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REARRANGEMENTS AND FOURTH ORDER EQUATIONS
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Abstract. The paper contains a priori estimates for the deformation of plates and

beams. In particular we investigate the "worst cases" for the maximum deformation

depending on where a load is placed on a beam or plate. The methods of proof use

rearrangement argument.

1. Introduction. A well known result for second order elliptic partial differential

equations states that the solution u of

—Au = / in Q,

u = 0 on <90,

can be compared to the solution w of the symmetrized problem

-A w = f* inO #,

w = 0 ondQ*. 1 ' '

Here denotes a ball of same n-dimensional volume as C R", and /# denotes the

spherically symmetric decreasing rearrangement (or Schwarz symmetrization) of /: see

[8, 9]. In fact, the pointwise estimate

u&(x) < w(x) for x G (1-2)

is known to hold. This implies, in particular, that

IMIi>(n) < II^IIlp(o#) for every p 6 [l,oo].

Results of this nature are also known for quasilinear elliptic equations, parabolic equa-

tions, and for first order eikonal type equations.

In the present paper we attempt to derive similar results for fourth order equations.

Rearrangement techniques can also be used to prove the Faber-Krahn inequality for the

first eigenvalue of a clamped membrane. The analogous inequality for a clamped plate
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is a much more formidable task, which has recently been solved in two and three space

dimensions by Nadirashvili [7] and Ashbaugh and Benguria [1]. Here we investigate

inhomogeneous equations instead of eigenvalue problems, and some of our results are

stated only in one and two space dimensions. As a model equation we consider the plate

equation

A2u = f in ft

under various boundary conditions. There are Navier conditions u — 0 = Au, which

are prescribed for hinged beams or plates, Dirichlet conditions u = 0 = representing

clamped beams or plates, and natural boundary conditions An = 0 = J^(Au) for free

beams and plates. Let us list our results and interpret them.

Theorem 1. For any natural n compare the solution u of

A2u = / in 0,

with the solution v of

Then

Au = 0 = u on OQ,

A2v = f* in tt#,

Av = 0 = v on dfl*.

(1.3)

(1.4)

u*(x) < v(x) for x € Q*. (1.5)

Theorem 1 says that the deformation of a hinged plate is maximal, if the plate is

circular or a ball, and if the load is rearranged so that its maximum is centered at the

center of the ball.

Theorem 2. For n = 1 compare the solution u of

w(4) = / in (0,1), u{0) = u'(0) = 0 = u"(l) = u"'(l), (1.6)

with the solution v of

v(i) = fm in (0,1), i;(0)=w'(0)=0=i;"(l)=w"/(l), (1.7)

where /* denotes the monotone increasing rearrangement of /. Then

\u(x)\ < v(x) for x € (0.1). (1.8)

Moreover, if / > 0 in (0,1), then w < |u(x)| = u{x). Here w solves

= f* in (0,1), w(0) = w'(0) = 0 = u»"(l) = w'"(l), (1.9)

and /* denotes the monotone decreasing rearrangement of /.

Theorem 2 says that a cantilever beam, which is clamped at one end and free at the

other end, undergoes maximum deformation if the load is concentrated at the free end

and minimum deformation if the load is concentrated at the clamped end.

Theorem 3. For n — 1 compare the solution u of

u(4) = f > 0 in (-1,1), u{±l) = u'(±l) = 0, (1.10)

with the solution v of

</4> = f* in (-1,1), u(±l) = u'(±l) = 0. (1.11)



REARRANGEMENTS AND FOURTH ORDER EQUATIONS 339

a) Then ||u||i < ||i>||i and ||u||oo < ^jll/lli- The last estimate becomes sharp as /

approaches So(x).

b) If / = Sa(x) for a £ [0,1), then the solution is given by

ua{x) = —
3

\x — a|3 — (1 — ax)3 + -(1 - ax)( 1 — x2)(l — a2) (1.12)

and ||ua||oc = ua(^p5) 's decreasing in a. Its maximum is attained for a = 0.

c) If / = 0.5 is uniform, then u(x) = ^(1 — |x|2)2.

Theorem 3a says that the average deformation of a clamped beam becomes maximal

when the load is centered around its center, and that the maximum deformation is

attained when the total load is concentrated as a point-load in the center point. Theorem

3b indicates that moving a point load towards the clamped boundary of the beam will

diminish the maximum deformation. Theorem 3c shows that by distributing a total load

uniformly, we can decrease the maximum deformation by one half, compared to the point

load in the origin.

Theorem 4. For n = 2 and n a disk of radius 1 consider the solution u of

A2u = f in ii,
du
dv%± = o = u on an. ^'13)

a) Then ||m||oo < This estimate becomes sharp as / approaches So(x).

b) If / = Sa(x) and ja| € [0,1), then the solution is given by

"■a(x) = Ty
1 f)7T

(1 - |a|2)(l - \x\2) -\x- a|2 log
1 + lal \x\ —2a ■ x

(1.14)

and ||ua||oo is decreasing in |a|. Its maximum is attained for a = 0. Moreover,

1 I lO* O   . 1 O 2

Ma) = Y^(l - l«l2)2 < halloo < —(1 - l«l2)2^(! ~ v/l - M2)- (1-15)

c) If / = Ms uniform, then u(x) = ^(1 - |.x|2)2.

Theorem 4 reflects the fact that the deformation of a circular clamped plate becomes

maximal, if the load is a point load which acts in the center. Moreover, according to

Theorem 4c one can reduce this maximum by a factor of j if the load is evenly distributed

over the disk.

For the sake of completeness, before ending the section, we give the precise definition

of the various types of rearrangements which have been used in the previous statements.

For any measurable function tp : n —> R we denote by ^(t) the distribution function of

p:

Ai<p(t) = |{» 6 n : |<p(x)| > t} |, t > 0,

where \E\ is the n-dimensional Lebesgue measure of a set E. The monotone decreasing

rearrangement tp* of tp is defined as the generalized inverse function of fi^:

tp*(s) = inf{i e M : nv(t) < s}, s € (0, |n|).
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We recall that ip and <p* are equimeasurable, i.e., n<p{t) = nv*(t), Vi > 0. This implies,

in particular, that

llv*||Lp(o,|n|) = for every p £ [ 1, oo].

The monotone increasing rearrangement <p* and the spherically symmetric decreasing

rearrangement p* of ip are defined as follows:

Ms) = <p*(\n\-s), s€(o,|n|),

tp&(x) = (p* (Cn\x\n), xen*,

where Cn denotes the unit ball in Kn. By the definition it is clear that <p#, and p

are equimeasurable.

The theory of rearrangements is well known and exhaustive treatments of it can be

found, for example, in [2, 6].

2. Proof of Theorem 1. To prove Theorem 1, we rewrite (1.3) as an elliptic system

—Au = u in Q,

-A u = f in 12, (2.1)

u = u = 0 on Oil,

and apply (1.2). Therefore u* is dominated by w from (1.1). If we apply (1.2) now to

the first equation, u& is dominated by the solution 2 of

—Az = in il*, 2 = 0 on DVl*. (2.2)

The right-hand side in (2.2) is dominated bv w and this coincides with — A?;, so z < v

in Q# by the maximum principle. Therefore (1.5) is a consequence of u# < z < v.

3. Proof of Theorem 2. Using the boundary conditions at the free end we obtain

""(0 =/ [ f{0d£di) forCe [0,1]. (3.1)
A" -h

Notice that for nonnegative /, the function u is convex and monotone increasing. Now

we integrate from the clamped end and obtain

u(x =

X rUJ pi

o jo Jc

"1

/(O^e
'V

dr] d(' duj.

This and

imply Theorem 2.

[ neK< / im\d$< f Mo#
' r\ J r\ J r)
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4. Proof of Theorem 3. The solution u of (1.10) can be represented in terms of

the Green function, which is listed under (1.12) and taken from [3, p. 126; 5]. So

u(x) = I ua(x)f(a)da for a; €(—1,1) (4.1)

and

Nli = a: ua(x)f(a) da dx = i: i: ua(x) dx f(a) da.

A simple integration gives f\L ua(x) dx = t~-(1 —a2)2, a symmetrically decreasing positive

function of a. This proves the first part of statement a). To prove the second part of

statement a) we recall (4.1) and see that ||w||oo < supQ ||ua||ooil/||i and part b) give a).

To prove b) we look for zeroes of u'a, given a > 0. There are zeroes at ±1 and at

It is worth noting that the maximum deformation is not attained in a, the point

where a point load is placed on the beam, but further inwards. Now a straightforward

calculation gives

„ 1 (1-a2)2(l+a) ,AnS

IMoo-g (a + 2)2 , (4-2)

and the right-hand side of (4.1) is decreasing in a £ (0,1), since its derivative equals

a(l + a)2(a + 3)

2(a + 2)3

The proof of c) follows from a couple of elementary integrations.

5. Proof of Theorem 4. As in the previous theorem, the proof of statement a)

follows from b) due to the representation formula

u(x) = [ ua(x)f (a) da for \x\ G [0.1). (5.1)
Jn

This time, however, ua is given by (1.14) and taken from [3, p. 126; 5].

To prove statement b), we abuse notation slightly. It suffices to consider the case that

the point load attacks in a = (a,0) with a 6 [0,1); i.e., a lies on the positive a;i-axis.

Clearly we have |a| = a.

In order to evaluate ||'«a]|oo we compute partial derivatives of ua:

dua _ J_

dx\ 87r

dua _ X2_

dX2 877

a(l — a2)(l — axi)(l — \x\2) , . /1 + a2\x\2 — 2axi
v A + (a — X\) log ' 11

1 + a2\x\2 — 2ax\ ' \ \x\2 + a2 — 2ax

a2( 1 - a2)( 1 - |x|2) + loQ / _ (1 - a2)(l - |x|2)

1 + a2\x\2 — 2axi \ 1 + a2|x|2 — 2ax\

Taking into account the fact that

log(l-*)<-t, vte (0,1), (5.2)

one sees that X2< 0 in il and that vanishes if and only if x% = 0 or |x| = 1.

This means that the maximum of ua has to be achieved along the £2-axis in those points
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(8,0) with X\ € (—1,1), for which

M®i) = (.ri. 0)
ox i

1

87T

We have

1 - axi ^ \ a - xi /

x (l-«2)3
(•'• i) = --

(5.3)
0.

47r(l — a^i)3(a — xi)'

i.e., ha is concave in (—l,a) and convex in (a, 1) and it vanishes in ±1. Thus for any

a € [0,1), the function ha has only one non-trivial zero in a point xa e (—1,1). In such

a point ua attains its maximum, i.e., ||wo||o0 = ua(xa. 0). Furthermore f^"(-';ii0) > 0 for

X\ £ (—1, xa) and 0) < 0 for xi £ (xa, 1). Incidentally, it is worth noting that the

point xa lies closer to the origin than the point (a, 0), in which the load is placed. Indeed,

the fact that f^(0,0) = £(-(1 - a2) - log (a2)) < 0 and f^(o,0) = > 0

implies that xa (E [0,a] and that xa = a if and only if a = 0.

Taking into account the fact that xa solves (5.3), one can compute the derivative of

jjug|]oo with respect to a obtaining:

_d_ (xa + a)(l — q2)(1 — x2n)

da a °° 87t(1 — axa)

This means that H'UaHoo is decreasing with respect to a and achieves its maximum for

a = 0.

The fact that u(o, 0) < u(xa,0) proves the first inequality in (1.15). As regards the

second inequality in (1.15), we observe that due to (5.3) one obtains

(1 — o2 )2 1 — x2
ua(xa, 0) = ———H(xa), where H(x) =   .

l07r 1 — ax

Notice that H(x) > 1 for x € (0, a). Now we estimate H(xa) from above by the maximum

of H on (0, a). It is attained in xa = ^ — ̂  \/l — a2 and H(xa) < H(xa) = (1 — y/l — a2).

This completes the proof of claim b).

Claim c) follows from a straightforward calculation.
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