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Abstract

Rearrangements of about 2.5 kilobases of regulatory DNA located 59 of the transcription start site of the Drosophila even-
skipped locus generate large-scale changes in the expression of even-skipped stripes 2, 3, and 7. The most radical effects are
generated by juxtaposing the minimal stripe enhancers MSE2 and MSE3 for stripes 2 and 3 with and without small ‘‘spacer’’
segments less than 360 bp in length. We placed these fusion constructs in a targeted transformation site and obtained
quantitative expression data for these transformants together with their controlling transcription factors at cellular
resolution. These data demonstrated that the rearrangements can alter expression levels in stripe 2 and the 2–3 interstripe
by a factor of more than 10. We reasoned that this behavior would place tight constraints on possible rules of genomic cis-
regulatory logic. To find these constraints, we confronted our new expression data together with previously obtained data
on other constructs with a computational model. The model contained representations of thermodynamic protein–DNA
interactions including steric interference and cooperative binding, short-range repression, direct repression, activation, and
coactivation. The model was highly constrained by the training data, which it described within the limits of experimental
error. The model, so constrained, was able to correctly predict expression patterns driven by enhancers for other Drosophila
genes; even-skipped enhancers not included in the training set; stripe 2, 3, and 7 enhancers from various Drosophilid and
Sepsid species; and long segments of even-skipped regulatory DNA that contain multiple enhancers. The model further
demonstrated that elevated expression driven by a fusion of MSE2 and MSE3 was a consequence of the recruitment of a
portion of MSE3 to become a functional component of MSE2, demonstrating that cis-regulatory ‘‘elements’’ are not
elementary objects.
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Introduction

Understanding DNA encoding of the cis-regulatory logic

responsible for controlling gene expression in metazoans is a

problem at the heart of modern genomics. As yet, a precise and

predictive decryption of this code comparable to the genetic code

for protein structure has remained elusive. Nevertheless, it is

known that the regulatory DNA which controls the transcription

of genes in higher eukaryotes can frequently be divided into

functionally distinct contiguous regions defined by their ability to

direct expression independently when placed in reporter con-

structs. When assayed in this manner, each fragment directs gene

expression in a particular tissue or spatio-temporal domain. The

genomic regions corresponding to these DNA fragments are

known as enhancers or cis-regulatory modules (CRMs). Enhancers

are usually separated from one another by regions of DNA which

cannot independently drive transcription. Enhancers typically

contain clusters of binding sites for transcription factors (TFs).

Enhancers can act over many kilobases (kb) from the transcription

start site (TSS), and are still functional when orientation is

reversed. Although some progress has been made in understanding

the expression of individual enhancers, this understanding has not

yet reached a level that is adequate for prediction. In particular,

understanding individual enhancers is not sufficient, as it is now

clear that multiple enhancers act simultaneously to ensure

accurate and robust gene expression [1–3]. Indeed, a real solution

of the cis-regulatory logic problem in metazoa requires under-

standing of the control of gene expression at the level of a whole,

intact genetic locus. It is the whole locus and not the enhancer

which is the fundamental unit of physiological function, and hence
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it is the whole locus and not the enhancer on which natural

selection acts over evolutionary time.

What is missing from current efforts to gain an understanding of

the control of transcription are the rules which determine whether,

and to what extent, a particular configuration of bound factors will

activate or repress transcription. These rules and the model based

on them must be validated by comparison to quantitative data on

TFs and their transcriptional outputs, and because single nuclei

are the fundamental units of transcriptional processing, these data

must be at nuclear resolution or from a group of cells in a uniform

transcriptional state. In other words, to demonstrate an under-

standing of transcriptional control, it is necessary to be able to

calculate the transcriptional response of a segment of DNA to an

accuracy comparable to that observed in vivo. Such a calculation

will involve both the DNA sequence and certain parameters

determined by training on data. At the very minimum, given a set

of DNA sequences and the expression patterns driven by them,

one should be able to use the model to calculate the observed

expression patterns with a residual error less than or equal to the

likely error of the experimental observations themselves. A

statistically significant correlation of the model output with

expression data is an inadequate criterion of correctness—a highly

correlated pattern is typically sufficiently different from wild type

that it would cause death if expressed in a real organism. Beyond

this minimal level, a more stringent test is the correct prediction of

expression driven by segments of DNA not used for training.

Finally, understanding will be demonstrated by performing these

calculations of transcriptional output on DNA segments larger

than classical enhancers, ideally on an entire locus.

In 2003 we began to address this question by proposing a model

of transcriptional control which contains an explicit thermody-

namic representation of the occupancies of individual binding sites

as a function of the concentrations of the TFs [4]. We applied this

model to the blastoderm of Drosophila, a syncytium in which

transcriptional control operates at an extremely precise spatial

level that approaches cellular resolution. By making use of

previously obtained quantitative data on TF levels [5–7], we were

able to satisfy not only the minimum criterion of calculating to

within the margins of experimental error in measurements of

quantitative gene expression, but also to extend our calculation

beyond well-described enhancers to understand how expression of

Drosophila even-skipped (eve) stripe 7 was driven by the sequences not

present in its ‘‘classical’’ enhancer [8]. Since that time, other

modeling studies have been made on certain enhancers with small

numbers of binding sites [9–13]. At a larger scale, Segal and

coworkers modeled a set of previously described enhancers in the

Drosophila segmentation system using the TF dataset employed in

[8] together with E. coli lacZ reporter gene expression obtained

from the literature and digitized in a binary zero/one manner

[14]. A more recent study on this dataset made use of the

correlation between data and model output to compare the roles

of different transcriptional control mechanisms [15]. In both of

these cases the calculation of transcriptional output from known

sequences with trainable parameters resulted in expression

patterns containing large qualitative errors that would be expected

to result in in vivo lethality.

In this paper we develop and validate methods that lead to an

improved understanding of transcriptional control. We augmented our

previously published model [4,8], which represented sequence specific

binding of TFs, steric competition between bound factors, activation,

short-range repression (also called ‘‘quenching’’), and direct repression,

by including coactivation and cooperative binding of TFs to DNA.We

then applied our model to certain genes expressed in the blastoderm of

Drosophila. By assembling manymulti-channel scanned confocal images

of embryos in this embryonic stage, we are able to construct a dataset at

cellular resolution in which the concentrations of TFs and the

corresponding transcription rate for a given gene or reporter in each

blastoderm nucleus are determined to within a relative error of less

than 10% [6,8,16]. This enables us to treat the Drosophila blastoderm as

an in vivo microarrray in which it is possible to perform many

transcription assays in parallel. These assays were performed on genes

in a native chromosomal context in cells with well defined

concentrations of TFs that produce markedly different transcriptional

outputs from relatively small changes in TF concentration, resulting in

an assay system of sensitivity and reproducibility unmatched by any

tissue culture system we are aware of. We then challenged this assay

system with a family of seven carefully selected rearrangements of two

early acting enhancers of the Drosophila eve locus. Each rearrangement

drives a different expression pattern, and the most informative patterns

were quantitatively compared by transforming all constructs to a

common chromosomal site and quantitatively assaying reporter

expression together with the levels of nine TFs.

We were able to train the model on the data so that our

calculations of training set expression are equivalent to observa-

tions within experimental error. Given these model parameters,

we show how the different expression patterns observed in the

rearrangements can be understood in terms of the interplay of

multiple mechanisms acting in concert. From the model obtained

from the training set of expression data, which was driven by only

2.5 kb of noncoding DNA subjected to certain rearrangements, we

are able to predict with high accuracy the expression patterns

driven by a variety of segments of DNA totaling 51 kb. These

include eve enhancers from 16 Drosophilid and 6 Sepsid species, as

well as enhancers for other melanogaster pair-rule and gap genes. In

addition, the model was able to correctly predict the expression

driven by the entire 39 or 59 early acting eve promoter, indicating

that the predictive capability of the model extends to large,

contiguous regions of DNA that contain multiple enhancers.

Results

The results of this study are presented in four sections. In

Section 1, we discuss the experimental system used to obtain

training data together with the results obtained. In Section 2 we

Author Summary

Metazoan genes, including those of humans, contain large
noncoding regions that are required for viability. Sequence
variations in these regions are statistically associated with
human disease, but the mechanisms underlying these
associations are not well understood. These regions
regulate transcription and are frequently larger than the
gene’s transcript by an order of magnitude. In this paper
we attempt to elucidate the regulatory code of these
noncoding segments of DNA by means of quantitative
spatially resolved gene expression data and a computa-
tional model. The expression data comes from the early
embryo of the fruit fly Drosophila melanogaster. We chose
a family of DNA constructs to analyze that drive very
different patterns of expression when very small changes
in DNA sequence are made, reasoning that this sensitivity
would reveal important properties of the regulatory code.
The model reproduced the training data with precision
greater than the expected accuracy of the training data
itself. It was able to correctly predict from DNA sequence
the expression of 44 segments of DNA from many genes
and species.

Rearranged Noncoding DNAs Reveal Predictive Rules
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present our theory of transcriptional control. Section 3 contains an

analysis of how well the model accounts for the training data and

of its ability to correctly predict expression patterns driven by

DNA sequences not used in training. Finally, in Section 4 we show

explicitly how multiple regulatory mechanisms acting in concert

give rise to the patterns of expression seen in the training data.

Although all of this material is necessary to fully understand our

study, a reader who wished to assess the performance of the model

without delving into mathematical details might skip Sections 2

and 4 and read only Sections 1 and 3.

Quantitative gene expression data at single nucleus
resolution
We sought a small collection of regulatory DNAs which, by

driving reporter expression of lacZ RNA, would provide the

maximum amount of information on the rules of transcriptional

control. eve is a logical source for such regulatory DNA because it is

known that the 7 narrow stripes of gene expression (Figure 1A),

each about 3 nuclei wide, form by the repressive action of gap

gene encoded TFs such as Hunchback (Hb), Kruppel (Kr), Knirps

(Kni) and Giant (Gt), expressed in domains 10–15 nuclei wide [6].

eve stripes 2 and 3 are particularly informative. It has been shown

that stripe 2 is repressed by Kr, but stripe 3 evades repression by

peak levels of Kr [17]. Hb, on the other hand, represses stripe 3

while it activates stripe 2 expression [18,19]. These observations

provide stringent mechanistic constraints on transcriptional

regulation which can be made even more stringent by considering

fusions of minimal enhancers expressing the two stripes.

Minimal stripe elements for stripes 2 and 3 (MSE2 and MSE3)

can drive normal expression of both stripes if separated by as little

as 155 bp (172 bp with polylinker) or 335 bp (360 bp with

Figure 1. Fusion constructs. (A) The 7 striped expression pattern of eve, visualized with antibody staining. This and other embryos are oriented
dorsal up and anterior to the left. The white rectangle located in the middle of the embryo indicates a 10% strip ranging from 35 to 92% embryo
length (EL). (B) Schematic view of the eve gene. The transcript (black box) and early acting enhancers are shown. The distance of the 59 end of each
enhancer from the TSS is specified. The colored boxes and adjacent thick lines indicate the two segments of DNA used to create various reporter
constructs. (C) (left) Fluorescence in situ hybridization for lacZ mRNA. (right) Segmented image with nuclear mask. Image segmentation was carried
out as described [16]. Intense and punctate fluorescent spots in the nuclei are nascent transcripts. (D) Quantitative expression data for Eve protein
and 4 fusion constructs, obtained from the area shown in the white rectangle in B. Embryos were classified temporally as belonging to one of eight
time classes (T1–T8) in cleavage cycle 14A (C14A), each about 6.5 min long, as described [6]. T1, T6 and T8 data are shown here, with time after egg
deposition (AED). The numbers in parentheses are the number of embryos used to generate the averaged expression profiles of each time class.
Arrows indicate regions of major alteration in gene expression after spacer removal. (E) lacZ mRNA expression from individual embryos. 4 fusion
constructs and their gene expression at T6 are shown.
doi:10.1371/journal.pgen.1003243.g001
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polylinker) of endogenous DNA 39 of MSE2 or MSE3 respectively,

but drive abnormal expression if these DNA fragments are

removed [20]. While commonly referred to as ‘‘spacers’’, these two

segments of DNA are in no sense nonfunctional. We used the

previously described reporter constructs to generate new transfor-

mant lines with all reporters at the same chromosomal location

[21]. We refer to the line bearing a fusion of MSE3 and MSE2

without ‘‘spacer’’ as M32, with ‘‘spacer’’ as M3_2, a reverse-order

fusion without ‘‘spacer’’ as M23, and reverse-order with ‘‘spacer’’

as M2_3 (Figure 1B and 1E). Site-specific transgenesis permits

precise comparisons between multiple transgenic constructs by

eliminating position effect (see Figure S1). We used previously

published procedures to obtain quantitative gene expression data

at nuclear resolution in space and 6.5 minute resolution in time

[8,16,22,23], and Figure 1C of this work. These data provide the

relative expression levels of the reporter and eight TFs to 5–10%

accuracy in each nucleus [6].

These data allowed us to make eight novel observations

(Figure 1D). First, all four fusion enhancers do not drive the early

broad expression seen in the native eve gene [6] and 1.7 kb

proximal eve (1700) promoter [8,24]. Second, overall expression

levels of the four constructs decline after time class 6 (T6;

175.1 min AED). The next six features were seen in T6. In M32

the stripe 2 expression level increases by a factor of 3.5 compared

with M3_2. In addition to the enhanced level of stripe 2

expression, the interstripe region between stripes 2 and 3 is

derepressed in M32 compared with M3_2, causing a fusion of the

two stripes. Peak stripe 7 expression is increased by a factor of two

in M32 compared with M3_2. The positions of the peaks of stripes

2 and 7 are the same in M32 and M3_2. In contrast to stripes 2

and 7, there is a reduction by a factor of 0.7 in stripe 3 expression

in M32 compared to M3_2. Finally, stripe 2 expression decreases

by a factor of 0.2 and stripe 3 expression increases slightly in M23

compared with M2_3.

A theoretical model of transcription
We employ a theoretical model that is intermediate between a

content-based picture in which only the number of binding sites

for each factor in an enhancer is significant [25], and, on the other

hand, a grammar-based approach in which a precise arrangement

of binding sites is required for regulatory function [26]. In our

model, the physical arrangement of binding sites is quite

important, but it is specified by rules that are sufficiently flexible

to permit many solutions, reflecting the observed variability in

binding site arrangement. We applied four design principles to

formulate the model. First, we incorporated numerical implemen-

tations of a minimal set of regulatory mechanisms that are essential

for the transcriptional control of the eve stripes 2, 3 and 7. Second,

we designed the model in such a way that the mechanisms operate

simultaneously. Third, the mechanisms are nonetheless separable,

removable, and non-exclusive so that the relative contributions of

each mechanism can be visualized as can the consequences of

removing a specific mechanism in silico. Fourth, we performed a

full statistical thermodynamics calculation to find the fractional

occupancy of each binding site. Dynamic programming approach-

es are more computationally efficient but calculate summed

fractional occupancies [14,15]. Calculating with the the fractional

occupancies of individual binding sites rather than their sum

allows us to determine the contribution of each TF, binding site,

and even nucleotide to gene expression.

The central players of transcriptional regulation are sequence-

specific TFs that bind to DNA. The position of a TF binding site

and its binding affinity are determined by a frequency matrix

normalized to a position weight matrix (PWM; Figure 2, Equation

1). In this equation, pa(k{m,j) is the probability of finding base j

(j[fA,C,G,Tg) at the kth position of a possible binding site for

ligand a that extends from base m on the 59 side to base n on the 39

side, and pbg(j) is the expected frequency of base j in D.

melanogaster. When convolved with sequence, the score Si½m,n;a� of

the PWM on the sequence is proportional to the free energy of

binding [27], and can be exponentiated to obtain the binding

affinity Ki½m,n;a� of ligand a at site i. This is shown in Figure 2,

Equation 2, where Smax
a is the maximum possible score and la is

the proportionality constant to free energy. We include a binding

site in a calculation when its score is above a certain threshold.

This threshold can be determined with different degrees of

accuracy for each TF depending on the quality of the data used to

construct its PWM (Materials and Methods).

In order to calculate the fractional occupancy fi½m,n;a� of TF a

bound at a site i that extends between m and n bp from the TSS, it

is useful to first determine the effects of interacting configurations c

of TFs in terms of their weights w(c) (Figure 2, Equation 3). These

weights depend on TF concentrations vb, which in our dataset are

in units of relative fluorescence vflb from confocal scans. To convert

to true concentration units we multiply by a free parameter Ab to

obtain vb. There are two types of interacting configurations. Some

TF binding sites overlap or are closely placed. Overlapping sites

lead to competitive binding by steric hindrance. We implement

this phenomenon whenever sites overlap based on their physical

size. We take a binding site to be at least 14 bp, the average size of

a footprinted Bcd site. Footprinted data for Gt indicates a binding

site size of 24 bp, a value used for this TF alone.

A second type of interaction has the opposite effect. Two

adjacent sites may support cooperative binding, in which the free

energy of binding of two simultaneously bound factors is greater

than the sum of the free energies of them each binding separately

[28,19]. Transforming free energies to binding affinities, the

nonadditive free energy term becomes a multiplicative factor

Kcoop(k,h), where k and h are two interacting binding sites

(Figure 2, Equation 3). An important practical problem in the

treatment of cooperative binding is the lack of experimental data

concerning it for most TFs, particularly if heterologous cooper-

ative binding involving two different proteins is allowed for.

Considering all possible cooperative binding interactions would

generate a combinatorial explosion of free parameters which are

apt to give spurious results. In order to avoid this combinatorial

explosion we implement cooperativity only when there is

independent evidence for it, which is currently the case only for

Bcd [30,31]. Bcd cooperativity is also necessary to model the

expression of the fusion constructs considered here. Without it, it

was not possible to model the expression of M32 even in the

presence of coactivation [32]. We model cooperative binding of

Bcd by allowing the strongest Bcd binding site to interact

cooperatively with the strongest remaining Bcd site within 60 bp

(see Materials and Methods), and repeat these assignments with

the remaining sites until all pairwise cooperative interactions are

assigned.

With these mechanisms in hand, we use the concentration of TF

a and other competing or cooperating TFs to calculate the

fractional occupancy fi½m,n;a� (Figure 2, Equation 4). We do this by

summing the weights w(c) for all configurations c in which site i is

occupied by a. We then normalize against the sum ZS of all

weights w(c) in group S, ensuring that for each site fi½m,n;a� is

between 0 and 1. As shown in the example associated with

Equations 3 and 4 of Figure 2, each interacting group can be

treated independently. We remark that the quantities fi½m,n;a� are

fully deterministic intensive thermodynamic variables akin to

Rearranged Noncoding DNAs Reveal Predictive Rules
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concentrations. Although frequently derived from statistical

mechanics [29] or even the Chemical Master Equation [33], they

can also be derived from elementary considerations of equilibrium

and stoichiometry [34]. Although fi½m,n;a� is frequently interpreted

as the probability of finding ligand a bound at site i, it is more

accurate to view this quantity as the time averaged occupancy of

site i by a. We thus assume that the binding states of the TFs that

we explicitly consider equilibrate quickly compared to the time

scale of changes in gene expression.

Once we have calculated fi, we calculate the effects of protein-

protein interactions. A TF b bound at site k acting on a TF bound

at site i by mechanism X will be characterized by a parameter EX
b

between 0 and 1 denoting the strength of b’s action and a function

0vxb(dik)v1 of the distance in bases between sites k and i which

controls the range at which the mechanism acts. The equations

representing each mechanism are written such that they have the

property that biological function can reside in multiple binding

sites. We classify TFs as repressors or activators based on

independent experiments. In what follows, fi with no superscript

denotes the physical fractional occupancy of site i. We write f Ai to

denote the fractional occupancy of an activator and f
Q
i to denote

the fractional occupancy of a quencher. We then allow for the

possibility of ‘‘coactivation’’, in which a repressor is transformed to

an activator by the binding of a coactivator nearby. There is

independent evidence that Bcd coactivates Hb in this manner

[18,35], as does Cad (see Materials and Methods).

We represent coactivation as shown in Figure 3, Equation 5,

where EC
b represents the coactivation efficiency of a coactivator b

and the dependence of coactivation on distance is given by cb(dik).

We constrain the activating and repressing activity of a

coactivation target to sum to the physical fractional occupancy.

The gap genes are short range repressors that act when bound

within 150 bp of activators [36–38], a fact that we represent by

convolving the fractional occupancies of all activators f A with

those of quenchers f Q as shown in Figure 3, Equation 6 to obtain

activator fractional occupancies FA corrected for quenching,

where E
Q
b represents the repressive strength of TF b and the

function qb(dik) represents its range of action (Figure S2). When

quenchers are bound within quenching range of the TSS they can

prevent activators from acting at any range, a phenomenon

described by Arnosti and coworkers as direct repression [36,38].

Although longer range interactions of repressors with the TSS

have been referred to as ‘‘direct repression’’ [39,40], we limit

ourselves to the short range interaction of Arnosti. This form of

direct repression is represented in the model (Figure 3, Equation 7)

in the same way as Equation 6 except that d0k in this equation is

the distance between the repressor binding site k and TSS, and

that the repressor does not act on f A but on f AF . f AF is associated

Figure 2. Model equations: TF binding to DNA. The model equations for binding site prediction (Equation 1 and 2), cooperative and
competitive binding (Equation 3) and fractional occupancy calculation (Equation 4) are shown together in a flow diagram with cartoons of each
mechanism on the left and an example application in blue with 5 TF binding sites. Subgrouping process partitioning the binding sites into
independent binding groups allows faster computation without losing accuracy. In the example, we set the range of quenching to 20 bp.
doi:10.1371/journal.pgen.1003243.g002

Rearranged Noncoding DNAs Reveal Predictive Rules
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with the transcription machinery that binds to the TSS, as we now

describe.

With respect to activation, it is now clear that in metazoa

activators do not directly contact the transcription machinery as

they apparently do in yeast [41]. Instead, proteins that bind to TFs

such as Mediator [42,43] serve as a functional bridge between TFs

and the basal machinery. These proteins are referred to as

‘‘adapter factors’’ (AFs) here following Guarente and Tjian [44–

46]. Although AFs are sometimes referred to as ‘‘corepressors’’ or

‘‘coactivators’’, we reserve that terminology in this work to TFs

that bind DNA specifically. We view initiation of transcription as

an enzymatic process catalyzed by AFs bound to TFs [4]. In the fly

blastoderm, some AFs have been identified [43,47,48] and they

are uniformly expressed from maternal mRNA, enabling us in this

work to formulate AF action in a coarse-grained manner such that

AFs are represented by a single composite chemical species whose

fractional occupancy of binding to DNA bound TFs is given by

f AF~1 (Figure 3, Equation 7). Functionally active activators a

recruit the AFs with different recruiting strengths EA
a (Figure 3,

Equation 8). Activators can act anywhere between the TSS and an

insulator element, so here we do not need to consider dik, but

simply sum the effects of the activators to obtain N, which is then

corrected for the effects of direct repression to obtain M (Figure 3,

Equations 7 and 9). The adapters then catalyze transcriptional

initiation by decreasing an activation energy barrier DA~h by an

increment M~DDA. We describe the effect of lowering this

activation energy by a diffusion limited Arrhenius rate law

(Figure 3, Equation 10 and Materials and Methods). This rate

law is exponential for a certain range of M, providing the

capability to represent greater than multiplicative synergy between

activators [49]. As the activation energy barrier falls to zero, the

transcription rate R approaches Rmax because diffusion of new

polymerase molecules to the basal complex becomes rate limiting.

We fit the model described above to lacZ expression driven by

the four fusion constructs shown in Figure 1 together with three

additional fragments of the eve promoter, MSE2, MSE3, and 1700

during T6 (Figure 4A); fits were also performed to the four fusion

constructs without the additional fragments (Figure S3). Inclusion

of the three additional P-element constructs improved the

predictive power of the model at the cost of one additional free

position effect scaling parameter for each construct. Our TF

dataset contains all of the factors essential for eve regulation in a

region extending from the 1–2 eve interstripe to a position just

posterior of stripe 7 (35% to 92% EL); additional TFs act on eve in

the head and tail regions. These data constituted 406 independent

observations of transcription rate corresponding to 58 combina-

tions of nine TF concentrations acting on 7 constructs in each time

class. The activators are Bcd, Cad, Drosophila-STAT (D-STAT),

and Dichaete. The repressors are Kr, Kni, Gt, Tailless (Tll), and

Hb. Of these, Hb was subject to coactivation by Bcd [20] or Cad,

and hence it also functions as an activator. Independent

experimental data (Text S1) allowed us to define binding

thresholds for Hb and Bcd unambiguously, but in the case of

other TFs these data implied a range of values for PWM

thresholds and we allowed the threshold to be a free parameter

within this range.

In addition to the 10 free parameters connected with position

effect and PWM threshold, each TF a is associated with the

parameter Aa that scales the observed fluorescence units vf l to

absolute concentration units va (Figure 2, Equation 3) as well as

the parameter la that scales the weight matrix score to units of free

energy (Figure 2, Equation 2). Other parameters depend on the

Figure 3. Model equations: protein–protein interactions. The model equations for coactivation (Equation 5), short-range quenching (Equation
6), direct repression (Equation 7), adaptor factor recruitment (Equation 8 and 9) and activation synergy (Equation 10) are shown together in a flow
diagram with cartoons of each mechanism on the left and an example application in blue with 5 TF binding sites.
doi:10.1371/journal.pgen.1003243.g003
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nature of the TF. Each activator is associated with an activation

efficiency EA
a , and each repressor to quenching and direct

repression efficiencies EQ
a and ED

a respectively. Thus each

activator and repressor are associated with three and four

parameters respectively. In addition, Bcd has a free parameter

K
coop
Bcd . All elements of Kcoop(k,h) from Figure 2, Equation 3 are

equal to K
coop
Bcd or unity. Both Bcd and Cad have free parameters

EC
Bcd and EC

Cad for the coactivation of Hb, and coactivated Hb has

an activation efficiency EA
Hb. The activation energy barrier of

transcription, h, was also fitted (Figure 3, Equation 10). Finally, we

fit the range of Cad and Bcd coactivation of Hb within a range set

by independent experimental criteria (Figure S2 and Materials and

Methods). Thus, 49 free parameters are fit to 406 observations.

Model training and validation
Multiple fits to the training data resulted in a group of models

driving essentially identical expression patterns (Figure S4) and

having similar but not identical parameter values (Table S1). The

models resulting from the fitting procedure agree with experi-

mental data within the limits of experimental accuracy with two

very small exceptions (Figure 4A and Figure S4). First, the peak of

stripe 3 in M32 is one nucleus anterior with twice the expression

level in the model compared to data (Figure 4A2). Second, stripe 7

expression in the 1700 construct is almost absent in the model

(Figure 4A5). It is an important validation of our approach that we

can numerically represent the effects of these enhancer fusions at

this stringent level of precision.

An even more stringent test is to examine the predictive power

of the model on DNA sequences not used for training. We tested

the predictive power of the model on 6 classes of regulatory DNA

that are thought to be largely regulated by the same maternal and

gap genes used in the training set. These are 1) 5 mutant eve

enhancers; 2) Stripe 2 enhancers from 16 Drosophilid species; 3)

The melanogaster eve stripe 4/6 and stripe 5 enhancers and two

melanogaster-pseudoobscura eve chimeric stripe 2 enhancers; 4) 12

enhancers from six Sepsid species; 5) Fifteen enhancers from four

gap genes and two primary pair-rule genes other than eve; and 6)

Large upstream and downstream eve regulatory DNAs that contain

multiple enhancers. Each DNA sequence tested contained one or

more enhancers and basal promoter sequence. If the basal

promoter sequence for an enhancer construct was not known,

eve basal promoter sequence was used. Except as noted, all

predictions shown in Figure 4 were made from model 6 (Figure S4

and Table S1) with no alterations of any parameter except the

sequence itself. If a prediction from a parameter set other than

model 6 is shown in Figure 4, the corresponding prediction from

model 6 is shown in Figure S5. Altogether we tested 54 sequences

amounting to 62 kb of DNA, and obtained good predictions for 44

sequences driven by 51 kb of DNA, as we now describe.

The classic literature describing the 59 regulatory region of the

eve locus contains numerous studies of the effects of very small site-

directed mutations affecting only 2 to 6 bases. Our ability to

predict the effects of such mutations is of interest not only for

checking the validity of the model, but also has implications for the

interpretation of single base pair polymorphisms (SNPs) and small

indels. Here we consider a 3 base pair change in the bcd-1 site

(Mbcd-1) in the context of both MSE2 and M32, a 5 base pair

change in the bcd-3 site (Mbcd-3) [24], a two base pair change in

each of two D-STAT sites (M2dsts) [50], and changes of 5, 3, and

6 base pairs respectively in the Kr-3, Kr-4, and Kr-5 sites

(MKr345) [20]. The model correctly predicts that Mbcd-1 causes

a larger diminution of expression than Mbcd-3 (Figure 4B1-2 of

this work; cf. Figure 6D and F in [24]). The model’s prediction of

greatly diminished expression in M2dsts is qualitatively correct,

but experiment indicates a complete abolition of expression

(Figure 4B3 of this work; cf. Figure 8D in [50]). The prediction of

reduced but equivalent expression of stripes 2,3, and 7 while 2 and

3 remain fused when MKr345 is placed in M32 is completely

correct (Figure 4B4), and we correctly predict the restoration of

stripe 2 expression in the presence of a non-functional bcd-1 site

when Mbcd-1 is placed in M32 (compare Figure 4B1 and 4B5),

but the model predicts that stripe 3 is absent when in fact it is

reduced (Figure 4A and 4C for MKr345 and Mbcd1 respectively

in [20]).

We confronted the model with DNA sequence from the stripe 2

enhancers of 16 Drosophila species other than melanogaster

(Figure 4C1-16), four of which were first identified in this study

(Figure 4C9, 4C14-16). In ten cases, stripe 2 expression was

coextensive with the melanogaster stripe pattern (Figure 4C1-10).

There is experimental evidence that D. yakuba, D. pseudoobscura, and

D. erecta stripe 2 enhancers express coextensively with the

melanogaster stripe 2 (Figure 4C1-3 of this work; cf. Figure 6 in

[51]). Our results are in substantial agreement with these findings,

up to a posterior shift of about one nucleus in pseudoobscura and

erecta (Figure 4C2-3). To our knowledge, no experimental

observations have yet been made of the positions of stripe 2

driven by the remaining 13 Drosophila stripe 2 enhancers in D.

melanogaster.

As an initial test of the model’s predictive power on sequences

with no homology to those used in training, we found that we can

correctly predict expression of eve stripe 5 and stripes 4 and 6 from

their respective enhancers (Figure 4D1-2 from model 2; see Figure

S5A–S5B for model 6 results; cf. Figure 2B and 2D in [52]). We

then extended this test to interspecific chimeras. Altered expres-

sion patterns driven by chimeric constructs with half of the stripe 2

enhancer from pseudoobscura and and half from melanogaster have

been observed by enzymatic assays (Figure 1i and 1l in [53]). With

the melanogaster sequences on the 39 end, a posterior expansion of

stripe 2 was described, which appears to extend to a variable

Figure 4. Training and predictions. (A) Training results for 7 constructs. RNA levels and model results are as shown in the key; the model result
trace obscures the data in regions where both are superimposed. The regions of the eve locus used to generate the training data are indicated
schematically. (B–G) Predictions of gene expression driven by DNA sequences that were not used for training. The sequences used are fully described
in Table S4. Black lines are predicted RNA expression and colored lines are quantitative protein profiles of the corresponding endogenous loci. The
scale of relative fluorescence levels for RNA is shown at the left of graphs, that for proteins on the right. All protein patterns are taken from the FlyEx
database (http://urchin.spbcas.ru/flyex) [7]. An asterisk on a panel indicates the prediction was not made from model 6: D1-2 are from model 2, G1 is
from model 7, and G2 is from model 1. See text, Figure S4 and Table S1 for details. (B) 5 mutant eve enhancers, described fully in the main text. (C)
Stripe 2 enhancers from 16 different Drosophila species, with abbreviations and panel numbers (see Table S5 for full species name). The enhancer
from D. persimilis (per), D. grimshawi (gri), D. mojavensis (moj) and willistoni (wil) was first identified in this study. (D) Other D. melanogaster eve
enhancers. (D1) Stripe 5 enhancer. (D2) Stripe 4/6 enhancer. (D3) pseudoobscura- melanogaster stripe 2 chimera(p1-m2). (D4) melanogaster-
pseudoobscura stripe 2 chimera(m1-p2). (E) Stripe 2 (S2E; E1–E6) and stripe 3/7 (S37E, E7–E12) enhancers from 6 Sepsid species, with abbreviations
(see Table S5). (F) 5 non- eve enhancers from the D. melanogaster genes hb (F1), Kr (F2), run (F3-4), and h (F5). (G) Large 59 (G1) and 39 (G2) eve
regulatory DNAs that contain multiple enhancers.
doi:10.1371/journal.pgen.1003243.g004
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fusion of the two stripes and a reduction in stripe 3 amplitude; our

model predicts a partial fusion and a reduction in the amplitude of

stripe 3 (Figure 4D3). The complementary chimeric enhancer

drives a fusion of stripes 2 and 3 which is also predicted by the

model (Figure 4D4) [53].

We also made predictions of expression patterns driven by

regulatory sequences from the eve locus of six species of Sepsid flies.

These species are about twice as evolutionarily distant from D.

melanogaster as D. melanogaster is from the most distantly related

Drosophila [54]. Our model, when challenged by Sepsidae DNA,

predicts stripe 2, 3 and 7 expression driven by the corresponding

Sepsid enhancers (Figure 4E1-12). Some of these predictions are

confirmed (Figure 4E1-3 and 4E7-9). Stripe 2 and 3/7 enhancers

from T. cynipsea, T. putris and S. superba have been tested for

expression in D. melanogaster and shown to express eve stripes 2, 3,

and 7 (Figure 5B, C, E and F in [54]); these are correctly predicted

with the single exception of a failure to correctly predict observed

stripe 7 expression driven by the cynipsea 3/7 enhancer (Figure 4E7,

arrow). The model predicts that the Sepsid stripe 2 enhancers

drive stripe 7 expression at levels which vary from species to

species (Figure 4E1-6). It is confirmed experimentally that 78% of

embryos containing the S.cynipsea enhancer and 55% of embryos

containing the T. putris enhancer appear to have stripe 7

expression [54]. The model also predicts that stripe 2 expression

from S.cynipsea and T. putris is shifted to the posterior (Figure 4E1-

2) and that the shift is larger in T. putris, a point supported by

published observations (Table 2 in [54]). These observations,

based on visual observations of enzymatically stained embryos,

indicate that the posterior borders of gene expression driven by S.

cyn and T. put S2Es are shifted 2% and 3% EL posterior

respectively, with a reported uncertainty of about 1% EL. Our

model predicts shifts of 4% and 9% EL if the posterior border is

taken to be the position of half maximum expression. It is notable

that our model predicts stripe 3 and 7 activity from the putative

stripe 2 enhancer of Dicranosepsis sp. (Figure 4E4), and further

predicts that in a D. melanogaster context this species’ putative 3/7

enhancer drives stripe 7 expression at levels an order of magnitude

greater than the maximum level of stripe 3 expression

(Figure 4E10).

A more stringent test of the model is to predict the expression

driven by the enhancers of D. melanogaster genes other than eve. Not

all such reported enhancers can be tested, as some require TFs

(such as pair-rule gene products) not considered in this study. We

tested 15 enhancers of gap and pair-rule genes using the same TFs

as were employed for the training set. Among the gap genes, we

obtained correct predictions for expression driven by the pThb

enhancer of hb (Figure 4F1 of this work; cf. Figure 1 in [55]) and

the CD1 enhancer of Kr (Figure 4F2 of this work; cf. Figure 5a in

[56]). With respect to the Runt 1_7 and 3_7 enhancers

(Figure 4F3-4 of this work; cf. Figure 3K and 3D in [57]), we

correctly predict the expression of run stripe 3 and reduced

expression of run stripe 7 compared to stripe 3, although in Runt

1_7 the predicted stripe 1 is coextensive with stripe 2 of the run

protein pattern. The predicted pattern of run stripe 7 is shifted

about 2 and 7 nuclei to the anterior of the native run stripe in Runt

1_7 and Runt 3_7 respectively. The predicted pattern of the

h_str3_4 enhancer (Figure 4F5) is correct, as this enhancer drives

an expression domain that does not contain the h 3–4 interstripe

(Figure 4C in [58]). Ten additional enhancers from the genes hb,

kni, gt, run, and h gave incorrect predictions (Figure S5C–S5L). In

each case, expression in the correct domain was absent although in

some instances small amounts of ectopic expression remained.

Our model is not limited to experimentally isolated enhancers,

and so we attempted to predict expression driven by the

approximately 4 kb of 59 and 39 noncoding DNA which

respectively control stripes 2, 3, and 7 (Figure 4G1, parameters

from model 7; see Figure S5M for model 6 prediction; cf. Figure

1G in [59]) and stripes 4, 5, and 6 (Figure 4G2, parameters from

model 1; see Figure S5N for model 6 prediction; cf. Figure 4I in

[60]). Our initial prediction was completely incorrect, showing

saturated blocks of expression without interstripes. When the

threshold h was increased by hand, we obtained the qualitatively

correct predictions shown in Figure 4G1-2. Although requiring the

hand tuning of a single parameter, we consider it highly significant

that the predictive power of the model extends beyond single

enhancers discovered by in vivo assays.

Functional analysis of the fusion gene expression
The accurate modeling of expression from fusion constructs

together with correct predictions of expression patterns not used in

training provide evidence that the model captures the underlying

rules governing eve transcription. Given this level of credibility, it is

also possible to use the model to understand how the interplay of

multiple transcriptional mechanisms give rise to the very complex

expression changes induced by removing the ‘‘spacer’’ DNA.

The fusions introduce six types of quantitative alterations in

expression, each of which occurs in a small spatial region

containing 2–3 nuclei, which we call a ‘‘zone’’ (Figure 5A). With

respect to the M32 fusion compared to M3_2, in zone I stripe 2

expression is increased by a factor of almost four; in zone II the 2–

3 interstripe is derepressed; in zone III stripe 3 expression is

reduced; and in zone IV stripe 7 expression is increased. With

respect to the M23 fusion compared to M2_3, in zone V stripe 2

expression is reduced and in zone VI stripe 3 expression is slightly

increased (Figure S7A). We analyzed the causes of these effects by

plotting the contributions to the activation M~DDA (Figure 5B)

as a function of position on the A-P axis and the regulatory

sequence (Figure 5C), where each position on the A-P axis defines

a unique set of TF concentrations as shown in Figure 5D.

Annotating these diagrams with the identity of key binding sites

and comparing activation in M32 and M3_2 indicates which TFs

and binding sites lead to the effects observed Figure 5E–5F). These

diagrams show that the major source of activation is from

coactivated Hb bound at the hb-3 site by Bcd bound at the bcd-

1,bcd-* and bcd-2 sites (Figure 5E–5F and Figure S6B, S6E). With

respect to zone I, we found that the increase of gene expression is

almost entirely the result of coactivation of two sites of bound Hb

by Bcd. It occurs because of the deletion of the ‘‘spacer’’ DNA

between MSE3 and MSE2, which reduces the distance between

the two Bcd sites in MSE2 and the two Hb sites in MSE3 from

more than 400 bp to about 150 bp, permitting coactivation

(Figure 5E–5F, lower black arrows; Figure 5F, white arrow).

These two Hb sites extend about 60 bp into MSE3, about 15%

of its total length. These Hb sites are subject to repression by

quenchers bound within 150 bp on their 59 side, including one site

for Gt (Figure S6). Thus, the same functional interactions

characteristic of MSE2 now extend 200 bp into MSE3, about

40% of its length. These points indicate that in M32, 40% of

MSE3 has been recruited to be a functional part of MSE2. This

functional recruitment includes the setting of the anterior border

of stripe 2 by repression. The location of the anterior border of

stripe 2 is unchanged in M32 compared to M3_2 based on the

location of half maximum expression, despite the synergistic

activation by Bcd and Hb, whose concentrations are essentially

equivalent at the peak of the augmented stripe 2 and at its anterior

border. A single Gt binding site in MSE3 together with a single site

in the stripe 2 enhancer are sufficient to repress anterior expression

driven by the recruited portion of MSE3. Such robustness in
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border control would be impossible if repression were to occur

only by steric competition. These results also demonstrate that the

borders of enhancers are not intrinsic, but instead are determined

by genomic context. In zone II, the derepression of the interstripe

is a consequence of the fact that Kr binding sites are

predominantly distributed on the 39 end of MSE2, close to the

hb-3 site (Figure S6A). There is a single Kr binding site (Kr-5)

within range of the coactivated Hb bound to MSE3, and it is

insufficient to provide complete repression in zone II.

The expression changes that occur in zones III and IV are

connected with the fact the ‘‘spacer’’ in M3_2 is in fact a

functional component of the 3/7 enhancer. The reduction of

stripe 3 expression levels in zone III is not recapitulated by fitting

the model to the full set of seven constructs (Figure 5A), but is

found in fits made only to the four fusion constructs (Figure S3A).

The cause of the change in expression in zone III is in either case

evident from inspection of Figure 5E (downward pointing arrow

and white arrow), which show that the ‘‘spacer’’ contains Hb

Figure 5. Regulatory analysis of M3_2 and M32. (A) The expression profiles driven by M3_2 and M32 are subdivided into four distinct zones I to
IV for analysis as shown. Two additional zones V and VI involving expression changes between M2_3 and M23 are shown in Figure S7. (B) Illustration
of a catalyzed reaction with free energy change DG and activation energy barrier DA. Catalysis by activators reduces the barrier by DDA. A scale bar
of two heatmaps used in (C), (E), and (F) is shown. The DDA heatmap applies to the vertical bars on the right hand side of these panels and the DDa
heatmap applies to the square panels in (C), (E), and (F). DDa~FAFEAFA

i ; compare with Equations 8 and 9 in Figure 3. (C) Distribution of activation
energy barrier changes at single binding site resolution for M3_2 as a function of A-P position on the embryo and number of basepairs 59 to the M3_2
TSS. The positions of MSE2 and MSE3 are schematically shown at the top. DDa for each activator binding site is shown in the central panel according
to the key in (B) and the summed activation DDA in the right hand bar. Peaks of activation corresponding to stripes 2, 3, and 7 are indicated. (D)
Expression levels of RNA expression driven by M3_2 together with regulating TFs at cellular resolution, as shown in the key. In the key, standard
abbreviations are used except that Dst indicates D-STAT and Dic indicates Dichaete. (E) and (F) show a regulatory dissection of expression changes
induced by removal of the ‘‘spacer’’ with activation represented as in (C). Selected binding sites for M3_2 and M32 are shown at the top of (E) and (F)
respectively, with TF specificity indicated by color as shown in the key for (D). The full set of binding sites is shown in Figure S6. The black arrows
show binding sites involved in coactivation; the red arrow in (F) indicates the major coactivation interaction in M32. Circled areas indicate groups of
binding sites critical for expression changes in different zones as described in the text.
doi:10.1371/journal.pgen.1003243.g005
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binding sites which are coactivated by Cad, the removal of which

decreases expression. There are, in addition, repressor sites in the

‘‘spacer’’ (Figure S6A). In zone IV, the model consistently gives a

correct representation of the increase in stripe 7 expression in M32

compared to M3_2, and this is a consequence of the removal of

repressor sites located in the ‘‘spacer’’. The effects seen in zones III

and IV are critically dependent on the precise balance between

activation, coactivation, and repression. This leads to residual

ambiguity in how models with differing training data and

parameter sets account for expression changes in these zones,

but in all analyses the ‘‘spacer’’ plays a major functional role and is

not an inert segment of DNA.

The ‘‘spacer’’ DNA in M2_3 is a component of the full stripe 2

enhancer S2E [61,62], and its removal causes a severe diminution

of stripe 2 expression in zone V and a much smaller increase of

stripe 3 expression in zone VI, with stripe 7 unaffected (Figure

S7A). These effects occur because the M2_3 ‘‘spacer’’ DNA

contains two Bcd and two Hb binding sites (Figures S6D and S7B).

The strongest Bcd site in MSE2 is bcd-1, and in M2_3 it

preferentially establishes pairwise cooperativity [31] with the next

strongest site (bcd-(21), Figure S6D), which is the most 59 of the

two sites on the ‘‘spacer’’. In addition, a cooperative interaction

exists between Bcd bound at the bcd-* (unnamed footprint site; see

Figure S6D and Figure 4 in [18]) and bcd-2 sites. The net result is

that in M2_3 these two pairs of cooperatively bound Bcd provide

strong coactivation to two Hb sites, one of which is in the ‘‘spacer’’

(Figure S7B, zone V region and downward pointing white arrow).

In M23, the absence of the ‘‘spacer’’ causes major rearrangements

of pairwise cooperative interactions among bound Bcd molecules in

MSE2 because bcd-(21) is lost. Without the ‘‘spacer’’, Bcd bound at

bcd-1 cooperates with Bcd bound at bcd-*, while Bcd bound at bcd-

2 cooperates with Bcd bound at bcd-3 (compare Figure S6E and

S6F). This configuration of cooperative interactions results in a

lower fractional occupancy of Bcd compared to that seen in M2_3.

Although Hb sites at the 59 end of MSE3 are recruited as a part of

the stripe 2 enhancer by cooperatively bound molecules of Bcd in

M23 (Figure S7C, white arrow), the net reduction in bound Bcd

without the ‘‘spacer’’ causes a reduction of activation in zone V. The

contrasting small increase in expression in zone VI happens because

the ‘‘spacer’’ also contains Kr sites (Figure S6D) which are heavily

bound in the Kr expression domain which contains eve stripe 3

(Figure 5C). It is this difference in Kr levels which causes the

opposite effect in zone VI compared to zone V.

Discussion

In the work described here we have gone beyond modeling only

individual experimentally identified enhancers, and have done so

at a level of resolution comparable to that required for organismal

survival. Although our previous work with a version of this model

not incorporating cooperativity or coactivation was comparably

accurate and capable of representing stripe 7 expression driven by

sequences outside of the 3/7 enhancer, the modeled DNA

contained only one classical enhancer, S2E [4,8]. In contrast,

the expression data used in the present study not only involved two

enhancers, but more importantly dealt with a situation in which

the function of these enhancers was critically altered by

juxtaposing them and thus altering their function. These

rearrangements provided a powerful constraint on the possible

rules of transcriptional control, as demonstrated by the prediction

of expression patterns seen here. Finally, the model can be used as

an analytic tool with which to understand how multiple

transcriptional mechanisms operate simultaneously to produce

observed patterns of expression.

Highly precise experimental data made this study possible, and

their importance cannot be overemphasized. The inherent

transcriptional machinery is exquisitely precise, and fundamental

understanding of its functioning requires data at a cellular level of

precision. Our dataset has that level of precision because we

performed simultaneous staining of reporter-driven lacZ expres-

sion and native Eve protein, allowing us to register the reporter

data with our full TF dataset [8]. The intrinsic variability of gene

expression prevents such registration by measurements of the

position of reporter expression alone. This point illuminates a

problem regarding the current unbalanced state of technology in

genomics. Sequence can be obtained readily and cheaply. Yet, the

inability to monitor gene expression at cellular resolution in a high

throughput manner together with a lack of understanding of the

code for regulatory logic has in general limited genomic level

investigations of regulatory DNA to statistical association studies.

The work reported here was made possible by a high resolution

dataset created over many years. Although the data was

quantitated using high throughput methods, staining and micros-

copy were carried out manually.

The quality of fit to the training data indicates that the model is

reasonably complete for the stripe 2 and 3 eve enhancers at the

developmental time assayed. Previous attempts to model both

stripes simultaneously failed, most probably because of a failure to

incorporate coactivation of Hb by Bcd and Cad [14,15]. Further

support for the current model is afforded by its predictive

capability. In melanogaster, we obtained accurate predictions for

expression driven by the stripe 5 and 4_6 enhancers. We were also

able to correctly predict the effects of site-directed mutations

affecting only 2–6 base pairs. This result indicates that the model

might ultimately have utility in predicting the effects of SNPs, a

point with implications for both medicine and evolutionary

biology.

With respect to stripes 2, 3, and 7 in non- melanogaster species

there are no contradictions to available experimental results. This

is a strong indication that we have captured major elements of the

fundamental rules of transcription, as these diverged enhancers

have considerable turnover in binding site composition [51,53]

among the Drosophilids and no homology except for short

sequences involving overlapping binding sites in Sepsids [54]. In

fact, enhancers from only 4 Drosophilid and 3 Sepsid species have

been qualitatively assayed by transformation into melanogaster, so

that we have furnished a rich set of quantitative predictions that

can be examined in future experiments.

With respect to predictions of the expression of other Drosophila

genes, we obtained good results for the h 3_4 and run 3_7

enhancers. The predicted run 1_7 enhancer pattern had better

registration of stripe 7 with protein pattern than predicted for 3_7,

with the strange result that the predicted pattern is in perfect

alignment with run stripe 2 rather than stripe 1. This last prediction

may be erroneous. Although we are aware of no published co-

staining data of the run 1_7 enhancer with native run protein or

RNA, such data exists for a larger segment of DNA which drives

run stripes 1, 3, and 5 and contains run 3_7 [57]. With respect to

gap genes, we have good agreement of predicted patterns for the

hb pThb1 and Kr CD1 enhancers, but the agreement is poorer for

other Kr and hb enhancers, kni, and gt. In the case of gt, the lack of

expression in the native domain is a consequence of the presence

of numerous Gt binding sites. There are indications that Gt has

autoactivation activity [63]. It is possible that Gt has a coactivator

on its own promoter that was not included in this study.

Although enhancers are frequently referred to as cis-regulatory

‘‘elements’’, they are not elementary or fundamental objects. They

are not elementary because they do not have well-defined
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boundaries. We demonstrated the context-dependent border of

MSE2 in this study by showing that the increased level of stripe 2

expression in M32 was a consequence of the recruitment of 40%

of MSE3 to become a functional component of MSE2. Moreover,

MSE2 and S2E both drive stripe 2 and can rescue lethality [62],

and MSE2 is not completely minimal in the sense that smaller

regions of DNA within it can drive weak and variable stripe 2

expression [24,61]. Enhancers are not functionally fundamental

objects because most enhancers drive expression domains which

are similar to but not identical with those driven by the intact

locus. Complete fidelity requires additional sequences. With

respect to eve stripe 3, this point has been evident for some time

in mutant genotypes, although the additional sequences required

are as yet unidentified (compare Figure 4B in [19] with Figure 5A

in [64] and Figure 5B in [19]). In the case of hb, the lack of fidelity

is evident in wild type and complete fidelity is restored by a

shadow enhancer [3]. The real challenge in regulatory genomics is

the prediction of expression from an entire locus.

Our ability to model expression of the fusion constructs and to

predict expression of stripes 2, 3, and 7 driven by 59 noncoding

sequence and stripes 4, 5, and 6 by eve 39 noncoding sequence

demonstrates that the applicability of the model is not limited to

previously identified enhancers. These results support an idea

advanced by Gray, Levine, and coworkers that short range

repression is required for the independent action of multiple

enhancers [39]. Indeed, lines of evidence from both experiment

[19,24,52,61] and theory [8,65] indicate that eve stripes are

generated by repression from gap genes. Because gap gene

expression domains are wider than eve stripes, silencing from these

genes would result in a repressed region comparable in size to that

of a gap domain and could not produce the observed stripes.

Our predictions of expression driven by large DNA segments

are less clean than those of single enhancers in the sense that they

required hand tuning of the threshold h to prevent completely

saturated expression domains comprising stripes 2–3 and 4–6

respectively. This saturation appears to involve a lack of balance

between activators and repressors as the length of modeled DNA

increases, but it is not possible at this time to distinguish between

problems with the model and the training data. With respect to the

model, this lack of balance may stem from the unlimited range of

activators and the limited range of quenchers. In order to know

whether this model property is biologically correct or incorrect, it

is necessary to quantitatively determine how the amplitude of a

given stripe changes as it is driven by larger DNA fragments. This

point is not captured in our training data because only the four

fusion constructs, all of similar total length, were transformed to a

targeted site. Shorter and longer DNA fragments were not

targeted transformants and hence required a free parameter

scaling the amplitude to account for position effect. The

quantitative characterization of expression driven by fragments

of varying size transformed to a common chromosomal site is an

important experimental task for future work. It will also be

important to generate rescue constructs containing both native

and lacZ message in order to standardize between observed levels

of native and reporter transcripts. We believe that the results in

this paper, while incomplete, demonstrate the feasibility of

constructing a precise, quantitative, and predictive model of an

entire locus that would also account for its enhancer structure.

We obtained multiple sets of parameters that fit the data well

(Table S1 and Figure S4), indicating that the training data

constrain but do not completely determine the parameters. The

parameter sets in Table S1 give much more divergent behavior

with respect to predictions than they do with the training data. We

cannot eliminate the possibility that that full set of DNA sequences

considered in Figure 4 cannot be described by the same set of

parameters, indicating an underlying defect in the model. We

believe that it is more likely that residual indeterminacy in the

parameter set determined by the training data is the cause of

divergent predictions. Just as an experimentalist devises a decisive

experiment by careful arrangement of conditions, we think it likely

that not all experimental data is equally suitable for training. For

example, the model used here if trained on stripe 2 data only will

not show coactivating activity for Bcd or Cad (data not shown). An

important question for future work will be to apply ideas from

statistics and machine learning theory to understand what

constructs should be used so as constrain the model parameters

as tightly as possible and/or decide whether the model is missing a

particular regulatory mechanism.

A useful model not only has predictive power, but also

explanatory power, a point illustrated by our analysis of the

expression changes seen in zones I through VI. This power stems

from the fact that we keep track of the fractional occupancy of

each individual binding site. This level of resolution combined

with the capability of removing a specific mechanism in silico allows

us to assay the relative contributions of the multiple mechanisms of

transcriptional control that operate simultaneously. Moreover,

fractional occupancy in turn depends on affinity and hence DNA

sequence, affording us a way to precisely characterize regulatory

changes introduced at the level of individual base pairs. This

analytic power, together with the importance of quantitative data,

is well illustrated by considering questions raised in the classic

study which first considered the fusions analyzed here [20]. In this

work, which was instrumental in establishing the importance of

spacing for correct enhancer function, the authors proposed that

the diminution of expression in zone III was a consequence of Kr

sites in MSE2 coming into repressive range of activator sites on

MSE3. Small and coauthors supported their hypothesis by

mutating the three footprint Kr sites on MSE2 and noting that

these mutations resulted in an expression pattern in which stripes 2

and 3 were partially fused and of equal amplitudes, which were

greater than that of stripe 7 (Figure 4A in [20]).

We found that the reduction of stripe 3 expression in zone III

was a consequence of the removal of activator sites in the

‘‘spacer’’. Furthermore, the model predicts that the equal

amplitudes of stripes 2 and 3 in the mutations of the three

footprint Kr sites are because of the fact that the increased stripe 2

expression levels driven by M32 were reduced by these mutations

(Figure 4B4). This reduction in stripe 2 expression is a

consequence of a reduction in the affinity of the bcd-5 site, which

overlaps with the kr-5 site, by a factor of 5. This reduction in

affinity was not predictable in the early 1990s when high quality

PWMs for Bcd were unavailable.

Although an improvement on previous efforts, the work

presented here does not constitute a complete solution to the

problem of understanding cis-regulatory logic. In considering what

may be required for further progress in understanding cis-

regulatory logic, it is necessary to distinguish between limitations

on available data and limitations of the model itself. It is significant

that we were able to predict the expression of highly rearranged

Sepsid enhancers up to the resolution of available data, while our

results for gap and pair-rule enhancers other than eve in melanogaster

were mixed. We believe that this is a consequence of the fact that

some of these enhancers utilize TFs and perhaps interactions

among the TFs that are not important for driving eve stripes 2, 3,

and 7. One example is Dichaete, which was not considered in our

initial efforts to model the fusions (data not shown), but was

included in the training set reported here because it has been

reported to be an activator of eve stripes 4,5 and 6 [66]. A possible
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example of a missing interaction is the spurious auto-repression of

gt in its own expression domain (Figure S5F). Given that the

expression training set used in this study was driven by only 2.5 kb

of DNA from a single locus, it is likely that the use of a more

diverse training set would result in improved predictions.

As regards the model, it is clearly incomplete in the sense that it

does not contain a full set of regulatory mechanisms. As a basic

point of model design, we incorporated a representation of a

regulatory mechanism into the model only when there is specific

evidence that it acts in the experimental system under consider-

ation. This means that some mechanisms that are known to occur

and are easy to represent mathematically, such as corepression

[67,68] and cooperative binding by heterologous pairs of proteins

[69], were not incorporated in this study because there is no

evidence that they occur in that portion of the eve control region

used for the training set. With respect to cooperative binding to

DNA, there is a pressing need for high-throughput quantitative

data. Microfluidic methods provide a feasible way to address this

problem [70].

A more fundamental issue concerns the role of chromatin

structure, an area where new theoretical ideas are required.

Silencing is thought to involve changes in chromatin structure.

This phenomenon cannot be modeled simply by modifying the

distance function q(d) for short range repression because such a

modification cannot account for radical changes in the range of

silencing observed when the number of silencer binding sites is

altered [71]. It is possible that the way forward involves spreading

inactivation models of the type proposed by Sengupta [72]. A

critical unsolved problem is the incorporation of regulators into

such models, and the study of so-called chromatin marks may be

useful in this regard.

The eve locus itself may prove a useful system in which to pursue

such studies. The proximal 1.7 kb of 59 noncoding DNA from the

eve gene drives a pattern of expression in cleavage cycle 13 and the

first 6 minutes of cleavage cycle 14A that closely resembles that of

the entire locus [6,8]. In contrast, the fusion constructs considered

here do not express at these early stages (Figure 1D), nor does

MSE2 (data not shown). Moreover, changes of expression occur

after T6 that suggest early signs of the midblastula transition.

These changes take the form of decreases of expression in stripes 3

and 7 by T8, together with a loss of registration with the native eve

pattern caused by the fact that reporter expression does not follow

the anterior shifts observed in expression driven by the native locus

[6]. It is possible that these changes of chromatin state can be

probed in a manner that will suggest new theoretical ideas by

conducting ChIP-seq or hypersensitivity studies on embryos

prepared with extremely high temporal resolution.

In conclusion, our model demonstrated that short-range

quenching and coactivation are essential mechanisms conferring

independent action of enhancers in the large even-skipped regulatory

DNA. We found no decisive evidence that the length scales over

which these interactions occur are fundamentally different. Short

range quenching had a length scale of 150 bp, set from published

experiments. The length scale of coactivation of Hb by Bcd was

almost exactly the same (Table S1), despite it being allowed to vary

in the fitting procedure. These mechanisms are clearly necessary

for understanding the regulation of the entire eve locus, and

establishing their sufficiency will be the subject of future work. In

the case of both mechanisms we expect that better knowledge of

phenomenology would lead to superior understanding. For

example, Arnosti’s group has produced greatly improved data

on short range repression that suggests periodic behavior in

limitations exist not only for the data but also for the model [13].

Alternatively, it might be more useful to reduce the number of

parameters by constraining the range and functional form of all

short range interactions to be identical. Such a choice would

reflect a picture in which the scale of all short range interactions

are set by the length of DNA associated with a single nucleosome

(160–240 bp) [73]. Fixing this length scale based on structural

considerations would connect our model with an important body

of data.

Our predictions of expression patterns from many Drosophili-

dae and Sepsidae strongly suggest that the fundamental rules of

metazoan transcription are well conserved over the course of

evolution. As a syncytium, the Drosophila blastoderm is very

specialized as a developmental system but there is no reason to

think that transcription in this system operates differently than in

the rest of the metazoa. As yet there are two barriers that must be

crossed to establish a general theory of eukaryotic transcriptional

control. One is experimental—training data require not only

expression levels and regulatory sequence, but also the concen-

trations of TFs. Another is theoretical—a framework is needed to

understand long range interactions in the chromatin.

Materials and Methods

Construction of fusion reporters
The M32, M3_2, M23, and M2_3 transformant lines were

generated by excising the EcoRI- XbaI fragments from four eve-

lacZ pCaSpeR plasmids [20] and ligating them into the RMCE

(Recombinase Mediated Cassette Exchange) vector pBS(KS+)- lox-

white- lox2272 [21] cut with EcoRI and SpeI. Each EcoRI- XbaI

fragment contained an eve enhancer fragment fused with the basal

eve promoter (from 242 bp) and the intact 100 bp untranslated

leader and the first 22 codons of the eve gene fused with lacZ as

described [20]. The M32 eve- lacZ pCaSpeR plasmid contains an

additional EcoRI site between MSE3 and MSE2. In this case, the

EcoR1- XbaI fragment was first ligated into the vector, and then

after transformation and amplification of the product the EcoRI-

EcoRI fragment containing MSE3 was cloned into the RMCE

vector after digestion with EcoR1. The correct orientation of

MSE3 in the RMCE vector was confirmed by DNA sequencing.

The pCaSpeR vectors and the RMCE vector were gifts of Stephen

Small.

Site-specific transgenesis
Transgenic lines were established by BestGene Inc. (Chino

Hills, CA 91709 U.S.A) using site-specific transgenesis [21] on line

A13 from the laboratory of Stephen Small, which contains a

landing site in 96F on chromosome III. Surviving flies were

crossed to y w and progeny were screened for exchange events,

scoring for the loss of y and gain of w. Recombination events were

characterized by PCR amplification of the exchange junctions.

PCR characterization of recombination events was carried out

using the primers land-1 (59-TCCGTGGGGTTTGAATTAAC-

39, specific to the 59 end of landing site sequence) and cassette-1

(59-GGCAGTTAGTTGTTGACTGTG-39, specific to the 59 end

of transcript sequence in the reporter cassette) and should yield a

positive product of approximately 1300 bp to 1600 bp, depending

on the length of the regulatory DNA in the cassette.

In situ hybridization
Embryos (1 h–4 h AED) bearing the four fusion genes, M32_

lox, M3_2_ lox, M23_ lox, M2_3_ lox, and MSE2 [24] were

collected, fixed and stained for lacZ mRNA by in situ hybridization

and for Eve protein by immunostaining as described [8]. MSE2

expression data was obtained from 1511B, one of three MSE2
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bearing lines that were gifts of M. Levine. See Figure S1 for a

comparison of 1511B and 1511C expression.

Quantitative expression data
The scanning of fluorescently stained embryos and image

segmentation were performed as described [16]. Embryos were

classified temporally as belonging to either C13, or one of eight

time classes (T1–T8), each about 6.5 minutes long, in cycle 14A

(C14A), as described [6]. Background removal was performed as

described [22]. Registration was performed by registering to

preexisting integrated eve data as described [8]. TF expression data

for all proteins except Dichaete were that used [8], with the

addition of new D-STAT data starting with C13, averaged from at

least ten embryos per each time class. The model was fit to ligand

data from 35% to 92% AP. Dichaete data were obtained from the

t5:26–50 virtual embryo data [74]. Intensity of the gene expression

from the middle 10% of dorsoventral position values was

quantified by the ImageJ [75] plot profile function and was not

registered to Eve pattern. Quantitative expression data for the

1700 construct (1.7 kb proximal eve promoter) was previously

published [8], and quantitative MSE3 expression data was

obtained from M3_2 data by setting expression in stripe 2 to zero.

Generation and selection of PWMs
PWMs (Table S2) were constructed as follows. We used SELEX

to obtain a distribution of nearly optimal binding sites [76] for

Bcd, Cad, Hb, Kr, Kni and Gt and Tll as described [77]. We

generated a family of PWMs of differing width for each of these

TFs by running MEME [78] v.3.0.4 with parameters ‘‘-evt 0.001 -

dna -nmotifs 10 -minw A -maxw B -nostatus -mod zoops –

revcomp’’ on different selection rounds of the SELEX data, with A

equal to 8 and B usually set to 12 unless the results were

unsatisfactory, in which case we increased it to values up to 15.

From the scientific literature, we also obtained a D-STAT PWM

from Dmitri Papasenko (http://line.bioinfolab.net/webgate/help/

dxp.htm#D-stat-223), footprint derived PWMs for Tll [79], other

footprint factors [80], and bacterial one-hybrid PWMs [81]. We

compared these PWMs to each other and those obtained by

SELEX as follows. With the threshold set to zero, we discarded all

PWMs that failed to detect more than 70% of known footprint

sites (Text S1) by extending each site by 5 base pairs of contiguous

genomic sequence on each side and considering the highest score

of the extended site. From the remaining PWMs, we selected the

one that gave the smallest number of false positives when tested

against a total of fifteen segments of sequence (20 bp each) from

the eve transcript which show no peaks on ChIP-Chip assays [82],

and unprotected sequence located between known footprint sites.

The result, summarized in Table S3, led to the selection of Bcd,

Hb, Kr, and Gt sites from our SELEX data, Kni, Dichaete, and

Cad sites from bacterial one-hybrid data [81], D-STAT from D.

Papasenko, and Tll from a published source [79].

Identification of new stripe 2 enhancers
The eve stripe 2 enhancers from Drosophila persimilis, mojavensis,

grimshawi, and willistoni were identified in the course of this study.

To do so, we used a publicly available BLAST tool [83,84]. We

used the D. melanogaster eve coding sequence (2R:5866746-5868284)
as a query sequence and then scanned 25 kb centered on this

region with the two conserved S2E sequences block-A (59-

AATATAACCCAAT-39) and block-B (59-TGATTATATCAT-

CATAATAAATGTTT-39) which bracket the ends of S2E [51].

This provided sequence for S2E’s from mojavensis and grimshawi. In
the case of willistoni, there is no conserved block-B so we used

1100 bp of sequence 39 from the conserved block-A. We used

1100 bp because it is approximately the same length as the longest

S2E example in our hands, that of mojavensis (1089 bp). In the case

of persimilis, it was not possible to obtain more than 753 bp of

sequence 39 from block-A because the genomic database of this

species lacks genomic sequence information beyond this point. We

ran the model to predict gene expression from these putative

enhancers and the results are shown in Figure 4.

Computation and optimization
The model equations shown in Figure 2 and Figure 3 were

implemented in C. Parameters were determined by minimizing the

summed squared difference between the model output and the data,

which consisted of 406 observations of RNA level. Optimization

was performed using the simulated annealing schedule of Lam

[65,85,86]. Parameter search spaces were set by explicit search

limits for Aa, l
a, EA

a ,E
Q
a , ED

a , K
coop
Bcd , EC

Bcd , EC
Cad and h with

R0~255 and f AF~1:0 (Figure 2 and Figure 3). Each annealing run

required from one to ten days of computation on a single P4

(2.8 GHz) or Xeon (2.6 GHz) processor. Runs were repeated 10

times with different random seeds for each optimization problem.

The quality of the runs was judged by its root mean square (rms)

score and by visual observation of the expression pattern.

Implementation of cooperativity and coactivation
The details of our implementation of cooperativity and

coactivation are described here. Quenching was implemented as

described [8, and Figure S2A of this work], based on published

data [38]. We incorporated cooperative binding for Bcd into the

model for two reasons. First, there is independent evidence that

Bcd binds cooperatively. Second. the model cannot correctly

reproduce stripe 2 expression driven by M32 without it [32].

Faced with this observation, we noted that models in which

binding affinities Ki are free parameters could fit this data well

when the bcd-4 and bcd-5 (Figure S6) binding sites had identical

affinities, even though bcd-4 has a much lower affinity than bcd-5

based on PWM score. This scenario frequently indicates

cooperativity [28], and independent experiments have indeed

demonstrated pairwise cooperativity between Bcd molecules

bound to adjacent sites in vitro [30,31]. Remarkably, the

cooperative interaction has a range of at least 41 bp, the center

to center distance between the A1 and X1 sites in the hb promoter

[30]. Given the absence of a well defined upper limit for the range

of cooperative interactions of Bcd, we chose a 60 bp range for the

studies presented here, although a shorter range did not affect the

quality of fit (Table S1, Model 2).

With regard to coactivation, we represented the coactivation

range of cb(d) for coactivator b such that the function equals to 1

for dvD1 and 0 for dwD2, with linear interpolation between

these points (Figure S2B). We set D2~1:1D1 so that only one free

parameter is added when coactivation distance is not fixed.

Transfection studies on tissue culture cells show that Bcd

coactivates Hb [18], so for Bcd we allow D1~DC
B{H to vary

within a range tightly constrained by experimental observations. If

DC
B{H were less than 150 bp, the distance between two closest sites

of Bcd bound to MSE2 and Hb bound to MSE3 in the M32

construct, the Hb bound to MSE3 would repress stripe 2 (Figure

S2C). If, on the other hand, the distance were longer than 200 bp,

a spacer of 160 bp would not suffice to make MSE2 and MSE3

independent in M2_3 (Figure S2D). Training runs gave very

constrained values of DC
B{H that ranged from 158 to 165 bp

(Table S1). In addition to coactivation by Bcd, we permit

coactivation of Hb by Cad in the model. In the absence of such

coactivation, the model does not permit MSE3 to drive stripe 7
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expression. This is unsurprising because Hb sets the anterior

border of stripe 3 by repression, and yet stripe 7, driven by MSE3,

is located in the interior of the posterior Hb domain. These facts

strongly suggest that Hb is coactivated in the region of stripe 7,

where Bcd is absent. In contrast to Bcd, there were no

independent constraints on the range of the parameter

D1~DC
B{C for Cad, so we allowed it to vary from 10 to

200 bp. Training runs gave values between 24 and 70 bp.

Diffusion limited Arrhenius rate law
The diffusion limited Arrhenius rate law (Figure 3, Equation 10)

was derived from a stochastic three state Markov process model,

derived from a minimal model of diffusion-limited transcription

initiation [87]. We imagine that the system can have the following

three states, in which 1) there is no PolII bound to the basal promoter;

2) there is a PolII bound to the basal promoter, but the PolII is stalled;

3) there is a PolII bound to the basal promoter and transcription is

initiated, but a new PolII cannot yet bind. Transitions can occur

between states 1 and 2 in either direction, but state 3 can only be

reached from state 2 and can only change to state 1. Every time the

system enters state 3, one new transcript is initiated.

The probabilities P1, P2, and P3 of finding the system in states

1, 2, and 3 respectively are governed by

dP1

dt
~{k1P1zk{1P2zk3P3,

dP2

dt
~k1P1{(k{1zk2)P2,

dP3

dt
~k2P2{k3P3,

where the ki are first order rate constants. We wish to calculate the

steady state probabilities Pi in terms of the kinetic rate constants

ki. In a steady state the derivatives vanish and we make use of the

fact that probabilities add up to one, allowing us to write

P1~
k3(k{1zk2)

k3(k{1zk2)zk1(k2zk3)
,

P2~
k1k3

k3(k{1zk2)zk1(k2zk3)
,

P3~
k1k2

k3(k{1zk2)zk1(k2zk3)
:

k2 is the rate-limiting Arrhenius term used in previous non-

diffusion limited versions of this model [4,8], given by

k2~exp {(h{M)½ �:

The rate of transcription will be the probability of finding the

system in state 3, given by

P3~
A exp {(h{QM)½ �

BzC exp {(h{QM)½ �
:

In the absence of detailed kinetic information, we take

A~B~C~1 to obtain Equation 10 in Figure 3.

Supporting Information

Figure S1 Position Effect on Reporter Construct Expression.

Segmented expression data with background removed superim-

posed from multiple embryos bearing P-element transformed or

RMCE transformed reporters. The number of embryos used to

generate the expression data shown is given in parentheses in each

key, and black arrows indicate the maximum expression level

found in each construct. (A) Expression of two P-element

transformed lines bearing MSE2, 1511B and 1511A [24]. 1511B

bears a reporter construct on the second chromosome and 1511C

bears the same construct on the third chromosome. (B) Expression

of two M32 RMCE transformed M32A and M32B lines bearing

the reporter at the same integration site on the second

chromosome. The expression levels of M32A and M32B are

indistinguishable.

(TIF)

Figure S2 Repression and Coactivation Functions. (A) The short

range repression function qb(dik). (B) The coactivation function

cb(dik). D1 and D2 are indicated. Key binding sites used for

establishing the coactivation range of Bcd in M32(C) and M2_3

(D) are shown. Bcd and Hb sites are in red and cyan respectively.

Some sites are labeled by name. See Figure S6 for a diagram of all

sites.

(TIF)

Figure S3 Training the Model on Four Constructs. (A) The

behavior of model 4cs_7 is shown with comparison to expression

data, as indicated in the key. The x-axis is the percentage of A-P

position and the y-axis is the relative mRNA concentration as

described in Figure 1. This model was trained on expression data

driven by the four constructs M3_2, M32, M2_3, and M23 only.

(B) For comparison, we show the behavior of model 6, trained on

seven constructs, compared to training data for the same four

constructs shown in (A). The behavior of model 6 compared to its

full training set is shown in Figure 4A1-7 and Figure S4. Note that

model 4cs_7 fits the expression data driven by M32 better than

model 6. Comparative rms scores are shown at the top. The full set

of parameters for each model is given in Table S1.

(TIF)

Figure S4 Training the Model on Seven Constructs. Model

output is represented by the red solid lines, while the observed

expression data is represented by the black dashed lines, as shown

in the key. The behavior of models 1, 2, 6, and 7 are shown as

indicated in the leftmost column, which also gives each model’s

rms score. Parameter sets for these four models are given in Table

S1. The x-axis is the percentage of A-P position and the y-axis is

the relative mRNA concentration as described in Figure 1. Note

that the concentration scale for model 7 differs from the other two

rows. The data is rescaled by the factor SR, a free parameter for

position effect, for the P-transformed constructs 1700, MSE2, and

MSE3 (Table S1).

(TIF)

Figure S5 Incorrect Predictions. Incorrect predictions of gene

expression driven by DNA sequences that were not used for

training. The sequences used are fully described in Table S5. Black

lines are predicted RNA expression and colored lines are

quantitative protein profiles of the corresponding endogenous

loci. The scale of relative fluorescence levels for RNA is shown at

the left of graphs, that for proteins on the right. All protein
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patterns are taken from the FlyEx database (http://urchin.spbcas.

ru/flyex) [7]. All predictions in this Figure were made using the

model 6 parameters (Table S1). (A–B) Predictions for the eve stripe

5 (A) and 4/6 enhancers (B). Correct predictions of these

enhancers from model 2 are shown in Figure 4D1-2. (C–L)

Predicted expression driven by enhancers from the genes hb (C),

kni (D–E), gt (F–G), run (H), and h (I–L). (M–N) Predictions for

expression driven by large 59 (M) and 39 (N) eve regulatory DNAs

that contain multiple enhancers. Correct predictions for these

DNA segments from models 7 and 1 respectively are shown in

Figure 4G1-2.

(TIF)

Figure S6 All Binding Sites Used in Model 6. Every binding site

used in model 6 is shown. Of these, all footprint sites of the four

TFs Bcd, Hb, Kr, Gt are numbered as the same way as in the

original papers [17,18]. (A) 59 upstream of eve. (B) M3_2 (C) M32

(D) M2_3 (E) M23. Key rearrangements of binding sites are

indicated by black arrows. bcd-(21) is a computationally identified

site named in this work. bcd-* is evident on footprints [24], but was

not named.

(TIF)

Figure S7 Regulatory Analysis of M2_3 and M23. (A) Zones V

and VI, the areas where expression changes occur between M23

and M2_3. (B–C) Distribution of activation energy barrier changes

at single binding site resolution for M2_3 and M23 as a function of

A-P position on the embryo and number of basepairs 59 to their

transcription start site. In (B) and (C) the positions of MSE2 and

MSE3 are schematically shown at the top. DDa for each activator

binding site is shown in the central panel according to the key in

Figure 5B and the summed activation DDA in the right hand bar.

All footprints sites for Bcd, D-STAT, Hb, Kr and Gt are shown at

the top of panels (B) and (C) except for the Kr-2 site in the spacer

(Figure S6D), which is very close to the 39 Bcd site in the spacer.

Computationally identified Cad binding sites in MSE3 and Bcd

sites in the spacer are also shown. The black arrows in (B) and (C)

indicate two Hb sites potentially subject to coactivation by Bcd.

The red arrow indicates which of these sites is in fact subject to

coactivation in a given construct. Circled areas highlight major

changes in DDA between M2_3 and M23, and the white arrows

indicate which binding sites cause the changes seen in the circled

areas. The distributions of TFs and further information about the

diagrams in (B) and (C) are given in Figure 5D and its legend.

(TIF)

Table S1 Parameters of 5 Models. These parameters are

inferred from the observed expression patterns by fitting

transcription models to quantitative data. Daggers indicate

parameters held fixed during the training process. SR
construct is

the positional effect scale factor for each reporter construct. Rmax

is the maximum rate of transcription. SP
ligand is the scale factor for

protein concentration. Other parameters are described in the

main text.

(PDF)

Table S2 Alignment Matrices Used in the Model. For each

PWM, the left most column indicates DNA bases. The remaining

columns show the number of observed bases at each position in

the binding site.

(PDF)

Table S3 Comparison Between PWMs. For each TF, the top

row is the recovery rate of footprint sites and the bottom row is the

rate of false positives.

(PDF)

Table S4 Regulatory Sequences Used for Predictions. All DNA

sequences used in this work are listed here. Index indicates the

figure panel where the results of the prediction are shown. Name

indicates the sequence designator used in that panel. DNA source

gives the source of the sequence itself, and Reference where it was

first described. We give the genomic position if known. Asterisks in

the second column indicate that there were small differences

between the regulatory sequences we utilized and the correspond-

ing sequences available in FlyBase (http://www.flybase.org). The

REDfly database is at http://redfly.ccr.buffalo.edu. Full sequences

first identified in this work are listed in Text S2.

(PDF)

Table S5 Drosophila and Sepsid Species Abbreviations. For each

full species name, the first word indicates the genus and the second

word indicates species.

(PDF)

Text S1 Comparison of Recovery Rate and False Positive Rate

Between PWMs. The first matrix in each table is the PWM used in

this work. The remaining matrices are used for comparison.

(TXT)

Text S2 Full Sequences First Identified in This Work. eve stripe 2

enhancer sequences identified in this work are listed in FASTA

format. The abbreviation for each species name is shown in the

sequence name.

(TXT)
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