parallel, 

convergent evolution on this gene. (D) Proposed model of Ewing sarcoma tumor 
evolution. After birth, Signature 1 is operative in all somatic tissues throughout life. ES 

patients’ cells experience a replication-associated burst of rearrangements that generates the 

canonical fusion driver. Early somatic cancer gene mutations occur before clonal 

bifurcation. This occurs 1-2 years before an ES diagnosis, thus the cells that would give rise 

to the relapse existed years before diagnosis. Signature 5 contributes significantly to the 

number of mutations seen at relapse.
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