
ReasoNet: Learning to Stop Reading in Machine Comprehension

Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen
Microsoft Research
One Microsoft Way
Redmond, WA 98053

yeshen,pshuang,jfgao,wzchen@microsoft.com

ABSTRACT

Teaching a computer to read and answer general questions per-

taining to a document is a challenging yet unsolved problem. In

this paper, we describe a novel neural network architecture called

the Reasoning Network (ReasoNet) for machine comprehension

tasks. ReasoNets make use of multiple turns to effectively exploit

and then reason over the relation among queries, documents, and

answers. Different from previous approaches using a fixed num-

ber of turns during inference, ReasoNets introduce a termination

state to relax this constraint on the reasoning depth. With the use

of reinforcement learning, ReasoNets can dynamically determine

whether to continue the comprehension process after digesting

intermediate results, or to terminate reading when it concludes that

existing information is adequate to produce an answer. ReasoNets

achieve superior performance in machine comprehension datasets,

including unstructured CNN and Daily Mail datasets, the Stanford

SQuAD dataset, and a structured Graph Reachability dataset.

KEYWORDS

Machine Reading Comprehension, Deep Reinforcement Learning,

ReasoNet

1 INTRODUCTION

Teaching machines to read, process, and comprehend natural lan-

guage documents is a coveted goal for artificial intelligence [2, 7, 19].

Genuine reading comprehension is extremely challenging, since

effective comprehension involves thorough understanding of docu-

ments and sophisticated inference. Toward solving this machine

reading comprehension problem, in recent years, several works

have collected various datasets, in the form of question, passage,

and answer, to test machine on answering a question based on the

provided passage [7, 8, 18, 19]. Some large-scale cloze-style datasets

[7, 8] have gained significant attention along with powerful deep

learning models.

Recent approaches on cloze-style datasets can be separated into

two categories: single-turn and multi-turn reasoning. Single turn

reasoning models utilize attention mechanisms [1] to emphasize

specific parts of the document which are relevant to the query.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD’17, August 13-17, 2017, Halifax, NS, Canada

© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00
DOI: 10.1145/3097983.3098177

These attention models subsequently calculate the relevance be-

tween a query and the corresponding weighted representations of

document subunits (e.g. sentences or words) to score target candi-

dates [7–9]. However, considering the sophistication of the problem,

after a single-turn comprehension, readers often revisit some spe-

cific passage or the question to grasp a better understanding of the

problem. With this motivation, recent advances in reading com-

prehension have made use of multiple turns to infer the relation

between query, document and answer [6, 8, 21, 25]. By repeatedly

processing the document and the question after digesting inter-

mediate information, multi-turn reasoning can generally produce

a better answer and these existing works have demonstrated its

superior performance consistently.

Existing multi-turn models have a pre-defined number of hops

or iterations in their inference without regard to the complexity

of each individual query or document. However, when human

read a document with a question in mind, we often decide whether

we want to stop reading if we believe the observed information

is adequate already to answer the question, or continue reading

after digesting intermediate information until we can answer the

question with confidence. This behavior generally varies from doc-

ument to document or question to question because it is related to

the sophistication of the document or the difficulty of the question.

Meanwhile, the analysis in [3] also illustrates the huge variations

in the difficulty level with respect to questions in the CNN/Daily

Mail datasets [7]. For a significant part of the datasets, this analy-

sis shows that the problem cannot be solved without appropriate

reasoning on both its query and document.

With this motivation, we propose a novel neural network ar-

chitecture called Reasoning Network (ReasoNet). which tries to

mimic the inference process of human readers. With a question in

mind, ReasoNets read a document repeatedly, each time focusing

on different parts of the document until a satisfying answer is found

or formed. This reminds us of a Chinese proverb: “The meaning

of a book will become clear if you read it hundreds of times.”. More-

over, unlike previous approaches using fixed number of hops or

iterations, ReasoNets introduce a termination state in the inference.

This state can decide whether to continue the inference to the next

turn after digesting intermediate information, or to terminate the

whole inference when it concludes that existing information is suf-

ficient to yield an answer. The number of turns in the inference is

dynamically modeled by both the document and the query, and can

be learned automatically according to the difficulty of the problem.

One of the significant challenges ReasoNets face is how to design

an efficient training method, since the termination state is discrete

and not connected to the final output. This prohibits canonical

back-propagation method being directly applied to train ReasoNets.

ar
X

iv
:1

60
9.

05
28

4v
3

 [
cs

.L
G

]
 2

0
Ju

n
20

17

Motivated by [15, 31], we tackle this challenge by proposing a rein-

forcement learning approach, which utilizes an instance-dependent

reward baseline, to successfully train ReasoNets. Finally, by ac-

counting for a dynamic termination state during inference and ap-

plying proposed deep reinforcement learning optimization method,

ReasoNets achieve the state-of-the-art results in machine com-

prehension datasets, including unstructured CNN and Daily Mail

datasets, and the proposed structured Graph Reachability dataset,

when the paper is first publicly available on arXiv.1 At the time of

the paper submission, we apply ReasoNet to the competitive Stan-

ford Question Answering Dataset(SQuAD), ReasoNets outperform

all existing published approaches and rank at second place on the

test set leaderboard.2

This paper is organized as follows. In Section 2, we review and

compare recent work on machine reading comprehension tasks. In

Section 3, we introduce our proposed ReasoNet model architecture

and training objectives. Section 4 presents the experimental set-

ting and results on unstructured and structured machine reading

comprehension tasks .

2 RELATED WORK

Recently, with large-scale datasets available and the impressive

advance of various statistical models, machine reading comprehen-

sion tasks have attracted much attention. Here we mainly focus

on the related work in cloze-style datasets [7, 8]. Based on how

they perform the inference, we can classify their models into two

categories: single-turn and multi-turn reasoning.

Single-turn reasoning: Single turn reasoning models utilize

an attention mechanism to emphasize some sections of a document

which are relevant to a query. This can be thought of as treating

some parts unimportant while focusing on other important ones

to find the most probable answer. Hermann et al. [7] propose

the attentive reader and the impatient reader models using neural

networks with an attention over passages to predict candidates. Hill

et al. [8] use attention over window-based memory, which encodes

a window of words around entity candidates, by leveraging an end-

to-end memory network [22]. Meanwhile, given the same entity

candidate can appear multiple times in a passage, Kadlec et al. [9]

propose the attention-sum reader to sum up all the attention scores

for the same entity. This score captures the relevance between a

query and a candidate. Chen et al. [3] propose using a bilinear term

similarity function to calculate attention scores with pretrained

word embeddings. Trischler et al. [25] propose the EpiReader which

uses two neural network structures: one extracts candidates using

the attention-sum reader; the other reranks candidates based on a

bilinear term similarity score calculated from query and passage

representations.

Multi-turn reasoning: For complex passages and complex

queries, human readers often revisit the given document in or-

der to perform deeper inference after reading a document. Several

recent studies try to simulate this revisit by combining the informa-

tion in the query with the new information digested from previous

iterations [6, 8, 13, 21, 29]. Hill et al. [8] use multiple hops memory

network to augment the query with new information from the

1https://arxiv.org/abs/1609.05284
2http://www.stanford-qa.com

previous hop. Gated Attention reader [6] is an extension of the

attention-sum reader with multiple iterations by pushing the query

encoding into an attention-based gate in each iteration. Iterative

Alternative (IA) reader [21] produces a new query glimpse and

document glimpse in each iteration and utilizes them alternatively

in the next iteration. Cui et al. [5] further propose to extend the

query-specific attention to both query-to-document attention and

document-to-query attention, which is built from the intermediate

results in the query-specific attention. By reading documents and

enriching the query in an iterative fashion, multi-turn reasoning

has demonstrated their superior performance consistently.

Our proposed approach explores the idea of using both attention-

sum to aggregate candidate attention scores and multiple turns to

attain a better reasoning capability. Unlike previous approaches

using a fixed number of hops or iterations, motivated by [15, 16],

we propose a termination module in the inference. The termination

module can decide whether to continue to infer the next turn after

digesting intermediate information, or to terminate the whole in-

ference process when it concludes existing information is sufficient

to yield an answer. The number of turns in the inference is dynam-

ically modeled by both a document and a query, and is generally

related to the complexity of the document and the query.

3 REASONING NETWORKS

ReasoNets are devised to mimic the inference process of human

readers. ReasoNets read a document repeatedly with attention

on different parts each time until a satisfying answer is found.

As shown in Figure 1, a ReasoNet is composed of the following

components:

Memory: The external memory is denoted as M . It is a list of

word vectors, M = {mi }i=1..D , wheremi is a fixed dimensional

vector. For example, in the Graph Reachability, mi is the vector

representation of each word in the graph description encoded by a

bidirectional-RNN. Please refer to Section 4 for the detailed setup

in each experiment.

Attention: The attention vectorxt is generated based on the cur-

rent internal state st and the externalmemoryM : xt = fatt (st ,M ;θx).

Please refer to Section 4 for the detailed setup in each experiment.

Internal State: The internal state is denoted as s which is a vec-

tor representation of the question state. Typically, the initial state s1
is the last-word vector representation of query by an RNN. The t-th

time step of the internal state is represented by st . The sequence

of internal states are modeled by an RNN: st+1 = RNN(st ,xt ;θs),

where xt is the attention vector mentioned above.

Termination Gate: The termination gate generates a random

variable according to the current internal state; tt ∼ p(·| ftд(st ;θtд))).

tt is a binary random variable. If tt is true, the ReasoNet stops, and

the answer module executes at time step t ; otherwise the ReasoNet

generates an attention vector xt+1, and feeds the vector into the

state network to update the next internal state st+1.

Answer: The action of answer module is triggered when the

termination gate variable is true: at ∼ p(·| fa (st ;θa)).

In Algorithm 1, we describe the stochastic inference process of

a ReasoNet. The process can be considered as solving a Partially

Observable Markov Decision Process (POMDP) [10] in the rein-

forcement learning (RL) literature. The state sequence s1:T is hidden

St St+1 St+2

QueryQuery

Xt

tt tt+1

ftg(θtg) ftg(θtg)
False

fatt(θx) Xt+1fatt(θx)

False

Termination

Answer

Attention

Controller

fa(θa)

at+2

tt+2

ftg(θtg)

True

Memory M

Figure 1: A ReasoNet architecture with an episode of {t1 = 0,

. . ., tt+1 = 0, tt+2 = 1}

Algorithm 1: Stochastic Inference in a ReasoNet

Input :MemoryM ; Initial state s1; Step t = 1; Maximum

Step Tmax

Output :Termination Step T , Answer aT
1 Sample tt from the distribution p(·| ftд(st ;θtд));

2 if tt is false, go to Step 3; otherwise Step 6;

3 Generate attention vector xt = fatt (st ,M ;θx);

4 Update internal state st+1 = RNN(st ,xt ;θs);

5 Set t = t + 1; if t < Tmax go to Step 1; otherwise Step 6;

6 Generate answer at ∼ p(·| fa (st ;θa));

7 Return T = t and aT = at ;

and dynamic, controlled by an RNN sequence model. The ReasoNet

performs an answer action aT at the T -th step, which implies that

the termination gate variables t1:T = (t1 = 0, t2 = 0, ..., tT−1 =

0, tT = 1). The ReasoNet learns a stochastic policy π ((tt ,at)|st ;θ)

with parameters θ to get a distribution of termination actions, to

continue reading or to stop, and of answer actions if the model

decides to stop at the current step. The termination step T varies

from instance to instance.

The learnable parameters θ of the ReasoNet are the embedding

matrices θW , attention network θx , the state RNN network θs , the

answer action network θa , and the termination gate network θtд .

The parameters θ = {θW ,θx ,θs ,θa ,θtд} are trained by maximizing

the total expect reward. The expected reward for an instance is

defined as:

J (θ) = Eπ (t1:T ,aT ;θ)

[

T
∑

t=1

rt

]

The reward can only be received at the final termination step

when an answer action aT is performed. We define rT = 1 if tT = 1

and the answer is correct, and rT = 0 otherwise. The rewards on

intermediate steps are zeros, {rt = 0}t=1...T−1. J can be maximized

by directly applying gradient based optimization methods. The

gradient of J is given by:

∇θ J (θ) = Eπ (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)rT]

Motivated by the REINFORCE algorithm [31], we compute∇θ J (θ):

Eπ (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)rT] =
∑

(t1:T ,aT)∈A†

π (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)(rT − bT)]

where A† is all the possible episodes, T , t1:T ,aT and rT are the

termination step, termination action, answer action, and reward,

respectively, for the (t1:T , aT) episode. bT is called the reward base-

line in the RL literature to lower the variance [23]. It is common to

select bT = Eπ [rT] [24], and can be updated via an online moving

average approach : bT = λbT + (1 − λ)rT . However, we empirically

find that the above approach leads to slow convergence in training

ReasoNets. Intuitively, the average baselines {bT ;T = 1..Tmax} are

global variables independent of instances. It is hard for these base-

lines to capture the dynamic termination behavior of ReasoNets.

Since ReasoNets may stop at different time steps for different in-

stances, the adoption of a global variable without considering the

dynamic variance in each instance is inappropriate. To resolve

this weakness in traditional methods and account for the dynamic

characteristic of ReasoNets, we propose an instance-dependent

baseline method to calculate ∇θ J (θ), as illustrated in Section 3.1.

Empirical results show that the proposed reward schema achieves

better results compared to baseline approaches.

3.1 Training Details

In the machine reading comprehension tasks, a training dataset

is a collection of triplets of query q, passage p, and answer a. Say

〈qn ,pn ,an〉 is the n-th training instance.

The first step is to extract memoryM from pn by mapping each

symbolic in the passage to a contextual representation given by

the concatenation of forward and backward RNN hidden states,

i.e., mk = [
−→
pn

k
,
←−
pn
|pn |−k+1], and extract initial state s1 from qn

by assigning s1 = [
−→qn
|qn | ,
←−qn

1]. Given M and s1 for the n-th

training instance, a ReasoNet executes |A† | episodes, where all

possible episodes A† can be enumerated by setting a maximum

step. Each episode generates actions and a reward from the last

step: 〈(t1:T ,aT), rT 〉(t1:T ,aT)∈A† . Therefore, the gradient of J can be

rewritten as:

∇θ J (θ) =
∑

(t1:T ,aT)∈A†

π (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)(rT − b)]

where the baseline b =
∑

(t1:T ,aT)∈A†
π (t1:T ,aT ;θ)rT is the average

reward on the |A† | episodes for the n-th training instance. It allows

different baselines for different training instances. This can be bene-

ficial since the complexity of training instances varies significantly.

In experiments, we empirically find using (rT
b
− 1) in replace of

(rT − b) can lead to a faster convergence. Therefore, we adopt this

approach to train ReasoNets in the experiments.

4 EXPERIMENTS

In this section, we evaluate the performance of ReasoNets in ma-

chine comprehension datasets, including unstructured CNN and

Daily Mail datasets, the Stanford SQuAD dataset, and a structured

Graph Reachability dataset.

4.1 CNN and Daily Mail Datasets

We examine the performance of ReasoNets on CNN and Daily

Mail datasets.3 The detailed settings of the ReasoNet model are as

follows.

Vocab Size: For training our ReasoNet, we keep the most fre-

quent |V | = 101k words (not including 584 entities and 1 place-

holder marker) in the CNN dataset, and |V | = 151k words (not

including 530 entities and 1 placeholder marker) in the Daily Mail

dataset.

Embedding Layer: We choose 300-dimensional word embed-

dings, and use the 300-dimensional pretrained Glove word embed-

dings [17] for initialization. We also apply dropout with probability

0.2 to the embedding layer.

Bi-GRU Encoder: We apply bidirectional GRU for encoding

query and passage into vector representations. We set the number

of hidden units to be 256 and 384 for the CNN and Daily Mail

datasets, respectively. The recurrent weights of GRUs are initialized

with random orthogonal matrices. The other weights in GRU cell

are initialized from a uniform distribution between −0.01 and 0.01.

We use a shared GRU model for both query and passage.

Memory andAttention: The memory of the ReasoNet on CNN

and Daily Mail dataset is composed of query memory and pas-

sage memory. M = (Mquery
,Mdoc), where Mquery and Mdoc

are extracted from query bidirectional-GRU encoder and passage

bidirectional-GRU encoder respectively. We choose projected co-

sine similarity function as the attention module. The attention

score adoct,i on memory mdoc
i given the state st is computed as

follows: adoct,i = softmaxi=1, ..., |Mdoc |γ cos(W doc
1

mdoc
i ,W doc

2
st),

where γ is set to 10. W doc
1

and W doc
2

are weight vectors asso-

ciated with mdoc
i and st , respectively, and are joint trained in

the ReasoNet. Thus, the attention vector on passage is given by

xdoct =

∑ |Mdoc |
i adoct,i m

doc
i . Similarly, the attention vector on query

is x
query
t =

∑ |Mquery |
i a

query
t,i m

query
i . The final attention vector

is the concatenation of the query attention vector and the pas-

sage attention vector xt = (x
query
t ,xdoct). The attention module is

parameterized by θx = (W
query
1

,W
query
2

,W doc
1
,W doc

2
);

Internal State Controller: We choose GRU model as the in-

ternal state controller. The number of hidden units in the GRU

state controller is 256 for CNN and 384 for Daily Mail. The initial

state of the GRU controller is set to be the last-word of the query

representation by a bidirectional-GRU encoder.

TerminationModule: We adopt a logistical regression tomodel

the termination variable at each time step:

ftд(st ;θtд) = sigmoid(Wtдst + btд);θtд = (Wtд ,btд)

whereWtд and btд are the weight matrix and bias vector, respec-

tively.

Answer Module: We apply a linear projection from GRU out-

puts and make predictions on the entity candidates. Following the

3The CNN and Daily Mail datasets are available at https://github.com/deepmind/rc-
data

Table 1: The performance of Reasoning Network on CNN

and Daily Mail dataset.

CNN Daily Mail

valid test valid test

Deep LSTM Reader [7] 55.0 57.0 63.3 62.2

Attentive Reader [7] 61.6 63.0 70.5 69.0

MemNets [8] 63.4 66.8 - -

AS Reader [9] 68.6 69.5 75.0 73.9

Stanford AR [3] 72.2 72.4 76.9 75.8

DER Network [12] 71.3 72.9 - -

Iterative Attention Reader [21] 72.6 73.3 - -

EpiReader [25] 73.4 74.0 - -

GA Reader [6] 73.0 73.8 76.7 75.7

AoA Reader [5] 73.1 74.4 - -

ReasoNet 72.9 74.7 77.6 76.6

Figure 2: The termination step distribution of a ReasoNet

(Tmax = 5) in the CNN dataset.

settings in AS Reader [9], we sum up scores from the same candi-

date and make a prediction. Thus, AS Reader can be viewed as a

special case of ReasoNets with Tmax = 1.4

Other Details: The maximum reasoning step, Tmax is set to

5 in experiments on both CNN and Daily Mail datasets. We use

ADAM optimizer [11] for parameter optimization with an initial

learning rate of 0.0005, β1 = 0.9 and β2 = 0.999; The absolute value

of gradient on each parameter is clipped within 0.001. The batch

size is 64 for both CNN and Daily Mail datasets. For each batch

of the CNN and Daily Mail datasets, we randomly reshuffle the

assignment of named entities [7]. This forces the model to treat the

named entities as semantically meaningless labels. In the prediction

of test cases, we randomly reshuffle named entities up to 4 times,

and report the averaged answer. Models are trained on GTX TitanX

12GB. It takes 7 hours per epoch to train on the Daily Mail dataset

and 3 hours per epoch to train on the CNN dataset. The models are

usually converged within 6 epochs on both CNN and Daily Mail

datasets.

4When ReasoNet is set with Tmax = 1 in CNN and Daily Mail, it directly applies s0
to make predictions on the entity candidates, without performing attention on the
memory module. The prediction module in ReasoNets is the same as in AS Reader. It
sums up the scores from the same entity candidates, where the scores are calculated

by the inner product between st andm
doc
e , wheremdoc

e is an embedding vector of
one entity candidate in the passage.

Query: passenger @placeholder , 36 , died at the scene

Passage: (@entity0) what was supposed to be a fantasy sports car ride at

@entity3 turned deadly when a @entity4 crashed into a guardrail . the crash

took place sunday at the @entity8 , which bills itself as a chance to drive your

dream car on a racetrack . the @entity4 's passenger , 36 - year - old @entity14

of @entity15 , @entity16 , died at the scene , @entity13 said . the driver of the

@entity4 , 24 - year - old @entity18 of @entity19 , @entity16 , lost control of

the vehicle , the @entity13 said . he was hospitalized with minor injuries .

@entity24 , which operates the @entity8 at @entity3 , released a statement

sunday night about the crash . " on behalf of everyone in the organization , it is

with a very heavy heart that we extend our deepest sympathies to those

involved in today 's tragic accident in @entity36 , " the company said . @entity24

also operates the @entity3 -- a chance to drive or ride in @entity39 race cars

named for the winningest driver in the sport 's history . @entity0 's @entity43

and @entity44 contributed to this report .

Answer: @entity14

Step
Termination

Probability

Attention

Sum

1 0.0011 0.4916

2 0.5747 0.5486

3 0.9178 0.5577

Step 3

11 1

11233

3 1

22

Step 1 Step 2

Figure 3: Results of a test example 69e1f777e41bf67d5a22b7c69ae76f0ae873cf43.story from the CNN dataset. The numbers

next to the underline bars indicate the rank of the attention scores. The corresponding termination probability and the sum

of attention scores for the answer entity are shown in the table on the right.

Results: Table 1 shows the performance of all the existing sin-

gle model baselines and our proposed ReasoNet. Among all the

baselines, AS Reader could be viewed as a special case of ReasoNet

with Tmax = 1. Comparing with the AS Reader, ReasoNet shows

the significant improvement by capturing multi-turn reasoning

in the paragraph. Iterative Attention Reader, EpiReader and GA

Reader are the three multi-turn reasoning models with fixed rea-

soning steps. ReasoNet also outperforms all of them by integrating

termination gate in the model which allows different reasoning

steps for different test cases. AoA Reader is another single-turn

reasoning model, it captures the word alignment signals between

query and passage, and shows a big improvement over AS Reader.

ReasoNet obtains comparable results with AoA Reader on CNN test

set. We expect that ReasoNet could be improved further by incor-

porating the word alignment information in the memory module

as suggested in AoA Reader.

We show the distribution of termination step distribution of

ReasoNets in the CNN dataset in Figure 2. The distributions spread

out across different steps. Around 70% of the instances terminate

in the last step. Figure 3 gives a test example on CNN dataset,

which illustrates the inference process of the ReasoNet. The model

initially focuses on wrong entities with low termination probability.

In the second and third steps, the model focuses on the right clue

with higher termination probability. Interestingly, we also find its

query attention focuses on the placeholder token throughout all

the steps.

4.2 SQuAD Dataset

In this section, we evaluate ReasoNet model on the task of question

answering using the SQuAD dataset [18].5 SQuAD is a machine

comprehension dataset on 536 Wikipedia articles, with more than

100,000 questions. Two metrics are used to evaluate models: Exact

Match (EM) and a softer metric, F1 score, which measures the

weighted average of the precision and recall rate at the character

level. The dataset consists of 90k/10k training/dev question-context-

answer tuples with a large hidden test set. The model architecture

used for this task is as follows:

5SQuAD Competition Website is https://rajpurkar.github.io/SQuAD-explorer/

Table 2: Results on the SQuAD test leaderboard.

Single Model Ensemble Model

EM F1 EM F1

Logistic Regression Baseline [18] 40.4 51.0 - -

Dynamic Chunk Reader [34] 62.5 71.0 - -

Fine-Grained Gating [33] 62.5 73.3 - -

Match-LSTM [26] 64.7 73.7 67.9 77.0

RaSoR [14] - - 67.4 75.5

Multi-Perspective Matching [28] 68.9 77.8 73.7 81.3

Dynamic Coattention Networks [32] 66.2 75.9 71.6 80.4

BiDAF [6] 68.0 77.3 73.3 81.1

ReasoNet 69.1 78.9 73.4 81.8

Iterative Co-attention Networkα 67.5 76.8 - -

FastQA [30] 68.4 77.1 70.8 78.9

jNet [36] 68.7 77.4 - -

Document Reader [4] 69.9 78.9 - -

R-Net [27] 71.3 79.7 75.9 82.9

Vocab Size: We use the python NLTK tokenizer6 to prepro-

cess passages and questions, and obtain about 100K words in the

vocabulary.

Embedding Layer: We use the 100-dimensional pretrained

Glove vectors [17] as word embeddings. These Glove vectors are

fixed during the model training. To alleviate the out-of-vocabulary

issue, we adopt one layer 100-dimensional convolutional neural

network on character-level with a width size of 5 and each char-

acter encoded as an 8-dimensional vector following the work [20].

The 100-dimensional Glove word vector and the 100-dimensional

character-level vector are concatenated to obtain a 200-dimensional

vector for each word.

Bi-GRU Encoder: We apply bidirectional GRU for encoding

query and passage into vector representations. The number of

hidden units is set to 128.

Memory: We use bidirectional-GRU encoders to extract the

query representationMquery and the passage representationMdoc ,

given a query and a passage. We compute the similarity matrix

6NLTK package could be downloaded from http://www.nltk.org/

Table 3: Reachability statistics of the Graph Reachability dataset.

Small Graph Large Graph

Reachable Step No Reach 1–3 4–6 7–9 No Reach 1–3 4–6 7–13

Train (%) 44.16 42.06 13.51 0.27 49.02 25.57 21.92 3.49

Test (%) 45.00 41.35 13.44 0.21 49.27 25.46 21.74 3.53

Table 4: Small and large random graph in the Graph Reachability dataset. Note that “A → B” represents an edge connected

from A to B and the # symbol is used as a delimiter between different edges.

Small Graph Large Graph

Graph Description 0→ 0 # 0→ 2 # 1→ 2 # 2→ 1 # 0→ 17 # 1→ 3 # 1→ 14 # 1→ 6 #

3→ 2 # 3→ 3 # 3→ 6 # 3→ 7 # 2→ 11 # 2→ 13 # 2→ 15 # 3→ 7#

4→ 0 # 4→ 1 # 4→ 4 # 5→ 7 # 5→ 0 # 5→ 7 # 6→ 10 # 6→ 5#

6→ 0 # 6→ 1 # 7→ 0 # 7→ 15 # 7→ 7 # 8→ 11 # 8→ 7 #

10→ 9 # 10→ 6 # 10→ 7 # 12→ 1 #

12→ 12 # 12→ 6 # 13→ 11 # 14→ 17 #

14→ 14 # 15→ 10 # 16→ 2 # 17→ 4 #

17→ 7 #

Query 7→ 4 10→ 17

Answer No Yes

between each word in the query and each word in the passage.

The similarity matrix is denoted as S ∈ RT×J , where T and J

are the number of words in the passage and query, respectively,

and St j = w
⊺

S
[Mdoc

:t ;M
query
:j ;Mdoc

:t ◦M
query
:j] ∈ R, wherewS is a

trainable weight vector, ◦ denotes the elementwise multiplication,

and [;] is the vector concatenation across row. We then compute

the context-to-query attention and query-to-context attention from

the similarity matrix S by following recent co-attention work [20]

to obtain the query-aware passage representation G. We feedG to

a 128-dimensional bidirectional GRU to obtain the memory M =

bidirectional-GRU(G), whereM ∈ R256×T .

Internal State Controller: We use a GRU model with 256-

dimensional hidden units as the internal state controller. The initial

state of the GRU controller is the last-word representation of the

query bidirectional-GRU encoder.

Termination Module: We use the same termination module

as in the CNN and Daily Mail experiments.

Answer Module: SQuAD task requires the model to find a

span in the passage to answer the query. Thus the answer module

requires to predict the start and end indices of the answer span in

the passage. The probability distribution of selecting the start index

over the passage at state st is computed by :

p1t = softmax(w
⊺

p1
[M ;M ◦ St])

where St is given via tiling st byT times across the column andwp1

is a trainable weight vector. The probability distribution of selecting

the end index over passage is computed in a similar manner:

p2t = softmax(w
⊺

p2
[M ;M ◦ St])

Other Details: The maximum reasoning stepTmax is set to 10 in

SQuAD experiments. We use AdaDelta optimizer [35] for parameter

optimization with an initial learning rate of 0.5 and a batch size

of 32. Models are trained on GTX TitanX 12GB. It takes about 40

minutes per epoch for training, with 18 epochs in total.

Results : In the Table 2, we report the performance of all mod-

els in the SQuAD leaderboard.7 In the upper part of the Table 2,

we compare ReasoNet with all published baselines at the time of

submission. Specifically, BiDAF model could be viewed as a special

case of ReasoNet withTmax = 1. It is worth noting that this SQuAD

leaderboard is highly active and competitive. The test set is hidden

to all models and all the results on the leaderboard are produced

and reported by the organizer; thus all the results here are repro-

ducible. In Table 2, we demonstrate that ReasoNet outperforms

all existing published approaches. While we compare ReasoNet

with BiDAF, ReasoNet exceeds BiDAF both in single model and

ensemble model cases. This demonstrates the importance of the

dynamic multi-turn reasoning over a passage. In the bottom part

of Table 2, we compare ReasoNet with all unpublished methods at

the time of this submission, ReasoNet holds the second position in

all the competing approaches in the SQuAD leaderboard.

4.3 Graph Reachability Task

Recent analysis and results [3] on the cloze-style machine compre-

hension tasks have suggested some simple models without multi-

turn reasoning can achieve reasonable performance. Based on

these results, we construct a synthetic structured Graph Reach-

ability dataset8 to evaluate longer range machine inference and

reasoning capability, since we anticipate ReasoNets to have the

capability to handle long range relationships.

We generate two synthetic datasets: a small graph dataset and

a large graph dataset. In the small graph dataset, it contains 500K

small graphs, where each graph contains 9 nodes and 16 direct

7Results shown here reflect the SQuAD leaderboard (stanford-qa.com) as of 17 Feb
2017, 9pm PST. We include the reference in the camera-ready version. α : Fudan
University.
8The dataset is available at https://github.com/MSRDL/graph_reachability_dataset

Table 5: The performance of Reasoning Network on the Graph Reachability dataset.

Small Graph Large Graph

ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC Accuracy

Deep LSTM Reader 0.9619 0.9565 0.9092 0.7988 0.7887 0.7155

ReasoNet-Tmax = 2 0.9638 0.9677 0.8961 0.8477 0.8388 0.7607

ReasoNet-Last 1 1 1 0.8836 0.8742 0.7895

ReasoNet 1 1 1 0.9988 0.9989 0.9821

Step 1

Step 2

Step 0

Step 3

Step 4,

5, 7

Step 6,

8

Step 9

Step Termination Probability Prediction

1 1.00E-06 0.172

2 1.00E-06 0.625

3 1.00E-06 0.752

4 1.00E-06 0.202

5 1.00E-06 0.065

6 1.00E-06 0.041

7 2.30E-06 0.137

8 0.0017 0.136

9 0.49 0.761

10 0.99 0.927

Step 2

Step 3

Step 1

Step 4

Steps 5, 6, 8

Steps 7, 9

Step 10

Figure 4: An example of graph reachability result, given a query “10 → 17” (Answer: Yes). The red circles highlight the

nodes/edges which have the highest attention in each step. The corresponding termination probability and prediction results

are shown in the table. The model terminates at step 10.

edges to randomly connect pairs of nodes. The large graph dataset

contains 500K graphs, where each graph contains 18 nodes and 32

random direct edges. Duplicated edges are removed. Table 3 shows

the graph reachability statistics on the two datasets.

In Table 4, we show examples of a small graph and a large graph

in the synthetic dataset. Both graph and query are represented by a

sequence of symbols. The details settings of the ReasoNet are listed

as follows in the reachability tasks.

Embedding LayerWe use a 100-dimensional embedding vector

for each symbol in the query and graph description.

Bi-LSTM Encoder: We apply a bidirectional-LSTM layer with

128 and 256 cells on query embeddings in the small and large

graph datasets, respectively. The last states of bidirectional-LSTM

on query are concatenated to be the initial internal state s1 =

[−→q |q | ,←−q 1] in the ReasoNet.

Memory: We apply another bidirectional-LSTM layer with 128

and 256 cells on graph description embeddings in the small and

large graph datasets, respectively. It maps each symbol дi to a

contextual representation given by the concatenation of forward

and backward LSTM hidden statesmi = [
−→д i
,
←−д |д |−i+1].

Internal State Controller: We use a GRU model with 128-

dimensional and 256-dimensional hidden units as the internal state

controller for the small and large graph datasets, respectively. The

initial state of the GRU controller is s1.

Answer Module: The final answer is either “Yes” or “No” and

hence logistical regression is used as the answer module: at =

σ (Wast + ba); θa = (Wa ,ba).

Termination Module: We use the same termination module

as in the CNN and Daily Mail experiments.

Other Details: The maximum reasoning step Tmax is set to 15

and 25 for the small graph and large graph dataset, respectively.

We use AdaDelta optimizer [35] for parameter optimization with

an initial learning rate of 0.5 and a batch size of 32.

We denote “ReasoNet” as the standard ReasoNet with termina-

tion gate, as described in Section 3.1. To study the effectiveness of

the termination gate in ReasoNets, we remove the termination gate

and use the prediction from the last state, â = aTmax
(Tmax is themax-

imum reasoning step), denoted as “ReasoNet-Last”. To study the

effectiveness of multi-turn reasoning, we choose “ReasoNet-Tmax =

2”, which only has single-turn reasoning. We compare ReasoNets

with a two layer deep LSTM model [7] with 128 hidden units, de-

noted as “Deep LSTM Reader”, as a baseline. Table 5 shows the per-

formance of these models on the graph reachability dataset. Deep

LSTM Reader achieves 90.92% and 71.55% accuracy in the small

and large graph dataset, respectively, which indicates the graph

reachibility task is not trivial. The results of ReasoNet-Tmax = 2

are comparable with the results of Deep LSTM Reader, since both

Deep LSTM Reader and ReasoNet-Tmax = 2 perform single-turn

reasoning. The ReasoNet-Last model achieves 100% accuracy on

the small graph dataset, while the ReasoNet-Last model achieves

1 -> 16 # 1 -> 12 # 1 -> 14 # 1 -> 7 # 2 -

> 17 # 3 -> 1 # 4 -> 0 # 4 -> 1 # 4 -> 12

4 -> 6 # 6 -> 0 # 6 -> 3 # 6 -> 7 # 8 ->

2 # 8 -> 4 # 8 -> 13 # 8 -> 14 # 9 -> 16

10 -> 0 # 10 -> 6 # 11 -> 10 # 11 -> 2

12 -> 2 # 13 -> 2 # 13 -> 6 # 14 -> 2 #

14 -> 7 # 16 -> 13 # 16 -> 14 # 17 -> 0

17 -> 13 #

Step Termination Probability Prediction

1 1.40E-05 4.49E-04

2 0.999 1.40E-05

Step 1

Step 2

Step 2

Step 1 Step 1

Step 1

3

1

2

2 1

3

Step 2

Figure 5: An example of graph reachability result, given a query “4→ 9” (Answer: No). The numbers next to the underline

bars indicate the rank of the attention scores. The corresponding termination probability and prediction results are shown in

the table.

only 78.95% accuracy on the large graph dataset, as the task be-

comes more challenging. Meanwhile, the ReasoNet model con-

verges faster than the ReasoNet-Lastmodel. The ReasoNetmodel

converges in 20 epochs in the small graph dataset, and 40 epochs

in the large graph dataset, while the ReasoNet-Last model con-

verges around 40 epochs in the small graph dataset, and 70 epochs

in the large graph dataset. The results suggest that the termina-

tion gate variable in the ReasoNet is helpful when training with

sophisticated examples, and makes models converge faster. Both

the ReasoNet and ReasoNet-Last models perform better than the

ReasoNet-Tmax = 2 model, which demonstrates the importance of

the multi-turn reasoning.

To further understand the inference process in ReasoNets, Fig-

ures 4 and 5 show test examples of the large graph dataset. In

Figure 4, we can observe that the model does not make a firm pre-

diction till step 9. The highest attention word at each step shows

the reasoning process of the model. Interestingly, the model starts

from the end node (17), traverses backward till finding the starting

node (10) in step 9, and makes a firm termination prediction. On

the other hand, in Figure 5, the model learns to stop in step 2. In

step 1, the model looks for neighbor nodes (12, 6, 16) to 4 and 9.

Then, the model gives up in step 2 and predict “No". All of these

demonstrate the dynamic termination characteristic and potential

reasoning capability of ReasoNets.

To better grasp when ReasoNets stop reasoning, we show the

distribution of termination steps in ReasoNets on the test set. The

termination step is chosen with the maximum termination probabil-

ity p(k) = tk
∏k−1

i=1 (1 − ti), where ti is the termination probability

at step i . Figure 6 shows the termination step distribution of Rea-

soNets in the graph reachability dataset. The distributions spread

out across different steps. Around 16% and 35% of the instances

terminate in the last step for the small and large graph, respectively.

We study the correlation between the termination steps and the

complexity of test instances in Figure 7. Given the query, we use

the Breadth-First Search (BFS) algorithm over the target graph to

analyze the complexity of test instances. For example, BFS-Step

(a) Small Graph

(b) Large Graph

Figure 6: Termination step distribution of ReasoNets in the

graph reachability dataset, where Tmax is set to 15 and 25 in

the small graph and large graph dataset, respectively.

= 2 indicates that there are two intermediate nodes in the shortest

reachability path. Test instances with larger BFS-Steps are more

challenging. We denote BFS-Step = −1 as there is no reachable

path for the given query. Figure 7 shows that test instances with

larger BFS-Steps require more reasoning steps.

(a) Small Graph

(b) Large Graph

Figure 7: The correlation between BFS steps and ReasoNet

termination steps in the graph reachability dataset, where

Tmax is set to 15 and 25 in the small graph and large graph

dataset, respectively, and BFS-Step= −1 denotes unreachable

cases. The value indicates the number of instances in each

case.

5 CONCLUSION

In this paper, we propose ReasoNets that dynamically decidewhether

to continue or to terminate the inference process in machine com-

prehension tasks. With the use of the instance-dependent baseline

method, our proposed model achieves superior results in machine

comprehension datasets, including unstructured CNN and Daily

Mail datasets, the Stanford SQuAD dataset, and a proposed struc-

tured Graph Reachability dataset.

6 ACKNOWLEDGMENTS

We thank Ming-Wei Chang, Li Deng, Lihong Li, and Xiaodong Liu

for their thoughtful feedback and discussions.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In ICLR.
[2] Léon Bottou. 2014. From machine learning to machine reasoning. Machine

Learning 94, 2 (2014), 133–149.
[3] Danqi Chen, Jason Bolton, and Christopher D Manning. 2016. A Thorough

Examination of the CNN / Daily Mail Reading Comprehension Task. In ACL.
[4] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading

Wikipedia to Answer Open-Domain Questions. CoRR abs/1704.00051 (2017).
[5] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu.

2016. Attention-over-Attention Neural Networks for Reading Comprehension.
CoRR abs/1607.04423 (2016).

[6] Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and Ruslan Salakhutdinov.
2016. Gated-Attention Readers for Text Comprehension. CoRR abs/1606.01549
(2016).

[7] Karm Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching Machines to

Read and Comprehend. In NIPS. 1693–1701.
[8] Felix Hill, Antoine Bordes, Sumit Chopra, and JasonWeston. 2016. The Goldilocks

Principle: Reading Children’S Books With Explicit Memory Representations. In
ICLR.

[9] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. 2016. Text
Understanding with the Attention Sum Reader Network. arXiv:1603.01547v1
[cs.CL] (2016). arXiv:1603.01547

[10] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelligence
101 (1998), 99–134.

[11] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

[12] Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and Kentaro Inui. 2016. Dynamic
Entity Representation with Max-pooling Improves Machine Reading. In Pro-
ceedings of the North American Chapter of the Association for Computational
Linguistics and Human Language Technologies (NAACL-HLT).

[13] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing. In
ICML.

[14] Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and Dipanjan Das. 2016. Learn-
ing Recurrent Span Representations for Extractive Question Answering. CoRR
abs/1611.01436 (2016).

[15] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. 2014. Recurrent models
of visual attention. In Advances in Neural Information Processing Systems. 2204–
2212.

[16] Rodrigo Nogueira and Kyunghyun Cho. 2016. WebNav: A New Large-Scale Task
for Natural Language based Sequential Decision Making. In Advances in Neural
Information Processing Systems.

[17] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation.. In EMNLP.

[18] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In EMNLP.

[19] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. 2013. MCTest:
A Challenge Dataset for the Open-Domain Machine Comprehension of Text.. In
EMNLP.

[20] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016.
Bidirectional Attention Flow for Machine Comprehension. CoRR abs/1611.01603
(2016).

[21] Alessandro Sordoni, Phillip Bachman, and Yoshua Bengio. 2016. Iterative Alter-
nating Neural Attention for Machine Reading. CoRR abs/1606.02245 (2016).

[22] Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. 2015. End-to-end memory
networks. In Advances in Neural Information Processing Systems. 2440–2448.

[23] Richard Stuart Sutton. 1984. Temporal Credit Assignment in Reinforcement Learn-
ing. Ph.D. Dissertation.

[24] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion. In NIPS.

[25] Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer Suleman. 2016. Natural
Language Comprehension with the EpiReader. In EMNLP.

[26] Shuohang Wang and Jing Jiang. 2016. Machine Comprehension Using Match-
LSTM and Answer Pointer. CoRR abs/1608.07905 (2016).

[27] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. 2017. Gated
Self-Matching Networks for Reading Comprehension and Question Answering.
In ACL.

[28] ZhiguoWang, HaitaoMi, Wael Hamza, and Radu Florian. 2016. Multi-Perspective
Context Matching for Machine Comprehension. CoRR abs/1612.04211 (2016).

[29] Dirk Weissenborn. 2016. Separating Answers from Queries for Neural Reading
Comprehension. CoRR abs/1607.03316 (2016).

[30] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. 2017. FastQA: A Simple and
Efficient Neural Architecture for Question Answering. CoRR abs/1703.04816
(2017).

[31] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3-4 (1992), 229–256.

[32] Caiming Xiong, Victor Zhong, and Richard Socher. 2016. Dynamic Coattention
Networks For Question Answering. CoRR abs/1611.01604 (2016).

[33] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, WilliamW. Cohen, and Ruslan
Salakhutdinov. 2016. Words or Characters? Fine-grained Gating for Reading
Comprehension. CoRR abs/1611.01724 (2016).

[34] Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. 2016.
End-to-End Reading Comprehension with Dynamic Answer Chunk Ranking.
CoRR abs/1610.09996 (2016).

[35] Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR
abs/1212.5701 (2012).

[36] Junbei Zhang, Xiao-Dan Zhu, Qian Chen, Li-Rong Dai, Si Wei, and Hui Jiang.
2017. Exploring Question Understanding and Adaptation in Neural-Network-
Based Question Answering. CoRR abs/1703.04617 (2017).

http://arxiv.org/abs/1603.01547

	Abstract
	1 Introduction
	2 Related Work
	3 Reasoning Networks
	3.1 Training Details

	4 Experiments
	4.1 CNN and Daily Mail Datasets
	4.2 SQuAD Dataset
	4.3 Graph Reachability Task

	5 Conclusion
	6 Acknowledgments
	References

