Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia

Charles G Mullighan ${ }^{1}$, J Racquel Collins-Underwood ${ }^{1}$, Letha A A Phillips ${ }^{1}$, Michael G Loudin ${ }^{2}$, Wei Liu ${ }^{3}$, Jinghui Zhang ${ }^{4}$, Jing Ma ${ }^{5}$, Elaine Coustan-Smith ${ }^{6}$, Richard C Harvey ${ }^{7}$, Cheryl L Willman ${ }^{7}$, Fady M Mikhail ${ }^{8}$, Julia Meyer ${ }^{9}$, Andrew J Carroll ${ }^{8}$, Richard T Williams ${ }^{6}$, Jinjun Cheng ${ }^{1}$, Nyla A Heerema ${ }^{10}$, Giuseppe Basso ${ }^{11}$, Andrea Pession ${ }^{12}$, Ching-Hon Pui ${ }^{6}$, Susana C Raimondi ${ }^{1}$, Stephen P Hunger ${ }^{13}$, James R Downing ${ }^{1}$, William L Carroll ${ }^{9} \&$ Karen R Rabin ${ }^{2}$

Aneuploidy and translocations are hallmarks of B-progenitor

 acute lymphoblastic leukemia (ALL), but many individuals with this cancer lack recurring chromosomal alterations. Here we report a recurring interstitial deletion of the pseudoautosomal region 1 of chromosomes X and Y in B-progenitor ALL that juxtaposes the first, noncoding exon of $P 2 R Y 8$ with the coding region of CRLF2. We identified the P2RY8-CRLF2 fusion in 7\% of individuals with B-progenitor ALL and 53% of individuals with ALL associated with Down syndrome. CRLF2 alteration was associated with activating JAK mutations, and expression of human P2RY8-CRLF2 together with mutated mouse Jak2 resulted in constitutive Jak-Stat activation and cytokine-independent growth of $\mathrm{Ba} / \mathrm{F} 3$ cells overexpressing interleukin-7 receptor alpha. Our findings indicate that these two genetic lesions together contribute to leukemogenesis in B-progenitor ALL.Chromosomal alterations are a hallmark of ALL, the most common malignancy of childhood, and include aneuploidy (hyperdiploidy and hypodiploidy) and recurring chromosomal translocations such as $\mathfrak{t}(12 ; 21)$ (ETV6-RUNX1), $\mathfrak{t}(1 ; 19)$ (TCF3-PBX1), $\mathfrak{t}(9 ; 22)$ (BCR$A B L 1)$ and rearrangement of $M L L^{1}$. These alterations are important events in leukemogenesis and influence patients' response to therapy. However, up to one-quarter of individuals with childhood ALL lack a recurring chromosomal alteration, and the genetic basis for disease in these cases is poorly understood.
To identify submicroscopic genetic alterations contributing to the pathogenesis of ALL, we previously conducted high-resolution profiling of DNA copy-number alterations and loss of heterozygosity using SNP microarrays. We identified multiple recurring genetic alterations
targeting key cellular pathways, including lymphoid development, cell cycle regulation and tumor suppression ${ }^{2,3}$. These alterations included a newly discovered deletion involving the pseudoautosomal region 1 (PAR1) of Xp22.3/Yp11.3 in 15 B-progenitor ALL cases lacking common chromosomal translocations. Notably, six of eight individuals with Down syndrome-associated ALL (DS-ALL) harbored this deletion.

To further characterize the PAR1 deletion, we expanded our analysis of DNA copy-number alterations and loss of heterozygosity to include 329 individuals with ALL, including 272 with B-progenitor ALL (22 of those with DS-ALL) and 57 with T-lineage childhood ALL (see Supplementary Table 1 for subject characteristics and Supplementary Table 2 for a full listing of all DNA copy-number alterations). We identified the PAR1 deletion in 19 individuals with B-progenitor ALL (7\%), including 12 of 22 (54.5\%) of those with DS-ALL, all of whom lacked recurring translocations commonly associated with non-DSALL (Supplementary Table 3). Notably, all ten DS-ALL-affected individuals with cytogenetic abnormalities commonly observed in DS-ALL ${ }^{4-6}$ (gain of chromosome X in eight cases and deletion of chromosome 9p22 in two cases) had a PAR1 deletion.

The region of PAR1 deletion appeared identical in all cases (Fig. 1a), involved at least three genes (P2RY8, SLC25A6 and IL3RA; Fig. 1b) and was confirmed by genomic quantitative PCR (Supplementary Table 4). The deletion was adjacent to the cytokine receptor genes CSF2RA and CRLF2, but owing to sparse probe coverage on the SNP array platform used (Fig. 1b), we could not precisely define the extent of deletion using SNP array data alone.

To map the boundaries of deletion, we conducted array-based comparative genomic hybridization on two samples using a

[^0]Figure 1 PAR1 deletion and P2RY8-CRLF2 fusion in B-progenitor ALL. (a) Representative $\log _{2}$ ratio SNP 6.0 microarray DNA copy-number data of six affected individuals with PAR1 deletion. White, normal; blue, deletion; red, gain. Paired data are shown, with normal (N) and tumor (T) for each individual. (b) Mapping of the extent of the PAR1 deletion for a representative subject. Sparse SNP 6.0 probe coverage of the region, particularly lack of coverage of the CRLF2-CSF2RA-IL3RA region, is shown. Vertical black lines, locations of SNP 6.0 probes; green lines, coverage of 1 millionfeature Agilent array; red lines, corresponding $\log _{2}$ ratio copy-number data. Horizontal arrows indicate region of deletion defined by each platform. (c) RT-PCR showing P2RY8-CRLF2 fusion transcripts. NTC, no template control. (d) Direct sequencing of P2RY8-CRLF2 RT-PCR product, showing that the fusion junction is identical in each P2RY8-CRLF2positive individual and involves the first noncoding exon of $P 2 R Y 8$ and the entire CRLF2 ORF.

1 million-feature oligonucleotide array with dense coverage of the region. We found that the PAR1 deletion extended from immediately centromeric (upstream) of CRLF2 exon 1 to P2RY8 intron 1 (Fig. 1b). CRLF2 encodes cytokine receptor-like factor 2 (also known as thymic stromal lymphopoietin (TSLP) receptor), a lymphoid signaling receptor molecule that forms a heterodimeric complex with interleukin-7 receptor alpha (IL7R) and binds TSLP ${ }^{7,8}$. P2RY8 encodes a purinergic receptor (P2Y, G-protein coupled, 8) that is expressed at high levels in many tissues, including leukemic cells ${ }^{9}$. A single case of rearrangement of P2RY8 to SOX5 has been reported in primary splenic follicular lymphoma ${ }^{10}$. These observations suggested that the PAR1 deletion results in a previously undescribed rearrangement involving P2RY8 and CRLF2.

RT-PCR confirmed the presence of chimeric transcripts juxtaposing the first, noncoding exon of P2RY8 to the entire coding region of CRLF2 in all affected individuals with PAR1 deletion who had available material for analysis, but none of the 50 affected individuals who lacked the deletion (Fig. 1c and Supplementary Fig. 1). The fusion junction was identical in each case (Fig. 1d). Quantitative RT-PCR analysis revealed increased P2RY8-CRLF2 expression in those with the PAR1 deletion (Supplementary Fig. 2). Moreover, we detected elevated cell surface expression of CRLF2 by flow cytometric analysis of cryopreserved leukemic cells (Supplementary Fig. 3). A single individual with DS-ALL (DS-ALL-\#14) had elevated CRLF2 mRNA levels, as assessed by real-time PCR, but lacked the deletion, suggesting an alternative mechanism of CRLF2 dysregulation. Rearrangements of the immunoglobulin heavy chain locus (IGH@) at 14q32.33 to CRLF2 have recently been reported in B-progenitor ALL ${ }^{11}$, and FISH analyses of interphase nuclei confirmed IGH@-CRLF2 rearrangement in subject DS-ALL-\#14 (Supplementary Fig. 4). Thus, 13 of the individuals with DS-ALL (60\%) had genomic rearrangements resulting in dysregulated CRLF2 expression.

We next characterized the genomic breakpoints of the PAR1 deletion by long-template PCR of genomic DNA extracted from leukemic cells (Supplementary Figs. 5 and 6). The deletion breakpoints were highly conserved and were located 3.4 kb upstream of CRLF2 exon 1 and $0.3-1$ kb distal to P2RY8 exon 1 (Supplementary Fig. 5c). Notably, we observed partly or fully conserved heptamer recombination signal sequences immediately internal to the deletion breakpoints and a variable number of nonconsensus nucleotides between the aligning sequences in each

$\xrightarrow[\substack{180 \\ \text { GCTGCTTCTGCACAGGCATGGGGCGGCTGGTTCZG } \\ M \operatorname{G~R~L~V~L~}}]{\text { P2RY8 exon } 1} \xrightarrow{\text { CRLF2 exon } 1}$

Table 1 Distribution of PAR1 deletions and JAK mutations in pediatric ALL

Group	n	PAR1 deletion only	JAK mutation only	PAR1 deletion and JAK mutation
Non-DS-ALL				
High hyperdiploid	43	0	1	0
TCF3-PBX1	17	0	0	0
ETV6-RUNX1	49	0	0	0
MLL rearranged	24	0	0	0
BCR-ABL1	21	0	0	0
Hypodiploid	10	2	0	0
Other	86	2	$1^{\text {a }}$	3
T-lineage ALL	57	0	0	0
DS-ALL				
St. Jude cohort	22	7	0	$6^{\text {b }}$
Validation cohort	53	20	1	8

aJAK2 G861W. ${ }^{\text {b }}$ Includes one individual with IGH@-CRLF2 translocation.

The co-occurrence of CRLF2 and JAK mutations suggested that these events cooperate in leukemogenesis. To examine this hypothesis, we assessed the effect of P2RY8-CRLF2 and Jak mutations on the ability of the cytokine-dependent mouse B-progenitor $\mathrm{Ba} / \mathrm{F} 3$ cell line to grow in the absence of exogenous cytokine. Jak mutations are usually insufficient on their own to transform $\mathrm{Ba} / \mathrm{F} 3$ cells, but they render the cells growth factor-independent when coexpressed with erythropoietin or thrombopoietin receptors ${ }^{13,15,16}$. As CRLF2 normally forms a heterodimeric complex with IL7R, we expressed IL7R in $\mathrm{Ba} / \mathrm{F} 3$ cells (Ba/F3-IL7R cells). Expression of P2RY8-CRLF2 or Jak2 mutants alone (either Jak2 R683G or the kinase domain alteration P933R ${ }^{16}$) in the $\mathrm{Ba} / \mathrm{F} 3-$ IL7R cells did not induce cytokine-independent growth.

Figure 2 Transforming effects of P2RY8CRLF2 and Jak mutations. (a) Ba/F3 cells expressing mouse IL7R (Ba/F3-IL7R, or B7 cells) were transduced with retroviral constructs expressing P2RY8-CRLF2 (P2C) and/or Jak2 alleles (encoding wild-type (WT) mouse Jak2, or

In contrast, coexpression of P2RY8-CRLF2 and Jak mutants resulted in constitutive Jak-Stat activation and cytokine-independent growth in $\mathrm{Ba} / \mathrm{F} 3-\mathrm{IL} 7 \mathrm{R}$ cells (Fig. 2a,b and Supplementary Figs. 10 and 11). Moreover, this transformation was attenuated by pharmacological Jak inhibition (Fig. 2c) and knockdown of CRLF2 expression by short hairpin RNA (shRNA; Fig. 2d and Supplementary Fig. 12).

Together, these data describe a recurrent intrachromosomal deletion of PAR1 of Xp22.3 and Yp11.3, which results in the generation of chimeric P2RY8-CRLF2 mRNA and markedly elevated expression of CRLF2. CRLF2 overexpression from IGH@-CRLF2 rearrangement or PAR1 deletion has also been reported in B-progenitor ALL ${ }^{11}$. However, CRLF2 alteration is uncommon in B-progenitor ALL (5% of affected individuals), whereas it is present in over 55% of those with DS-ALL, in whom chromosomal rearrangements characteristic of non-DS-ALL are uncommon ${ }^{4}$. Moreover, CRLF2 alteration was observed exclusively in cases lacking translocations associated with ALL, suggesting that CRLF2 alteration is a potent leukemogenic event in the setting of trisomy 21 and may account in part for the up to 20 -fold increased risk of developing ALL in children with $\mathrm{DS}^{6,17}$. The associations of CRLF2 and JAK mutations and additional recurring cytogenetic alterations in DS-ALL (gain of chromosome X and deletion of 9 p) ${ }^{4}$ are also notable and suggest that these lesions cooperate in leukemogenesis. Notably, three of five subjects with PAR1 deletion and gain of chromosome X had evidence of two copies of the PAR1 deletion on FISH analysis (Supplementary Fig. 4e-g), suggesting that gain of X results in duplication and high-level expression of the P2RY8-CRLF2 fusion. Amplification of regions of chromosomal rearrangement resulting in gene fusion has previously been noted in acute leukemia, for example the NUP214-ABL1 translocation in T-lineage ALL ${ }^{18}$.

CRLF2 interacts with IL7R to form a heterodimeric receptor for the cytokine TSLP. TSLP-CRLF2 signaling has important roles in T-cell and Jak2 R683G and P933R). Cells were washed and cultured in the absence of cytokine. Coexpression of P2RY8-CRLF2 and Jak mutants, but not expression of either mutant alone, resulted in cytokine-independent growth. (b) Western blotting showing constitutive Jak-Stat activation in $\mathrm{Ba} / \mathrm{F} 3-$ IL7R cells expressing P2RY8-CRLF2 and Jak2 mutants. $\mathrm{Ba} / \mathrm{F} 3$ cells grown in IL-3 and $\mathrm{Ba} / \mathrm{F} 3-$ IL7R cells grown in IL-7 (without starvation and stimulation) are included in the leftmost two lanes as positive controls. Pcna was used as a loading control. A representative blot of three independent experiments is shown. (c) Pharmacological Jak inhibition (with Jak inhibitor I) inhibits the growth of Ba/F3-IL7R cells transduced with P2RY8CRLF2 and Jak2 R683G or P933R. Cells were washed three times, plated at $0.5 \times 10^{6} \mathrm{cells} / \mathrm{ml}$ in triplicate, and counted after 48 h . The ETV6RUNX1 B-progenitor ALL cell line REH, which does not harbor P2RY8-CRLF2 or JAK mutations, was used as a control. (d) Knockdown of CRLF2 expression by lentiviral shRNA attenuates cytokine-

[Jak inhibitor I] ($\mu \mathrm{M}$) independent growth of Ba/F3-IL7R cells expressing P2RY8-CRLF2 and Jak2 R683G. Cells were transduced with nontarget (scrambled) shRNA, each of three CRLF2-specific shRNAs $(181,286$ and 757) and a pool of all three shRNAs. This resulted in substantial but incomplete attenuation of CRLF2 expression (see Supplementary Fig. 12) and reduced cytokine-independent growth. Cells with near-total downregulation of CRLF2 expression after shRNA knockdown (isolated by flow cytometric sorting for CRLF2) showed marked abrogation of cytokine-independent growth. *0.05 $<P<0.10$; ** $P<0.01$; *** $P<0.001$ by t-test compared to cells transduced with nontarget shRNA. All error bars show s.e.m.
dendritic cell development, inflammation and allergic disease ${ }^{7,19}$ and promotes B-lymphoid proliferation, but may not be required for normal B-cell development ${ }^{20,21}$. CRLF2 signaling results in downstream STAT5 phosphorylation ${ }^{20,22}$ and, for the human receptor, phosphorylation of JAK2 (ref. 20). In contrast to myeloproliferative diseases, in which homozygous alteration of JAK2 Val617 is common ${ }^{23}$, the JAK alterations in B-progenitor ALL are usually heterozygous and do not occur at JAK2 Val617 (refs. 13,15,16). The basis of the disease specificity of the different JAK alterations is unknown, but it has been suggested that the different JAK2 pseudokinase domain alterations facilitate interaction with different substrates and signaling pathways ${ }^{13}$. Detailed analysis of the transforming effect of mutant Jak alleles in Ba/F3 cells expressing P2RY8-CRLF2 and/or IL7R indicated that most Jak mutations are not transforming in the absence of CRLF2 overexpression (exceptions being the Jak2 mutation resulting in V617F and the homologous Jak1 mutation resulting in V658F; Supplementary Note and Supplementary Fig. 11). In contrast, the mutations most commonly observed in B-progenitor ALL (those at or near JAK2 R683) require coexpression of P2RY8-CRLF2 for transformation in this assay. Notably, transformation (as measured by the rate of cytokineindependent cell growth) was more marked with concomitant IL7R expression (Supplementary Fig. 11). Moreover, coimmunoprecipitation experiments using $3 \times$ FLAG-tagged P2RY8-CRLF2 showed direct interaction of CRLF2 and phosphorylated Jak2 (Supplementary Fig. 13). Thus, our results indicate that aberrant signaling through the CRLF2IL7R receptor, mediated by CRLF2 overexpression and Jak mutation, is a key event in B-lymphoid transformation. Consistent with this, in a recent study identifying CRLF2 rearrangement by FISH in human B-progenitor ALL, overexpression of CRLF2 promoted transformation and Stat5 phosphorylation of primary mouse lymphoid progenitors ${ }^{11}$. This study examined JAK2 exon 14 mutational status in a small cohort of individuals with DS-ALL ($n=24$) and observed an association between CRLF2 rearrangement and JAK mutations ${ }^{11}$, further supporting cooperativity of these lesions in leukemogenesis.

As a substantial proportion of ALL cases with CRLF2 overexpression lack $J A K$ mutations, mutational analysis of other kinases and mediators of JAK-STAT signaling is warranted. These findings also suggest that detection of increased CRLF2 expression will be a useful diagnostic strategy in ALL, and that JAK-STAT inhibition may be useful in the treatment of individuals with B-progenitor ALL with CRLF2 and JAK mutations.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/naturegenetics/.

Accession codes. Agilent array comparative genomic hybridization (CGH) data has been deposited in the NCBI's Gene Expression Omnibus under accession no. GSE16724. The P2RY8-CRLF2 mRNA sequence has been deposited in GenBank under accession no. GQ280263. SNP array data is available from the authors upon request.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS

We thank M. Wang and D. Naeve (Functional Genomics Laboratory, Hartwell Center, St. Jude Children's Research Hospital) for conducting array-CGH analysis; E. Walker and J. Morris (CACT Laboratory, Hartwell Center) for conducting SNP microarrays; S. Tate, J. Armstrong and K. Rakestraw (St. Jude Hartwell Center Sequencing Core) for conducting sequencing; the St. Jude Flow Cytometry Core; John Gray and the St. Jude Vector Core for lentiviral reagents and methods; the St. Jude Tissue Resources Laboratory for providing
primary patient samples; S. Nutt for providing the MSCV-mIL7R-IRES-hCD4 retroviral vector; G.P. Nolan, Stanford University, for the Eco Phoenix packaging cells (http://www.stanford.edu/group/nolan); and M. Smith and K. Dobbin for gene expression studies of CRLF2. This work was supported by National Cancer Institute Cancer Center Support Grant P30 CA021765, the American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital, a Bear Necessities Pediatric Research Foundation grant (to K.R.R.), a Children's Cancer Research Foundation grant (to K.R.R.) and National Institutes of Health Pediatric Oncology Clinical Research Training Grant CA90433-06 (to K.R.R.).

AUTHOR CONTRIBUTIONS

C.G.M. designed and coordinated the study, designed assays, conducted experiments, analyzed data and wrote the manuscript. J.R.C.-U. generated retroviral vectors and conducted $\mathrm{Ba} / \mathrm{F} 3$ assays. L.A.A.P. conducted JAK sequencing and quantitative PCR assays. M.L.L. conducted PAR1 deletion genomic PCR. W.L. conducted statistical analysis. J.Z. analyzed sequencing data. J. Ma analyzed microarray data. E.C.-S. conducted flow cytometry and analyzed data. R.C.H. and C.L.W. developed FISH assays. J. Meyer conducted experiments and analyzed data. F.M.M., A.J.C. and N.A.H. conducted FISH assays and analyzed cytogenetic data. R.T.W. provided luciferase vectors. J.C. designed subcloning vectors. G.B., A.P., C.-H.P. and J.R.D. provided patient samples. S.C.R. conducted cytogenetic analysis. S.P.H. coordinated studies and sample collection. W.L.C. provided patient samples, conducted experiments and analyzed data. K.R.R. provided samples, conducted experiments and analyzed data.

Published online at http://www.nature.com/naturegenetics/.
Reprints and permissions information is available online at http://npg.nature.com/ reprintsandpermissions/.

1. Pui, C.H., Robison, L.L. \& Look, A.T. Acute lymphoblastic leukaemia. Lancet 371, 1030-1043 (2008).
2. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758-764 (2007).
3. Mullighan, C.G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110-114 (2008).
4. Forestier, E. et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood 111, 1575-1583 (2008).
5. Whitlock, J.A. Down syndrome and acute lymphoblastic leukaemia. Br. J. Haematol. 135, 595-602 (2006).
6. Malinge, S., Izraeli, S. \& Crispino, J.D. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113, 2619-2628 (2009).
7. Rochman, Y. \& Leonard, W.J. Thymic stromal lymphopoietin: a new cytokine in asthma. Curr. Opin. Pharmacol. 8, 249-254 (2008).
8. Ziegler, S.F. \& Liu, Y.J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat. Immunol. 7, 709-714 (2006).
9. Fujiwara, S. et al. Transforming activity of purinergic receptor P2Y, G protein coupled, 8 revealed by retroviral expression screening. Leuk. Lymphoma 48, 978-986 (2007).
10. Storlazzi, C.T. et al. Upregulation of the SOX5 gene by promoter swapping with the P2RY8 gene in primary splenic follicular lymphoma. Leukemia 21, 2221-2225 (2007).
11. Russell, L.J. et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B cell precursor acute lymphoblastic leukemia. Blood 114, 2688-2698 (2009).
12. Marculescu, R. et al. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair (Amst.) 5, 1246-1258 (2006).
13. Bercovich, D. et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372, 1484-1492 (2008).
14. Kearney, L. et al. A specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukaemia. Blood 113, 646-648 (2009).
15. Gaikwad, A. et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br. J. Haematol. 144, 930-932 (2009).
16. Mullighan, C.G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 106, 9414-9418 (2009).
17. Hasle, H., Clemmensen, I.H. \& Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 355, 165-169 (2000).
18. Graux, C. et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat. Genet. 36, 1084-1089 (2004).
19. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047-1053 (2005).
20. Carpino, N. et al. Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development. Mol. Cell. Biol. 24, 2584-2592 (2004).
21. Parrish, Y.K. et al. IL-7 Dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow. J. Immunol. 182, 4255-4266 (2009).
22. Isaksen, D.E. et al. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971-5977 (1999).
23. Levine, R.L. \& Gilliland, D.G. Myeloproliferative disorders. Blood 112, 2190-2198 (2008).

ONLINE METHODS

Subjects and samples. We studied 272 children with B-progenitor ALL and 57 with T-lineage ALL treated at St. Jude Children's Research Hospital, including 22 with B-progenitor DS-ALL (Supplementary Table 1). SNP array analysis of all except 14 of the individuals with DS-ALL has been previously reported ${ }^{2,3,24,25}$. PAR1 alterations were examined in a validation cohort of 53 B-progenitor DS-ALL cases treated on or according to Children's Oncology Group protocols $(n=34)$ and the Associazione Italiana Ematologia de Oncologia Pediatrica ($n=19$). All case samples were obtained with informed consent under protocols approved by institutional review board (US) or ethics committee (Italy). The study was approved by the institutional review boards of St. Jude Children's Research Hospital, Baylor College of Medicine and New York University.

SNP microarrays and array-CGH. SNP array analysis using 250K and 50K arrays or SNP 6.0 arrays (Affymetrix) was done as previously described ${ }^{2,3,24-26}$.

Array-based CGH. We conducted CGH using a 974,016-feature array (G4447A, Agilent) in two individuals with DS-ALL. The two-color array raw data were background-subtracted and normalized by locally weighted scatterplot smoothing using the Linear Models for Microarray Analysis ${ }^{27}$. The circular binary segmentation algorithm ${ }^{28}$ was applied to normalized $\log _{2}$ ratio data to identify copy-number alterations.

JAK1 and JAK2 sequencing. We sequenced JAK exons known to harbor mutations in B-progenitor ALL (JAK1 exons 13 and 14, and JAK2 exons 16, 20 and 21) ${ }^{13-16}$ as previously described ${ }^{16}$ (primers are listed in Supplementary Table 6). Mutations were confirmed by repeat PCR and sequencing of tumor and normal DNA. The JAK2 mutation resulting in IR682RG (Down-SNP-\#09) was confirmed by RT-PCR, cloning and sequencing of JAK2 exon 16.

Flow cytometric measurement of CRLF2 expression. Cryopreserved leukemic cells were stained with monoclonal antibodies, including phycoerythrinconjugated antibody to human TSLP receptor (clone 1A6; eBioscience); allophycocyanin-conjugated antibody to CD19, FITC-conjugated antibody to CD10 and peridinin chlorophyll protein-conjugated antibody to CD34 (all from BD Biosciences); and mouse IgG2a phycoerythrin-conjugated isotype control as a control for CRLF2 staining. Fc receptor binding was blocked using rabbit serum (Invitrogen). Data were acquired using a FACSCalibur flow cytometer (BD Biosciences) and analyzed with CellQuest Pro software. Blast cells were identified by Boolean gating using light-scattering properties of the blast cells (forward scatter vs. side scatter) and CD19 plus CD10 or CD34 positivity.

FISH detection of IGH@-CRLF2 translocation and PAR1 deletion. Interphase FISH analysis was done using cells stored in Carnoy fixative. Two probe mixtures were used: an IGH@-CRLF2 fusion probe mixture, in which BAC clones RP11-309M23 and RP11-261P4 flanking CRLF2 were labeled with Alexa Fluor 568 (red) and clone RP11-815P21 centromeric to $I G H @$ at 14q32.33 was labeled with Alexa Fluor 488 (green). In normal cells, the expected pattern is two green and two red signals (2G,2R). In cells containing the IGH@CRLF2 fusion, the expected pattern is one green, two red and one fusion signal (1G,2R,1F). A second CRLF2 break-apart probe mixture was used, containing two BAC clones that flank the CRLF2 gene (RP11-309M23 labeled with Alexa Fluor 488, and RP11-74L17 labeled with Alexa Fluor 568). The signal pattern expected in interphase cells lacking CRLF2 rearrangement is two fusion signals (2F). In abnormal cells containing CRLF2 disruption, the expected pattern is one green, one red and one fusion signal ($1 \mathrm{G}, 1 \mathrm{R}, 1 \mathrm{~F}$). All BAC clones were labeled using a standard nick translation protocol. Slide hybridization and washes were done using standard FISH protocols. The slides were then counterstained with the nuclear dye DAPI and analyzed with an Olympus BX61 microscope and CytoVision image analysis system (Applied Imaging). We scored 25-100 interphase cells for each probe mixture.

Mapping of genomic breakpoints of the PAR1 deletion. Genomic PCR using primers tiled outward from the limits of the PAR1 deletion was done on leukemic cell DNA. PCR products were purified and sequenced, and sequences were aligned to the hg18 reference genome using BLAT implemented in the UCSC genome browser.

RT-PCR and quantitative PCR. To amplify P2RY8-CRLF2 fusion transcripts $0.5-1 \mu \mathrm{~g}$ of total leukemic cell RNA was reverse-transcribed and PCR-amplified using Phusion HF polymerase (New England Biolabs). Quantification of transcript levels of CRLF2 (using TaqMan gene expression assay Hs00277134_m1 from Applied Biosystems) and P2RY8-CRLF2 (using custom primers and probe) was done as previously described ${ }^{2,3}$.

P2RY8-CRLF2 cloning, retroviral construct generation and $\mathrm{Ba} / \mathrm{F} 3$ assays. Full-length P2RY8-CRLF2 was cloned into pGEM-T-Easy (Promega) and subcloned into the MSCV-IRES-eGFP retroviral vector. P2RY8-CRLF2 bearing a $3 \times$ FLAG tag at the C terminus of CRLF2 was PCR-amplified using primers C1459 and CRLF2 $3 \times$ FLAG (Supplementary Table 6) and subcloned into MSCV-IRES-eGFP. Transduction of Ba/F3-IL7R cells with MSCV-P2RY8-CRLF2-3×FLAG-IRES-eGFP resulted in identical expression of CRLF2 (as assessed by quantitative PCR, western blotting and flow cytometry) to the non-FLAG-tagged construct, and comparable transformation and Jak-Stat activation after transduction with mutant Jak2.

MSCV-Jak2-IRES-luc2 vectors expressing wild-type or mutant Jak2 alleles were generated by subcloning the firefly luciferase cassette excised from the MSCV (Babe MCS)-IRES-luc2 retroviral vector into the previously described MSCV-Jak2-IRES-eGFP retroviral vectors ${ }^{16}$. The transforming effect of the MSCV-Jak2-IRES-luc2 vectors was confirmed by transducing $\mathrm{Ba} / \mathrm{F} 3-E p o R$ cells as previously described ${ }^{16}$. Retroviral supernatants were produced using ecotropic Phoenix packaging cells. Ba/F3-IL7R cells were generated by transducing Ba/F3 cells with MSCV-mIL7R-IRES-hCD4 and then cultured in medium supplemented with $10 \mathrm{ng} / \mathrm{ml}$ recombinant mouse IL7 (PeproTech). Ba/F3-IL7R cells were sequentially transduced with retroviral supernatants expressing P2RY8-CRLF2 and/or wild-type and mutant Jak2 alleles. Transduced cells were washed and grown in the absence of cytokine, and growth was quantified using a ViCell cell counter (Beckman Coulter). Expression of P2RY8-CRLF2 was assessed by flow cytometric measurement of GFP and CRLF2 expression. Expression of mouse IL7R was measured by flow cytometric measurement of human CD4 (using allophycocyaninconjugated antibody to human CD4; BD PharMingen). Expression of Jak2 alleles was measured using a Bright-Glo luciferase assay system (Promega). Western blotting was done as previously described ${ }^{16}$.

Drug exposure assays were done as previously described ${ }^{16}$. $\mathrm{Ba} / \mathrm{F} 3$ cells were washed three times and plated at a density of 0.5×10^{6} cells $/ \mathrm{ml}$ in increasing concentrations of Jak inhibitor I (Calbiochem) or vehicle (dimethylsulfoxide). Cells were counted after 48 h of exposure to drug.

For immunoprecipitation assays, Jak-transduced $\mathrm{Ba} / \mathrm{F} 3-I L 7 \mathrm{R}$ cells expressing $3 \times$ FLAG tagged P2RY8-CRLF2 were washed and cultured in the absence of cytokine. Ten million cells were washed and resuspended in lysis buffer ($10 \times$ PBS with 0.5 M EDTA, 10% NP-40 and 50% glycerol) with protease inhibitors (Roche) and phosphatase inhibitors (Sigma-Aldrich). Lysates were passed through 21-gauge needles five times and centrifuged at $20,817 \mathrm{~g}$ for 10 min at 4 C . Supernatants were incubated with washed protein-G agarose beads (Sigma-Aldrich) for 1 h at $4^{\circ} \mathrm{C}$. An aliquot of each precleared lysate was set aside to run as input. The remaining precleared lysates were incubated with washed anti-FLAG M2-agarose beads (Sigma-Aldrich) by rotating for 90 min . Lysates were incubated with $100 \mu \mathrm{~g} / \mathrm{ml} 3 \times$ FLAG peptide (Sigma-Aldrich) to elute FLAG-bound proteins. LDS sample buffer (Invitrogen) was added to eluates, which were then boiled, electrophoresed and transferred to nitrocellulose membranes (Invitrogen). Membranes were probed with antibodies to Jak2, phosphorylated Jak2, Stat5 and phosphorylated Stat5 (Cell Signaling); CRLF2 (R\&D Systems); and FLAG (Sigma-Aldrich). Antibody to PCNA (Santa Cruz Biotechnology) served as a loading control.
shRNA knockdown of CRLF2 in Ba/F3 cells. Five shRNAs targeting CRLF2 in the pLKO.1-puro lentiviral vector were tested (clones NM_022148.2-524s1cl (524), NM_022148.2-181s1cl (181), NM_022148.2-757s1cl (757), NM_ $022148.2-286$ s1c1 (286) and NM_022148.2-689s1c1 (689); Sigma-Aldrich). Lentiviral particles for each CRLF2-specific shRNA and nontarget (scrambled) shRNA control vector (SHC 002 V) were produced by transient transfection of HEK293T cells with shRNA plasmid and the packaging plasmids CAG kGP1-1R (gag-pol), CAG4 RTR2 (rev-tat) and pHDMG (vesicular stomatitis virus-G envelope ${ }^{29}$.

The efficacy of knockdown was assessed by transducing transformed, cytokine-independent Ba/F3-IL7R cells (previously transduced with MSCV-P2RY8-CRLF2-IRES-eGFP and MSCV-Jak2-683G-IRES-luc2) with each shRNA, followed by puromycin selection for at least 5 d , and then measuring CRLF2 expression (by flow cytometry, western blotting and quantitative PCR for CRLF2 and P2RY8-CRLF2 transcripts) and Jak-Stat activation (by western blotting). Three shRNAs (181s1cl, 286s1cl and $757 \mathrm{slc1}$) resulted in at least $70-85 \%$ knockdown of CRLF2 expression (as quantified by flow cytometry analysis of CRLF2 expression). Cytokine withdrawal assays were then done for the $\mathrm{Ba} / \mathrm{F} 3-$ IL7R cells expressing P2RY8-CRLF2 and Jak2 R683G after transduction with each of the three shRNAs alone and as a pool. Assays were done in triplicate.

Statistical analysis. Associations between categorical variables were examined using the Fisher's exact test. Associations with treatment outcome (event-free survival and relapse) were done as previously described ${ }^{25,30-33}$. Analyses were done using Prism v 5.0 (GraphPad), R, SAS (SAS v9.1.2, SAS Institute), SPLUS 7.0 (Insightful) and StatXact v 8.0.0 (Cytel).

URLs. G.P. Nolan laboratory, http://www.stanford.edu/group/nolan/; R statistical software, http://www.r-project.org.
24. Mullighan, C.G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377-1380 (2008).
25. Mullighan, C.G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470-480 (2009).
26. Pounds, S. et al. Reference alignment of SNP microarray signals for copy number analysis of tumors. Bioinformatics 25, 315-321 (2009).
27. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article 3 (2004).
28. Venkatraman, E.S. \& Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657-663 (2007).
29. Hanawa, H. et al. Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 5, 242-251 (2002).
30. Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163-170 (1966).
31. Peto, R. et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br. J. Cancer 35, 1-39 (1977).
32. Gray, R.J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 16, 1141-1154 (1988).
33. Fine, J.P. \& Gray, R.J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 94, 496-509 (1999).

SUPPLEMENTARY INFORMATION

REARRANGEMENT OF CRLF2 IN B-PROGENITOR AND DOWN SYNDROME ASSOCIATED ACUTE LYMPHOBLASTIC LEUKEMIA

Abstract

Charles G. Mullighan ${ }^{1}$, J Racquel Collins-Underwood ${ }^{1}$, Letha A.A. Phillips ${ }^{1}$, Michael L. Loudin ${ }^{2}$, Wei Liu ${ }^{3}$, Jinghui Zhang 4, Jing Ma ${ }^{5}$, Elaine Coustan-Smith ${ }^{6}$, Richard C. Harvey ${ }^{7}$, Cheryl L. Willman ${ }^{7}$, Fady M. Mikhail ${ }^{8}$, Julia Meyer ${ }^{9}$, Andrew J. Carroll ${ }^{8}$, Richard T. Williams ${ }^{6}$, Jinjun Cheng ${ }^{1}$, Nyla A. Heerema ${ }^{10}$, Giuseppe Basso ${ }^{11}$, Andrea Pession ${ }^{12}$, Ching-Hon Pui ${ }^{6}$, Susana C. Raimondi', Stephen P. Hunger ${ }^{13}$, James R. Downing ${ }^{1}$, William L. Carroll ${ }^{9}$, and Karen R. Rabin ${ }^{2}$.

Department of ${ }^{1}$ Pathology, ${ }^{3}$ Biostatistics, ${ }^{6}$ Oncology and ${ }^{5}$ The Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, Memphis, TN; ${ }^{2}$ Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX; ${ }^{4}$ Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, MD; ${ }^{7}$ University of New Mexico Cancer Research \& Treatment Center, UNM Cancer Research Facility, Albuquerque, NM; ${ }^{8}$ Department of Genetics, University of Alabama at Birmingham, Birmingham, AL; ${ }^{9}$ New York University Cancer Institute, New York University Langone Medical Center, New York, NY; ${ }^{10}$ Pathology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH; ${ }^{11}$ Department of Pediatrics, University of Padua, Padua, Italy; ${ }^{11}$ Department of Pediatrics, University of Bologna, Hematology and Oncology Unit "Lalla Seràgnoli", Bologna, Italy; ${ }^{13}$ Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation and Center for Cancer and Blood Disorders, University of Colorado Denver School of Medicine, The Children's Hospital, Aurora, CO.

SUPPLEMENTARY NOTE 3
SUPPLEMENTARY TABLES 5
Supplementary Table 1. Details of St Jude cases studied 5
Supplementary Table 2. Listing of all segments of DNA copy number alteration in St Jude DS-ALL cases, and PAR1 deleted cases 12
Supplementary Table 3. Results for PAR1 deletion status, P2RY8-CRLF2 real time PCR, JAK mutation status, and karyotype for St Jude DS-ALL and PAR1 deleted cases 22
Supplementary Table 4. Genomic quantitative PCR of genes in/flanking the PAR1 deletion 24
Supplementary Table 5. B-progenitor DS-ALL cases in the validation cohort 25
Supplementary Table 6. Sequences of primers used for JAK sequencing, amplification of P2RY8-CRLF2, real-time PCR of P2RY8-CRLF2 and PAR1 deletion mapping 27
SUPPLEMENTARY FIGURES
Supplementary Figure 1. Splicing of P2RY8 exon 1 to CRLF2 coding exon 1 in cases with P2RY8-CRLF2 fusion 29
Supplementary Figure 2. Quantitation of CRLF2 and P2RY8-CRLF2 expression 30
Supplementary Figure 3. Flow cytometric analysis of cell surface CRLF2 expression 31
Supplementary Figure 4. FISH of CRLF2 deletion and translocation 32
Supplementary Figure 5. Genomic mapping of the PAR1 deletion 33
Supplementary Figure 6. Mapping of the breakpoints of the PAR1 deletion 34
Supplementary Figure 7. Identification of a novel mutation at JAK2 IR682-3 35
Supplementary Figure 8. Confirmation of PAR1 deletion and P2RY8-CRLF2 fusion in the validation cohort 36
Supplementary Figure 9. Elevated CRLF2 expression in PAR1-deleted cases in the validation cohort 37
Supplementary Figure 10. Flow cytometric analysis of Ba/F3-IL7R cells confirming expression of IL7R and CRLF2 38
Supplementary Figure 11. Assays examining the interaction of P2RY8-CRLF2, Jak1 and Jak2 mutations, and expression of the murine IL-7 receptor alpha chain in conferring cytokine-independent growth in Ba/F3 cells 39
Supplementary Figure 12. Validation of lentiviral shRNA knockdown of CRLF2 40
Supplementary Figure 13. Coimmunoprecipitation of CRLF2 and phosphorylated Jak2 41
SUPPLEMENTARY REFERENCES 42

SUPPLEMENTARY NOTE

Ba/F3 transformation assays. To examine the relative importance of expression of P2RY8CRLF2, mutant Jak alleles and P2RY8-CRLF2 in transformation, Jak transformation assays were performed in $\mathrm{Ba} / \mathrm{F} 3$ cells not transduced with IL7RA or P2RY8-CRLF2, $\mathrm{Ba} / \mathrm{F} 3$ cells transduced with either IL7RA or P2RY8-CRLF2, and cells transduced with both IL7RA and P2RY8-CRLF2 (Supplementary Fig. 10). We developed the Ba/F3-IL7R cell line to test the transforming effects of P2RY8-CRLF2 and JAK mutations, as despite $\mathrm{Ba} / \mathrm{F} 3$ being nominally a pro-B cell line, Ba/F3 cells express low levels of the IL-7 receptor (IL7RA, CD127, and common gamma chain, CD132). Ba/F3 cells do not grow in the presence of supplemental IL-7, in contrast to Ba/F3-IL7R cells, which grow with supplemental IL7. In the absence of IL7RA and P2RY8-CRLF2, Ba/F3 cells are transformed by Jak1 V658F (the homolog of Jak2 V617F), and weakly by Jak2 V617F, but not by any of the other Jak2 mutant alleles identified in ALL (Supplementary Fig. 11a). Ba/F3 cells transduced with P2RY8-CRLF2 (but not IL7RA) are transformed by Jak1 V658F and Jak2 R683G, and weakly by Jak2 P933R but not the other mutants. Ba/F3 cells transduced with IL7RA are transformed by Jak1 V658F and Jak2 V617F, but not the other Jak2 mutant alleles. In stark contrast, Ba/F3 cells expressing both mIL7RA and P2RY8-CRLF2 are transformed by all mutants, and the rate of cytokine-independent growth is greater than in Ba/F3 cells expressing IL7RA or P2RY8-CRLF2 alone. Thus, in this system, transformation by several types of Jak mutants, notably those at or near Jak2 R683, require over-expression of P2RY8-CRLF2. Moreover, in the absence of co-expression of mIL7RA, transformation is weak with many Jak mutations. These data suggest that interaction of Jak2 mutants, P2RY8-CRLF2 and IL7RA is required for transformation. The transformation induced by V658F (and to a lesser extent, the homolog V617F) in the absence of P2RY8-CRLF2 also suggests different signaling pathway interactions exerted by each mutant. Notably, however, the
transformation induced by these mutations is more pronounced in the presence of P2RY8CRLF2 (which is present in the single case with V658F in this study).

Supplementary Table 1

Details of St Jude cases examined in this study, including SNP array platform and chip identifier. " $500 \mathrm{~K}+50 \mathrm{~K}$ " refers to the use of 250 k Nsp, 205k Sty, 50 k Hind 240 and 50 k Xba 240 mapping arrays (c. 615,000 markers). "500K" refers to the use of the two 250k arrays alone (c. 500,000 markers).

Sample	Previously studied?	DS	CRLF2 alteration	JAK mutation	SNP platform	Agilent array
Hyperdip>50-SNP-\#1	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#2	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#3	Yes				500K + 50K	
Hyperdip>50-SNP-\#4	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#5	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#6	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#8	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#9	Yes				500K + 50K	
Hyperdip>50-SNP-\#10	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#12	Yes				500K + 50K	
Hyperdip>50-SNP-\#13	Yes			R683G	$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#14	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#15	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#16	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#17	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#18	Yes				500K + 50K	
Hyperdip>50-SNP-\#19	Yes				500K + 50K	
Hyperdip>50-SNP-\#20	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#21	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#22	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#23	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#24	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#25	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#26	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#28	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#29	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#30	Yes				500K + 50K	
Hyperdip>50-SNP-\#31	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#32	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#33	Yes	Yes	PAR1 deletion	R683G	$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#34	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#35	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#36	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#37	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#38	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#39	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip>50-SNP-\#27	Yes				SNP 6.0	
Hyperdip50-SNP-\#51	Yes				SNP 6.0	
Hyperdip50-SNP-\#52	Yes				SNP 6.0	
Hyperdip50-SNP-\#53	Yes				SNP 6.0	

Sample	Previously studied?	DS	CRLF2 alteration	JAK mutation	SNP platform	Agilent array
Hyperdip50-SNP-\#54	Yes				SNP 6.0	
Hyperdip50-SNP-\#55	Yes				SNP 6.0	
E2A-PBX1-SNP-\#1	Yes				500K + 50K	
E2A-PBX1-SNP-\#2	Yes				500K + 50K	
E2A-PBX1-SNP-\#3	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#4	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#5	Yes				500K + 50K	
E2A-PBX1-SNP-\#6	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#8	Yes				500K + 50K	
E2A-PBX1-SNP-\#9	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#10	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#13	Yes				500K + 50K	
E2A-PBX1-SNP-\#14	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#15	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#16	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
E2A-PBX1-SNP-\#17	Yes				500K + 50K	
E2A-PBX1-SNP-\#12	Yes				SNP 6.0	
TEL-AML1-SNP-\#1	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#2	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#3	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#4	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#5	Yes				500K + 50K	
TEL-AML1-SNP-\#6	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#8	Yes				500K + 50K	
TEL-AML1-SNP-\#9	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#10	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#12	Yes				500K + 50K	
TEL-AML1-SNP-\#13	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#14	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#15	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#16	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#17	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#18	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#19	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#20	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#21	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#22	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#23	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#24	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#25	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#26	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#27	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#28	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#29	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#30	Yes				500K + 50K	
TEL-AML1-SNP-\#31	Yes				500K + 50K	

Sample	Previously studied?	DS	CRLF2 alteration	JAK mutation	SNP platform	Agilent array
TEL-AML1-SNP-\#32	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#33	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#34	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#35	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#36	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#37	Yes				500K + 50K	
TEL-AML1-SNP-\#38	Yes				500K + 50K	
TEL-AML1-SNP-\#39	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#40	Yes				500K + 50K	
TEL-AML1-SNP-\#41	Yes				500K + 50K	
TEL-AML1-SNP-\#42	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#43	Yes	Yes			500K + 50K	
TEL-AML1-SNP-\#44	Yes				500K + 50K	
TEL-AML1-SNP-\#45	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#46	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
TEL-AML1-SNP-\#47	Yes				500K + 50K	
TEL-AML1-SNP-\#48	Yes				SNP 6.0	
TEL-AML1-SNP-\#49	Yes				SNP 6.0	
TEL-AML1-SNP-\#50	Yes				SNP 6.0	
MLL-SNP-\#12	Yes				500K	
MLL-SNP-\#13	Yes				500K	
MLL-SNP-\#15	Yes				500K	
MLL-SNP-\#1	Yes				500K	
MLL-SNP-\#2	Yes				500K	
MLL-SNP-\#3	Yes				500K + 50K	
MLL-SNP-\#4	Yes				500K	
MLL-SNP-\#16	Yes				500K	
MLL-SNP-\#17	Yes				500K	
MLL-SNP-\#18	Yes				500K	
MLL-SNP-\#19	Yes				500K	
MLL-SNP-\#5	Yes				500K	
MLL-SNP-\#6	Yes				500K + 50K	
MLL-SNP-\#7	Yes				500K	
MLL-SNP-\#20	Yes				500K	
MLL-SNP-\#8	Yes				500K	
MLL-SNP-\#9	Yes				500K + 50K	
MLL-SNP-\#10	Yes				500K	
MLL-SNP-\#21	Yes				500K	
MLL-SNP-\#22	Yes				500K	
MLL-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
MLL-SNP-\#23	Yes				SNP 6.0	
MLL-SNP-\#24	Yes				SNP 6.0	
MLL-SNP-\#25	Yes				SNP 6.0	
BCR-ABL-SNP-\#1	Yes				500K + 50K	
BCR-ABL-SNP-\#2	Yes				500K + 50K	
BCR-ABL-SNP-\#3	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
BCR-ABL-SNP-\#4	Yes				500K + 50K	
BCR-ABL-SNP-\#5	Yes				500K + 50K	
BCR-ABL-SNP-\#6	Yes				500K + 50K	
BCR-ABL-SNP-\#7	Yes				500K + 50K	

Sample	Previously studied?	DS	CRLF2 alteration	$J A K$ mutation	SNP platform	Agilent array
BCR-ABL-SNP-\#10	Yes				500K	
BCR-ABL-SNP-\#12	Yes				500K	
BCR-ABL-SNP-\#13	Yes				500K	
BCR-ABL-SNP-\#14	Yes				500K	
BCR-ABL-SNP-\#16	Yes				500K	
BCR-ABL-SNP-\#17	Yes				500K	
BCR-ABL-SNP-\#8	Yes				500K + 50K	
BCR-ABL-SNP-\#19	Yes				500K	
BCR-ABL-SNP-\#20	Yes				500K	
BCR-ABL-SNP-\#9	Yes				500K + 50K	
BCR-ABL-SNP-\#21	Yes				500K	
BCR-ABL-SNP-\#11	Yes				SNP 6.0	
BCR-ABL-SNP-\#15	Yes				SNP 6.0	
BCR-ABL-SNP-\#18	Yes				SNP 6.0	
Hypodip-SNP-\#1	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#26	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#3	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#4	Yes	No	PAR1 deletion		$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#5	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#6	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#8	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#9	Yes	No	PAR1 deletion		$500 \mathrm{~K}+50 \mathrm{~K}$	
Hypodip-SNP-\#10	Yes				500K + 50K	
Hyperdip47-50-SNP-\#1	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#2	Yes	No	PAR1 deletion	R683S	$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#3	Yes				500K + 50K	
Hyperdip47-50-SNP-\#5	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#6	Yes				500K + 50K	
Hyperdip47-50-SNP-\#7	Yes				500K + 50K	
Hyperdip47-50-SNP-\#8	Yes	Yes	PAR1 deletion		$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#9	Yes				500K + 50K	
Hyperdip47-50-SNP-\#10	Yes				500K + 50K	
Hyperdip47-50-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#12	Yes	Yes	PAR1 deletion	R683G	$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#13	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#14	Yes	Yes	PAR1 deletion		$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#15	Yes	Yes	PAR1 deletion		$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#16	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#17	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#18	Yes	No	PAR1 deletion	R683G	$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#19	Yes	Yes			$500 \mathrm{~K}+50 \mathrm{~K}$	
Hyperdip47-50-SNP-\#20	Yes				500K + 50K	
Hyperdip47-50-SNP-\#21	Yes				500K + 50K	
Hyperdip47-50-SNP-\#22	Yes	No	PAR1 deletion	T875N	500K + 50K	
Hyperdip47-50-SNP-\#23	Yes				500K + 50K	
Pseudodip-SNP-\#1	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#1	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#2	Yes				500K + 50K	
Pseudodip-SNP-\#3	Yes				500K + 50K	

Sample	Previously studied?	DS	CRLF2 alteration	JAK mutation	SNP platform	Agilent array
Pseudodip-SNP-\#4	Yes				500K + 50K	
Pseudodip-SNP-\#22	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#5	Yes				500K + 50K	
Pseudodip-SNP-\#6	Yes				500K + 50K	
Pseudodip-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#2	Yes				500K + 50K	
Other-SNP-\#3	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#4	Yes				500K + 50K	
Other-SNP-\#5	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#8	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#9	Yes				500K + 50K	
Pseudodip-SNP-\#10	Yes				500K + 50K	
Pseudodip-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#6	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#12	Yes				500K + 50K	
Other-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#23	Yes				500K	
Pseudodip-SNP-\#24	Yes			G861W	500K	
Other-SNP-\#17	Yes				500K	
Hyperdip47-50-SNP-\#24	Yes				500K	
Other-SNP-\#8	Yes				500K + 50K	
Other-SNP-\#9	Yes				500K + 50K	
Pseudodip-SNP-\#13	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#14	Yes				500K + 50K	
Pseudodip-SNP-\#15	Yes				500K + 50K	
Other-SNP-\#18	Yes				500K	
Pseudodip-SNP-\#16	Yes				500K + 50K	
Other-SNP-\#11	Yes				500K + 50K	
Pseudodip-SNP-\#21	Yes				500K	
Other-SNP-\#12	Yes				500K + 50K	
Hyperdip>50-SNP-\#40	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#19	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#13	Yes		PAR1 deletion		$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#17	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#14	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#19	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Pseudodip-SNP-\#20	Yes				500K + 50K	
Other-SNP-\#15	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#20	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
Other-SNP-\#16	Yes				500K + 50K	
Other-SNP-\#22	Yes				500K	
Other-SNP-\#23	Yes				500K	
Other-SNP-\#24	Yes				500K	
Other-SNP-\#25	Yes				500K	
Other-SNP-\#26	Yes				500K	
Pseudodip-SNP-\#18	Yes				SNP 6.0	
Other-SNP-\#21	Yes				SNP 6.0	
Hyperdip47-50-SNP-\#4	Yes				SNP 6.0	
Other-SNP-\#27	Yes				SNP 6.0	
Other-SNP-\#28	Yes				SNP 6.0	

Sample	Previously studied?	DS	CRLF2 alteration	$J A K$ mutation	SNP platform	Agilent array
Other-SNP-\#29	Yes				SNP 6.0	
Other-SNP-\#30	Yes				SNP 6.0	
Other-SNP-\#31	Yes				SNP 6.0	
Other-SNP-\#32	Yes	No	PAR1 deletion		SNP 6.0	
Other-SNP-\#33	Yes	Yes	PAR1 deletion		SNP 6.0	
Other-SNP-\#34	Yes				SNP 6.0	
Other-SNP-\#35	Yes				SNP 6.0	
Other-SNP-\#36	Yes				SNP 6.0	
Other-SNP-\#37	Yes				SNP 6.0	
Other-SNP-\#38	Yes				SNP 6.0	
Other-SNP-\#39	Yes				SNP 6.0	
Other-SNP-\#40	Yes				SNP 6.0	
Other-SNP-\#41	Yes				SNP 6.0	
Other-SNP-\#42	Yes				SNP 6.0	
Other-SNP-\#43	Yes				SNP 6.0	
Other-SNP-\#10	Yes				500K + 50K	
Down-SNP-\#09	No	Yes	PAR1 deletion	IR682RG	SNP 6.0	
Down-SNP-\#10	No	Yes			SNP 6.0	
Down-SNP-\#11	No	Yes			SNP 6.0	
Down-SNP-\#12	No	Yes			SNP 6.0	
Down-SNP-\#13	No	Yes			SNP 6.0	
Down-SNP-\#14	No	Yes	IGH@-CRLF2	R683S	SNP 6.0	
Down-SNP-\#15	No	Yes	PAR1 deletion	R683G	SNP 6.0	
Down-SNP-\#16	No	Yes	PAR1 deletion		SNP 6.0	Yes
Down-SNP-\#17	No	Yes			SNP 6.0	
Down-SNP-\#18	No	Yes			SNP 6.0	
Down-SNP-\#19	No	Yes			SNP 6.0	
Down-SNP-\#20	No	Yes	PAR1 deletion		SNP 6.0	Yes
Down-SNP-\#21	No	Yes	PAR1 deletion	JAK1 V658F	SNP 6.0	
Down-SNP-\#22	No	Yes	PAR1 deletion		SNP 6.0	
T-ALL-SNP-\#1	Yes				500K + 50K	
T-ALL-SNP-\#2	Yes				500K + 50K	
T-ALL-SNP-\#3	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#4	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#5	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#6	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#7	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#8	Yes				500K + 50K	
T-ALL-SNP-\#9	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#10	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#11	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#12	Yes				500K + 50K	
T-ALL-SNP-\#13	Yes				500K + 50K	
T-ALL-SNP-\#14	Yes				500K + 50K	
T-ALL-SNP-\#15	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#16	Yes				500K + 50K	
T-ALL-SNP-\#17	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#18	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#19	Yes				500K + 50K	

Sample	Previously studied?	DS	CRLF2 alteration	JAK mutation	SNP platform	Agilent array
T-ALL-SNP-\#20	Yes				500K + 50K	
T-ALL-SNP-\#21	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#22	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#23	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#24	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#25	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#26	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#27	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#28	Yes				500K + 50K	
T-ALL-SNP-\#29	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#30	Yes				500K + 50K	
T-ALL-SNP-\#31	Yes				500K + 50K	
T-ALL-SNP-\#32	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#33	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#34	Yes				500K + 50K	
T-ALL-SNP-\#35	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#37	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#38	Yes				500K + 50K	
T-ALL-SNP-\#39	Yes				500K + 50K	
T-ALL-SNP-\#40	Yes				500K + 50K	
T-ALL-SNP-\#41	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#42	Yes				500K + 50K	
T-ALL-SNP-\#44	Yes				500K	
T-ALL-SNP-\#45	Yes				500K + 50K	
T-ALL-SNP-\#47	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#48	Yes				$500 \mathrm{~K}+50 \mathrm{~K}$	
T-ALL-SNP-\#49	Yes				500K + 50K	
T-ALL-SNP-\#50	Yes				500K + 50K	
T-ALL-SNP-\#36	Yes				SNP 6.0	
T-ALL-SNP-\#43	Yes				SNP 6.0	
T-ALL-SNP-\#46	Yes				SNP 6.0	
T-ALL-SNP-\#51	Yes				SNP 6.0	
T-ALL-SNP-\#52	Yes				SNP 6.0	
T-ALL-SNP-\#53	Yes				SNP 6.0	
T-ALL-SNP-\#54	Yes				SNP 6.0	
T-ALL-SNP-\#55	Yes				SNP 6.0	
T-ALL-SNP-\#57	Yes				SNP 6.0	
T-ALL-SNP-\#58	Yes				SNP 6.0	

Supplementary Table 2

Listing of all segments (regions) of tumor-acquired copy number alteration in all St Jude DS-ALL cases, and non DS-ALL cases with PAR1 deletions. The table excludes constitutional trisomy 21, and deletions associated with antigen receptor gene rearrangements.

Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/d	Number of	Comment	first 10 genes in segment
DS-ALL cases									
Hyperdip>50-SNP-\#33	4	p16.3-q35.2	0.019	191.306	2.7			Trisomy 4	
Hyperdip>50-SNP-\#33	9	p21.3	21.880	21.982	0.9	101.426	1		/CDKN2A
Hyperdip>50-SNP-\#33	14	q11.2-q32.33	19.273	106.356	2.83			Trisomy 14	
Hyperdip>50-SNP-\#33	15	q11.2-q26.3	19.916	100.211	2.69			Trisomy 15	
Hyperdip>50-SNP-\#33	17	p13.3-q25.3	0.007	31.461	2.66			Trisomy 17	
Hyperdip>50-SNP-\#33	21	p11.2-q22.3	9.888	46.925	4.19		241	+21c, and gain of additional chr 21 in tumor	
Hyperdip>50-SNP-\#33	X	p22.33	0.034	0.993	2.42	958.531	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Hyperdip>50-SNP-\#33	X	p22.33	1.017	1.759	1.05	742.144	8	PAR1	/CSF2RA/LL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8/RP13- 297E16.1/ASMT
Hyperdip>50-SNP-\#33	X	p22.33-q28	1.792	154.480	2.8	152665.104	737		/ASMT/ZBED1/CD99/XG/GYG2/ARSD/ARSE/ARSH/ARSF/MX RA5
TEL-AML1-SNP-\#43	3	p22.3	35.615	35.615	0.89	306.309	0		
TEL-AML1-SNP-\#43	8	q12.1	60.206	60.261	0.77	55.416	0		
TEL-AML1-SNP-\#43	9	p21.3	21.920	21.949	0.74	28.858	0		
TEL-AML1-SNP-\#43	9	p21.3	21.959	21.995	0.2	36.618	2		/CDKN2A/CDKN2B
TEL-AML1-SNP-\#43	9	p21.1	28.584	28.752	0.18	167.978	1		/LRRN6C
TEL-AML1-SNP-\#43	X	q26.2-q28	130.475	154.480	4.32	24005.146	176		/RP6-213H19.1/RP6- 213H19.2/RAP2C/MBNL3/HS6ST2/USP26/TFDP3/GPC4/GPC 3/PHF6
Hyperdip47-50-SNP-\#19	2	q33.3	208.13056	208.281566	1.17	151.006	2		/CREB1/FAM119A
Hyperdip47-50-SNP-\#19	3	q27.3;q28	188.921216	190.495267	0.37	1574.051	3		/BCL6/LPP/TPRG1
Hyperdip47-50-SNP-\#19	9	p24.3-p21.3	0.03091	21.904576	1.1	21873.666	84		/FOXD4/CBWD1/C9orf66/DOCK8/KANK1/DMRT1/DMRT3/DM RT2/SMARCA2/VLDLR
Hyperdip47-50-SNP-\#19	9	p21.3	21.908568	22.109128	0.2	200.56	2		/CDKN2A/CDKN2B
Hyperdip47-50-SNP-\#19	9	p21.3-q13	22.111621	70.133638	1.13	48022.017	129		/DMRTA1
Hyperdip47-50-SNP-\#19	9	q13-q34.3	70.139836	140.211203	2.9	70071.367	520		/PGM5/C9orf71/PIP5K1B/FAM122A/PRKACG/FXN/TJP2/C9orf 61/APBA1
Hyperdip47-50-SNP-\#19	10	q22.1	72.804151	73.008286	1.12	204.135	1		/CDH23
Hyperdip47-50-SNP-\#19	11	q24.1	122.045364	122.119993	1.07	74.629	1		/UBASH3B
Hyperdip47-50-SNP-\#19	12	q21.33;q22	90.802579	91.351732	1.1	549.153	3		/BTG1/CLLU1OS/CLLU1
Hyperdip47-50-SNP-\#19	13	q22.3;q31.1	77.006747	78.921307	1.16	1914.56	6		/SCEL/SLAIN1/EDNRB/POU4F1/RNF219/RBM26
Hyperdip47-50-SNP-\#8	1	q31.1	186.25171	186.341243	1	89.533	0		
Hyperdip47-50-SNP-\#8	3	p12.3	75.509785	75.629408	1.1	119.623	0		
Hyperdip47-50-SNP-\#8	3	q13.2	113.535936	113.700796	1.06	164.86	2		/CD200/BTLA
Hyperdip47-50-SNP-\#8	6	p22.1	26.25277	26.35578	1.07	103.01	14		ST1H2AD/HIST1H2BF/HIST1H4E/HIST1H2BG/HIST1H2AE
Hyperdip47-50-SNP-\#8	7	p12.3	47.095404	47.099867	0.74	4.463	0		
Hyperdip47-50-SNP-\#8	7	q11.21	61.624717	61.794045	3.09	169.328	0		
Hyperdip47-50-SNP-\#8	7	q21.12;q21.13	87.988734	88.175329	2.9	186.595	0		
Hyperdip47-50-SNP-\#8	7	q21.13	88.178084	88.464008	4.14	285.924	2		IZNF804B/MGC26647
Hyperdip47-50-SNP-\#8	7	q21.13	88.46497	90.004781	2.78	1539.811	4		/ZNF804B/STEAP1/STEAP2/FLJ21062
Hyperdip47-50-SNP-\#8	7	q22.1	100.752321	100.922118	2.93	169.797	1		/EMID2
Hyperdip47-50-SNP-\#8	9	p13.2	36.578714	37.021876	1.1	443.162	2		/MELK/PAX5
Hyperdip47-50-SNP-\#8	11	p15.2	13.096023	13.144599	1	48.576	0		
Hyperdip47-50-SNP-\#8	X	p22.33	1.4158	1.600371	1.17	184.571	4	PAR1	/IL3RA/SLC25A6/ASMTL/P2RY8
Hyperdip47-50-SNP-\#12	1	q32.3-q42.12	208.896	222.727	1.41	13830.806	67		/PPP2R5A/C1orf75/NENF/ATF3/FAM71A/SNFT/C1orf48/LOC1 49643/FLVCR/VASH2
Hyperdip47-50-SNP-\#12	1	q42.12-q44	222.752	245.378	1.08	22625.924	163		/LIN9/PARP1/C1orf95/ITPKB/PSEN2/CABC1/CDC42BPA/ZNF 678/JMJD4/C1orf142
Hyperdip47-50-SNP-\#12	10	q21.3	64.530	65.488	2.57	957.861	3		/NRBF2/JMJD1C/REEP3
Hyperdip47-50-SNP-\#12	14	q11.2-q32.33	19.495	105.717	2.47	Trisomy 14			

Nature Genetics: doi:10.1038/ng. 469

Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/d	Number of	Comment	first 10 genes in segment
Hyperdip47-50-SNP-\#12	17	q21.31	38.250	41.569	2.72	3318.892	69		/AOC2/AOC3/FLJ31222/G6PC/AARSD1/RUNDC1/RPL27/IFI35 /VAT1/RND2
Hyperdip47-50-SNP-\#12	17	q21.31-q25.3	41.708	78.605	3.61	36865.185	405		/LRRC37A/LOC474170/ARL17P1/NSF/NSF/WNT3/WNT9B/GO SR2/RPRML/CDC27/MYL4/ITGB3/C17orf57/NPEPPS
Hyperdip47-50-SNP-\#12	X	p22.33	0.034	0.993	3.33	958.531	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Hyperdip47-50-SNP-\#12	X	p22.33	1.017	1.683	0.96	666.722	6	PAR1	/CSF2RA/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#12	X	p22.33	1.709	2.688	3.3	979.008	5		/RP13-297E16.1/ASMT/ZBED1/CD99/XG
Hyperdip47-50-SNP-\#12	X	p22.33-q28	2.697	154.480	4.58	151782.927	733		$\begin{aligned} & \text { /XG/GYG2/ARSD/ARSE/ARSH/ARSF/MXRA5/PRKX/NLGN4XI } \\ & \text { VCX3A } \\ & \hline \end{aligned}$
Hyperdip47-50-SNP-\#14	X	p22.33	0.034	0.914	3.06	879.749	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Hyperdip47-50-SNP-\#14	X	p22.33	1.499	1.683	0.94	183.82	5	PAR1	/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#14	X	p22.33	1.709	2.683	2.47	974.343	5		/RP13-297E16.1/ASMT/ZBED1/CD99/XG
Hyperdip47-50-SNP-\#14	X	p22.33-q28	2.684	154.480	3.16	151724.639	734		$\begin{aligned} & \text { /XG/GYG2/ARSD/ARSE/ARSH/ARSF/MXRA5/PRKX/NLGN4XI } \\ & \text { VCX3A } \\ & \hline \end{aligned}$
Hyperdip47-50-SNP-\#15	X	p22.33	0.034	1.017	3.16	982.145	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Hyperdip47-50-SNP-\#15	X	p22.33	1.499	1.683	1.23	183.82	5	PAR1	/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#15	X	p22.33-q28	1.709	154.480	2.89	152771.086	737		/RP13- 297E16.1/ASMT/ZBED1/CD99/XG/GYG2/ARSD/ARSE/ARSH/ ARSF
Other-SNP-\#33	2	q21.2	134.746111	134.816827	1.18	70.716	0		
Other-SNP-\#33	3	p14.1	69.591297	69.607008	1.01	15.711	0		
Other-SNP-\#33	3	q13.33	123.002773	123.032854	1.06	30.081	1		/IQCB1
Other-SNP-\#33	6	p22.2;p22.1	26.264565	26.400414	0.37	135.849	19		/HIST1H1E/HIST1H2BD/HIST1H2BE/HIST1H4D/HIST1H3D/HI ST1H2AD/HIST1H2BF/HIST1H4E/HIST1H2BG/HIST1H2AE
Other-SNP-\#33	7	p12.2	50.381206	50.476072	1.04	94.866	2		/DDC/GRB10
Other-SNP-\#33	9	p23-p21.3	12.624026	21.958712	1.71	9334.686	46		/TYRP1/C9orf150/MPDZ/NFIB/ZDHHC21/CER1/FREM1/C9orf5 2/SNAPC3/PSIP1
Other-SNP-\#33	9	p21.3	21.966858	21.995382	0.75	28.524	2		/CDKN2A/CDKN2B
Other-SNP-\#33	9	p21.3	21.99996	22.283804	1.6	283.844	0		
Other-SNP-\#33	9	p21.3;p21.2;p21.1	22.290326	31.282989	1.73	8992.663	13		/DMRTA1/ELAVL2/TUSC1/C9orf82/PLAA/IFT74/LRRC19/TEK/ C9orf11/MOBKL2B
Other-SNP-\#33	9	p21.1-p13.1	31.28388	38.656106	1.67	7372.226	88		/ACO1/DDX58/TOPORS/NDUFB6/TAF1L/LOC401498/APTX/D NAJA1/SMU1/B4GALT1
Other-SNP-\#33	12	p13.2	11.905252	11.931648	3.02	26.396	1		/ETV6
Other-SNP-\#33	X	p22.33	1.4158	1.600371	1.11	184.571	4	PAR1	/IL3RA/SLC25A6/CXYorf2/ASMTL
Down-SNP-\#09	9	p21.3	21.904576	21.948524	1.16	43.948	0		
Down-SNP-\#09	9	p21.3	21.948554	21.995382	0.4	46.828	2		/CDKN2A/CDKN2B
Down-SNP-\#09	15	q22.31	63.805343	63.86605	0.97	60.707	1		/DENND4A
Down-SNP-\#09	X	p22.33	0.108465	1.146863	3.08	1038.398	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Down-SNP-\#09	X	p22.33	1.4158	1.600371	0.94	184.571	4	PAR1	/IL3RA/SLC25A6/ASMTL/P2RY8
Down-SNP-\#09	X	p22.33	1.618943	2.724459	3.15	1105.516	6		/SFRS17A/ASMT/DHRSX/ZBED1/CD99/XG
Down-SNP-\#09	X	p22.33-q28	2.724756	154.907376	4.05	152182.62	787		/XG/GYG2/ARSD/ARSE/ARSH/ARSF/MXRA5/PRKX/NLGN4X/ VCX3A
Down-SNP-\#10	3	p14.2	60.164389	60.210116	0.98	45.727	1		/FHIT
Down-SNP-\#10	7	p22.3-p12.2	0.052899	50.379256	0.99	50326.357		with	A1/COX19/CYP2W1/C7orf50
Down-SNP-\#10	7	p12.2	50.381206	50.424682	0.22	43.476	1		/IKZF1
Down-SNP-\#10	7	p12.2-q34	50.433798	158.819753	0.99	108385.955			/IIKZF1/FIGNL1/DDC/GRB10/COBL
Down-SNP-\#10	9	p24.3-p11.2	0.03091	65.356954	1	65326.044		9p-	RT2/SMARCA2/VLDLR
Down-SNP-\#10	9	q12-q34.3	65.370754	140.211203	2.9	74840.449		$9{ }^{+}$	
Down-SNP-\#10	11	q14.3	89.068615	89.114467	0.96	45.852	1		/PSMAL
Down-SNP-\#10	11	q23.1	110.669668	110.676856	0.77	7.188	1		/FLJ45803
Down-SNP-\#10	15	q11.2	20.224751	20.968714	3.19	743.963	5		/LOC283767/TUBGCP5/CYFIP1/NIPA2/NIPA1

[^1]Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/d	Number of	Comment	first 10 genes in segment
Down-SNP-\#11	6	p22.1	26.29202	26.35958	1.16	67.56	13		/HIST1H2BE/HIST1H4D/HIST1H3D/HIST1H2AD/HIST1H2BF/H IST1H4E/HIST1H2BG/HIST1H2AE/HIST1H3E/HIST1H1D
Down-SNP-\#11	7	p22.2	4.326589	4.498403	1.03	171.814	0		
Down-SNP-\#11	7	p21.3	8.793683	8.832382	1.01	38.699	0		
Down-SNP-\#11	7	p12.1	53.433507	53.558229	1.03	124.722			
Down-SNP-\#11	7	q21.11	80.094739	80.118116	0.97	23.377	1		/CD36
Down-SNP-\#11	12	p11.21	31.893551	31.959157	2.96	65.606	0		
Down-SNP-\#11	15	q11.2	22.225832	22.269677	1.07	43.845	0		
Down-SNP-\#12	No le								
Down-SNP-\#13	3	p22.3	35.397885	35.658108	1.17	260.223	0		Adjacent to ARPP21
Down-SNP-\#13	5	q33.3	157.223774	157.3035	1.16	79.726	0		Distal to EBF1
Down-SNP-\#13	5	q33.3	158.373438	158.457083	1.17	83.645	1		/EBF1
Down-SNP-\#13	12	p13.2	11.698451	11.842382	1.21	143.931	1		/ETV6
Down-SNP-\#13	15	q21.2	48.436232	48.70673	1.14	270.498	3		/USP8/USP50/TRPM7
Down-SNP-\#14	3	p22.1	39.714103	39.748539	0.89	34.436	0		
Down-SNP-\#14	3	p14.2	60.04165	60.357868	1.17	316.218	1		/FFIT
Down-SNP-\#14	3	q25.2	153.829772	153.839161	1.09	9.389	0		Adjacent MBNL1
Down-SNP-\#14	5	q33.3	157.877758	158.453167	1.28	575.409	1		/EBF1
Down-SNP-\#14	7	p12.2	50.382544	50.433798	1.02	51.254	1		/IKZF1
Down-SNP-\#14	9	q21.32	84.871848	84.911971	0.79	40.123	0		
Down-SNP-\#14	11	q24.1	120.815774	120.87446	1.19	58.686	1		/SORL1
Down-SNP-\#14	12	p13.2	11.674778	11.695111	1.21	20.333	1		/ETV6
Down-SNP-\#14	14	q32.2	98.581642	98.612433	0.93	30.791	0		
Down-SNP-\#14	15	q26.3	99.782644	99.883303	2.98	100.659	1		/PCSK6
Down-SNP-\#14	16	p13.3	3.482409	3.59946	1.27	117.051	4		/LOC646174/CLUAP1/NLRC3/BTBD12
Down-SNP-\#15	4	q12	53.932189	53.982078	0.93	49.889	1		/FIP1L1
Down-SNP-\#15	6	p22.1	26.245402	26.369985	0.24	124.583	16		/HIST1H1E/HIST1H2BD/HIST1H2BE/HIST1H4D/HIST1H3D/HI ST1H2AD/HIST1H2BF/HIST1H4E/HIST1H2BG/HIST1H2AE
Down-SNP-\#15	6	p22.1	27.90637	27.990246	0.85	83.876	11		/HIST1H4K/HIST1H2AK/HIST1H2BN/HIST1H2AL/HIST1H1B/H IST1H3I/HIST1H4L/HIST1H3J/HIST1H2AM/HIST1H2BO
Down-SNP-\#15	7	p15.1-p11.1	29.253457	58.0239	1.14	28770.443	85		/CHN2/PRR15/WIPF3/SCRN1/FKBP14/PLEKHA8/C7orf41/ZN RF2/NOD1/C7orf24
Down-SNP-\#15	8	q22.1	96.350967	96.49908	1.04	148.113	0		
Down-SNP-\#15	X	p22.33	0.108465	0.941508	3.12	833.043	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Down-SNP-\#15	X	p22.33	1.131508	1.600371	1.26	468.863	6	PAR1	/CRLF2/CSF2RA/IL3RA/SLC25A6/ASMTL/P2RY8
Down-SNP-\#15	X	p22.33-q28	1.618943	154.907376	3.03	153288.433	794		/SFRS17A/ASMT/DHRSXIZBED1/CD99/XG/GYG2/ARSD/ARS E/ARSH
Down-SNP-\#16	4	q35.2	190.776255	190.819835	1.34	43.58	0		
Down-SNP-\#16	8	q12.1	60.20333	60.40437	1.17	201.04	0		/TOX
Down-SNP-\#16	9	p21.3	21.81811	21.958712	1.21	140.602	2		/MTAP/CDKN2A
Down-SNP-\#16	9	p21.3	21.966858	21.995382	0.45	28.524	2		/CDKN2A/CDKN2B
Down-SNP-\#16	11	q24.2	126.705741	126.709006	1.27	3.265	0		
Down-SNP-\#16	12	q13.13	51.770621	51.777276	0.99	6.655	0		
Down-SNP-\#16	X	p22.33	0.108465	1.146863	2.93	1038.398	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Down-SNP-\#16	X	p22.33	1.4158	1.600371	1.17	184.571	4	PAR1	/IL3RA/SLC25A6/ASMTL/P2RY8
Down-SNP-\#16	X	p22.33-q28	1.618943	154.711269	3.51	22043.569	796		/SFRS17A/ASMT/DHRSX/ZBED1/CD99/XG/GYG2/ARSD/ARS E/ARSH
Down-SNP-\#17	5	q34	165.779329	165.779738	4.34	0.409	0		
Down-SNP-\#17	9	p24.3-p21.3	0.03091	21.958712	1.67	21916.588	86		/CBWD1/C9orf66/DOCK8/KANK1/DMRT1/DMRT3/DMRT2/SM ARCA2/VLDLR/KCNV2
Down-SNP-\#17	9	p21.3	21.966858	21.995382	0.59	28.524	2		/CDKN2A/CDKN2B

Nature Genetics: doi:10.1038/ng. 469

Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/	Number of	Comment	first 10 genes in segment
Down-SNP-\#17	9	p21.3-p12	21.99996	42.055254	1.19	20055.294	110		/DMRTA1/ELAVL2/TUSC1/C9orf82/PLAA/IFT74/LRRC19/TEK/ C9orf11/MOBKL2B/IFNK
Down-SNP-\#17	9	q12-q34.3	69.267815	140.211203	2.87	70943.388	537		/FOXD4L5/FOXD4L4/FOXD4L2/CBWD3/CBWD5/FOXD4L3/P GM5/C9orf71/PIP5K1B/FAM122A
Down-SNP-\#17	17	p13.3	0.394414	0.407266	1.16	12.852	1		/VPS53
Down-SNP-\#18	none								
Down-SNP-\#19	1	p31.3	65.178977	65.18465	0.9	5.673	1		/JAK1
Down-SNP-\#19	3	q26.32	178.299328	178.395593	1.07	96.265	1		/TBL1XR1
Down-SNP-\#19	6	p25.3-p22.1	0.094649	28.018718	2.3	27924.069	184		/DUSP22/IRF4/EXOC2/HUS1B/FOXQ1/FOXF2/FOXC1/GMDS/ C6orf195/MYLK4
Down-SNP-\#19	6	p22.1	28.023292	28.110942	1.24	87.65	1		/OR2B6
Down-SNP-\#19	6	p22.1	28.110943	35	2.3	6889.057			manual
Down-SNP-\#19	9	q32	114.29217	114.513389	1.06	221.219	2		/KIAA1958/C9orf80
Down-SNP-\#19	11	p12	36.578171	36.595168	0.94	16.997	1		/C11orf74
Down-SNP-\#19	15	q14;q15.1;q15.2	35.098273	40.994899	1.2	5896.626	68		/MEIS2/TMCO5/SPRED1/FAM98B/RASGRP1/C15orf53/C15orf 54/THBS1/FSIP1/GPR176
Down-SNP-\#19	15	q21.1	44.974225	45.295558	2.97	321.333	0		
Down-SNP-\#19	15	q24.1-q26.3	70.658668	100.286551	1.21	29627.883	203		/ARIH1/GOLGA6B/BBS4/ADPGK/NEO1/HCN4/LOC283677/NP TN/CD276/LOC388135
Down-SNP-\#19	20	q11.22	32.856631	32.874454	0.94	17.823	1		/NCOA6
Down-SNP-\#19	21	q22.2	38.661535	38.78387	1.38	122.335	1		/ERG
Down-SNP-\#19	X	p22.33	0.108465	2.70424	1.07	2595.775	16	PAR1	/PLCXD1/GTPBP6/PPP2R3B/SHOX/CRLF2/CSF2RA/IL3RA/S LC25A6/ASMTL/P2RY8
Down-SNP-\#19	X	q12-q28	65.468629	154.58268	3.42	89114.051	370		/EDA2R/AR/OPHN1/YIPF6/STARD8/EFNB1/PJA1/FAM155B/E DA/DGAT2L4
Down-SNP-\#19	Y	p11.32-q12	0.169542	57.427794	0.43	57258.252	79		/GTPBP6/PPP2R3B/SHOX/CRLF2/CSF2RA/IL3RA/SLC25A6/A SMTL/P2RY8/SFRS17A
Down-SNP-\#20	3	p14.2	60.04165	60.256157	1	214.507	1		/FHIT
Down-SNP-\#20	4	p16.3	2.700454	2.744738	2.99	44.284	2		/C4orf8/TNIP2
Down-SNP-\#20	4	p16.2	3.849404	4.23695	2.64	387.546	0		
Down-SNP-\#20	5	q31.1	130.99968	131.14389	0.98	144.21	1		/FNIP1
Down-SNP-\#20	7	p12.2	50.307349	50.3369	0.98	29.551	1		/IKZF1
Down-SNP-\#20	12	p13.2	11.743762	11.946702	1.08	202.94	1		/ETV6
Down-SNP-\#20	X	p22.33	1.4158	1.600371	1.08	184.571	4	PAR1	/IL3RA/SLC25A6/ASMTL/P2RY8
Down-SNP-\#21	2	q14.1	113.881867	113.903417	0.87	21.55	0		
Down-SNP-\#21	3	q13.2	113.538286	113.700796	1.11	162.51	2		/CD200/BTLA
Down-SNP-\#21	4	q31.21	144.387613	144.475288	0.96	87.675	0		
Down-SNP-\#21	5	q33.3	157.733901	158.457083	0.95	723.182	1		/EBF1
Down-SNP-\#21	7	p14.3-p12.1	35.583523	51.415691	1.22	15832.168	79		/HERPUD2/SEPT7/LOC641961/EEPD1/KIAA0895/ANLN/AOA H/ELMO1/GPR141/TXNDC3
Down-SNP-\#21	15	q12	23.604291	23.654278	0.95	49.987	1		IATP10A
Down-SNP-\#21	15	q26.1	91.179546	91.258898	1.15	79.352	1		/CHD2
Down-SNP-\#21	16	p13.3	3.814783	3.9507	0.98	135.917	1		/CREBBP
Down-SNP-\#21	16	q21	65.156974	65.189613	0.94	32.639	3		/CKLF/CMTM1/CMTM2
Down-SNP-\#21	20	p12.2	10.365404	10.370231	0.65	4.827	1		/C20orf94
Down-SNP-\#21	20	p12.2	10.370353	10.399978	1.07	29.625	1		/C20orf94
Down-SNP-\#21	20	q11.22	32.856631	32.889861	1.22	33.23	1		/NCOA6
Down-SNP-\#21	X	p22.33	1.146863	1.600371	0.96	453.508	6	PAR1	/CRLF2/CSF2RA/IL3RA/SLC25A6/ASMTL/P2RY8
Down-SNP-\#21	X	p11.4	40.743819	40.84975	0.87	105.931	1		/USP9X
Down-SNP-\#22	5	q22.1	110.329336	110.375277	1.29	45.941	0		
Down-SNP-\#22	5	q33.1	150.125632	150.131715	1.04	6.083	0		
Down-SNP-\#22	6	p22.1	26.236425	26.358233	0.94	121.808	14		/HIST1H1E/HIST1H2BD/HIST1H2BE/HIST1H4D/HIST1H3D/HI ST1H2AD/HIST1H2BF/HIST1H4E/HIST1H2BG/HIST1H2AE
Down-SNP-\#22	7	q22.3	106.43767	106.466603	0.75	28.933	0		

Nature Genetics: doi:10.1038/ng.469

Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/d	Number of	Comment	first 10 genes in segment
Down-SNP-\#22	8	q24.21	130.624762	130.708986	3.31	84.224	0		
Down-SNP-\#22	9	p22.2-p21.3	17.803501	21.809465	1.17	4005.964	21		/MLLT3/KIAA1797/PTPLAD2/IFNB1/IFNW1/IFNA21/IFNA4/IFN A7/IFNA10/IFNA16
Down-SNP-\#22	9	p21.3	21.81811	21.995382	0.29	177.272	3		/MTAP/CDKN2A/CDKN2B
Down-SNP-\#22	9	p21.3	21.99996	23.575469	1.06	1575.509	1		/DMRTA1
Down-SNP-\#22	10	q25.1;q25.2	111.756579	111.858222	0.97	101.643	1		/ADD3
Down-SNP-\#22	13	q14.11	42.855073	42.871462	1.03	16.389	1		/ENOX1
Down-SNP-\#22	19	q13.12	41.697459	41.709636	0.92	12.177	1		/ZNF260
Down-SNP-\#22	X	p22.33	1.4158	1.600371	1.03	184.571	4	PAR1	/IL3RA/SLC25A6/ASMTL/P2RY8
Down-SNP-\#22	X	p21.1	33.37474	33.71865	0.46	343.91	0		Adjacent to DMD
Down-SNP-\#22	X	q23	115.139163	115.17702	3.98	37.857	0		
Down-SNP-\#22	X	q24	118.693816	119.129688	3.51	435.872	11		/SEPT6/ANKRD58/RPL39/UPF3B/RNF113A/NDUFA1/AKAP14 /NKAP/RHOXF2B/RHOXF2
Non DS-ALL cases with PAR1 deletions									
Hyperdip47-50-SNP-\#18	3	p26.2	3.076	3.337	3.24	261.189	3		/IL5RA/TRNT1/CRBN
Hyperdip47-50-SNP-\#18	9	p22.2;p22.1	17.500	19.214	0.99	1714.728	7		\qquad
Hyperdip47-50-SNP-\#18	9	p22.1;p21.3	19.464	21.169	1.03	1704.905	7		/SLC24A2/MLLT3/KIAA1797/PTPLAD2/IFNB1/IFNW1/IFNA21
Hyperdip47-50-SNP-\#18	9	p21.3	21.171	22.375	0.3	1203.735	17		/IFNA4/IFNA14/IFNA7/IFNA10/IFNA16/IFNA17/IFNA5/KLHL9/I FNA6/IFNA13
Hyperdip47-50-SNP-\#18	9	p21.3	22.376	23.615	1.03	1239.181	1		/DMRTA1
Hyperdip47-50-SNP-\#18	21	p11.2-q22.3	9.888	46.925	3.05	37036.776	241		/TPTE/BAGE5/BAGE3/BAGE4/BAGE2/BAGE/C21orf99/ANKR D21/LOC441956/C21orf81
Hyperdip47-50-SNP-\#18	X	p22.33	1.549	1.709	0.84	159.268	4	PAR1	/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#22	9	p21.3	21.169	24.819	0.16	3650.134	19		/IFNA4/IFNA14/IFNA7/IFNA10/IFNA16/IFNA17/IFNA5/KLHL9/I FNA6/IFNA13
Hyperdip47-50-SNP-\#22	20	p12.2	10.376	10.405	0.78	28.63			/C20orf94
Hyperdip47-50-SNP-\#22	22	q11.22	21.054	21.547	0.9	492.964	5		/SUHW2/SUHW1/PRAME/LOC440821/GGTL4
Hyperdip47-50-SNP-\#22	X	p22.33	0.034	1.017	3.55	982.145	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Hyperdip47-50-SNP-\#22	X	p22.33	1.499	1.683	1.01	183.82	5	PAR1	/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#22	X	p22.33	1.709	2.681	3.49	972.09	5		/RP13-297E16.1/ASMT/ZBED1/CD99/XG
Hyperdip47-50-SNP-\#22	X	p22.33-q28	2.682	154.480	4.62	151753.126	734		/XG/GYG2/ARSD/ARSE/ARSH/ARSF/MXRA5/PRKX/NLGN4X/ VCX3A
Hypodip-SNP-\#4	3	p22.3	35.658	35.692	0.87	34.032	1		/ARPP-21
Hypodip-SNP-\#4	8	p23.3-p21.2	0.181	27.322	1.23	27141.029	135		IZNF596/FBXO25/C8orf42/LOC389607/ERICH1/DLGAP2/CLN 8/ARHGEF10/KBTBD11/MYOM2
Hypodip-SNP-\#4	9	p24.3-p21.3	0.177	21.884	0.87	21707.696	82		/C9orf66/DOCK8/ANKRD15/DMRT1/DMRT3/DMRT2/SMARCA 2/VLDLR/KCNV2/KIAA0020
Hypodip-SNP-\#4	9	p21.3	21.884	21.995	0.16	110.835	2		/CDKN2A/CDKN2B
Hypodip-SNP-\#4	9	p21.3-p13.1	22.000	40.073	0.88	18073.235	103		/DMRTA1/ELAVL2/TUSC1/C9orf82/PLAA/IFT74/LRRC19/TEK/ C9orf11/MOBKL2B
Hypodip-SNP-\#4	20	q11.22-q13.33	31.727	62.377	0.89	30650.337	301		/E2F1/PXMP4/ZNF341/CHMP4B/RALY/EIF2S2/ASIP/AHCY/IT CH/DYNLRB1
Hypodip-SNP-\#4	X	q25-q28	122.894	154.480	2.84	31585.645	202		/STAG2/SH2D1A/ODZ1/WDR40C/WDR40B/ACTRT1/SMARCA 1/OCRL/APLN/XPNPEP2
Hypodip-SNP-\#4	X	p22.33	1.499	1.642	0.95	142.11	5	PAR1	/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hypodip-SNP-\#9	7	q21.2	91.933	92.109	0.91	175.77	1		/CDK6
Hypodip-SNP-\#9	9	p21.3	21.097	21.884	0.94	787.169	17		/IFNW1/IFNA21/IFNA4/IFNA14/IFNA7/IFNA10/IFNA16/IFNA17/ IFNA5/KLHL9
Hypodip-SNP-\#9	9	p21.3	21.899	21.995	0.18	96.33	2		/CDKN2A/CDKN2B
Hypodip-SNP-\#9	9	p21.3-p13.1	22.000	40.073	0.92	18073.235	103		/DMRTA1/ELAVL2/TUSC1/C9orf82/PLAA/IFT74/LRRC19/TEK/ C9orf11/MOBKL2B
Hypodip-SNP-\#9	12	q14.1	61.320	61.373	0.8	52.455	0		

[^2]Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/	Number of	Comment	first 10 genes in segment
Hypodip-SNP-\#9	14	q32.2-q32.33	100.249	106.356	0.92	5810.355	54		/DLK1/FLJ41170/DIO3/PPP2R5C/DYNC1H1/HSP90AA1/WDR 20/RAGE/C14orf131/CINP
Hypodip-SNP-\#9	20	q11.22;q13.33	32.687	62.377	0.93	29676.494	291		/CDC91L1/TP53INP2/NCOA6/GGTL3/ACSS2/GSS/MYH7B/TR PC4AP/EDEM2/PROCR
Hypodip-SNP-\#9	22	q11.22	20.711	20.741	0.51	30.23	0		
Hypodip-SNP-\#9	X	p22.33	1.499	1.642	0.95	142.11	5		/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#2	3	q13.2	113.342	113.404	4.37	62.7	1		/SLC9A10
Hyperdip47-50-SNP-\#2	6	p22.2	26.246	26.398	1.06	151.999	19		/HIST1H1E/HIST1H2BD/HIST1H2BE/HIST1H4D/HIST1H3D/HI ST1H2AD/HIST1H2BF/HIST1H4E/HIST1H2BG/HIST1H2AE
Hyperdip47-50-SNP-\#2	9	p21.3	21.920	21.949	0.92	28.858	0		
Hyperdip47-50-SNP-\#2	9	p21.3	21.959	21.995	0.33	36.618	2		/CDKN2A/CDKN2B
Hyperdip47-50-SNP-\#2	9	p21.3	22.000	23.204	1.23	1204.4	1		/DMRTA1
Hyperdip47-50-SNP-\#2	21	p11.2-q21.2	9.888	24.291	2.34	14403.122	26		/TPTE/BAGE4/BAGE3/BAGE2/BAGE5/BAGE/C21orf99/ANKR D21/LOC441956/C21orf81
Hyperdip47-50-SNP-\#2	21	q21.2-q22.3	24.292	46.925	3.2	22562.063	217		/FLJ42200
Hyperdip47-50-SNP-\#2	X	p22.33	0.034	0.993	3.04	958.531	4		/PLCXD1/GTPBP6/PPP2R3B/SHOX
Hyperdip47-50-SNP-\#2	X	p22.33	1.017	1.644	1.58	627.098	6	PAR1	/CSF2RA/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Hyperdip47-50-SNP-\#2	X	p22.33-q28	138.434	2.729	4.32	152768.185	740		/P2RY8/RP13-297E16.1/ASMT/ZBED1/CD99/XG
Other-SNP-\#13	X	p22.33	1.499	1.644	1.08	144.196	5	PAR1	/IL3RA/SLC25A6/CXYorf2/ASMTL/P2RY8
Other-SNP-\#32	1	q21.3	148.607422	148.687165	1.17	79.743	3		/RORC/THEM5/THEM4
Other-SNP-\#32	8	p23.3	0.021242	32.488584	1.39	32467.342	2		/OR4F21/OR4F29
Other-SNP-\#32	8	p12	32.488768	38.144504	2.56	5655.736	20		/NRG1/FUT10/RBM13/C8orf41/RNF122/DUSP26/UNC5D/FKS G2/ZNF703/SPFH2
Other-SNP-\#32	8	p12	38.147352	38.235854	4.19	88.502	3		/LSM1/BAG4/DDHD2
Other-SNP-\#32	8	p12	38.236926	38.287512	5.22	50.586	3		/DDHD2/PPAPDC1B/WHSC1L1
Other-SNP-\#32	8	p12	38.289666	38.440573	16.13	150.907	3		/WHSC1L1/LETM2/FGFR1
Other-SNP-\#32	8	p12;p11.23	38.440583	38.82225	9.27	381.667	3		/FGFR1/FLJ43582/TACC1
Other-SNP-\#32	10	p15.3;p15.2	0.094186	39.110664	2.89	3095.969	13		/ZMYND11/DIP2C/C10orf108/LARP5/GTPBP4/IDI2/C10orf110/I DI1/WDR37/LOC399706
Other-SNP-\#32	10	q11.1;q11.21	41.753746	55.254916	1.24	2236.936	10		/MGC16291/BMS1L/RET/GALNACT- 2/RASGEF1A/FXYD4/HNRPF/ZNF239/ZNF485/ZNF32
Other-SNP-\#32	10	q21.1	55.458808	57.837471	1.32	2378.663	2		/PCDH15/ZWINT
Other-SNP-\#32	11	q12.1-q13.3	58.815689	80.593158	2.73	10168.554	272		/OR5AN1/OR5A2/OR5A1/OR4D6/OR4D10/OR4D11/OR4D9/O SBP/FLJ36874/OR10V1
Other-SNP-\#32	11	q14.1;q14.2	84.791643	86.510654	4.17	1719.011	14		/TMEM126B/TMEM126A/ZF/CCDC89/SYTL2/CCDC83/PICAL M/EED/C11orf73/CCDC81
Other-SNP-\#32	11	q14.2	86.720887	87.438288	1.28	717.401	0		
Other-SNP-\#32	11	q14.2;q14.3	87.440907	87.829795	4.08	388.888	2		/RAB38/CTSC
Other-SNP-\#32	11	q14.3	87.830085	87.888766	6.64	58.681	1		/GRM5
Other-SNP-\#32	11	q14.3	87.890522	89.588148	2.74	1697.626	7		/GRM5/TYR/NOX4/PSMAL/TRIM49/NAALAD2/CHORDC1
Other-SNP-\#32	11	q14.3	89.588745	89.661434	4.15	72.689	1		/CHORDC1
Other-SNP-\#32	11	q14.3	89.661644	90.317354	2.93	655.71	0		
Other-SNP-\#32	11	q14.3	90.317539	90.44351	3.54	125.971	0		
Other-SNP-\#32	11	q14.3	90.446278	90.977112	2.89	530.834	0		
Other-SNP-\#32	11	q14.3	90.985235	91.86897	6.5	883.735	1		/FAT3
Other-SNP-\#32	11	q14.3;q21	91.869121	93.982215	7.64	2113.094	14		/FAT3/MTNR1B/SLC36A4/CCDC67/C11orf75/JOSD3/C11orf54 /CRSP6/PANX1/GPR83
Other-SNP-\#32	11	q21	93.982386	93.994962	5.04	12.576	1		/PIWIL4
Other-SNP-\#32	11	q21	93.994986	94.860626	6.91	865.64	5		/AMOTL1/HSPC148/JMJD2D/SFRS2B/SESN3
Other-SNP-\#32	11	q21	94.862022	94.875384	3.97	13.362	0		
Other-SNP-\#32	11	q21	94.875739	96.244581	7.22	1368.842	6		/FAM76B/CEP57/MTMR2/MAML2/CCDC82/JRKL
Other-SNP-\#32	11	q21	96.24726	96.319422	5.01	72.162	0		
Other-SNP-\#32	11	q21;q22.1	96.31993	97.747591	3.57	1427.661	0		
Other-SNP-\#32	11	q22.1	97.748441	97.766841	5.49	18.4	0		
Other-SNP-\#32	11	q22.1	97.767331	97.856295	3.66	88.964	0		
Other-SNP-\#32	11	q22.1	97.857768	98.824357	2.79	966.589	1		/CNTN5

Nature Genetics: doi:10.1038/ng. 469

Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/	Number of	Comment	first 10 genes in segment
Other-SNP-\#32	11	q22.1	98.826592	98.864482	3.77	37.89	1		/CNTN5
Other-SNP-\#32	11	q22.1	98.864909	99.122339	5.07	257.43	1		/CNTN5
Other-SNP-\#32	11	q22.1	99.12685	100.400665	2.82	1273.815	2		/CNTN5/TMEM133
Other-SNP-\#32	11	q22.1	100.408204	100.47693	5.16	68.726	1		/PGR
Other-SNP-\#32	11	q22.1	100.478901	101.12266	3.52	643.759	2		/PGR/TRPC6
Other-SNP-\#32	11	q22.1;q22.2	101.130121	102.078038	5.72	947.917	10		/ANGPTL5/KIAA1377/C11orf70/YAP1/BIRC3/BIRC2/TMEM123 /MMP7/MMP20/MMP27
Other-SNP-\#32	11	q22.2;q22.3	102.078527	103.894288	3.63	1815.761	10		/MMP27/MMP8/MMP10/MMP1/MMP3/MMP12/MMP13/DCUN1 D5/PDGFD/DDI1
Other-SNP-\#32	11	q22.3-q23.3	103.89707	120.050081	1.26	16153.011	140		/CASP4/CASP5/CASP1/COP1/INCA/ICEBERG/GRIA4/KIAA18 26/KBTBD3/AASDHPPT
Other-SNP-\#32	11	q23.3	120.051021	120.088304	0.89	37.283	1		/GRIK4
Other-SNP-\#32	11	q23.3-q25	120.089019	134.449982	1.27	14360.963	103		/GRIK4/LRRC35/TECTA/SC5DL/SORL1/BRCC2/STS- 1/CRTAM/C11orf63/HSPA8
Other-SNP-\#32	12	p12.1	24.989577	25.95285	2.31	143.05	2		/BCAT1/LRMP
Other-SNP-\#32	12	q21.33	90.798986	91.057747	1.23	258.761	1		/BTG1
Other-SNP-\#32	13	q12.13	24.401836	24.628496	2.34	226.66	1		/PABPC3
Other-SNP-\#32	13	q12.13	24.634281	24.682233	3.76	47.952	1		/FAM123A
Other-SNP-\#32	13	q12.13	24.682362	24.75588	5.05	73.518	1		/MTMR6
Other-SNP-\#32	13	q12.13	24.763063	24.773094	3.21	10.031	0		
Other-SNP-\#32	13	q12.13	24.774011	25.090118	2.4	316.107	3		/NUPL1/FLJ37464/ATP8A2
Other-SNP-\#32	13	q12.13	25.090407	25.952066	2.89	861.659	4		/ATP8A2/TMEM46/RNF6/CDK8
Other-SNP-\#32	13	q12.13	25.952102	26.201847	4.21	249.745	1		/WASF3
Other-SNP-\#32	13	q12.13	26.201907	26.501264	5.19	299.357	1		/GPR12
Other-SNP-\#32	13	q12.13;q12.2	26.501371	27.786786	7	1285.415	13		/USP12/RPL21/RASL11A/GTF3A/MTIF3/LNX2/POLR1D/GSH1 /IPF1/CDX2
Other-SNP-\#32	13	q12.2;q12.3	27.787089	27.8954	2.75	108.311	1		/FLT1
Other-SNP-\#32	13	q12.3	29.18191	114.126487	1.36	657.895	3		/UBL3/LOC440131/KATNAL1
Other-SNP-\#32	14	q32.12-q32.33	92.248093	106.356482	1.27	13245.226	116		$\begin{aligned} & \text { /LGMN/GOLGA5/CHGA/ITPK1/MOAP1/C14orf142/C14orf130/B } \\ & \text { TBD7/KIAA1409/COX8C } \end{aligned}$
Other-SNP-\#32	15	q14	31.887896	32.139214	1.26	251.318	3		/RYR3/AVEN/CHRM5
Other-SNP-\#32	15	q21.1	46.716087	47.305471	5.38	589.384	7		/FBN1/CEP152/SHC4/CRI1/KIAA0256/COPS2/GALK2
Other-SNP-\#32	15	q21.1;q21.2	47.308906	48.456009	2.65	1147.103	8		/GALK2/C15orf33/FGF7/DTWD1/ATP8B4/SLC27A2/HDC/GAB PB2
Other-SNP-\#32	15	q21.2	48.464801	48.573316	7.82	108.515	1		/USP8
Other-SNP-\#32	15	q21.2	48.575332	48.900363	5.67	325.031	4		/USP8/USP50/TRPM7/SPPL2A
Other-SNP-\#32	15	q21.2;q21.3	48.900364	52.202732	7.74	3302.368	19		/AP4E1/TNFAIP8L3/CYP19A1/GLDN/DMXL2/SCG3/LYSMD2/T MOD2/TMOD3/LEO1
Other-SNP-\#32	15	q21.3	52.20348	52.817899	5.83	614.419	0		
Other-SNP-\#32	15	q21.3	52.826687	53.174035	4.15	347.348	0		
Other-SNP-\#32	15	q21.3	53.174884	55.815528	1.24	2640.644	15		/C15orf15/RAB27A/PIGB/CCPG1/DYX1C1/PYGO1/NEDD4/RF XDC2/TEX9/MNS1
Other-SNP-\#32	15	q21.3	55.815617	55.898043	2.75	82.426	0		
Other-SNP-\#32	15	q21.3	55.89999	56.2663	0.57	366.31	2		/ALDH1A2/AQP9
Other-SNP-\#32	15	q21.3;q22.1;q22.2	56.534122	60.047371	3.48	3513.249	17		/LIPC/ADAM10/FAM63B/SLTM/RNF111/CCNB2/MYO1E/LDHA L6B/FAM81A/GCNT3
Other-SNP-\#32	15	q22.2;q22.31	60.144866	64.029559	4.22	3884.693	43		/NLF1/NLF2/FLJ38723/TLN2/TPM1/LACTB/RPS27L/RAB8B/A PH1B/CA12
Other-SNP-\#32	15	q22.31	64.030747	64.6954	3.39	664.653	8		/MEGF11/MGC4562/TIPIN/MAP2K1/SNAPC5/RPL4/ZWILCH/L
Other-SNP-\#32	15	q22.31	64.696178	64.714182	5.84	18.004	0		
Other-SNP-\#32	15	q22.31	64.715523	64.746565	3.87	31.042	0		
Other-SNP-\#32	15	q22.31;q22.32;q22.33	64.747506	65.003881	5.29	256.375	1		/SMAD6
Other-SNP-\#32	15	q22.33;q23	65.004948	67.441701	5.68	2436.753	16		/SMAD3/FLJ11506/IQCH/MAP2K5/PIAS1/CALML4/CLN6/FEM 1B/TGGA11/CORO2B
Other-SNP-\#32	15	q23	67.442085	70.019286	3.57	2577.201	11		/PAQR5/KIF23/RPLP1/TLE3/UACA/LARP6/THAP10/LRRC49/T HSD4/NR2E3
Other-SNP-\#32	15	q23;q24.1	70.019574	72.099847	1.22	2080.273	20		/MYO9A/SENP8/GRAMD2/PKM2/PARP6/BRUNOL6/HEXA/ARI H1/GOLGA/HIGD2BP
Other-SNP-\#32	15	q24.1	72.101014	72.101501	2.3	0.487	1		/PML

Nature Genetics: doi:10.1038/ng. 469

Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/	Number of	Comment	first 10 genes in segment
Other-SNP-\#32	15	q24.1;q24.2;q24.3	72.101689	80.133553	1.22	2563.728	41		/PML/ISLR2/ISLR/STRA6/CCDC33/CYP11A1/SEMA7A/UBL7/A RID3B/CLK3
Other-SNP-\#32	15	q25.2	80.138907	80.368482	3.39	229.575	2		/EFTUD1/DKFZp666G057
Other-SNP-\#32	15	q25.2;q25.3	80.369473	84.208312	2.67	3838.839	29		/FLJ22795/FLJ40113/RPS17/CPEB1/AP3B2/FSD2/HOMER2/F AM103A1/C15orf40/BTBD1
Other-SNP-\#32	15	q25.3-q26.3	84.214887	98.631363	1.26	14416.476	65		$\begin{aligned} & \text { /FLJ32310/TMEM83/NTRK3/MRPL46/MRPS11/DET1/ISG20L1 } \\ & \text { /ISG20/AGC1/HAPLN3 } \end{aligned}$
Other-SNP-\#32	15	q26.3	98.634908	100.246564	2.79	1611.656	16		/ADAMTS17/FLJ42289/LASS3/LINS1/ASB7/LOC440313/ALDH 1A3/LRRK1/CHSY1/SELS
Other-SNP-\#32	21	q21.1	18.372738	18.854924	4.52	482.186	2	Complex iAmp 21	/CHODL/PRSS7
Other-SNP-\#32	21	q21.1	19.034311	19.106129	2.94	71.818	0		
Other-SNP-\#32	21	q21.1	19.130602	19.201491	2.92	70.889	0		
Other-SNP-\#32	21	q21.1	19.230876	19.29514	4.81	64.264	0		
Other-SNP-\#32	21	q21.1	19.295812	19.84108	6.71	545.268	0		
Other-SNP-\#32	21	q21.1	19.847751	20.030757	4.17	183.006	0		
Other-SNP-\#32	21	q21.1	20.172123	20.58487	4.49	412.747	0		
Other-SNP-\#32	21	q21.1	20.585415	20.895675	6.17	310.26	0		
Other-SNP-\#32	21	q21.1	20.898984	21.044364	4.39	145.38	0		
Other-SNP-\#32	21	q21.1	21.197367	21.830427	5.22	633.06	1		/NCAM2
Other-SNP-\#32	21	q21.1	21.832254	22.371716	2.87	539.462	1		/NCAM2
Other-SNP-\#32	21	q21.1;q21.2	22.371856	22.921577	3.69	549.721	0		
Other-SNP-\#32	21	q21.2	22.924311	23.000812	5.07	76.501	0		
Other-SNP-\#32	21	q21.2	23.003425	23.040608	3.61	37.183	0		
Other-SNP-\#32	21	q21.2	23.042731	23.288037	2.94	245.306	0		
Other-SNP-\#32	21	q21.2	23.294962	24.919149	3.86	1624.187			/FLJ42200
Other-SNP-\#32	21	q21.2;q21.3	24.922861	26.477119	2.85	1554.258	6		/C21orf42/MRPL39/JAM2/ATP5J/GABPA/APP
Other-SNP-\#32	21	q21.3	26.479695	26.930037	3.59	450.342	1		/CYYR1
Other-SNP-\#32	21	q21.3	26.932654	27.18724	2.82	254.586	1		/ADAMTS1
Other-SNP-\#32	21	q21.3	27.187712	27.248474	3.75	60.762	1		/ADAMTS5
Other-SNP-\#32	21	q21.3	27.252427	28.290404	2.78	1037.977	1		/ADAMTS5
Other-SNP-\#32	21	q21.3	28.293594	28.355208	4.16	61.614			/C21orf94
Other-SNP-\#32	21	q21.3	28.355425	28.640244	5.09	284.819	0		
Other-SNP-\#32	21	q21.3	28.640819	29.480084	5.76	839.265	7		/C21orf100/HEMK2/ZNF294/C21orf6/USP16/CCT8/C21orf7
Other-SNP-\#32	21	q21.3	29.482364	30.401723	5.11	919.359	2		/BACH1/GRIK1
Other-SNP-\#32	21	q21.3;q22.11	30.403947	30.52019	4.06	116.243	2		/CLDN17/CLDN8
Other-SNP-\#32	21	q22.11	30.521327	30.557323	5.12	35.996	0		
Other-SNP-\#32	21	q22.11	30.557833	31.065594	7.31	507.761	22		/KRTAP26-1/KRTAP23-1/KRTAP13-2/KRTAP13-1/KRTAP13-3/KRTAP13-4/KRTAP15-1/KRTAP19-1/KRTAP19-2/KRTAP193
Other-SNP-\#32	21	q22.11	31.0702	31.149893	6.74	79.693	1		/KRTAP8-1
Other-SNP-\#32	21	q22.11	31.1522	31.225104	4.24	72.904	1		/KRTAP11-1
Other-SNP-\#32	21	q22.11	31.228572	31.343712	5.96	115.14	1		/TIAM1
Other-SNP-\#32	21	q22.11	31.345343	31.354033	10.58	8.69	1		/TIAM1
Other-SNP-\#32	21	q22.11	31.354121	31.847052	6.74	492.931	1		/TIAM1
Other-SNP-\#32	21	q22.11	31.849901	31.877856	9.27	27.955	1		/TIAM1
Other-SNP-\#32	21	q22.11;q22.12	31.879105	34.832151	6.17	2953.046	35		/SOD1/SFRS15/HUNK/C21orf45/MRAP/C21orf119/C21orf63/C 21orf77/TCP10L/C21orf59
Other-SNP-\#32	21	q22.12	34.836944	34.846753	3.49	9.809	1		/DSCR1
Other-SNP-\#32	21	q22.12;q22.13;q22.2	34.848309	39.104047	6.38	4255.738	26		/DSCR1/CLIC6/RUNX1/SETD4/CBR1/CBR3/DOPEY2/MORC3/ CHAF1B/CLDN14
Other-SNP-\#32	21	q22.2	39.112379	39.887215	6.11	774.836	8		/ETS2/FLJ45139/DSCR2/BRWD1/HMGN1/WRB/C21orf13/SH3 BGR
Other-SNP-\#32	21	q22.2	39.8876	40.481842	8.3	594.242	4		/C21orf88/B3GALT5/PCP4/DSCAM
Other-SNP-\#32	21	q22.2	40.482235	40.588759	5.75	106.524	1		/DSCAM
Other-SNP-\#32	21	q22.2	40.589924	40.750359	3.53	160.435	1		/DSCAM
Other-SNP-\#32	21	q22.2	40.751661	41.172018	1.35	420.357	1		/DSCAM
Other-SNP-\#32	21	q22.2;q22.3	41.173131	41.456318	2.94	283.187	0		

[^3]Supplementary Table 2

	Chr	cytoband	Start (Mb)	End (Mb)	Copy number	Segment size/	Number of	Comment	first 10 genes in segment
Other-SNP-\#32	21	q22.3	41.457718	46.921373	3.54	5463.655	97		/BACE2/PLAC4/FAM3B/MX2/MX1/TMPRSS2/C21orf129/RIPK4 /PRDM15/C21orf25
Other-SNP-\#32	X	p22.33	1.146863	1.600371	1.26	453.508	5	PAR1	/CSF2RA/IL3RA/SLC25A6/CXYorf2/ASMTL
Other-SNP-\#32	X	q26.3-q28	137.114639	154.729057	2.65	17614.418	138		/FGF13/F9/MCF2/ATP11C/RP11- 35F15.2/SOX3/CDR1/SPANXB2/SPANXB1/LDOC1

Supplementary Table 3

Results for PAR1 deletion status (by SNP array analysis and genomic PCR mapping), P2RY8-CRLF2 RT-PCR, JAK mutation status and karyotype for all St Jude DS-ALL cases, and non-DS St Jude cases with PAR1 deletion. FISH, fluorescence in situ hybridization; NA, no material available for testing; Neg, negative; Pos, positive.

Sample	Down syndrome	JAK mutation	PAR1 deletion	Mapping PCR	$\begin{aligned} & \text { P2RY8-CRLF2 } \\ & \text { RT-PCR } \end{aligned}$	IGH@-CRLF2 translocation (FISH)	Karyotype
$\begin{aligned} & \text { Hyperdip>50- } \\ & \text { SNP-\#33 } \end{aligned}$	Yes	R683G	Yes	Pos	Pos	NA	53,XX,+X,+4,+14,+15,+17,+21,+21c[15]/47,XX,+21c[5]
$\begin{aligned} & \text { TEL-AML1-SNP- } \\ & \# 43 \end{aligned}$	Yes	None	No	Neg	Neg	NA	47,XY,+21c. ish t(12;21)(p13;q22)(wcp21+;wcp12+)
Hyperdip47-50-SNP-\#19	Yes	None	No	Neg	Neg	Neg	47,XY,add(9)(p13),+21c[10]/47,XY,+21c[15]
Hyperdip47-50-SNP-\#8	Yes	None	Yes	Pos	Pos	NA	47,XY,+21c[12]
Hyperdip47-50-SNP-\#12	Yes	R683G	Yes	Pos	Pos	Neg	48,XY,+X,+21c[11]/47,XY,+21c[9]
Hyperdip47-50-SNP-\#14	Yes	None	Yes	Pos	Pos	NA	48,XY,+X,add(1)(q44),+21c[9]/47,XY,+21c[11]
Hyperdip47-50-SNP-\#15	Yes	None	Yes	Pos	Pos	Neg	48,XX,+X,+21c[7]/48,idem,i(17)(q10)[4]/47,XX,+21c[9]
Other-SNP-\#33	Yes	None	Yes	Pos	Pos	NA	```47,XX,del(9)(p22),+21c[8]/47,XX,add(9)(p23),+21c[5]/47,XX,+ 21c[7]```
Down-SNP-\#09	Yes	IR682RG	Yes	Pos	Pos	Neg	48,XY,+X,+21c[20]
Down-SNP-\#10	Yes	None	No	Neg	Neg	Neg	$\begin{aligned} & 46, \mathrm{XX},-7, \mathrm{i}(9)(\mathrm{q} 10),+21 \mathrm{c}[9] / 46, \text { idem,- } \\ & 3, \operatorname{der}(12) \mathrm{t}(3 ; 12)(\mathrm{p} 13 ; \mathrm{p} 13),+\mathrm{mar}[4] \end{aligned}$
Down-SNP-\#11	Yes	None	No	Neg	Neg	NA	47,XY,+21c[8]
Down-SNP-\#12	Yes	None	No	Neg	Neg	NA	$\begin{aligned} & \text { 48,XY,+6,del(6)(q15q21),del(13)(q22q32),+21c[5]/47,XY,+21c[} \\ & \text { 15] } \end{aligned}$
Down-SNP-\#13	Yes	None	No	Neg	Neg	Neg	47,XX,+21c[35]
Down-SNP-\#14	Yes	R683S	No	Neg	Neg	Pos	46,XY, der(21;21)(q10;q10)c[24]
Down-SNP-\#15	Yes	R683G	Yes	Pos	Pos	Neg	48,XX,+X,t(7;8)(p15;p23),+21c[3]/47,XX,+21c[11]
Down-SNP-\#16	Yes	None	Yes	Pos	Pos	Neg	48,XY,+X,+21c[20]
Down-SNP-\#17	Yes	None	No	Neg	Neg	Neg	46,XX,i(9)(q10),i(21)(q10)c[6]/46,XX,i(21)(q10)c[14]
Down-SNP-\#18	Yes	None	No	Neg	Neg	Neg	$47, X X, t(14 ; 19)(q 32 ; q 13.1),+21 c[24]$. nuc ish (IGHx2)(5'IGH con 3'IGHx1)
Down-SNP-\#19	Yes	None	No	Neg	Neg	Neg	48,XY,+21,+21c[2]/47,XY,+21c[11]
Down-SNP-\#20	Yes	None	Yes	Pos	Pos	Neg	47,XX,+21c[20]
Down-SNP-\#21	Yes	None	Yes	Pos	Pos	Neg	47,XX, del(7)(p13p15),+21c[20]
Down-SNP-\#22	Yes	None	Yes	Pos	Pos	Neg	47,XY,del(9)(p13p22),+21c[12]/47,XY,+21c[12]

Sample	Down syndrome	JAK mutation	PAR1 deletion	Mapping PCR	$\begin{aligned} & \text { P2RY8-CRLF2 } \\ & \text { RT-PCR } \end{aligned}$	IGH@-CRLF2 translocation (FISH)	Karyotype
$\begin{aligned} & \hline \text { Hyperdip47-50- } \\ & \text { SNP-\#18 } \end{aligned}$	No	R683G	Yes	Pos	Pos	NA	47,XY,+21[8]/46, XY[17]
$\begin{aligned} & \text { Hyperdip47-50- } \\ & \text { SNP-\#22 } \\ & \hline \end{aligned}$	No	T875N	Yes	Pos	Pos	NA	47,XY, +X[14]/46, XY[11]
Hypodip-SNP-\#4	No	None	Yes	NA	NA	Neg	45,XX, dic(9;20)(p11;q11.2)[15]
Hypodip-SNP-\#9	No	None	Yes	Pos	Pos	Neg	$\begin{aligned} & 45, \mathrm{XX}, \mathrm{dic}(9 ; 20)(\mathrm{p} 11 ; \mathrm{q11.2}), \text { add(11)(q24),der(14)t(11;14)(q23- } \\ & 24 ; \mathrm{q} 32)[15] / 46, \mathrm{XX}[1] \end{aligned}$
$\begin{aligned} & \text { Hyperdip47-50- } \\ & \text { SNP-\#2 } \end{aligned}$	No	R683S	Yes	Pos	Pos	NA	47,XY,idic(21)(q22),+mar[10]/46,XY[5]
Other-SNP-\#13D	No	None	Yes	Pos	Pos	NA	46,XY[20]
Other-SNP-\#32	No	None	Yes	Pos	Pos	Neg	$\begin{aligned} & 46, \mathrm{XX},-8,-10, \operatorname{add}(11)(\mathrm{q} 23), \operatorname{del}(13)(\mathrm{q} ? 22), \operatorname{add}(14)(\mathrm{q} 32),-15,- \\ & 15, \operatorname{add}(21)(\mathrm{q} 22),-22,-22,+6 \operatorname{mar}[6] / 46, \mathrm{XX}[1] \end{aligned}$

Supplementary Table 4

Genomic quantitative PCR of genes in and flanking the PAR1 deletion. CSF2RA and IL3RA lie within the region of deletion; CRLF2 and SHOX lie outside (telomeric) of the region of deletion. The assays and analysis were performed as previously described ${ }^{3}$. These results confirm the presence of the deletions and indicate that CRLF2 lies outside the region of deletion. Values represent ratios of test to control (RNAse P). Values of less than 0.70 (bold) represent hemizygous deletion.

Case	SHOX	CRLF2	CSF2RA	IL3RA	Comment
Other-\#33	1.11	0.99	$\mathbf{0 . 3 6}$	$\mathbf{0 . 4 7}$	PAR1 deletion
H47-\#12	1.83	1.57	$\mathbf{0 . 4 3}$	$\mathbf{0 . 6 7}$	PAR1 deletion
H47-\#14	1.85	1.67	$\mathbf{0 . 4 3}$	$\mathbf{0 . 4 5}$	PAR1 deletion with flanking +X
Down-\#09	2.59	1.96	$\mathbf{0 . 5 0}$	$\mathbf{0 . 4 8}$	PAR1 deletion with flanking +X
Down-\#10	0.88	0.93	1.06	0.94	No deletion
Down-\#11	1.23	0.85	0.76	0.96	No deletion

Supplementary Table 5

B-progenitor DS-ALL cases studied in the validation cohort. PAR1 deletion status was defined by genomic PCR and sequencing. CRLF2 expression is $\log _{2}$ ratio gene expression from Affymetrix U133 PLus 2.0 microarrays. *t(1;19) [TCF3-PBX1]

Case	PAR1 deletion	$\begin{aligned} & \hline \text { P2RY8- } \\ & \text { CRLF2 } \\ & \text { RT-PCR } \end{aligned}$	JAK2 mutation	CRLF2 expression	Karyotype comment
01	yes		No		47,XY, i(17), +21c
02	yes		No		unavailable
03	no		No		47,XX,+21c
04	no		No		47,XY,t(8;14)(q11.2,q32),add(9)(p13),+21c[6]/47,XY, +21c[4]
05	yes		No		47,XX,+21c
06	no		No		48,XX,+X,+21c[11]/47, XX,+21c[4]
07	yes		No		unavailable
08	no		No		47,XX,+21c[15]
09	yes		R683G		47,XX,+21[8]/46,XX[6]
10	yes		No		47,XX,i(9)(q10), add(21)(p11.2),+21c[cp6]/47, XX,+21c[19]
11	yes		No		unavailable
12	no		No	4.17	47,XX, der(14)t(2;14)(q21;q32),+21c[4]/48,idem,+X[4]/47, XX,+21c[14]
13	no		R683G		unavailable
14	no		No	3.26	47,XX,+21c[20]
15	no		No		unavailable
16	yes	positive	R683G	7.99	47,XY, +21c[20]
17	yes		R683S		48, XX , + del(X)(q24), +21c[12]/47, XX, +21c[10]
18	yes	positive	R683S	7.69	47,XY,add(15)(q26),+21c[3]/47,XY,+21c[17]
19	no		No	4.41	unavailable
20	no		No	3.44	47,XY,+21c[20]
21	no		No	3.62	unavailable
22	no		No	3.55	48,XY,-13,+20,+21c,+21[7]/47,XY,+21c[4]
23	no		No	3.65	56,XY,+X,+4,+6,+8,+10,+14,+17,+18,+21c,+21[2]/47,XY,+21c[16]
24	no		No	3.59	47,XX,+21c[20]
25	no		No		47,XY, +21c[16]
26	no		No	3.18	48,XX,+X,t(8;14)(q11.2;q32),+21[17]
27	no		No	3.29	unavailable
28	no		No	3.61	56,XX,+X,+4,+10,+14,+14,+17,del(17)(p12),+18,+21c,+21,+21[9]/47,XX,+21c[6]
29	yes	positive	R683S		unavailable

Case	PAR1 deletion	$\begin{aligned} & \text { P2RY8- } \\ & \text { CRLF2 } \\ & \text { RT-PCR } \end{aligned}$	JAK2 mutation	CRLF2 expression	Karyotype comment
30	yes	positive	No	7.70	unavailable
31	yes		No		47,XY, +21c[20]
32	yes	positive	No	7.26	unavailable
33*	no		No	2.96	$\begin{aligned} & \text { 46,XX,t(1;19)(q23;p13.3),rob(14;21)(q10;q10)c,+21c[3]/46,idem,add(9)(p12),del(13)(q21 } \\ & \text { q34)[4]/46,XX,rob(14;21)(q10;q10)c,+21c[15] } \end{aligned}$
34	yes	positive	No	7.22	47XY,+21c
35	no		No		unavailable
36	yes		No		unavailable
37	yes		No		unavailable
38	yes		No		unavailable
39	no		No		unavailable
40	yes		R683G		unavailable
41	yes		No		unavailable
42	yes		R683T		unavailable
43	no		No		47XX,t(7;11)(p22;q23),+21c
44	no		No	3.45	47XX,t(8;14)(p11.2;q32),+21c/47,XX,+21c
45	no	negative	No		47XY,+21c
46	yes	negative	No	9.11	unavailable
47	yes	positive	No	7.07	48XY,+X,+21c[5]/47,XY,+21c[13]
48	yes		No		unavailable
49	yes	positive	R683K	7.24	unavailable
50	no		No		unavailable
51	yes	positive	No	6.05	unavailable
52	yes		No		unavailable
53	yes	positive	No	7.06	48,XX,r(10)(p15q26),+21c,+21[11]/47,XX,+21c[9]

Supplementary Table 6

Sequences of primers used for JAK sequencing, amplification of P2RY8-CRLF2, real-time PCR of P2RY8-CRLF2 and PAR1 deletion mapping. Genomic DNA for JAK1 exons 13 and JAK2 exons 16, 20 and 21 was PCR amplified using the Advantage 2 PCR Kit (Clontech, Mountain View, CA). Thermal cycling conditions were 5 cycles of $94^{\circ} \mathrm{C}$ for 30 sec and $72^{\circ} \mathrm{C} 3$ min , followed by 5 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 70^{\circ} \mathrm{C}$ for 30 sec and $72^{\circ} \mathrm{C} 3 \mathrm{~min}$, followed by 25 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 30 sec and $72^{\circ} \mathrm{C} 3 \mathrm{~min}$. ${ }^{*}$ Genomic DNA for JAK1 exon 14 was PCR amplified using Phusion High-Fidelity DNA polymerase (New England Biolabs, Ipswich, MA) using the following thermal cycling conditions: $98^{\circ} \mathrm{C}$ for 30 sec , followed by 35 cycles of $98^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, 66^{\circ} \mathrm{C}$ for 15 sec and $72^{\circ} \mathrm{C}$ for 1 min , followed by a final extension step of $72^{\circ} \mathrm{C}$ for 10 min . ${ }^{* *}$ Underlined sequence introduces an Xhol site, italicised sequence is specific for CRLF2. FAM, 6-carboxyfluorescein; MGB, minor groove binder. ***Primers C1423 and C1445 were used for genomic PCR, and C1450 for direct sequencing of PCR products.

Primer	Sequence (5' to 3')	Gene	Exon	Chr	Position	
Primers used for genomic JAK sequencing	JAK1	13	1	$65086007-$ 65086031		
C1357	catgttcccattgaggacccattcc	tgaaaaccactgggccacaagaagg		1	$65085694-$ 65085718	
C1358	ctcaacagagcccctggggagca	JAK1	14	1	$65085057-$ 65085079	
C1475*	agggtgggaagagcctccaccatct			1	$65084836-$ 65084860	
C1476*	ctcatgtgaaatggcattgg	JAK2	16	9	$5068059-$ 5068078	
C1200	cctcacagtccatggttatatgc		9	$5068628-$ 5068650		
C1201	gacagtctgctaattccagcta	JAK2	20	9	$5079566-$ 5079587	
C1202	ctctgggcattggcataagt		9	$5079952-$ 5079971		
C1203	tctcatcagtttatttggttgcctga	JAK2	21	9	$5080190-$ 5080217	
C1251	tcaacacggttgcttcatctacagc			9	$5080593-$ 5080617	
C1252						

Primer sequences for amplification of P2RY8-CRLF2 transcripts

Primer	Sequence (5' to 3')	Gene	Exon	Accession	Position
C1459	gcggccgccttgcaaggttgc	P2RY8	1	NM_178129	$1-22$
C1349	gtgtccatcacaacgccacgtagga	CRLF2	7	NM_022148	$1115-1139$ (antisense)
C1447	ttgcaaggttgctggacagatggaa	P2RY8	1	NM_178129	11-35
C1446	gtctaggaggcaccccgaagtgtga	CRLF2	3	NM_022148	253-277 (antisense)
CRLF2- 3xFLAG**	ctcgagtcacttgtcatcgtcatccttgtaatcgatgtc atgatctttataatcaccgtcatggtcttgtagt ccaaacgccacgtaggag	CRLF2	7		

Primers used for real time quantitative PCR of P2RY8-CRLF2 transcripts.

Primer	Sequence (5' to 3')	Gene	Exon	Accession	Position
C1454	cctctgagctctcacctgctact	P2RY8	1	NM_178129	$181-203$ (sense)
C1455	tactccttctgctgctcctcctt	CRLF2	$1-2$	NM_022148	294-316 (antisense)
C1456	FAM-ctgccgctgcttc-MGB	P2RY8	1	NM_178129	205-217 (probe)

Primers used for mapping of PAR1 deletion breakpoints***

C1423	cggtttggggacttcagagcacaa			X/Y	$1294242-$
C1445	tcacctgctacttctgccgctgctt			X/Y	1291266
C1450	ggcatgagccaccgcgccccgcccaatgc			X/Y	1615846

Supplementary Figure 1

Splicing of P2RY8 exon 1 to CRLF2 coding exon 1 in cases with P2RY8-CRLF2 fusion. In the current reference genome (hg18), the 4-bp at P2RY8 exon 1 intron-exon boundary are "AG/GT", which provide the donor splice site for the fusion junction. The first 14 nucleotides of the CRLF2 mRNA do not align to the current reference genome. This region can thus be considered either the 5^{\prime} untranslated region of exon 1 , or an additional exon that is currently not in the reference genome assembly. Regardless, there is an acceptor-splice junction (perfectly matching the CAG/G consensus) immediately 5 ' of the CRLF1 coding exon 1.

Supplementary Figure 2

Quantitation of CRLF2 and P2RY8-CRLF2 expression. a, elevated CRLF2 expression was observed in cases with PAR1 deletion ($\mathrm{N}=8$) or IGH@-CRLF2 translocation ($\mathrm{N}=1$). \boldsymbol{b}, a custom Taqman assay was used to quantitate P2RY8-CRLF2 expression. The assay used a P2RY8 exon 1 (sense) primer, a CRLF2 exon $1 / 2$ (antisense) primer, and an MGB labeled probe in P2RY8 exon 1. Expression of fusion transcripts was detected in all cases tested with available material, but never in cases lacking the PAR1 deletion.

Supplementary Figure 3

Flow cytometric analysis of cell surface expression of CRLF2 for eight representative samples. Corresponding diagnosis (\#13D) and relapse (\#13R) samples were tested for case Other-SNP-\#13. Co-staining for CD19 demonstrates positivity in the leukemic cell population in all cases. Cases lacking the PAR1 deletion or IGH@-CRLF2 translocation were negative.

Supplementary Figure 4

Fluorescence in situ hybridization (FISH) analyses demonstrating deletions and translocations involving CRLF2. a, genomic location of the PAR1 deletion and probes used for FISH analyses. b, fusion of IGH@ and CRLF2 in case Down-SNP-\#14, resulting in colocalization of the IGH@ probe (green) and CRLF2 probe (red), generating a yellow fusion signal (dashed arrows). \boldsymbol{c}, FISH of the same case using a green probe telomeric to CRLF2, and a red probe centromeric to CRLF2. The separation of the green and red signals (arrows) demonstrates disruption of the locus. d, FISH of a representative case with PAR1 deletion (Other-SNP-\#33), showing a diminished red signal (arrows) due to deletion of the RP11-261P4 probe, which lies largely within the region of deletion. e-g, FISH of three cases with PAR1 deletion and gain of chromosome X (e, Down-SNP-\#09; \boldsymbol{f}, Hyperdip47-50-SNP-\#15; \boldsymbol{g}, Down-SNP-\#16) showing two diminished signals (arrows) for the CRLF2/PAR1 probe in each case, indicating duplication of the PAR1 deletion with gain of chromosome X .

Supplementary Figure 5

Genomic mapping of the PAR1 deletion. a shows the genomic position of CRLF2 and $P 2 R Y 8$, the limits of deletion defined by long range PCR, and the location of PCR primers used to screen for deletion by genomic PCR. b, PCR products of eight representative cases with PAR1 deletion. Case H47-14 has an insertion of 640bp from the first intron of SFRS15 gene at $21 q 22.11$ between the CRLF2 and P2RY8 deletion breakpoints. c, genomic sequence across the deletion breakpoints is shown for eight representative cases. All cases show a highly conserved telomeric breakpoint 3.4 kb upstream of CRLF2 exon 1, and one of three conserved breakpoints $316-1081$ bases distal to P2RY8 exon 3. The exact positions of the genomic breakpoints are numbered according to the italicized nucleotides shown in the reference sequences. Putative heptamer RSSs are shown in bold and underlined.

Supplementary Figure 6

Mapping of the breakpoints of the PAR1 deletion. PCR products from long template PCR were purified and sequenced directly. Each deletion involved highly conserved breakpoints 3.4 kb upstream of CRLF2 exon 1, and three closely spaced breakpoints in P2RY8 intron 1. a, the (centromeric) P2RY8 breakpoint is 316 bp distal to $P 2 R Y 8$ exon 1. \boldsymbol{b}, the breakpoint is 451 nucleotides distal to exon 1. In all cases, sequences corresponding to the CRLF2 and P2RY8 breakpoints were separated by non-consensus nucleotides, compatible with the action of terminal deoxynucleotidyl transferase (TdT).

a

H47-SNP-\#15

b

Supplementary Figure 7

Identification of a novel mutation at JAK2 IR682-3. A TCA>GAG substitution was identified on sequencing of JAK2 exon 16 in leukemic DNA. To determine whether this represented a single mutation, or multiple compound heterozygous mutations occurring in the same sample, RT-PCR was performed and PCR products sequenced directly, and after cloning into pGEM-TEasy (Promega). This confirmed the presence of a single mutation resulting in IR682RG.

Supplementary Figure 8

Confirmation of PAR1 deletion and P2RY8-CRLF2 fusion in the validation cohort. a, genomic PCR of 14 representative cases identifying nine cases with PAR1 deletion. \boldsymbol{b}, P2RY8CRLF2 RT-PCR. Reaction 1 detects full-length P2RY8-CRLF2; reaction 2 detects the fusion using primers annealing in P2RY8 exon 1 and CRLF2 exon 3; A, actin control primers.

Supplementary Figure 9

Elevated CRLF2 expression in the validation cohort was exclusively observed in cases with the PAR1 deletion (unpaired Student t test $\mathrm{P}<0.001$).

CRLF2 expression in validation cohort

Supplementary Figure 10

Flow cytometric analysis of $\mathrm{Ba} / \mathrm{F} 3$-IL7R cells confirming expression of IL7R and CRLF2.
\boldsymbol{a}, lack of CRLF2 expression in control cells transduced with wild type Jak2, and b, expression of CRLF2 in cells transduced with P2RY8-CRLF2 and Jak2 R683G.
a
Ba/F3-IL7R, Jak2 WT
(MSCV-IL7R-IRES-hCD4)
(MSCV-Jak2wt-IRES-luc)

b

```
Ba/F3-IL7R, P2RY8-CRLF2, Jak2 R683G
(MSCV-IL7R-IRES-hCD4)
(MSCV-P2RY8-CRLF2-IRES-eGFP) (MSCV-Jak2 R683G-IRES-Iuc)
```


Supplementary Figure 11

Assays examining the interaction of P2RY8-CRLF2, Jak1 and Jak2 mutants, and expression of the murine IL-7 receptor alpha chain in conferring cytokine-independent growth in Ba/F3 cells. a, Ba/F3 cells were transduced with MSCV-Jak1/2-IRES-luc2 expressing wild type or mutant Jak alleles. Jak1 V658F, the ortholog of Jak2 V617F, is transforming; Jak2 V617F is only weakly transforming. Jak2 R683G and P933R are not transforming. b, Ba/F3 cells expressing P2RY8-CRLF2 were transduced with wild type or mutant Jak alleles. Jak1 V658F and Jak2 R683G are transforming, and Jak2 P933R weakly transforming. c, Ba/F3 cells expressing the murine IL-7 receptor alpha chain (B7 cells) are transformed by Jak1 V658F and Jak2 V617F, but not by Jak2 682/683/933 mutant alleles. d, Ba/F3 cells coexpressing IL7RA and P2RY8-CRLF2 (B7 P2C cells) are transformed by all Jak1 and Jak2 mutant alleles. Notably, the proliferation rate of $\mathrm{Ba} / \mathrm{F} 3$ cells transduced with all three constructs (IL7RA, P2RY8-CRLF2, and Jak mutants) was greater than B7 cells transduced with the Jak mutants, but not P2RY8-CRLF2 (panel c); or $\mathrm{Ba} / \mathrm{F} 3$ cells transduced with P2RY8CRLF2 but not IL7RA (panel b).

Supplementary Figure 12

Validation of lentiviral shRNA knockdown of CRLF2 in Ba/F3-IL7R cells transduced with P2RY8-CRLF2 and Jak2 R683G. a, flow cytometry for CRLF2 expression before and after CRLF2 knockdown. Cells were transduced with non-target (scrambled) shRNA, each of three CRLF2-specific shRNAs individually, and a pool of all three shRNAs. \boldsymbol{b}, western blotting for JakStat activation and CRLF2 after knockdown.

Supplementary Figure 13

Co-immunoprecipitation of CRLF2 and phosphorylated Jak2. Ba/F3-IL7R cells were transduced with either P2RY8-CRLF2 ("+"), 3xFLAG-tagged P2RY8-CRLF2 ("F"), and/or wildtype Jak2 ("WT") or Jak2 R683G. Immunoprecipitation with anti-FLAG antibody followed by western blotting for phospho-Jak2, Jak2, FLAG and CRLF2 were performed. This demonstrated interaction of P2RY8-CRLF2 with phosphorylated Jak2 in Ba/F3-IL7R cells transduced with both P2RY8-CRLF2 and Jak2 R683G, but not cells transduced with P2RY8-CRLF2-3xFLAG alone, or with wild type Jak2.

SUPPLEMENTARY REFERENCES

1. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758-64 (2007).
2. Mullighan, C.G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110-4 (2008).
3. Mullighan, C.G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377-80 (2008).
4. Mullighan, C.G. et al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. N Engl J Med 360, 470-480 (2009).

[^0]: ${ }^{1}$ Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. ${ }^{2}$ Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA. ${ }^{3}$ Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. ${ }^{4}$ Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA. ${ }^{5}$ The Hartwell Center for Bioinformatics and Biotechnology and ${ }^{6}$ Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. ${ }^{7}$ University of New Mexico Cancer Research \& Treatment Center, University of New Mexico Cancer Research Facility, Albuquerque, New Mexico, USA. ${ }^{8}$ Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA. ${ }^{9}$ New York University Cancer Institute, New York University Langone Medical Center, New York, New York, USA. ${ }^{10}$ Department of Pathology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA. ${ }^{11}$ Department of Pediatrics, University of Padua, Padua, Italy. ${ }^{12}$ Department of Pediatrics, University of Bologna, Hematology and Oncology Unit 'Lalla Seràgnoli', Bologna, Italy. ${ }^{13}$ Section of Pediatric Hematology, Oncology and Bone Marrow Transplantation and Center for Cancer and Blood Disorders, University of Colorado Denver School of Medicine, The Children's Hospital, Aurora, Colorado, USA. Correspondence should be addressed to C.G.M. (charles.mullighan@stjude.org).

 Received 6 July; accepted 18 September; published online 18 October 2009; doi:10.1038/ng. 469

[^1]: Nature Genetics: doi:10.1038/ng. 469

[^2]: Nature Genetics: doi:10.1038/ng. 469

[^3]: Nature Genetics: doi:10.1038/ng. 469

