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Reasoning About a Machine with Local Capabilities
Provably Safe Stack and Return Pointer Management

LAU SKORSTENGAARD, Aarhus University, Denmark
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Capability machines provide security guarantees at machine level which makes them an interesting tar-
get for secure compilation schemes that provably enforce properties such as control-flow correctness and
encapsulation of local state. We provide a formalization of a representative capability machine with local
capabilities and study a novel calling convention. We provide a logical relation that semantically captures the
guarantees provided by the hardware (a form of capability safety) and use it to prove control-flow correctness
and encapsulation of local state. The logical relation is not specific to our calling convention and can be used
to reason about arbitrary programs.

CCS Concepts: · Security and privacy → Logic and verification; · Software and its engineering →
Software verification.
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1 INTRODUCTION

Compromising software security is often based on attacks that break programming language
properties relied upon by software authors such as control-flow correctness, local-state encapsula-
tion, etc. Commodity processors offer little support for defending against such attacks: they offer
security primitives with only coarse-grained memory protection and limited compartmentaliza-
tion scalability. As a result, defenses against attacks on control-flow correctness and local-state
encapsulation are either limited to mitigation of only certain common forms of attacks (leading to
an attack-defense arms race [Szekeres et al. 2013]) and/or rely on techniques like machine code
rewriting [Abadi et al. 2005; Wahbe et al. 1993], machine code verification [Morrisett et al. 1999],
virtual machines with a native stack [Lindholm et al. 2014] or randomization [Forrest et al. 1997].
The latter techniques essentially emulate protection techniques on existing hardware at the cost of
performance, system complexity, and/or security.
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0:2 Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

Capability machines are a type of processors that remediate these limitations with a better
security model at the hardware level. They are based on old ideas [Carter et al. 1994; Dennis and
Van Horn 1966; Shapiro et al. 1999] that have recently received renewed interest. In particular, the
CHERI project has proposed new ideas and ways of tackling practical challenges like backwards
compatibility and realistic OS support [N. M. Watson et al. 2015; Woodruff et al. 2014]. Capability
machines tag every word (in the register file and in memory) to enforce a strict separation between
numbers and capabilities (a kind of pointers that carry authority). Memory capabilities carry the
authority to read and/or write to a range of memory locations. There is also a form of object
capabilities, which represent the authority to invoke a piece of code without exposing the code’s
encapsulated private state (e.g., the M-Machine’s enter capabilities (described in Section 2) or
CHERI’s sealed code/data pairs).

Unlike commodity processors, capability machines lend themselves well to enforcing local-state
encapsulation. Potentially, they will enable compilation schemes that enforce this property in an
efficient but also 100% watertight way (ideally evidenced by a mathematical proof, guaranteeing
that we do not end up in a new attack-defense arms race). However, a lot needs to happen before
we get there. For example, it is far from trivial to devise a compilation scheme adapted to the
details of a specific source language’s notion of encapsulation (e.g., private member variables in OO
languages often behave quite differently than private state in ML-like languages). And even if such
a scheme were defined, a formal proof depends on a formalization of the encapsulation provided
by the capability machine at hand.
A similar problem is the enforcement of control-flow correctness on capability machines. An

interesting approach is taken in CheriBSD [N. M. Watson et al. 2015]: the standard contiguous
C stack is split into a central, trusted stack and disjoint, private, per-compartment stacks. The
trusted stack is managed by trusted call and return instructions. To prevent illegal use of stack
references, the approach relies on local capabilities, a type of capabilities offered by CHERI to
temporarily relinquish authority, namely for the duration of a function invocation whereafter
the capability can be revoked. However, details are scarce (how does it work precisely? what
features are supported?) and a lot remains to be investigated (e.g., combining disjoint stacks with
cross-domain function pointers seems like it will scale poorly to large numbers of components).
Finally, there is no argument that the approach is watertight and it is not even clear what security
property is targeted exactly.

In this paper, wemake twomain contributions: (1) an alternative calling convention that uses local
capabilities to enforce stack frame encapsulation and well-bracketed control flow, and (2) perhaps
more importantly, we adapt and apply the well-studied techniques of step-indexed Kripke logical
relations for reasoning about code on a representative capability machine with local capabilities in
general and correctness and security of the calling convention in particular. More specifically, we
make the following contributions:

• We formalize a simple but representative capability machine featuring local capabilities and
its operational semantics (Section 2).

• We define a novel calling convention enforcing control-flow correctness and encapsulation
of stack frames (Section 3). It relies solely on local capabilities and does not require OS
support (like a trusted stack or call/return instructions). It supports higher-order cross-
component calls (e.g., cross-component function pointers) and can be efficient assuming only
one additional piece of processor support (w.r.t. CHERI): an efficient instruction for clearing
a range of memory.

• We present a novel step-indexed Kripke logical relation for reasoning about programs on
the capability machine. It is an untyped logical relation, inspired by previous work on object
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Reasoning About a Machine with Local Capabilities 0:3

capabilities [Devriese et al. 2016]. We prove an analogue of the standard fundamental theorem
of logical relations Ð to the best of our knowledge, our theorem is the most general and
powerful formulation of the formal guarantees offered by a capability machine (a form of
capability safety [Devriese et al. 2016; Maffeis et al. 2010]), including the specific guarantees
offered for local capabilities. It is very general and not tied to our calling convention or a
specific way of using the system’s capabilities. We are the first to apply these techniques for
reasoning about capability machines and we believe they will prove useful for many other
purposes than our calling convention.

• We introduce two novel technical ideas in the unary, step-indexed Kripke logical relation
used to formulate the above theorem: the use of a single orthogonal closure (rather than the
earlier used biorthogonal closure) and a variant of Dreyer et al. [2012]’s public and private
future worlds [Dreyer et al. 2012] to express the special nature of local capabilities. The
logical relation and the fundamental theorem expressing capability safety are presented in
Section 4.

• We demonstrate our results by applying them to challenging examples, specifically con-
structed to demonstrate local-state encapsulation and control-flow correctness guarantees in
the presence of cross-component function pointers (Section 8). The examples demonstrate
both the power of our formulation of capability safety and our calling convention.

This paper is an extension of the published conference paper Skorstengaard et al. [2018]. We have
made improvements to readability and completeness throughout the paper. For instance, we have
added an introduction to Section 4 that provides informal intuition about how the logical relation
machinery comes into play on a capability machine. We highlight the following changes:

• We have added proof sketches for the Fundamental Theorem (Theorem 4.4) and for the
correctness lemma for the awkward example (Lemma 8.4).

• We have added figures that illustrate central parts of the calling convention.
• A section about malloc has been added. Specifically, we provide the specification for the
malloc used in the examples of the paper.

• A section about macro instructions with descriptions of all the macros and the implementation
of scall has been added.

• We have added a section on reasoning about programs that run on a capability machine.
This section explains how one reasons about common scenarios that arise in programs on a
capability machine, and, in particular, how the logical relation is used. It also introduces a
number of lemmas that prove recurring bits once and for all.

• We have expanded on the explanation of the awkward example.
• Details previously found only in the technical appendix [Skorstengaard et al. 2019a] have
been moved to the paper.

We have written a technical appendix [Skorstengaard et al. 2019a] which contains additional details
and proofs left out from this paper.

2 A CAPABILITY MACHINE WITH LOCAL CAPABILITIES

In this paper, we work with a formalization of a capability machine with all the characteristics of real
capability machines as well as local capabilities much like CHERI’s. Otherwise, it is kept as simple
as possible. It is inspired by both the M-Machine [Carter et al. 1994] and CHERI [N. M. Watson et al.
2015]. For simplicity, we assume an infinite address space and unbounded integers (see Section 9
for a discussion of these assumptions).

We define the syntax of our capability machine in Figure 1. We assume an infinite set of addresses
Addr and define machine words as either integers or capabilities of the form ((perm, g), base, end, a).
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0:4 Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

Such a capability represents the authority to execute permissions perm on the memory range
[base, end], together with a current address a and a locality tag g indicating whether the capability
is global or local. On a capability machine, there is no notion of pointers other than capabilities, so
we will use the terms interchangeably. The available permissions are null permission (o), readonly
(ro), read/write (rw), read/execute (rx), and read/write/execute (rwx) permissions. Additionally,
there are three special permissions: read/write-local (rwl), read/write-local/execute (rwlx) and
enter (e), which we will explain below. The orderings of permissions and locality are displayed
in Figure 2. The write permission is subsumed by the write-local permission, i.e. a write-local
capability can be used to store both local and global capabilities to memory which is why write-local
is above write in the permission hierarchy. We denote the pairwise ordering of permission and
locality with ⊑.

We assume a finite set of register names RegName. We define register files reg and memories ms

as functions mapping register names resp. addresses to words. The state of the entire machine is
represented as a configuration that is either a running state Φ ∈ ExecConf containing a memory
and a register file or a failed or halted state where the latter is paired with the final state of memory.

a ∈ Addr
def
= N

perm ∈ Perm ::= o | ro | rw | rwl | rx | e | rwx | rwlx

g ∈ Global ::= global | local

𝑐 ∈ Cap
def
= {((perm, g), b, e, a) | b, a ∈ Addr, e ∈ Addr ∪ {∞}}

𝑤 ∈ Word
def
= Z + Cap

𝑟 ∈ RegName ::= pc | 𝑟0 | 𝑟1 | . . .

reg ∈ Reg
def
= RegName → Word

𝑚 ∈ Mem
def
= Addr → Word

Φ ∈ ExecConf
def
= Reg ×Mem

ms ∈ MemSeg
def
= Addr ⇀ Word

Conf
def
= ExecConf + {failed} + {halted} ×Mem

r ∈ Z + RegName
𝑖 ::= jmp r | jnz r r | move r r | load r r | store r r | lt r r r | plus r r r | minus r r r |

lea r r | restrict r r | subseg r r r | isptr r r | getl r r | getp r r | getb r r |

gete r r | geta r r | fail | halt

Fig. 1. The syntax of our capability machine assembly language.

rwlx

rwl rwx

rx

e

rw

ro

o

global

local

Fig. 2. Permission and locality hierarchy.
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The machine’s instruction set is rather basic. Instructions 𝑖 include relatively standard jump (jmp),
conditional jump (jnz), and move (move, copies words between registers) instructions. Also familiar
are load and store instructions for reading from and writing to memory (load and store) and
arithmetic operators (lt (less than), plus and minus, operating only on numbers). There are three
instructions for modifying capabilities: lea (modifies the current address), restrict (modifies the
permission and local/global tag), and subseg (modifies the range of a capability). Importantly, these
instructions take care that the resulting capability always carries less authority than the original
(e.g. restrict will only weaken a permission according to the hierarchy in Figure 2). Finally, the
instruction isptr tests whether a word is a capability or a number and instructions getp, getl,
getb, gete and geta provide access to a capability’s permissions, local/global tag, base, end and
current address, respectively.
Figure 3 shows the operational semantics for a few instructions representative of the machine.

Essentially, a configuration Φ either decodes and executes the instruction pointed to by Φ.reg(pc)
if it is an executable capability with its address in the valid range; otherwise it fails. The table in the
figure shows for instructions 𝑖 the result of executing them in configurationΦ. The instructions fail
and halt obviously fail and halt respectively. move simply modifies the register file as requested
and updates the pc to the next instruction using the meta-function updPc.
The load instruction loads the contents of the requested memory location into a register, but

only if the capability has appropriate authority (i.e. read permission and an appropriate range).
The restrict instruction updates a capability’s permissions and global/local tag in the register
file, but only if the new permissions are weaker than the original according to the permission
hierarchy in Figure 2. The subseg instruction reduces the range of authority of a capability. In
order to represent the unbounded address space, we use −42 to represent infinity.
The jmp instruction updates the program counter to a requested location, but it is complicated

by the presence of enter capabilities after the M-Machine’s [Carter et al. 1994]. Enter capabilities
cannot be used to read, write or execute and their address and range cannot be modified. They
can only be used to jump to. When that happens, their permission changes to rx. They can be
used to represent a kind of closures: an opaque package containing a piece of code together with
local encapsulated state. Such a package can be built as an enter capability 𝑐 = ((e, g), b, e, a) where
the range [b, a − 1] contains local state (data or capabilities) and [a, e] contains instructions. The
package is opaque to an adversary holding 𝑐 . When 𝑐 is jumped to however, the instructions can
start executing and have access to the local data through the updated version of 𝑐 , now in the
pc-register.
The instruction lea manipulates the current address of non enter-capabilities. It is fine for a

capability to have a current address outside its range of authority as long as it is not used with an
instruction that requires a specific capability. The instruction geta queries the current address of a
capability and stores it in a register.
Finally, the store instruction updates the memory to the argument value if the capability has

write authority for the specified location. However, the instruction is complicated by the presence
of local capabilities modeled after the ones in the CHERI processor [N. M. Watson et al. 2015].
At a high-level, local capabilities are special in that they can only be kept in registers, i.e. they
cannot be stored to memory. This means that local capabilities can be temporarily given to an
adversary, for the duration of an invocation. If we make sure to clear the capability from the register
file after control is passed back to us, the adversary is unable to store the capability. However,
there is one exception to the rule above: local capabilities can be stored to memory for which we
have a capability with write-local authority (i.e. permission rwl or rwlx). This is intended to
accommodate a stack where register contents can be stored, including local capabilities. As long as
all capabilities with write-local authority are themselves local and the stack is cleared after control
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0:6 Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

Φ →





Jdecode(𝑛)K (Φ) if Φ.reg(pc) = ((perm, g), b, e, a) and b ≤ a ≤ e

and perm ∈ {rx, rwx, rwlx} and Φ.mem(a) = 𝑛

failed otherwise

updPc(Φ) =




Φ[reg.pc ↦→ newPc] if Φ.reg(pc) = ((perm, g), b, e, a)

and newPc = ((perm, g), b, e, a + 1)

failed otherwise

𝑖 J𝑖K (Φ) Conditions
fail failed

halt (halted,Φ.mem)

move 𝑟1 𝑟2 updPc(Φ[reg.𝑟1 ↦→ 𝑤]) 𝑟2 ∈ Reg ⇒ 𝑤 = Φ.reg(𝑟2) and 𝑟2 ∈ Z⇒ 𝑤 = 𝑟2
load 𝑟1 𝑟2 updPc(Φ[reg.𝑟1 ↦→ 𝑤]) Φ.reg(𝑟2) = ((perm, g), b, e, a) and𝑤 = Φ.mem(a)

and b ≤ a ≤ e and
perm ∈ {rwx, rwlx, rx, rw, rwl, ro}

restrict 𝑟1 𝑟2 updPc(Φ[reg.𝑟1 ↦→ 𝑤]) Φ.reg(𝑟2) = ((perm, g), b, e, a) and
(perm′, 𝑔′) = decodePermPair (Φ.reg(𝑟2)) and
(perm′, 𝑔′) ⊑ (perm, 𝑔) and𝑤 = ((perm′, 𝑔′), b, e, a)

subseg 𝑟1 𝑟2 𝑟3 updPc(Φ[reg.𝑟1 ↦→ w]) Φ.reg(𝑟1) = ((perm, g), b, e, a) and for 𝑖 ∈ {2, 3}
𝑛𝑖 = Φ.reg(r𝑖 ) and 𝑛2 ∈ N and b ≤ 𝑛2 and 𝑛3 ≤ e

where either 𝑛3 ∈ N or (𝑛3 = −42 and e = ∞) and
perm ≠ e and𝑤 = ((perm, g), 𝑛2, 𝑛3, a)

jmp r Φ[reg.pc ↦→ newPc] if Φ.reg(𝑟 ) = ((e, g), b, e, a), then
newPc = ((rx, g), b, e, a) otherwise
newPc = Φ.reg(𝑟 )

lea 𝑟1 𝑟2 updPc(Φ[reg.𝑟1 ↦→ c]) Φ.reg(𝑟1) = ((perm, g), b, e, a) and 𝑛 = Φ.reg(𝑟2)
and 𝑛 ∈ Z and perm ≠ e and
c = ((perm, g), b, e, a + 𝑛)

geta 𝑟1 𝑟2 updPc(Φ[reg.𝑟1 ↦→ a]) Φ.reg(𝑟2) = ((_, _), _, _, a)
store 𝑟1 𝑟2 updPc(Φ[mem.a ↦→

w])

Φ.reg(𝑟1) = ((perm, g), b, e, a) and
perm ∈ {rwx, rwlx, rw, rwl} and b ≤ a ≤ e and
w = Φ.reg(𝑟2) and if w = ((_, local), _, _, _), then
perm ∈ {rwlx, rwl}

· · ·

_ failed otherwise

Fig. 3. An excerpt from the operational semantics.

is passed back by the adversary, we will see that this does not break the intended behavior of local
capabilities.

We point out that our local capabilities capture only a part of the semantics of local capabilities in
CHERI. Specifically in addition to the above, CHERI’s default implementation of the CCall exception
handler forbids local capabilities from being passed across module boundaries. Such a restriction
fundamentally breaks our calling convention since we pass around local return pointers and stack
capabilities. However, CHERI’s CCall is not implemented in hardware but in software precisely to
allow experimenting with alternative models like ours.
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Reasoning About a Machine with Local Capabilities 0:7

In order to have a reasonably realistic system, we use a simple model of linking where a program
has access to a linking table that contains capabilities for other programs. We also assume malloc
to be part of the trusted computing base satisfying a certain specification. Malloc and linking tables
are described further in the next section. The specification of malloc is presented in Section 5 as it
uses the semantic model we build in Section 4. For full details on the linking table, we refer to the
technical appendix [Skorstengaard et al. 2019a].

3 STACK AND RETURN POINTER MANAGEMENT USING LOCAL CAPABILITIES

One of the contributions in this paper is a demonstration that local capabilities on a capability
machine support a calling convention that enforces control-flow correctness in a way that is
provably watertight, potentially efficient, does not rely on a trusted central stack manager, and
supports higher-order interfaces to an adversary, where an adversary is just some unknown piece
of code. In this section, we explain the high-level approach of this calling convention. We motivate
each security measures with a situation we want to avoid (motivating each measure separately
with a summary table at the end). After that, we define a number of reusable macro-instructions
that can be used to conveniently apply the proposed convention in subsequent examples.
The basic idea of our approach is simple: we stick to a single, rather standard, C stack and

register-passed stack and return pointers much like a standard C calling convention. However, to
prevent various ways of misusing this basic scheme, we put local capabilities to work and take a
number of not-always-obvious safety measures. The safety measures are presented in terms of
what we need to do to protect ourselves against an adversary, but this is only for presentation
purposes as our code assumes no special status on the machine. In fact, an adversary can apply
the same safety measures to protect themselves against us. In the following paragraphs, we will
explain the issues to be considered in all the relevant situations: when (1) starting our program,
(2) returning to the adversary, (3) invoking the adversary, (4) returning from the adversary, (5)
invoking an adversary callback, and (6) having a callback invoked by the adversary.
Program start-upWe assume that the language runtime initializes the memory as follows: a

contiguous array of memory is reserved for the stack, for which we receive a stack pointer in the
register 𝑟stk . We stress that the stack is not built-in, but merely an abstraction we put on this piece
of the memory. The stack pointer is local and has rwlx permission. Note that this means that
we will be placing and executing instructions on the stack. Crucially, the stack is the only part of
memory for which the runtime (including malloc, loading, linking) will ever provide rwlx or rwl

capabilities. Additionally, our examples typically also assume some memory to store instructions
or static data. Another part of memory (called the heap) is initially governed by malloc and at
program start-up, no other code has capabilities for this memory. Malloc hands out rwx capabilities
for allocated regions as requested (no rwlx or rwl permissions). For simplicity, we assume that
memory allocated through malloc cannot be freed.1

Returning to the adversary Perhaps the simplest situation is returning to the adversary after
they invoked our code (Figure 4a). In this case, we have received a return pointer from them, and
we just need to jump to it as usual. An obvious security measure to take care of is properly clearing
the non-return-value registers before we jump (since they may contain data or capabilities that the
adversary should not get access to). Additionally, we may have used the stack for various purposes
(register spilling, storing local state when invoking other functions etc.), so we also need to clear
that data before returning to the adversary (Figure 4b and Figure 4c).

1In more realistic settings, reusing freed memory on a capability machine can be made safe by checking or enforcing that
there are no dangling pointers to the freed memory, as implemented, for example, in CHERI-JNI [Chisnall et al. 2017].
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0:8 Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

However, if we are returning from a function that has itself invoked adversary code (Figure 4d),
then clearing the used part of the stack is not enough. The unused part of the stack may also
contain data and capabilities, left there by the adversary, including local capabilities since the stack
is write-local. As we will see later, we rely on the fact that the adversary cannot keep hold of local
capabilities when they pass control to the trusted code and receive control back. In this case, the
adversary could use the unused part of the stack to store local pointers and load them from there
after they get control back (Figure 4e). To prevent this, we need to clear (i.e. overwrite with zeros)
the entire part of the stack that the adversary has had access to; not just the parts that we have
used ourselves (Figure 4f). Since we may be talking about a large part of memory, this requirement
is the most problematic aspect of our calling convention for performance (see the discussion in
Section 9 for how this might be mitigated).
Invoking the adversary A slightly more complex case is invoking the adversary. As above, we

clear all the non-argument registers, as well as the part of the stack that we are not using (because,
as above, it may contain local capabilities from previously executed code that the adversary could
exploit in the same way). We leave a copy of the stack pointer in 𝑟stk , but only after we have used
the subseg instruction to shrink its authority to the part that we are not using ourselves.
In one of the registers, we also provide a return pointer which must be a local capability. If it

were global, the adversary would be able to store away the return pointer in a global data structure
(i.e. there exists a global capability for it) and jump to it later in circumstances where this should
not be possible. For example, they could store the return pointer, legally jump to it a first time,
wait to be invoked again, and then jump to the old return pointer a second time instead of the new
return pointer received for the second invocation. Similarly, they could store the return pointer,
invoke a function in our code, wait for us to invoke them again, and then jump to the old return
pointer rather than the new one received for the second invocation. By making the return pointer
local, we prevent such attacks. The adversary can only store local capabilities with a write-local
capability, and the only piece of memory governed by a write-local capability is the stack. Since
the stack pointer itself is also local, it can also only be stored on the stack. There is no way for the
adversary to recover either of these local capabilities because we clear the part of the stack that
they had access to before we pass control back to them.
Note that storing stack pointers for use during future invocations would also be dangerous in

itself, i.e. not just because it can be used to store return pointers. Imagine that the adversary stores
their stack pointer (Figure 5a), invokes trusted code that uses part of the stack to store private data
(Figure 5b) and then invokes the adversary again with a stack pointer restricted to exclude the
part containing the private data (Figure 5c). If the adversary had a way of keeping hold of their old
stack pointer, it could access the private data stored there by the trusted code and break local-state
encapsulation.
Returning from the adversary Return pointers must be passed as local capabilities. But what

should their permissions be, what memory should they point to and what should that memory
(the activation record) contain? Let us answer the last question first by considering what should
happen when the adversary jumps to a return pointer. In that case, the program counter should be
restored to the instruction after the jump to the adversary, so the activation record should store
this old program counter. Additionally, the stack pointer should also be restored to its original
value. Since the adversary has a more restricted authority over the stack than the code making the
call, we cannot hope to reconstruct the original stack pointer from the stack pointer owned by the
adversary. Instead, it should be stored as part of the activation record.
Clearly, neither the old program counter nor the old stack pointer should be accessible by the

adversary. In other words, the return pointer provided to the adversary must be a capability that
they can jump to but not read from, i.e. an enter capability. To make this work, we construct the
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Lower stack

frames...

Adv. stack frame

Our stack frame

Unused
stack

sp

(a) Just before we return to the
adversary. Our stack frame is the
topmost, and we do not have
access to the adversary stack
frame.

Lower stack

frames...

Adv. stack frame

Our stack frame

ostk
opc
...
...

Unused
stack

sp

(b) Just after we returned to the
adversary but did not take care
to clear our local stack frame.

Lower stack

frames...

Adv. stack frame

Our stack frame
0
0
0
0

Unused
stack

sp

(c) Just after we returned to the
adversary, and we did take care
to clear our local stack frame.

Lower stack

frames...

Adv. stack frame

Our stack frame

Callee

stack frame

sp

(d) After an adversary has called us,
and we have called the adversary.

Lower stack

frames...

Adv. stack frame

Our stack frame
0
0
0
0

?
sp

(e) After the adversary has re-
turned to us, and we have re-
turned from the first adversary
call. At this point, the adversary
has access to the local state from
the nested adversary call.

Lower stack

frames...

Adv. stack frame

Our stack frame
0
0
0
0
0
0
0
0
0
0
0

sp

(f) After the adversary has re-
turned to us, and we have re-
turned from the first adversary
call after we took care to clear
the unused part of the stack.

Fig. 4. Depictions of the stack in relation to stack clearing. The greyed out areas are parts of the stack that
are not accessible at the time. The sp capability is the stack pointer.
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Lower stack

frames...

Adv. stack frame

sp

sp

(a) The stack after the adversary
has stored its stack pointer far
up on the stack.

Lower stack

frames...

Adv. stack frame

sp

Our stack frame

sp

sp’

(b) The stack after the adversary
has called some trusted code.

Lower stack

frames...

Adv. stack frame

sp

Our stack frame

Callee

stack frame

sp

sp’

(c) The stack after the trusted
code has called the adversary.
The adversary’s old stack pointer
is still available on the stack.

Fig. 5. Illustration of the situations related to stack clearing when invoking an adversary. The greyed out
areas are parts of the stack that are not accessible at the time.

activation record as depicted in Figure 6. The e return pointer has authority over the entire activation
record (containing the previous return and stack pointer) and its current address points to a number
of restore instructions in the record. Upon invocation, the instructions in the activation record are
executed and can load the old stack pointer and program counter back into the register file. As the
return pointer is an enter pointer, the adversary cannot get hold of the activation record’s contents.
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However after invocation, its permission is updated to rx, so the contents become available to the
restore instructions.
The final question that remains is: where should we store this activation record? The attentive

reader may already see that there is only one possibility: since the activation record contains the
old stack pointer, which is local, the activation record can only be constructed in a part of memory
where we have write-local access, i.e. on the stack. Note that this means we will be placing and
executing instructions on the stack, i.e. it will not just contain code pointers and data. This means
that our calling convention should be combined with protection against stack smashing attacks
(i.e. buffer overflows on the stack overwriting activation records’ contents). Luckily, the capability
machine’s fine-grained memory protection [Woodruff et al. 2014] should make it reasonably easy
for a compiler to implement such protection by making sure that only appropriately bounded
versions of the stack pointer are made available to source language code.

Invoking an adversary callback If we have a higher-order interface to the adversary, we may
need to invoke an adversary callback. In this case, not so much changes with respect to the situation
where we invoke static adversary code. The adversary can provide a callback as a capability for us
to jump to, either an e-capability if they want to protect themselves from us or just an rx capability
if they are not worried about that. However, there is one scenario that we need to prevent: if they
construct the callback capability to point into the stack, it may contain local capabilities that they
should not have access to upon invocation of the callback. As before, this includes return and stack
pointers from previous stack frames that they may be trying to illegally use inside the callback.
To prevent this, we only accept callbacks from the adversary in the form of global capabilities,

which we dynamically check before invoking them (and we fail otherwise). This should not be an
overly strict requirement: our own callbacks do not contain local data themselves, so there should
be no need for the adversary to construct callbacks on the stack.2

Having a callback invoked by the adversary The above leaves us with perhaps the hardest
scenario: how to provide a callback to the adversary. The basic idea is that we allocate a block of
memory using malloc that we fill with the capabilities and data that the callback needs, as well
as some prelude instructions that load the data into registers and jumps to the right code. Note
that this implies that no local capabilities can be stored as part of a closure. We can then provide
the adversary with an enter-capability covering the allocated block and pointing to the contained
prelude instructions. However, the question that remains in this setup is: from where do we get a
stack pointer when the callback is invoked?
Our answer is that the adversary should provide it to us; just as we provide them with a stack

pointer whenwe invoke their code. However, it is important that we do not just accept any capability
as a stack pointer but check that it is safe to use. Specifically, we check that it is indeed an rwlx

capability. Without this check, an adversary could potentially get control over our local stack frame

2Note that it does prevent a legitimate but non-essential scenario where the adversary wants to give us temporary access to
a callback not allocated on the stack.

previous stack pointer
previous program counter

restore instructions
return pointer

e

Fig. 6. Structure of an activation record
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during a subsequent callback by passing us a local rwx capability to a global data structure instead
of a proper stack pointer and a global callback for our callback to invoke. If our local state contains
no local capabilities, then, otherwise following our calling convention, the callback would not fail
and the adversary could use a stored capability for the global data structure to access our local state.
To prevent this from happening, we need to make sure the stack capability carries rwlx authority
since the system wide assumption then tells us that the adversary cannot have global capabilities
to our local stack.
Calling conventionWith the security measures introduced and motivated, let us summarize

our proposed calling convention:

At program start-up A local rwlx stack pointer resides in register 𝑟stk . No global write-local capa-
bilities.

Before returning to the adversary Clear non-return-value registers. Clear the part of the stack we
had access to (not just the part we used).

Before invoking the adversary Push activation record to the stack. Create return pointer as local
e-capability to the instructions in the record. Restrict the stack capability to the unused part
and clear it. Clear non-argument registers.

Before invoking an adversary callback Make sure callback is global.
When invoked by an adversary Make sure received stack pointer has permission rwlx.

Modularity The calling convention ensures well-bracketed calls and local-state encapsulation
for the caller but not the callee. In the above presentation to make it easy to distinguish between the
parties involved, we present the callee as some adversarial code that we do not trust. In reality, the
callee could be well-behaved and wish to ensure well-bracketed calls and local-state encapsulation
as well. The calling convention puts no restriction on the callee that the caller itself does not follow,
so by following the calling convention, the callee can also obtain those guarantees. In other words,
the calling convention is modular and scales to scenarios with multiple distrusting parties invoking
each other.

4 LOGICAL RELATION

Now that we have defined our calling convention, how canwe be sure that it works?More concretely,
suppose that we have a program that uses the convention in its interaction with untrusted adversary
code. Can we formally prove the program’s correctness if it relies on well-bracketed control flow
and private state encapsulation for the interaction with the adversary? Clearly, such a proof should
depend on a formal expression of the guarantees provided by the capability machine, including the
specific guarantees for local capabilities.

In this section, we construct such a formalization.Wemake use of somewell-studied and powerful
(but non-trivial) machinery from the literature. Specifically, we employ a unary step-indexed Kripke
logical relation with recursive worlds and some additional special characteristics of our own. Step-
indexing, Kripke logical relations, and recursive worlds are techniques that may be familiar from
lambda calculus settings, but it may not be clear to the reader how they apply in this more low-level
assembly language. Therefore, in the next section, we do not immediately dive into the details, but
first we try to provide some informal intuition about how all of this machinery comes into play in
our setting.

Note: even though the calling convention is the main application in this paper, the logical relation
we construct is very general and can be seen as a formulation of capability safety; hence it should
be regarded as an independent contribution.
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4.1 Formalizing the guarantees of the capability machine

What differentiates a capability machine from a more standard assembly language is that we can
bound the authority of an executing block of code based solely on the capabilities it has access to.
Specifically, it does not matter which instructions are actually executed, i.e. the bound also applies
to untrusted adversary code that has not been inspected or modified in any way.

Worlds. But what does a łbound on the authorityž of an executing block of code mean? In our
setting, there are no externally observable side-effects; the only primitive authority that code
may hold is authority over memory. As such, the authority bounds we consider are related to
memory, but in a form that is more fine-grained than standard read/write authority: a piece of
code’s authority can be bounded by arbitrary memory invariants that it is required to respect.
Specifically, we will define worlds𝑊 ∈ World, which describe a set of memory invariants, and our
results will express authority bounds on code as safety with respect to such a world, i.e. the fact
that the code respects the invariants registered in the world.

Safe values. Suppose we have a world𝑊 expressing that the memory must contain value 42 at
address 0, may contain arbitrary values at addresses 50-60, a rw capability for address 0 at address
73, and an integer at address 100 that may only increase over time3. Our main theorem will state
that if the current register file only contains safe words (numbers or capabilities which preserve
the invariants in𝑊 under any interaction), then an execution will necessarily also preserve the
memory invariants (irrespective of the instructions being executed).
To make this more precise, we need to define the setV(𝑊 ) ∈ P(Word) of words that are safe

w.r.t.𝑊 . Essentially, the set should only include words that preserve𝑊 ’s invariants under any
interaction, but should otherwise be as liberal as possible. Numbers are clearly always safe as they
cannot be used to break invariants. Whether a capability is safe depends on the authority that it
carries. In the above-described world, a read capability for address 0 is safe as it can only be used
to read the value 42, which is itself safe. However, a write capability for address 0 is not safe: it can
be used to overwrite the memory at that address with a value other than 42 breaking the invariant
for that address.

Step-indexing. More generally, we want to define that a read capability for memory range [𝑏, 𝑒]

is safe if the world guarantees that the words at those addresses are themselves safe. However,
this definition is cyclic: suppose the world guarantees that the memory at address 𝑎 will contain a
read capability for address 𝑎? Then the definition says that a read capability for address 𝑎 is safe if
and only if the same read capability for address 𝑎 is safe. This form of cyclic reasoning is related
to similar challenges in languages with recursive types or higher-order ML-style references, and
a standard solution is to use step-indexing [Appel and McAllester 2001]: essentially, the cycle is
broken by defining safety up to a certain number of interaction steps. All words will be considered
safe up to 0 steps (since if there is no interaction, nothing unsafe can happen), and, for example, a
read capability will be safe up to 𝑛 steps if the world guarantees that the words at the corresponding
addresses are safe up to 𝑛 − 1 steps. We can then prove that the above read capability for address 𝑎
is safe up to any number of steps.

Future worlds. Worlds are defined as a set of invariants on the memory, but what if we allocate
fresh memory through malloc? We may want to establish new invariants for this freshly allocated
memory and be sure that the adversary will also respect those (if we don’t provide them with
capabilities through which the new invariants can be broken). To accommodate this, we allow
worlds to evolve, for example by adding additional invariants for freshly allocatedmemory. Formally,

3Indeed, we will allow a notion of evolvable invariants, aka protocols, that can express such a temporal property.
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we define valid ways for a world𝑊 to evolve into a new world𝑊 ′ through a future-world relation
𝑊 ′ ⊒𝑊 and we ensure that the set of safe words in world𝑊 must remain safe in any future world
𝑊 ′. Defining safety w.r.t. a notion of evolvable worlds makes our logical relation into a Kripke
logical relation [Pitts and Stark 1998].

Invariants and Recursive Worlds. Worlds group a set of memory invariants, but how are they
actually defined formally? We represent each invariant by a region 𝑟 ∈ Region. We will see later
that regions contain state machines to support a notion of evolvable invariants. Every state of
the state machine contains a predicate 𝐻 that defines the valid memory segments. Unfortunately,
it is not enough to just take 𝐻 ∈ P(MemSeg), because sometimes the invariant may itself be
world-dependent. For example, we may want to express invariants like łthe memory at address
50 contains a value that is safe in the current worldž. As explained, worlds may evolve, and the
set of safe values may grow in future worlds. Therefore, we need to index 𝐻 over worlds, i.e., take
𝐻 ∈ World → P(MemSeg). The result is worlds containing regions with world-indexed predicates,
i.e., the set of worlds must be recursively defined. We will see how such a recursive definition can
be accommodated using techniques from the literature (essentially an advanced application of
step-indexing).

Local capabilities. When we invoke an untrusted piece of code and provide it with certain global
capabilities, it may have stored those capabilities in memory. In this case, we will only be able to
reinvoke the code if we can guarantee that those values are still valid. Formally, worlds represent
the invariants that global capabilities’ safety relies on and the reinvocation is only safe in future
worlds where the invariants are respected.

However, if we provide the adversary with local capabilities in that first invocation, then the
situation is a bit different. The adversary has no way to store these local capabilities, so if we
make sure that there are also no old local capabilities in the register file for the second invocation
(including the capability being invoked), then the adversary cannot use them any more.4 Therefore,
we can allow the second invocation to happen in any private future worlds (𝑊 ′ ⊒priv 𝑊 ) in which
safe global capabilities remain safe but local capabilities do not. This private future world relation
is more liberal than the standard public one (𝑊 ′ ⊒pub 𝑊 , in which all safe capabilities remain
safe). Concretely, worlds may contain temporary regions representing invariants that only local
capabilities may rely on for their safety and that may be revoked (disabled) in private future worlds.
Interestingly, this idea is a variant of a notion of public/private future worlds that has been

previously used in the literature (see Section 9). However, temporary regions are new in our setting
and there is an interesting interplay with the recursiveness of the worlds: for a temporary region,
the predicate 𝐻 ∈ World → P(MemSeg) (which defines the safe memory segments in the current
world) is only required to be monotone w.r.t. public future worlds (i.e. safe memory segments
remain safe in public future worlds). On the other hand for permanent regions, the world-indexed
predicate must be monotone w.r.t. private future worlds. As a consequence, the memory for a
permanent region may not contain local capabilities (as their safety would be broken in private
future worlds), which in turn implies that only local capabilities may have write-local permission
(a general sanity requirement when using local capabilities5)6.

4We ignore write-local capabilities in this discussion. If the adversary does have access to write-local capabilities in the first
and second invocation, then the memory they address must be cleared entirely before the second invocation in order for the
reinvocation to remain safe.
5In fact, local capabilities become useless as soon as the adversary has access to a single global, write-local capability.
6For explanation purposes, this discussion ignores certain ways to allow for local capabilities in a permanent region, for
example, by not requiring that they are valid or requiring that they are local versions of valid global capabilities.
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Permanent region

Temporary region

Local capability

Global capability

Fig. 7. The relation between local/global capabilities and temporary/permanent regions. The colored fields
are regions governing parts of memory. Global capabilities cannot depend on temporary regions.

4.2 Worlds

A world is a semantic model of the memory that carves out memories with a particular shape from
all the possible memories. In our correctness proofs, worlds allow us to rely on the memory having
a particular shape, but sometimes we will also have to guarantee that the memory has a certain
shape. Essentially, a world is a collection of invariants. The memory satisfies the world when part
of the memory satisfy each of the invariants.
Worlds are represented as a finite map from region names, modeled as natural numbers, to

regions that each correspond to an invariant on part of the memory. We have three types of
regions: permanent, temporary, and revoked. Each permanent and temporary region contains a
state transition system with public and private transitions that describe how the invariant is allowed
to change over time. In other words, they are protocols for the region’s memory. Protocols imposed
by permanent regions stay in place indefinitely. Any capability, local or global, can depend on these
protocols. Protocols imposed by temporary regions can be revoked in private future worlds. Doing
this may break the safety of local capabilities but not global ones. This means that local capabilities
can safely depend on the protocols imposed by temporary regions, but global capabilities cannot
since a global capability may outlive a temporary region that is revoked. This is illustrated in
Figure 7.
We need the future world relation to be extensional, so we do not actually remove a revoked

temporary region from the world, but we turn it into a special revoked region that exists for this
purpose. Such a revoked region contains no state transition system and puts no requirements on
the memory. It simply serves as a mask for a revoked temporary region. Masking a region like this
goes back to earlier work of Ahmed [2004] and was also used by Thamsborg and Birkedal [2011].

Regions are used to define safe memory segments, but this set may itself be world-dependent. In
other words, our worlds are defined recursively. Recursive worlds are common in Kripke models
and the following theorem uses the method of Birkedal and Bizjak [2014]; Birkedal et al. [2011]
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for constructing them. The formulation of the lemma is technical, so we recommend that non-
expert readers ignore the technicalities and accept that there exists a set of worlds Wor and two
relations ⊒priv and ⊒pub satisfying the (recursive) equations in the theorem (where the ▶ operator
can be safely ignored7). The solution Wor is some c.o.f.e. that we do not know much about that
is, essentially, isomorphic to the our worlds. The isomorphism 𝜉 allows us to move between the
solution and the worlds we can work with and respects the future world relations.

Theorem 4.1. There exists a c.o.f.e. (complete ordered family of equivalences)Wor and preorders
⊒priv and ⊒pub such that (Wor, ⊒priv) and (Wor, ⊒pub) are preordered c.o.f.e.’s, and there exists an

isomorphism 𝜉 such that

𝜉 : Wor � ▶(N
fin

−⇀ Region)

Region = {revoked}⊎

{temp} × RState × Rels × (RState → (Wor
mon, ne
−−−−→
⊒pub

UPred(MemSeg)))⊎

{perm} × RState × Rels × (RState → (Wor
mon, ne
−−−−→
⊒priv

UPred(MemSeg)))

and for𝑊,𝑊 ′ ∈ Wor.
𝑊 ′ ⊒priv 𝑊 ⇔ 𝜉 (𝑊 ′) ⊒priv 𝜉 (𝑊 )

𝑊 ′ ⊒pub𝑊 ⇔ 𝜉 (𝑊 ′) ⊒pub 𝜉 (𝑊 )

In the above theorem, RState × Rels corresponds to the aforementioned state transition system
where Rels contains pairs of relations corresponding to the public and private transitions, and
RState is a set of world states that we assume to at least contain the states we use in this paper. The
last part of the temporary and permanent regions is a state interpretation function that determines
what memory segments the region permits in each state of the state transition system. The different
monotonicity requirements in the two interpretation functions reflect how permanent regions
rely only on permanent protocols whereas temporary regions can rely on both temporary and
permanent protocols. UPred(MemSeg) is the set of step-indexed, downwards closed predicates on
memory segments: UPred(MemSeg) = {𝐴 ⊆ N ×MemSeg | ∀(𝑛,𝑚𝑠) ∈ 𝐴.∀𝑚 ≤ 𝑛. (𝑚,𝑚𝑠) ∈ 𝐴}.

With the recursive domain equation solved, we could take Wor as our notion of worlds, but it is
technically more convenient to work with the following definition instead:

World = N
fin

−⇀ Region

4.2.1 Future Worlds. The future world relations model how memory may evolve over time. We
have a public and a private future world relation that, respectively, model the memory changes
any capability can rely on and the memory changes only local capabilities can rely on. As local
capabilities fall within the category of all capabilities, the public future relation is subsumed in the
private future relation.

The public futureworld𝑊 ′⊒pub𝑊 requires that dom(𝑊 ′) ⊇ dom(𝑊 ) and∀𝑟 ∈ dom(𝑊 ).𝑊 ′(𝑟 )⊒pub

𝑊 (𝑟 ). That is in a public future world, new regions may have been allocated, and existing regions
may have evolved according to the public future region relation (defined below). The private future
world relation𝑊 ′ ⊒priv 𝑊 is defined similarly, using a private future region relation. The public

7The interested reader can find a brief coverage of c.o.f.e.’s and ▶ in Appendix A.2.
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future region relation is the simplest. It satisfies the following properties:

(𝑠, 𝑠 ′) ∈ 𝜙pub

(𝑣, 𝑠 ′, 𝜙pub, 𝜙, 𝐻 ) ⊒pub (𝑣, 𝑠, 𝜙pub, 𝜙, 𝐻 )

(temp, 𝑠, 𝜙pub, 𝜙, 𝐻 ) ∈ Region

(temp, 𝑠, 𝜙pub, 𝜙, 𝐻 ) ⊒pub revoked

revoked ⊒pub revoked

In public future worlds, both temporary and permanent regions are only allowed to transition
according to the public part of their transition system. Additionally, revoked regions must either
remain revoked or be replaced by a temporary region. This means that the public future world
relations allows us to reinstate a region that has been revoked earlier. The private future region
relation satisfies:

(𝑠, 𝑠 ′) ∈ 𝜙

(𝑣, 𝑠 ′, 𝜙pub, 𝜙, 𝐻 ) ⊒priv (𝑣, 𝑠, 𝜙pub, 𝜙, 𝐻 )

𝑟 ∈ Region

𝑟 ⊒priv (temp, 𝑠, 𝜙pub, 𝜙, 𝐻 )

𝑟 ∈ Region

𝑟 ⊒priv revoked

Here, revocation of temporary regions is allowed. In fact, temporary regions can be replaced by an
arbitrary region not just the special revoked. Conversely, revoked regions may also be replaced by
any other region. On the other hand, permanent regions cannot be masked away. They are only
allowed to transition according to the private part of the transition system.
Intuitively, the future world relation specifies how memory protocols may change over time.

Rather than deleting regions in future worlds, we follow the approach in Ahmed [2004]; Thamsborg
and Birkedal [2011] and use masks to signal which regions are active. This approach implies that
the future world relation is a preorder and hence we can use the method in Birkedal and Bizjak
[2014]; Birkedal et al. [2011] to solve the recursive world equation.

4.2.2 World Satisfaction. A memory satisfies a world, written ms :𝑛 𝑊 , if it can be partitioned
into disjoint parts such that each part is accepted by an active (permanent or temporary) region.
Revoked regions are not taken into account as their memory protocols are no longer in effect.

ms :𝑛 𝑊 iff





∃𝑃 : active(𝑊 ) → MemSeg.ms =
⊎

𝑟 ∈active (𝑊 )

𝑃 (𝑟 ) and

∀𝑟 ∈ active(𝑊 ).

∃𝐻, 𝑠.𝑊 (𝑟 ) = (_, 𝑠, _, _, 𝐻 ) and (𝑛, 𝑃 (𝑟 )) ∈ 𝐻 (𝑠) (𝜉−1 (𝑊 ))

4.3 Logical Relation

The logical relation defines semantically when values, program counters, and configurations are
capability safe. The logical relation is defined in Figures 8 and 9, and we provide some explanations
in the following paragraphs. For space reasons, we omit some definitions and explain them only
verbally, but precise definitions can be found in the appendix. The logical relation is recursively
defined, so we encourage first time readers to just read the section in its entirety and do a second
read afterwards.

First, the observation relation O defines what configurations we consider safe. A configuration is
safe with respect to a world, when the execution of said configuration does not break the memory
protocols of the world. Roughly speaking, this means that when the execution of a configuration
halts, then there is a private future world that the resulting memory satisfies. Notice that failing is
considered safe behavior. In fact, the machine often resorts to failing when an unauthorized access
is attempted such as loading from a capability without read permission. This is similar to Devriese
et al. [2016]’s logical relation for an untyped language but unlike typical logical relations for typed
languages that require programs to not fail.
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O : World
ne
−→ UPred(Reg ×MemSeg)

O(𝑊 )
def
=




(𝑛, (reg,ms))

�������

∀ms𝑓 ,mem′, 𝑖 ≤ 𝑛. (reg,ms ⊎ms𝑓 ) →𝑖 (halted,mem′) ⇒

∃𝑊 ′ ⊒priv 𝑊,ms𝑟 ,ms′.

mem′
= ms′ ⊎ms𝑟 ⊎ms𝑓 and ms′ :𝑛−𝑖 𝑊

′




R : World
mon, ne
−−−−→
⊒pub

UPred(Reg)

R(𝑊 )
def
= {(𝑛, reg) | ∀𝑟 ∈ RegName \ {pc}. (𝑛, reg(𝑟 )) ∈ V(𝑊 )}

E : World
ne
−→ UPred(Word)

E(𝑊 )
def
=

{
(𝑛, pc)

����
∀𝑛′ ≤ 𝑛, (𝑛′, reg) ∈ R(𝑊 ),ms :𝑛′ 𝑊 .

(𝑛′, (reg[pc ↦→ pc],ms)) ∈ O(𝑊 )

}

V : World
mon, ne
−−−−→
⊒pub

UPred(Word)

V(𝑊 )
def
= {(𝑛, 𝑖) | 𝑖 ∈ Z}∪

{(𝑛, ((o, g), b, e, a))}∪

{(𝑛, ((ro, g), b, e, a)) | (𝑛, (b, e)) ∈ readCond (g) (𝑊 )} ∪
{
(𝑛, ((rw, g), b, e, a))

����
(𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and
(𝑛, (b, e)) ∈ writeCond (𝜄nwl, g) (𝑊 )

}
∪

{
(𝑛, ((rwl, g), b, e, a))

����
(𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and
(𝑛, (b, e)) ∈ writeCond (𝜄pwl, g) (𝑊 )

}
∪

{
(𝑛, ((rx, g), b, e, a))

����
(𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and
(𝑛, ({rx}, b, e)) ∈ execCond (g) (𝑊 )

}
∪

{(𝑛, ((e, g), b, e, a)) | (𝑛, (b, e, a)) ∈ enterCond (g) (𝑊 )} ∪





(𝑛, ((rwx, g), b, e, a))

������

(𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and
(𝑛, (b, e)) ∈ writeCond (𝜄nwl, g) (𝑊 ) and
(𝑛, ({rwx, rx}, b, e)) ∈ execCond (g) (𝑊 )




∪





(𝑛, ((rwlx, g), b, e, a))

������

(𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and
(𝑛, (b, e)) ∈ writeCond (𝜄pwl, g) (𝑊 ) and
(𝑛, ({rwlx, rwx, rx}, b, e)) ∈ execCond (g) (𝑊 )




Fig. 8. The logical relation.

The register-file relation R defines safe register-files as those that contain safe words (i.e. words
in the V-relation defined below) in all registers but the pc-register. The expression relation E

defines what words are safe to use as a program counter. A word is safe to use as a program counter
when it can be used to form a safe configuration by plugging it into the pc-register of a safe register
file (i.e. a register file in R) and pairing it with a memory satisfying the world. Note that integers
and non-executable capabilities (e.g. ro and e capabilities) are considered safe program counters
because when they are plugged into a register file and paired with a memory, the execution will
immediately fail, which is safe.
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readCond (g) (𝑊 ) =

{

(𝑛, (b, e))

�����
∃𝑟 ∈ localityReg(𝑔,𝑊 ).

∃[b′, e′] ⊇ [b, e] .𝑊 (𝑟 )
𝑛
⊂
∼ 𝜄

pwl

b′,e′

}

writeCond (𝜄, g) (𝑊 ) =





(𝑛, (b, e))

�������

∃𝑟 ∈ localityReg(𝑔,𝑊 ).

𝑊 (𝑟 ) is address-stratified and

∃[b′, e′] ⊇ [b, e] .𝑊 (𝑟 )
𝑛−1
⊃
∼ 𝜄b′,e′





execCond (g) (𝑊 ) =

{

(𝑛, (P, b, e))

�����
∀𝑛′

< 𝑛,𝑊 ′ ⊒𝑊,𝑎 ∈ [b′, e′] ⊆ [b, e], perm ∈ P .

(𝑛′, ((perm, g), b′, e′, a)) ∈ E(𝑊 ′)

}

enterCond (g) (𝑊 ) =

{
(𝑛, (b, e, a))

����
∀𝑛′

< 𝑛.∀𝑊 ′ ⊒𝑊 .

(𝑛′, ((rx, g), b, e, a)) ∈ E(𝑊 ′)

}

where g = local ⇒ ⊒ = ⊒pub and g = global ⇒ ⊒ = ⊒priv

Fig. 9. Permission-based conditions

𝜄
pwl

𝐴
, 𝜄nwl𝐴 : Region

𝜄
pwl

𝐴

def
= (temp, 1,=,=, 𝐻 pwl

𝐴
)

𝜄nwl𝐴

def
= (temp, 1,=,=, 𝐻nwl

𝐴 )

𝜄
nwl,𝑝

𝐴

def
= (perm, 1,=,=, 𝐻nwl

𝐴 )

𝐻
pwl

𝐴
: RState → (Wor

mon, ne
−−−−→
⊒pub

UPred(MemSeg))

𝐻
pwl

𝐴
(𝑠) (�̂� )

def
=

{
(𝑛,ms)

����
dom(ms) = 𝐴 and

∀a ∈ 𝐴. (𝑛 − 1,ms(a)) ∈ V(𝜉 (�̂� ))

}
∪ {(0,ms)}

𝐻nwl
𝐴 : RState → (Wor

mon, ne
−−−−→
⊒priv

UPred(MemSeg))

𝐻nwl
𝐴 (𝑠) (�̂� )

def
=





(𝑛,ms)

���������

dom(ms) = 𝐴 and

∀a ∈ 𝐴.

ms(a) is non-local and

(𝑛 − 1,ms(a)) ∈ V(𝜉 (�̂� ))





∪ {(0,ms)}

Fig. 10. The standard permit write-local and no write-local regions.

The value relation V defines when words are safe. We make the value relation as liberal as
possible by defining it based on the principle łwhat is the most we can allow an adversary to use a
capability for without breaking the memory protocols.ž

Non-capability data is always safe because it provides no authority. Capabilities give the authority
to manipulate memory and potentially break memory protocols, so they need to satisfy certain
conditions to be safe. In Figure 9, we define such a condition for each kind of permission a capability
can have.

Capabilities with read permission cannot directly break memory protocols because they cannot
make changes to the memory. However, a read capability could be used to read a capability that can
break memory protocols. For this reason, a capability with read permissions is only safe when it can
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be used only to read safe capabilities. This is captured by the readCond-condition. More precisely,
the condition requires the memory addressed by the capability to actually be governed by some
region𝑊 (𝑟 ). This region should at least require all the memories accepted by the state interpretation
function to contain safe words but stricter requirements may be imposed on the memories. This
is expressed in terms of an upper bound on the possibly permitted memories defined in terms of

a so called łstandard regionž. In this case, it is a permit-write-local standard region 𝜄
pwl

[b,e]
(defined

in Figure 10). The permit-write-local standard region only accepts memories with address range
[b, e]. More importantly, the permit-write-local standard region’s state interpretation function only
accepts memory segments that only contain safe words. The relation between the actual region in

the world and the upper bound is𝑊 (𝑟 )
𝑛
⊂
∼ 𝜄

pwl

[b,e]
(defined in Appendix A.1). Essentially, the relation

requires the two regions state transition systems to be the same. Further in the current state of
region𝑊 (𝑟 ) and in any world, the state interpretation function should only allow memories that
are also allowed in the standard region.
The locality of capabilities play a role in whether or not they are safe. Generally speaking,

global capabilities should only depend on permanent regions. This is expressed in readCond with
localityReg(g,𝑊 ) which projects out all the regions the capability can depend on based on its
locality. Specifically, if the capability is local, then all active regions (non-revoked) are projected.
On the other hand, if the capability is global, then only the permanent regions are projected.

Capabilities with write permission can be used to write to memory, so to define when a capability
with write permission is safe we ask ourselves what an adversary should be allowed to do with it.
An adversary should at least be able to write safe words to memory. Safe words cannot be used to
break memory invariants, so we will permit any safe word to be written. A capability with write
permission8 only allows you to write to memory not read from it, so we can allow anything to be
written to memory as long as it cannot be read back and used to break memory protocols. For this
reason, the condition on capabilities with write-permission is defined as a lower bound on what
can be written where the lower bound is łany safe wordž.

The condition on write capabilities is complicated by the fact that we have two flavours of write
permission: write and write-local. A write-local capability can be used to write both local and
global capabilities, so it is (at least) allowed to write any safe capabilities. Write capabilities, on the
other hand, cannot write local capabilities, so we set the lower-bound as non-local safe words.

The requirements on write-capabilities are captured by the writeCond-condition, and it is defined
in a similar fashion to the readCond-condition. The regions the write-capability may depend on

are projected from the world with the localityReg-function, and
𝑛−1
⊃
∼ is used to relate the actual

region to the lower bound. We need a different lower-bound depending on whether the permission
of the capability is write or write-local, so writeCond is parameterized with the region it actually
uses. If the capability has write-local permission, then we use the permit-write-local standard
region. If capability only has write permission, then we use a no-write-local standard region 𝜄nwl

[b,e]

(defined in Figure 10). In addition to the requirements of a permit-write-local standard region, the
no-write-local standard region requires all words in the accepted memory segments to be non-local.
Finally, there is a technical requirement that the region must be address-stratified. Intuitively,

this means that if a region accepts two memory segments, then it must also accept every memory
segment łin betweenž in the sense that it should be possible to come from one memory segment to
the other. Our capability machine can only update one memory address at a time, so it should be
accepted to construct a memory that is on its way to become the one we want to accept. Specifically,

8On the capability machine we consider, write permission always comes with read permission, so we could have made a
stricter condition for write capabilities.
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if two memory segments are accepted by a region, then the region must also accept every memory
segment where each address contains a value from one of the two accepted memory segments.

Due to the permission combinations on the capability machine we consider, a writeCond always
comes with a readCond which creates a somewhat tight bound for the possible regions that make a
capability safe. Further, we could havemade thewriteCond based on the fact that a writer permission
always comes with a read permission, but we opted to make the logical relation as general as
possible, so it can be reused in a setting with a richer permission hierarchy.

The conditions enterCond and execCond are very similar. Both require that the capability can be
safely jumped to. However, executable capabilities can be updated to point anywhere in their range,
so they must be safe as a program counter (in the E-relation) no matter the current address. The
range of an executable capability can also be reduced, so they must also be safe as program counter
no matter what their range of authority is reduced to. In contrast, enter capabilities are opaque and
can only be used to jump to the address they point to. This is why enterCond depends on the current
address of the capability unlike for other types of capabilities. They also change permission when
jumped to, so we require them to be safe as a program counter after the permission is changed
to rx. Because the capabilities are not necessarily invoked immediately, this must be true in any
future world, but it depends on the capability’s locality which future worlds we consider. If it is
global, then we require safety as a program counter in private future worlds (where temporary
regions may be revoked). For local capabilities, it suffices to be safe in public future worlds where
temporary regions are still present.

In the technical appendix, we prove that safety of all values is preserved in public future worlds,
and that safety of global values is also preserved in private future worlds:

Lemma 4.2 (Double monotonicity of value relation).

• If𝑊 ′ ⊒pub𝑊 and (𝑛,𝑤) ∈ V(𝑊 ), then (𝑛,𝑤) ∈ V(𝑊 ′).

• If𝑊 ′⊒priv𝑊 and (𝑛,𝑤) ∈ V(𝑊 ) and𝑤 = ((perm, global), b, e, a) (i.e.𝑤 is a global capability),

then (𝑛,𝑤) ∈ V(𝑊 ′).

In Section 3, we require capabilities with write-local permission to be local. This indicates that
our logical relation should imply the same, namely that capabilities with write-local permission are
local.

Lemma 4.3 (Stack capabilities are local).

• If ms :𝑛 𝑊 and (𝑛, ((perm, g), b, e, a)) ∈ V(𝑊 ) and b ≤ e and perm ∈ {rwlx, rwl}, then

g = local.

In our definition of worlds, nothing prevents a world from having regions that are overlapping.
This may seem like an issuewith theV-relation as it allows different permission-based requirements
to be satisfied by different regions. In practice, it is not an issue as we will always have a memory
satisfaction assumption which doubles as a well-formedness condition on the world as it prevents
the regions from overlapping. The memory satisfaction assumption in Lemma 4.3 is there to ensure
a well-formed world.

4.4 Capability Machine Safety

With the logical relation defined, we can now state the fundamental theorem of our logical relation:
a strong theorem that formalizes the guarantees offered by the capability machine. Essentially, it
says a capability that only grants safe authority is capability safe as a program counter.
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Theorem 4.4 (Fundamental Theorem). If one of the following holds:

• perm = rx and (𝑛, (b, e)) ∈ readCond (g) (𝑊 )

• perm = rwx and (𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and

(𝑛, (b, e)) ∈ writeCond (𝜄nwl, g) (𝑊 )

• perm = rwlx and (𝑛, (b, e)) ∈ readCond (g) (𝑊 ) and

(𝑛, (b, e)) ∈ writeCond (𝜄pwl, g) (𝑊 ),

then (𝑛, ((perm, g), b, e, a)) ∈ E(𝑊 )

Proof sketch. Induction over 𝑛. By definition of E(𝑊 ), show

(𝑛′, (reg[pc ↦→ ((perm, g), b, e, a)],ms)) ∈ O(𝑊 )

assuming 𝑛′ ≤ 𝑛, (𝑛′, reg) ∈ R(𝑊 ), and ms :𝑛′ 𝑊 . By definition of O let ms𝑓 , mem′, and 𝑖 ≤ 𝑛′

be given and for Φ = (reg[pc ↦→ ((perm, g), b, e, a)],ms ⊎ms𝑓 ) assume Φ →𝑖 (halted,mem′) and
show there exists𝑊 ′⊒priv𝑊 that part ofmem′ satisfies. First observe that 𝑖 ≠ 0 as Φ is a non-halted
configuration, so Φ takes at least one step, i.e. Φ → Φ

′ →𝑖−1 (halted,mem′).
The rest of the proof considers the different possibilities for the step Φ → Φ

′, i.e. it considers
each of the instructions that could have been executed. For each of these cases, we argue that (1) Φ′

is consistent with the world in the sense that the register-file and memory still respect the world
and that (2) the rest of the execution respects the world. Depending on where the pc in Φ

′ comes
from, the second result is proven in one of two ways. If the step to Φ′ was a jump, then the new pc
is one of the safe values in Φ’s registers, and the value relation is used to argue that the jump is safe.
On the other hand, if the pc was just incremented, then we can apply the induction hypothesis.

In order to argue (1), we look at the possible states for Φ according to the operational semantics.
If we consider the memory in Φ

′, then it either (a) remains unchanged or (b) one address has been
updated and the register-file contains an appropriate capability for writing. The latter occurs when
the executed instruction is store. Otherwise we are in the former case. In case (a), the memory
hasn’t changed, so we conclude that the memory still respects the world simply by downwards
closure of memory satisfaction. In case (b), we use an auxiliary lemma that uses the safety of the
write capability used by the store instruction to show that the updated memory satisfies the world.
To show that the updated register-file is safe, we consider the changes made to it by all instructions
in separate lemmas and show that they all preserve safety of the register file.
The complete proof can be found in the technical appendix [Skorstengaard et al. 2019a]. □

The permission-based conditions of Theorem 4.4 make sure that the capability only provides
safe authority in which case the capability must be in the E relation, i.e. it can safely be used as a
program counter in an otherwise safe register-file.

The Fundamental Theorem can be understood as a general expression of the guarantees offered by
the capability machine which is an instance of a general property called capability safety [Devriese
et al. 2016; Maffeis et al. 2010]. The theorem says that an arbitrary capability ((perm, g), b, e, a)

is safe as a program counter without making any assumptions about what program it points to
(the only assumptions we have are about the read or write authority that it carries). As such, the
theorem expresses the capability safety of the machine which guarantees that any instruction is
safe to execute and will not be able to go beyond the authority of the values it has access to. We
demonstrate this in Section 8 where Theorem 4.4 is used to reason about capabilities that point
to arbitrary instructions. The relation between Theorem 4.4 and local-state encapsulation and
control-flow correctness will also be shown by example in Section 8 as the examples depend on
these properties for correctness.
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5 MALLOC

In the examples presented in Section 8, we will assume the existence of a trusted malloc routine, so
that both the trusted code and the adversary are able to allocate new memory. Malloc is considered
part of the trusted computing base as mentioned in Section 2. This is unavoidable: if we cannot
trust malloc, then we cannot use the memory it allocates as we have no idea whether it is aliased
by some untrusted program.
Our semantic model is not specific to a particular implementation of malloc, so rather than

providing the implementation we provide a malloc specification. The specification expresses
standard expectations about the behaviour of malloc, but making the specification realistic requires
some of the technical machinery from the logical relation. As such, this section is a bit technical
and can safely be skipped on first read. Definition 5.1 is the malloc specification. Following the
definition, we provide an informal description of the definition with references to each of the items
in the definition.

Definition 5.1 (Malloc Specification). 𝑐malloc satisfies the specification for malloc iff the following
conditions hold:

(1) 𝑐malloc = ((e, global), _, _, _)
(2) There exists a 𝜄malloc,0 such that
(a) 𝜄malloc,0.𝑣 = perm
(b) For all 𝜄 ′ ⊒priv 𝜄malloc,0,𝑊 , 𝑖 with𝑊 (𝑖) = 𝜄 ′, we have that

𝜄 ′.𝐻 (𝜄 ′.𝑠) (𝜉−1 (𝑊 )) = 𝜄 ′.𝐻 (𝜄 ′.𝑠) (𝜉−1 ( [𝑖 ↦→𝑊 (𝑖)]))

(c) For all Φ ∈ ExecConf,msfootprint,msframe ∈ MemSeg, 𝑖, 𝑛, size ∈ N,𝑤ret ∈ Word, 𝜄malloc ⊒
priv

𝜄malloc,0, we have that

If Φ.mem = msfootprint ⊎msframe ∧msfootprint :𝑛 [𝑖 ↦→ 𝜄malloc] ∧

Φ.reg(𝑟1) = size ∧ size ≥ 0 ∧ Φ.reg(𝑟0) = 𝑤ret ∧

Φ.reg(pc) = updPcPerm(𝑐malloc)

Then,
∃Φ′ ∈ ExecConf . ∃ms′

footprint
,msalloc ∈ MemSeg.

∃ 𝑗 ∈ N. 𝑗 > 0 ∧ ∃𝑏 ′, 𝑒 ′ ∈ Addr. ∃𝜄 ′
malloc

∈ Region.
Φ →𝑗 Φ

′ ∧

Φ
′.mem = ms′

footprint
⊎msalloc ⊎msframe ∧

𝜄 ′
malloc

⊒pub 𝜄malloc ∧

ms′
footprint

:𝑛−𝑗 [𝑖 ↦→ 𝜄 ′
malloc

] ∧

dom(msalloc) = [𝑏 ′, 𝑒 ′] ∧ ∀𝑎 ∈ [𝑏 ′, 𝑒 ′] .msalloc (𝑎) = 0 ∧
Φ
′.reg = Φ.reg[pc ↦→ updPcPerm(𝑤ret)]

[𝑟1 ↦→ ((rwx, global), 𝑏 ′, 𝑒 ′, 𝑏 ′)]
[𝑟t1, 𝑟t2, 𝑟t3 ↦→ 0, 0, 0] ∧

size − 1 = 𝑒 ′ − 𝑏 ′

(d) For all Φ ∈ ExecConf,

If (Φ.reg(𝑟1) ∉ Z ∨ Φ.reg(𝑟1) < 0) ∧ Φ.reg(pc) = updPcPerm(𝑐malloc)

Then ∃ 𝑗 ∈ N.Φ →𝑗 failed

We require a global capability for invoking malloc (because if the capability were local, then a
program with access to malloc would have to give up this access when invoking untrusted code, 1).
The capability is assumed to have enter permission (1), so malloc can protect its internal state even
when the capability is shared with untrusted code.
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In addition to these syntactic requirements, we also specify standard behavioural expectations
of malloc. Intuitively, we require that when malloc is invoked with a length argument, then it will
return a capability for a fresh piece of memory of that size. It should be fresh in the sense that
malloc has not already allocated any of that memory and will not do so in the future. Also, when
invoked with a nonsensical length argument such as a negative integer or a capability, malloc
should simply fail. However, formulating these requirements is harder than one might expect. The
problem is that a realistic implementation of malloc needs to rely on internal state (the free memory
is part of malloc’s internal state) that changes after every invocation and relies on invariants on
that state. We can only expect that malloc behaves according to its specification if its internal state
satisfies the current state of the invariants in an executing system. We express this in terms of the
semantic model from Section 4.

To allow malloc implementations to rely on internal state and invariants for that state, we assume
an initial region for malloc (2). The region is assumed to be permanent (since safety of the global
malloc capability will depend on its presence, 2a). Furthermore, we want to express that malloc
does not depend on any other memory than its own internal state. This is expressed by a restriction
on the malloc region’s state interpretation function which (as explained in Section 4.2) defines what
memory segments it permits in a given world. We require that the accepted memory segments only
depend on the presence of the malloc region itself, i.e. in any world the same memory segments
are accepted if we remove all regions except the malloc region. This property should continue to
hold throughout execution, so it must hold true for any private future region of the initial malloc
region (2b).
The malloc specification also dictates what malloc should do when invoked in a memory with

its internal state valid according to the malloc region (some future evolution of the initial malloc
region). If malloc is invoked with an invalid length argument (that is, a negative integer or a
capability), then we simply require malloc to fail (2d). This part of the specification does not actually
rely on the malloc region: for simplicity, we assume malloc does not need its internal state to
check the argument. When malloc is invoked with a valid length (2c), then it should return a fresh
memory segment of the correct length. This segment is required to come from the footprint of
malloc, i.e. the memory owned by the malloc region before the call. After malloc returns, we require
the malloc region to have evolved (according to the public future world relation) to a new state
where the new footprint is disjoint from the allocated memory. This implies that future invocations
of malloc can never return previously-allocated memory.

For convenience, we also require that malloc returns the non-argument registers (except registers
for malloc internal computations) of the register-file unchanged after the call. This allows the caller
to keep private capabilities in the register file, without having to protect them by storing them in a
private stack frame.
As described previously, the specification of malloc ensures that malloc has no capabilities

pointing out of malloc. It does not, however, say anything about capabilities that point in to malloc.
If we want to be able to trust malloc, we obviously cannot allow arbitrary capabilities to point in to
it. We have chosen to keep the malloc specification simple and let this assumption be in the lemmas
that use malloc. It is sufficient for these lemmas to require that there are no outside capabilities
for malloc in the initial configuration as capabilities cannot appear out of thin air, and the malloc
specification makes sure that capabilities are not leaked.

Malloc should not just be available to trusted programs but also to possibly malicious programs.
This is safe as it follows from the specification that the malloc capability is always safe in a world
with the malloc region:
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Lemma 5.2 (Malloc is safe to pass to adversary). For all 𝑐malloc that satisfies the specification

for malloc with region 𝜄malloc,0, if𝑊 (𝑟 ) ⊒priv 𝜄malloc,0, then (𝑛, 𝑐malloc) ∈ V(𝑊 ) for all 𝑛.

The reason we allow trusted code and adversary to invoke malloc is just to make our work
more realistic, but we are otherwise not interested in its details. As such, we do not give a malloc
implementation. We are, however, confident that it is possible to make an implementation of malloc
that satisfies the malloc specification in Definition 5.1. There are in fact two simplifications in our
system that makes things easier: First, we do not consider deallocation of memory which means
that the data structure malloc uses to keep track of free memory does not have to handle reclaimed
memory. Second, the malloc specification does not permit malloc to run out of memory and thus
refuse allocation. This is possible on our simple capability machine because it has an infinite address
space. An initial capability with an infinite range of authority would of course need to be part of
malloc, but it could also double as the data structure that keeps track of free memory.

6 REUSABLE MACRO INSTRUCTIONS

With the calling convention and logical relation defined, we would like to show its usefulness by
proving the correctness of a series of examples that rely on well-bracketedness and local-state
encapsulation and use the calling convention to enforce these properties. However, the programs
that run on our capability machine are assembly programs. Program examples that would be small
in a high-level language become big and unintelligible at this low level. Thus to make our program
examples intelligible, we introduce a series of low-level abstractions in the form of macros. We
define a number of reusable macros capturing the calling convention as well as other conveniences.
The macros that utilize the stack assume that it is available in register 𝑟stk .

The macro scall 𝑟(𝑟args,𝑟priv) captures the parts of the calling convention related to actually
transferring control to adversarial code. Specifically, it pushes the contents of the private registers,
𝑟priv , to the stack and pushes the łrestorationž code to the stack. The restoration code is executed
as the first thing upon return; it restores the stack pointer and the old program counter. After
the restoration code is pushed to the stack, scall 𝑟(𝑟args,𝑟priv) adjusts the pc to point to the
first instruction after the jump and pushes it to the stack. The scallmacro constructs a protected
return pointer from a stack pointer by adjusting it to point to the first instruction of the return
code and encapsulating it by restricting its permission to e. Next, the scall macro reduces the
range of authority of the stack pointer to the unused part of the stack and clears it (as discussed in
Section 3). Finally, the scall macro clears non-argument registers and jumps to 𝑟 . Upon return
after the restoration code on the stack has been executed, the scall macro pops the restoration
code from the stack and restores the private state by popping it from the stack to the appropriate
registers. Figure 11 displays the implementation of scall and the restoration code used by scall.
The implementation of scall uses some of the macros we present next.

The macro mclear 𝑟 clears all the memory addresses that the capability in register 𝑟 has authority
over. It is used by scall to clear the unused part of the stack before control is transferred. It should
also be used to clear the stack before returning to adversarial code. Similarly, the macro rclear

𝑅 clears all the registers in the set 𝑅. It is also used by scall, and it should also be used before
returning to adversarial code.
The macros prepstack 𝑟 and reqglob 𝑟 are the last macros related to the calling convention.

The former, prepstack should be used when one receives a stack from an unknown source. The
prepstack macro first ensures the stack capability has permission read/write-local/execute. Then,
it adjusts the stack capability, so it follows the convention for the stack9. The other macro, reqglob,

9The stack capability should always point to the topmost word on the stack. A stack received from an unknown source can
be treated as empty, so the stack capability should point just outside its range of authority.
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1 // Push the private registers to the stack.

2 push 𝑟priv,1

3 ...

4 push 𝑟priv,𝑛

5 // Push the restoration code to the stack.

6 push encode (𝑖1)

7 push encode (𝑖2)

8 push encode (𝑖3)

9 push encode (𝑖4)

10 // Push the old pc to the stack.

11 move r_t1 pc

12 lea r_t1 off

13 push r_t1

14 // Push the stack pointer to the stack.

15 push r_stk

16 // Set up the protected return pointer.

17 move r_0 r_stk

18 lea r_0 offrec

19 restrict r_0 encodePermPair ( (local, e))

20 // Restrict the stack capability to the unused part of the stack.

21 geta r_t1 r_stk

22 plus r_t1 r_t1 1

23 getb r_t2 r_stk

24 subseg r_stk r_t1 r_t2

25 // Clear the unused part of the stack.

26 mclear r_stk

27 // Clear non-argument registers.

28 rclear 𝑅

29 jmp r

30 return:

31 // Pop the restore code.

32 pop r_t1

33 pop r_t1

34 pop r_t1

35 pop r_t1

36 // Pop the private state into approriate registers.

37 pop 𝑟priv,1

38 ...

39 pop 𝑟priv,𝑛

𝑖1 = move r_t1 pc

𝑖2 = lea r_t1 off stk

𝑖3 = load r_stk r_t1

𝑖4 = pop pc

The restoration code used in scall.

Fig. 11. Implementation of scall 𝑟 (𝑟args,1, . . . , 𝑟args,𝑚, 𝑟priv,1, . . . , 𝑟priv,𝑛). The restoration code is presented in
the top right corner. The variable off ret is the offset to the label return, and offrec = −5 which is the offset
to the first instruction of the activation record. The set 𝑅 = RegName \ {pc, r_stk, r_0, 𝑟 , 𝑟args,1, . . . , 𝑟args,𝑚}.
The variable off stk = 5 which is the offset to the address where the old stack pointer is stored on the stack.

ensures that the capability in register 𝑟 is global. This macro should be used on callbacks received
from unknown sources to ensure that they cannot be derived from the stack pointer.
The remaining macros are not directly related to the calling convention, but they help making

the examples in Section 8 intelligible. The macros push 𝑟 and pop 𝑟 respectively add and remove
elements from the stack. The macro fetch 𝑟 name fetches the capability related to name from the
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linking table and stores it in register 𝑟 . The macro malloc 𝑟 𝑛 invokes malloc with size argument 𝑛.
The malloc macro assumes that a capability for malloc resides in the linking table and is basically
a fetch of the malloc capability followed by a setup of a return pointer. Finally, the macro crtcls

(𝑥𝑖 , 𝑟𝑖 ) 𝑟 allocates a closure where 𝑟 points to the closure’s code and a new environment is allocated
(using malloc) and the contents of 𝑟𝑖 are stored in the environment. In the code referred to by 𝑟 , an
implicit load from the environment happens when an instruction refers to 𝑥𝑖 .
The Appendix contains the implementation of all the macros used in scall. The technical

appendix [Skorstengaard et al. 2019a] contains more detailed descriptions of all the macros as well
as all implementations. We stress that the macros correspond to series of instructions as seen in
Figure 11; the macros are introduced for intelligibility. The examples of Section 8, the program
examples are stated using the macros, but the proofs work on the expanded macros.

7 REASONING ABOUT PROGRAMS ON A CAPABILITY MACHINE

There are many details to get right when programming in assembly. These details carry over to
proofs about assembly programs, so many of the proofs in Section 8 about example programs are a
bit cumbersome. It is especially annoying when the same line of reasoning is applied in multiple
places. To mitigate this, we have defined a number of lemmas that capture common reasoning
patterns in these proofs. In this section, we present the most central lemmas used to reason about
assembly programs.

Our capability machine only allows the final memory of an execution to be observed, so naturally
the correctness lemmas we prove in Section 8 are statements about the memory in the halted
configuration. In order to prove a property about part of the final memory, we create a world
with a region the ensures the desired property and show that the initial configuration is in the
O-relation w.r.t. that world. The region that ensures the property must be permanent, so it is not
revoked during execution. The O-relation says that if the initial configuration halts successfully,
then the memory in the halting state must still respect a private future world of the initial world.
It is, however, bothersome and error prone to try to argue about the entire execution in one go.
Instead we want to reason modularly in the sense that we only want to reason about parts of the
execution at a time. To this end, we prove an anti-reduction lemma that essentially says that if we
can show that an initial configuration Φ steps to a configuration Φ

′ and Φ
′ is in the O-relation,

then Φ must also be in the observation relation.

Lemma 7.1 (Anti-reduction for O).

∀𝑛, 𝑛′, 𝑖, reg, reg′,ms,ms′,ms𝑟 ,𝑊 ,𝑊 ′.

𝑛′ ≥ 𝑛 − 𝑖 ∧𝑊 ′ ⊒priv 𝑊∧

(∀ms𝑓 . (reg,ms ⊎ms𝑟 ⊎ms𝑓 ) →𝑖 (reg
′,ms′ ⊎ms𝑟 ⊎ms𝑓 ))∧

(𝑛′, (reg′,ms′)) ∈ O(𝑊 ′)

⇒ (𝑛, (reg,ms ⊎ms𝑟 )) ∈ O(𝑊 )

We use the anti-reduction lemma when we reason about the execution of known code. When we
want to reason about unknown code, the anti-reduction lemma does not apply because we do not
know what instructions are being executed. This is where the FTLR (Theorem 4.4) comes into play.
As a reminder, the FTLR says that if a capability only has access to safe values with respect to a
world, then it is safe to use the capability for execution in the same world. The unknown code we
consider will be assumed to only have access to safe values which typically means it has access to
a linking table with a malloc capability and otherwise consists of instructions. These assumptions
allow us to use the FTLR to reason about the unknown code as malloc is a safe value (cf. Lemma 5.2)
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and instructions are integers; integers are always safe values. It is important to remember that
safety is relatively to the semantic model of a memory and not the actual memory itself. For this
reason, the assumptions we make on unknown code must be expressed as a region in a world.

In order to argue that a specific configuration is safe, we need to argue that the configuration is
safe with respect to the world. That is, we need to argue that the memory satisfies the world and
the register-file is in the R-relation. For instance in the case where the untrusted code assumes
control first, we will use the FTLR to show that the capability for the unknown code can be used
for execution. The unknown code will get access to some known, trusted code through a capability
in the initial register-file, so we will have to argue that the known code is safe. We argue about the
known code with Lemma 7.1.

Another common pattern in proofs about programs on our capability machine concerns the use
of scall. The following lemma captures the commonalities of reasoning about programs using
scall. For instance, setting up the local stack frame and constructing stack pointers and protected
return pointers for the callee always amount to the same line of reasoning which is captured by
the lemma. From another point of view, it can be seen as a specification for scall.

Lemma 7.2 (scall works). For all 𝑛 ∈ N, ms,msstk,msunused,ms𝑓 ∈ MemSeg, 𝑊 ∈ World,
reg ∈ Reg, 𝑟, 𝑟arg, 𝑟priv ∈ RegName, and 𝑐next ∈ Cap, if

(1) ms :𝑛 revokeTemp(𝑊 )

(2) dom(ms𝑓 ) ∩ (dom(msstk ⊎msunused ⊎ms)) = ∅

(3) (reg,ms) is looking at scall 𝑟 (𝑟arg, 𝑟priv) followed by 𝑐next
(4) reg points to stack with msstk used and msunused unused

(5) Hyp-Callee For all msrec,ms′
unused

,ms′′ ∈ MemSeg,𝑊 ′ ∈ World, 𝑐ret, 𝑐stk ∈ Cap, and reg′ ∈

Reg, if
• dom(msunused) = dom(msrec ⊎ms′

unused
),

• 𝑊 ′
= revokeTemp(𝑊 ) [𝜄sta (temp,msstk ⊎msrec ⊎ms𝑓 ), 𝜄

pwl (dom(ms′
unused

))]10,

• ms′′ :𝑛−1 𝑊 ′

• reg′ points to stack with ∅ used and ms′
unused

unused

• reg′ = reg0 [pc ↦→ updPcPerm(reg(𝑟 )), 𝑟arg ↦→ reg(𝑟arg), 𝑟0 ↦→ 𝑐ret, 𝑟stk ↦→ 𝑐stk, 𝑟 ↦→ reg(𝑟 )]

• (𝑛 − 1, 𝑐ret) ∈ V(𝑊 ′)

• (𝑛 − 1, 𝑐stk) ∈ V(𝑊 ′)

then we have (𝑛 − 1, (reg′,ms′′)) ∈ O(𝑊 ′)

(6) Hyp-Cont For all 𝑛′ ∈ N,𝑊 ′′ ∈ World, ms′′,ms′′
unused

, and reg′ ∈ Reg, if
• 𝑛′ ≤ 𝑛 − 2
• 𝑊 ′′ ⊒pub revokeTemp(𝑊 )

• ms′′ :𝑛′ revokeTemp(𝑊 ′′)

• for all 𝑟 , we have:

reg′(𝑟 )





= 𝑐next if 𝑟 = pc

= reg(𝑟 ) if 𝑟 ∈ 𝑟priv

∈ V(revokeTemp(𝑊 ′′)) if reg′(𝑟 ) is a global capability and 𝑟 ∉ {pc, 𝑟priv, 𝑟stk}

• reg′ points to stack with msstk used and ms′′
unused

unused

then we have
(
𝑛′, (reg′,ms′′ ⊎ms𝑓 ⊎msstk ⊎ms′′

unused
)
)
∈ O(𝑊 ′′)

Then

•
(
𝑛, (reg,ms ⊎ms𝑓 ⊎msstk ⊎msunused)

)
∈ O(𝑊 )

10We use the update-notation without a region name to indicate that it should be a fresh region name.
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The scall lemma is stated in terms of a number of auxiliary definitions found in the appendix.
The region 𝜄𝑠𝑡𝑎 (g,ms) is a static region with locality g. It is static in the sense that it only accepts
the memory segment ms (Appendix A.7). The function revokeTemp : World → World yields the
input world but with all the temporary regions replaced with revoked regions (Appendix A.1). The
definition of (reg,ms) is looking at [𝑖0 . . . 𝑖𝑛] followed by 𝑐next is visualized in Figure 12a; it requires
the capability in pc of reg to point to the first address of the instructions [𝑖0 . . . 𝑖𝑛] in ms and 𝑐next
to point to the address immediately after the instructions. The definition of reg points to stack

with msstk used and msstk,unused unused is visualized in Figure 12b; it requires msstk and msstk,unused
to be adjacent and continuous memory segments with the local rwlx-capability in r_stk of reg
governing the two memory segments and pointing to the top most address ofmsstk (Appendix A.5).
Roughly, the scall lemma (Lemma 7.2) states that an invocation of scall is safe if scall is

executed in a reasonable state (1-3), the callee is safe to execute (5), and returning to the code after
the scall is safe (6).
In the common case, scall is used to reason about untrusted code that we only have general

assumptions about. As explained previously, we use the FTLR (Theorem 4.4) to argue about unknown
code; this is no exception. That is, when we argue that assumption 5 in the scall lemma is satisfied,
we use the FTLR along with the assumptions we have (e.g. linking table, malloc capability etc.). In
Hyp-Callee, we assume the memory is safe, so it suffices to show that the register-file contains safe
values, which amounts to showing that the arguments in the call are safe.

By using Lemma 7.2 to reason about scall, the proofs become agnostic to the actual implemen-
tation of scall. In other words, should we change the implementation of scall, then we just need
to prove that Lemma 7.2 holds for the new implementation in order to get that all our results still
hold true.

The mallocmacro is also common in our examples, so we prove Lemma 7.3 to help reason about
it. The structure of the malloc lemma is close to that of the scall lemma. It also has requirements
on the configuration just before malloc is executed (1-8) as well as requirements on the execution
afterwards (9). It does not have any requirements on the callee as the malloc specification defines
its behavior.

Lemma 7.3 (malloc works). If

(1) (reg,ms) is looking at malloc 𝑟 𝑘 followed by 𝑐next
(2) 𝑘 ≥ 0
(3) (reg,ms) links malloc as 𝑘 to 𝑐malloc

(4) 𝑐malloc satisfies the malloc specification with 𝜄malloc,0

(5) 𝑊 ⊒priv [𝑖 ↦→ 𝜄malloc,0]

(6) ms :𝑛 𝑊
(7) ms = ms′ ⊎msfootprint
(8) msfootprint :𝑛 [𝑖 ↦→𝑊 (𝑖)]

(9) Hyp-Cont If

• 𝑛′ ≤ 𝑛 − 1
• 𝜄malloc ⊒

pub𝑊 (𝑖)

• ms′
footprint

⊎ms′ :𝑛′ 𝑊 [𝑖 ↦→ 𝜄malloc]

• ms′
footprint

:𝑛′ [𝑖 ↦→ 𝜄malloc]

reg′(𝑟 ′) =





𝑐next 𝑟 ′ = pc

((rwx, global), b, e, a) 𝑟 ′ = 𝑟

reg(𝑟 ) 𝑟 ′ ∉ RegName𝑡 ∪ {pc, 𝑟 , 𝑟1}
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reg

pc

𝑖0
.
.
.
𝑖𝑛

ms
(𝑝, g)

𝑐next

(𝑝, g)

(a) Visualization of ł(reg,ms) is looking at
[𝑖0 . . . 𝑖𝑛] followed by 𝑐nextž. reg(pc) points to
𝑖0 and 𝑐next points to the address after 𝑖𝑛

reg

r_stk

msstk,unused

msstk

rw
lx

(b) Visualization of łreg points to stack with
msstk used and msstk,unused unusedž. reg(𝑟stk)
is a local rwlx-capability that points to the top
most address of msstk .

Fig. 12

• e − b = 𝑘 − 1
• dom(msalloc) = [b, e]

• ∀a ∈ [b, e] .msalloc (a) = 0

Then we have
(
𝑛′, (reg′,ms′ ⊎ms′

footprint
⊎msalloc)

)
∈ O(𝑊 [𝜄malloc])

Then

(𝑛, (reg,ms)) ∈ O(𝑊 )

In the technical appendix [Skorstengaard et al. 2019a], we also define a lemma for the macro
used to create closures, crtcls.

8 EXAMPLES

In this section, we demonstrate how our formalization of capability safety allows us to prove local-
state encapsulation and control-flow correctness properties for challenging program examples.
The security measures of Section 3 are deployed to ensure these properties. Since we are dealing
with assembly language, there are many details to the formal treatment. Therefore, we omit some
details in the lemma statements. The examples may look deceivingly short, but it is because we use
the macro instructions described in Section 6. The examples would be unintelligible without the
macros as each macro expands to multiple basic instructions.

8.1 Encapsulation of Local State

The programs f1 and f2 in Figure 13 demonstrate the capability machine’s encapsulation of local
state. They are very similar: both store some local state, call an untrusted piece of code (adv), and
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1 f1: push 1

2 fetch 𝑟1 adv

3 scall 𝑟1([],[])

4 pop 𝑟1

5 assert 𝑟1 1

6 halt

7

1 f2: malloc 𝑟𝑙 1

2 store 𝑟𝑙 1

3 fetch 𝑟1 adv

4 call 𝑟1([],[𝑟𝑙 ])

5 assert 𝑟𝑙 1

6 halt

7

Fig. 13. Two example programs that rely on local-state encapsulation. f1 uses our stack-based calling
convention. f2 does not rely on a stack.

test whether the local state is unchanged after the call. They differ in the way they do this. Program
f1 uses our stack-based calling convention (captured by scall) to call the adversary, so it can use
the available stack to store its local state. On the other hand, f2 uses malloc to allocate memory
for its local state and uses call a calling convention based on heap allocated activation records
(described in Appendix A.4) to invoke the adversarial code.

For both programs, we prove that if they are linked with an adversary, adv, allowed to allocate
memory but has no other capabilities, then the assertion will never fail during execution (see
Lemmas 8.1 and 8.2 below). The two examples also illustrate the versatility of the logical relation.
The logical relation is not specific to any calling convention, so we can use it to reason about both
programs even though they use different calling conventions.
In order to formulate results about f1 and f2, we need a way to observe whether the assertion

fails. To this end, we assume they have access to a flag (an address in memory). If the assertion
fails, then the flag is set to 1 and execution halts.

Lemma 8.1 (f1 is correct). Let

𝑐adv
def
= ((e, global), . . . ) 𝑐stk

def
= ((rwlx, local), . . . )

𝑐 𝑓 1
def
= ((rwx, global), . . . ) 𝑐link

def
= ((ro, global), . . . )

𝑐malloc
def
= ((e, global), . . . ) reg ∈ Reg

𝑚
def
= ms𝑓 1 ⊎msflag ⊎mslink ⊎msadv ⊎msmalloc ⊎msstk ⊎msframe

where each of the capabilities have an appropriate range of authority and pointer11. Furthermore

• 𝑐malloc satisfies the specification for malloc with 𝜄malloc,0

• msmalloc :𝑛 [0 ↦→ 𝜄malloc,0]

• ms𝑓 1 contains 𝑐link , 𝑐flag and the code of f1

• msflag (flag) = 0
• mslink contains 𝑐adv and 𝑐malloc

• msadv contains 𝑐link and otherwise only instructions.

If (reg[pc ↦→ 𝑐 𝑓 1] [𝑟stk ↦→ 𝑐stk],𝑚) →∗ (halted,𝑚′), then𝑚′(flag) = 0

To prove Lemma 8.1, it suffices to show that the start configuration is safe (in the O relation) for
a world with a permanent region that requires the assertion flag to be 0. By Lemma 7.1, it suffices
to show that the configuration is safe after some reduction steps. We then use the scall lemma
(Lemma 7.2) by which it suffices to show that (1) the configuration that scall will jump to is safe
and (2) the configuration just after scall is done cleaning up is safe. We use the Fundamental
Theorem to reason about the unknown adversarial code as described in Section 7, but notice that

11These assumptions are kept intentionally vague for brevity. Full statements are in the Appendix.
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1 f3: push 1

2 fetch 𝑟1 adv

3 scall 𝑟1([],[𝑟1 ])

4 pop 𝑟2

5 assert 𝑟2 1

6 push 2

7 scall 𝑟1([],[])

8 halt

1 g1: malloc 𝑟2 1

2 store 𝑟2 0

3 move pc 𝑟3

4 lea 𝑟3 off

5 crtcls [ (𝑥, 𝑟2) ] 𝑟3

6 rclear RegName \ {pc, 𝑟0, 𝑟1 }

7 jmp 𝑟0

8 f4: reqglob 𝑟1

9 prepstk 𝑟stk

10 (continues in next column)

11 (continued from previous column)

12 store 𝑥 0

13 scall 𝑟1([],[𝑟0, 𝑟1, 𝑟env ])

14 store 𝑥 1

15 scall 𝑟1([],[𝑟0, 𝑟env ])

16 load 𝑟1 𝑥

17 assert 𝑟1 1

18 mclear 𝑟stk

19 rclear RegName \ {𝑟0, pc}

20 jmp 𝑟0

Fig. 14. Two programs that rely on well-bracketedness of scalls to function correctly. off is the offset to f4.

the adversary capability is an enter capability, which the Fundamental Theorem says nothing about.
Luckily, the enter capability has rx-permission after the jump at which point the Fundamental
Theorem applies.

We have a similar lemma for f2:

Lemma 8.2 (f2 is correct). Making similar assumptions about capabilities and linking as in

Lemma 8.1 but assuming no stack pointer and assuming 𝑐 𝑓 2 points to f2, if (reg[pc ↦→ 𝑐 𝑓 2],𝑚) →∗

(halted,𝑚′), then𝑚′(flag) = 0.

8.2 Well-Bracketed Control-Flow

The stack-based calling convention scall ensures well-bracketed control-flow. This is illustrated
by program examples f3 and g1 in Figure 14.
The program f3 has two calls to an adversary. In order for the assertion on line 5 to succeed,

the calls must be well-bracketed. If the adversary were able to store the return pointer from the
first call and invoke it in the second call, then f3 would have 2 on top of its stack and the assertion
would fail. However, the security measures in Section 3 prevent this attack. Specifically, the return
pointer is local, so it can only be stored on the stack. However, the part of the stack that is accessible
to the adversary is cleared before the second invocation preventing attempts to store the return
pointer. In fact, the following lemma shows that there are also no other attacks that can break
well-bracketedness of this example, i.e. the assertion never fails. It is similar to the two previous
lemmas:

Lemma 8.3. Making similar assumptions about capabilities and linking as in Lemma 8.1 and

assuming 𝑐 𝑓 3 points to f3 if (reg[pc ↦→ 𝑐 𝑓 3] [𝑟stk ↦→ 𝑐stk],𝑚) →∗ (halted,𝑚′), then𝑚′(flag) = 0.

The final example, g1 with f4, is a faithful translation of a tricky example known from the litera-
ture (known as the awkward example) [Dreyer et al. 2012; Pitts and Stark 1998]. For comparison, we
show a version of the original example in Figure 15, highlighting the code locations corresponding
to g1 and f4.

Let us first look at this ML program. At the top-level, it is a lambda function that can be invoked
by the context. When it is invoked, it allocates a fresh mutable variable 𝑥 of integer type that
initially contains the value 0. Next, the function returns a second closure (let’s call this cl𝑥 ) that
can be invoked by the context whenever it chooses. cl𝑥 itself takes a callback function adv that it
will invoke twice after setting 𝑥 to 0 and 1 respectively. After the second invocation of adv, cl𝑥 will
verify that 𝑥 is still set to 1.

The assertion on line 8 of Figure 15 should never fail. From the code, this seems natural since
adv does not have access to 𝑥 . Therefore after the second invocation on line 7, 𝑥 should still be in
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the state it was before that invocation. However, adv could have access to cl𝑥 and could invoke
cl𝑥 again within the second invocation of adv. Then cl𝑥 would set 𝑥 to 0 again (on line 5) and
reinvoke another callback. If that second callback were somehow able to skip its own caller and
return directly to the caller of adv, it would end up on line 8 of Figure 15 with 𝑥 set to 0, causing the
assertion to fail. Without going into details, such an attack is perfectly possible if adv has access to
a call/cc primitive (or equivalent). In other words, if we are able to prove that the assertion will
never fail, this attack, and other similar attacks, on well-bracketed control flow are adequately
prevented.

1 fun _ =>

2 g1: let x = ref 0 in

3 fun adv =>

4 f4: x := 0;

5 adv();

6 x := 1;

7 adv();

8 assert(x == 1)

Fig. 15. The original awkward exam-
ple from Dreyer et al. [2012]; Pitts and
Stark [1998], in ML notation.

Our low-level version of the awkward example in Figure 14,
consists of two parts, g1 and f4, corresponding to the code
locations marked in Figure 15. The program g1 corresponds to
the top-level closure in the ML code. It is a closure generator
that generates closures with a mutable variable 𝑥 set to 0 in its
environment and f4 as the program (note that we omit some
calling convention security measures because the stack is not
used in the closure generator).

The program f4 expects one argument, the callback adv, in
r1. f4 sets 𝑥 to 0 and invokes adv. When it returns, f4 sets 𝑥
to 1 and calls adv again. When it returns the second time, f4
asserts 𝑥 is still 1 and returns.
This example is more complicated than the previous ones

because it involves a closure invoked by the adversary and
an adversary callback invoked by us. As explained in Section 3, we need to check that (1) the
stack pointer that the closure receives from the adversary has write-local permission and (2) the
adversary callback is global.
The attack that we explained above is actually more natural at this low-level. The callback adv

now gets a return capability. As explained, it could invoke cl𝑥 again, during its second invocation,
with a second callback function adv′ for cl𝑥 to invoke. If adv had some way of passing its return
capability to adv′ (by storing it on the stack or in the heap, or hide it in an unused register), then
the assertion could be made to fail. However, our calling convention prevents any of this from
happening as we prove in the following lemma.

Lemma 8.4. Let

𝑐adv
def
= ((rwx, global), . . . ) 𝑐𝑔1

def
= ((e, global), . . . )

and otherwise make assumptions about capabilities and linking similar to Lemma 8.1. Then if

(reg0 [pc ↦→ 𝑐adv] [𝑟stk ↦→ 𝑐stk] [𝑟1 ↦→ 𝑐𝑔1],𝑚) →∗ (halted,𝑚′), then𝑚′(flag) = 0.

Proof sketch. Define a world𝑊1 with the following regions

• A malloc region, 𝜄malloc,0.
• A permanent region for the linking table that only accepts mslink and requires everything to
be inV .

• A stack region, 𝜄pwl
𝑏stk,𝑒stk

.

• An adversary region, 𝜄nwl,𝑝
𝑏adv ,𝑒adv

• A permanent static region for the flag and g1, i.e. a region that only accepts msflag and ms𝑔1.
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If we can show12

(reg0 [pc ↦→ 𝑐adv, 𝑟stk ↦→ 𝑐stk, 𝑟1 ↦→ 𝑐𝑔1],msmalloc ⊎mslink ⊎msstk ⊎msadv ⊎msflag ⊎ms𝑔1) ∈ O(𝑊1),

(1)
then the O-relation ensures that a successfully halting configuration terminates in a memory that
respects a private future world of𝑊 which in particular means that it respects the permanent static
region that governs the assertion flag.

As described in Section 7, we use the FTLR (Theorem 4.4) to reason about unknown code, so we
use it to reason about 𝑐adv . With the standard region 𝜄𝑛𝑤𝑙,𝑝 chosen for the adversary, it is easy to
show that the readCond and writeCond holds for 𝑐adv which gives us 𝑐adv ∈ E(𝑊 ) by the FTLR. In
order to get (1), we need to show that (a) the memory satisfies the world and (b) the register file is
in the R(𝑊 ). We have defined the world, so there (almost) is a one-to-one correspondence between
regions in the world and memory segments in the initial configuration, so (a) easily follows. In
order to show (b), we need to show 𝑐stk ∈ V(𝑊 ) and 𝑐𝑔1 ∈ V(𝑊 ). The former follows easily from
the choice of a 𝜄𝑝𝑤𝑙 -region for the stack in𝑊 . In order to argue the latter, we basically have to
argue that 𝑐𝑔1, the closure generator, respects the world𝑊 . This amounts to showing that the
closures generated by g1 also respect the invariants of𝑊 . We reason about the local variable 𝑥 in
the closure in the same way Dreyer et al. [2012] does. We ignore 𝑥 in the remainder of this proof
sketch to focus on the parts of the proof related to the setting of the capability machine.

The capability for the generated closure is a global enter capability that we call 𝑐 𝑓 4. The remainder
of the proof amounts to showing that it is safe to return 𝑐 𝑓 4 to the adversary, i.e. 𝑐 𝑓 4 ∈ V(𝑊 ′)

where𝑊 ′ is𝑊 with relevant regions added after executing g1. The adversary can use 𝑐 𝑓 4 whenever,
so all we may assume about the configuration that 𝑐 𝑓 4 is invoked in is that the register-file reg and
memory ms satisfies a world𝑊1 that is a private future world of𝑊 ′, i.e. reg ∈ R(𝑊1) and ms :𝑊1.
We have to show that the invocation respects 𝑊1 which corresponds to showing (reg[pc ↦→

updPcPerm(𝑐 𝑓 4)],ms) ∈ O(𝑊1). When 𝑐 𝑓 4 is invoked, we know exactly what instructions are
executed up until the scall, namely it is ensured that the callback is global and the stack pointer
has read/write-local/execute permission, and 𝑥 is set to 0. Because we know part of the execution,
we can apply the anti-reduction lemma (Lemma 7.1).

The next part in the execution is an scall, so, according to Section 7, we should apply the scall
lemma (Lemma 7.2). For the sake of presentation, we here sketch some of the things the scall
lemma actually takes care of. Based on the stack pointer’s permission, we know by Lemma 4.3 that
the capability is local (because it is a system wide assumption that there are no global read/write-
local/execute capabilities cf. Section 3) which means that the region that governs it must be
temporary. This allows us to construct a world𝑊2 ⊒

priv𝑊1 where the stack region of𝑊1 has been
revoked. In𝑊2, two new regions govern the stack. One of the two new regions governs the caller
stack frame, i.e. the part of the stack that contains the contents of private registers and stack
recovery code. The region that takes care of this is a temporary static region which ensures that
our local stack frame remains unchanged during the execution of the callback. The other new
region takes care of the unused part of the stack which we are going to let the callback use for its
execution. This is taken care of by a standard region 𝜄𝑝𝑤𝑙 -region which allows the callback to store
any safe value on the stack. The callback is global, so it is safe to invoke it in a private future world
of𝑊1 (even though the code is unknown, we do not need to use the FTLR because we assume that
the arguments for the invocation of 𝑐 𝑓 4 are safe). Notice that had the callback been local, this would
not be the case, but it would also not be safe to invoke as it might be a stack pointer as discussed
in Section 3. Note also that arguing that the memory satisfies𝑊2 when we invoke the callback
only works because we cleared the stack entirely (including the unused part) before the invocation.

12We ignore step indexes in this proof sketch.
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Otherwise, it might contain local values that are only known to be safe in𝑊1, but for which we
do not know that they will remain safe in the private future world𝑊2. This part corresponds to
arguing about Hyp-Callee in the scall lemma.

We need to argue that it is safe to give the return pointer that scall constructs to the adversary
which corresponds to reasoning about the remainder of the execution of f4 (corresponding to the
Hyp-Cont case of the scall lemma). The return pointer is a local capability, so we may assume
that it is invoked in some configuration that satisfies𝑊3 ⊒

pub 𝑊2. This means that none of the
temporary regions have been revoked, so the regions we replaced the old stack region with are
still present in𝑊3. We know exactly how the execution proceeds upon return (the recovery code is
executed, and 𝑥 is set to 1). We use the anti-reduction lemma to reason about the execution until
the second scall.
For the scall itself we apply the scall lemma. As the private stack has changed, we need

to replace the two regions that govern the stack. This means that the second invocation of the
callback takes place in a world𝑊4⊒

priv𝑊3. The reasoning about scall is similar to the first callback
invocation. The callback capability is still safe because it is global which basically covers the
Hyp-Callee case. For the Hyp-Cont case, we get a world𝑊5 ⊒

pub𝑊4 in which we need to argue
that the remainder of the execution is safe. At this point, we can use the anti-reduction lemma one
final time to get to the point where we jump to the return pointer.

If we can argue that it is safe to jump to the return pointer that we got initially from the adversary,
then the proof is done. We have made no checks on the return pointer, so we have no idea whether
it is local or global13. W.l.o.g. assume the return pointer is local. This means that it is safe in public
future worlds of𝑊1 (remember that it came from reg and reg ∈ R(𝑊1)). Hence we need to construct
a world𝑊6 with all the temporary and revoked regions of𝑊1 (this corresponds to restoring the
invariants the adversary relies on for its safe execution). Further, for𝑊6 to be a public future world,
for all these regions,𝑊6 must use the same region names as𝑊1. As we used the anti-reduction
lemma to get to this point,𝑊6 must also be constructed to be a private future world of𝑊5. Before
we construct𝑊6, let us consider where each of the worlds we have seen so far came from: As
illustrated in Figure 16, we constructed𝑊2 and𝑊4. These are the only private future worlds we
have considered so far. This means that we know exactly what changes they made. In particular, we
did not mask any of the temporary or revoked regions in𝑊1 with a permanent region. This means
that in𝑊6, we can reinstate every temporary or revoked region of𝑊1. In the private future worlds
we constructed, we only took transitions that are public relative to𝑊1. The worlds we were given,
𝑊3 and𝑊5, may have taken arbitrary public transitions, but this is no problem with respect to the
public future world relation. In𝑊5 there were regions to handle the stack. These regions need to be
revoked as the𝑊1 stack regions replace them. The non-stack regions in𝑊5 that are not present in
𝑊1 are also added in𝑊6, which the public future world relation permits as it is extensional. All in
all, it is possible to construct𝑊6, so it is both a public future world of𝑊1 and a private world of𝑊5

which means that it is indeed safe to return to the adversary.
For the sake of presentation, we have omitted many details and made several simplifications in

the above proof. The complete proof can be found in the technical appendix [Skorstengaard et al.
2019a]. □

13We may assume that it is a capability that is executable when jumped to since otherwise the execution fails which is
considered safe.
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𝑊1

f4 called

Given:

𝑊2

first callback

Constructed:

𝑊3

callback returns

𝑊4

second callback

𝑊5

callback returns

𝑊6

f4 returns

⊑
pr
iv ⊑ pub

⊑
pr
iv ⊑ pub

⊑
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Fig. 16. Illustration of the worlds in the proof of Lemma 8.4. In the proof, the top row of worlds are constructed

by us, while the bottom row of worlds are given.𝑊6 is constructed such that𝑊6 ⊒
priv𝑊5 and𝑊6 ⊒

pub𝑊1.

9 DISCUSSION

Calling convention

Formulating control flow correctness While we claim that our calling convention enforces control-
flow correctness, we do not prove a general theorem that shows this because it is not clear what
such a theorem should look like. Formulations in terms of a control-flow graph, like the one by
Abadi et al. [2005], creates a view with all capabilities that may be available at some point in time.
Hence control-flow-graph based formulations lead one to consider capabilities that are actually not
available at a given point in time. Example g1 relies on a more fine-grained view of the control
flow, in particular when returning from the higher-order callbacks. In fact, our examples show that
our logical relation implies a stronger form of control-flow correctness than control-flow-graph
based formulations, although this is not made very explicit. In later work, Skorstengaard et al.
[2019b] provide a more explicit and useful definition of control-flow correctness and local state
encapsulation. The idea of their definition is to define a variant of a simple capability machine
with a built-in stack as well as call and return instructions. The call and return instructions use the
built-in stack which gives well-bracketed control and local state encapsulation by construction.
They prove full abstraction [Abadi 1998] for a compilation from the capability machine with the
built-in stack to one without which means that the programs running on the capability machine
without a built-in stack behave as though there was a built-in stack. Their full abstraction proof uses
a logical relation, but it differs in a number of ways from the one we present. Their logical relation
is a binary cross language logical relation tailored specifically to prove the full abstraction result.
This means that it could not be used to prove program correctness results similar to ours. Their
calling convention is based on something called linear capabilities rather than local capabilities.
Linear capabilities offer a different kind of limited revocation.
Performance and the requirement for stack clearing The additional security measures of the

calling convention described in Section 3 impose an overhead compared to a calling convention
without security guarantees. However, most require only a few atomic checks or register clearings
on boundary crossings between trusted code and adversary, which should produce an acceptable
performance overhead. The only exception is the stack clearing requirement that we have in two
situations: when returning to the adversary and when invoking an adversary callback. As we have
explained, we need to clear all of the stack that we are not using ourselves not just the part that we
have actually used. In other words on every boundary cross between trusted code and adversary
code, a potentially large region of memory must be cleared.

First, contrary to what we explained before, we actually suspect that this overhead can be avoided
when returning to the adversary. In that case, we now think it would suffice to clear only the
(much smaller) part of the stack used by the trusted code itself. To understand this, it is useful to
take another look at the illustrations in Figure 4 related to this case. If we do not clear the stack
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upon return (as illustrated in Figure 4f), then the adversary might have used that stack to store
local capabilities they received in a previous invocation (see Figure 4e). In other words, the stack
clearing is necessary for revoking those local capabilities: the stack pointer and return pointer for
the invocation illustrated in Figure 4e. While this approach is safe, we now suspect that we could
do without the revocation in this case. The stack pointer which the adversary was given access to
in the stack frame depicted in Figure 4d only carries authority that the adversary has access to in
the higher stack frame anyway. Similarly, the return pointer is merely an entry pointer pointing
into the trusted code’s stack frame, and this is also a capability that the adversary we return to
could have constructed themselves from their stack pointer.
This improvement of our calling convention is a recent insight and not yet reflected in our

examples and our proofs. We do believe the proofs could be updated to accomodate for this change,
but it would require some non-trivial changes. Consider the awkward example proof, for example,
we would have to ensure that the world𝑊6, depicted in Figure 16 would not just be a private future
world of𝑊5, but a public one (in addition to being a public future world of𝑊1). This would allow
us to do without the stack clearing, but it would entail some changes to the regions we use, and an
extra argument that the old adversary’s stack and return pointer remain valid after clearing the
trusted code’s stack frame and relaxing the invariant that used to ensure it could not be modified.
While this change is a clear improvement, we do not actually believe that it fundamentally changes
the efficiency characteristics of the approach: the cost is halved, but remains asymptotically the
same.
A second important remark we want to make is that the need for stack clearing in our calling

convention is an instance of a general caveat when using CHERI’s local capabilities as a restricted
form of capability revocation. Consider how our use of local capabilities can be interpreted as
temporarily delegating the stack and return capability to callees and then revoking the granted
authority after the callee returns. From this perspective, local capabilities are a general feature
enabling this temporary delegation of authority for the duration of an invocation and this is also how
they are described by the authors [N. M. Watson et al. 2015]. However, our requirement for stack
clearing on boundary crossings is also general. Revoking authority that was granted temporarily
using local capabilities requires clearing all memory for which the invokee had write-local authority
(or at least erasing all local capabilities from that memory). Without micro-architectural support
for efficiently clearing large ranges of memory, local capabilities can only be used for revocation in
scenarios where the duration of a revocation is unimportant or the adversary only has write-local
access to small amounts of memory.
CheriBSD’s use of local capabilities in CCall does not actually involve a form of revocation.

CheriBSD’s model involves a trusted stack manager that gives every compartment access to its
own private stack using a local, write-local capability [N. M. Watson et al. 2015]. The locality of
the stack capability allows the trusted stack manager to prevent compartments from leaking their
stack pointer in a boundary crossing, but those capabilities are never actually revoked. In fact, a
compartment can easily store away such local capabilities in its own private stack and recover
them there during future invocations.

Since local capabilities seem intended to provide a restricted form of revocation, perhaps capability
machines like CHERI should consider to provide special support for this requirement. Ideally, such
support would take the form of a highly-optimized instruction for erasing a large block of memory.
Recent work suggests that such a feature could perhaps be added to processors like CHERI, using a
special hardware cache that tracks whether or not a memory location contains zero [Joannou et al.
2017].
Modularity It is important that our calling convention is modular, i.e. we do not assume that our

code is specially privileged w.r.t. the adversary, and they can apply the same measures to protect
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themselves from us as we do to protect ourselves from them. More concretely, the requirements we
have on callbacks and return pointers received from the adversary are also satisfied by callbacks
and return pointers that we pass to them. For example, our return pointers are local capabilities
because they must point to memory where we can store the old stack pointer, but the adversary’s
return pointers are also allowed to be local. Adversary callbacks are required to be global, but the
callbacks we construct are allocated on the heap and also global.
Arguments and local capabilities Local capabilities are a central part of the calling convention

as they are used to construct stack and return pointers. The use of local capabilities for the calling
convention unfortunately limits the extent to which local capabilities can be used for other things.
Say we are using the calling convention and receive a local capability other than the stack and
return pointer, then we need to be careful if we want to use it because it may be an alias to the
stack pointer. That is, if we first push something to the stack and then write to the local capability,
then we may be (tricked into) overwriting our own local state. The logical relation helps by telling
us what we need to ascertain or check in such scenarios to guarantee safety and preserve our
invariants, but such checks may be costly and it is not clear to us whether there are practical
scenarios where this might be realistic.
We also need to be careful when we receive a capability from an adversary that we want to

pass on to a different (instance of the) adversary. It turns out that the logical relation again tells
us when this is safe. Namely, the logical relation says that we can only pass on arguments that
are safe in the world we invoke the adversary in. For instance, when we receive a stack pointer
from an adversary, then we may at some point want to pass on part of this stack pointer to, say, a
callback. In order to do so, we need to make sure the stack pointer is safe which means that, if we
have revoked temporary invariants, the stack must not directly or indirectly allow access to local
values that we cannot guarantee safety of. When received from an adversary, we have to consider
the contents of the stack unsafe, so before we pass it on, we have to clear it, or perform a dynamic
safety analysis of the stack contents and anything it points to. Clearing everything is not always
desirable and a dynamic safety analysis is hard to get right and potentially expensive.
In summary, the use of local capabilities for other things than stack and return pointers is

likely only possible in very specific scenarios when using our calling convention. While this is
unfortunate, it is not unheard of that processors have built-in constructs that are exclusively used
for handling control flow, such as, for example, the call and return instructions that exist in some
instruction sets.
Single stack A single stack is a good choice for the simple capability machine presented here

because it works well with higher-order functions. An alternative to a single stack would be to
have a separate stack per component. The trouble with this approach is that, with multiple stacks
and local stack pointers, it is not clear how components would retrieve their stack pointer upon
invocation without compromising safety. A safe approach could be to have stack pointers stored
by a central, trusted stack management component, but it is not clear how that could scale to
large numbers of separate components. Handling large numbers of components is a requirement if
we want to use capability machines to enforce encapsulation of, for example, every object in an
object-oriented program or every closure in a functional program.

Capability machine formalization

Simplifications Our capability machine formalization assumes unbounded integers and an infinite
address space. Further, it has a much simpler instruction set than that of a full ISA. By making
these simplifications, we avoid tedious details but end up with a less realistic machine. However,
the intent of this work is to gain ground in the formal work necessary to prove properties about
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low-level assembly programs on a capability machine not to apply it to a full fledged capability
machine.
We do not believe that any of our simplifications are beyond reason and expanding the result

seems plausible. If we added bounded integers, we would have to change the operational semantics
to take over and under flows into account. This could be achieved by changing the plus and minus
instruction to use modulo arithmetic. If we added a bounded address space, then we would have to
take memory out of bounds into account. This would require changes to the memory operations
(store and load) and the step relation of the operational semantics. The malloc specification would
also need to be updated as it would have to signal failure when it runs out of memory. Finally,
expanding the instruction set to a realistic ISA would add a handful of instructions that we would
need to reason about in the proofs. All in all, it would add a lot of tedious work to expand this
result to a realistic machine. The amount of details in the proofs is already at the threshold for what
should be done with pen and paper, so expanding this work to a realistic machine would require
mechanized proofs that can take care of the tedious details.

Reasoning about capability machine programs

Limitations The logical relation defined in Section 4 allows us to reason about capability machine
programs. A limitation w.r.t. previous work is that the logical relation is tailored towards proofs of
a specific class of properties.
Imagine, for example, that we invoke a block of adversary code in such a way that it only ever

receives capabilities within a specific range of memory. After the code returns, we may try to
prove that any capabilities passed back to us in the registers are still confined to that range of
memory. The property talks about the specific implementation of a higher-order value rather than
its behavior, like the invariants that are required/preserved when we use it.
Such properties are hard to prove in our model. For the example, it would be easy to conclude

that the returned values are in the value relation (see Figure 8). This gives us a lot of behavioral
information, like conditions under which the capabilities are safe to use and invariants that will be
preserved when we do, but it does not tell us much about the range of authority of the capability. As
a very concrete example, capabilities with permission o are always in the value relation irrespective
of their range of authority. Behaviorally, this makes perfect sense; o-capabilities cannot be used for
anything.
For our purposes, this restriction is unproblematic since we are only interested in proving be-

havioral properties (e.g., an assertion will never fail). In other situations, however, we may be
interested in proving properties like the ones that are often considered in object capability literature:
confinement, no authority amplification etc. Although such properties are more restrictive and
tough to use for reasoning, Devriese et al. [2016] have demonstrated how a logical relation like ours
can be adapted to also support them by quantifying the logical relation over a custom interpretation
of effectful computations and the type of references. We expect their solution can be readily adapted
to our setting modulo some details (like the fact that we do not just have read-write capabilities
but also others).

Logical relation

Single orthogonal closure The definitions of E andV in Figure 8 apply a single orthogonal closure,
a new variant of an existing pattern called biorthogonality. Biorthogonality is a pattern for defining
logical relations [Krivine 1994; Pitts and Stark 1998] in terms of an observation relation of safe
configurations (like we do). The idea is to define safe evaluation contexts as the set of contexts
that produce safe observations when plugged with safe values and define safe terms as the set of
terms that can be plugged into safe evaluation contexts to produce safe observations. This is an
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alternative to more direct definitions where safe terms are defined as terms that evaluate to safe
values. An advantage of biorthogonality is that it scales better to languages with control effects like
call/cc. Our definitions can be seen as a variant of biorthogonality; we take only a single orthogonal
closure. We do not define safe evaluation contexts but immediately define safe terms as those
that produce safe observations when plugged with safe values. This is natural because we model
arbitrary assembly code that does not necessarily respect a particular calling convention. Return
pointers are in principle values like all others and there is no reason to treat them specially in the
logical relation.
Interestingly, Hur and Dreyer [2011] also use a step-indexed, Kripke logical relation for an

assembly language (for reasoning about correct compilation from ML to assembly). However,
because they only model non-adversarial code that treats return pointers according to a particular
calling convention, they can use standard biorthogonality rather than a single orthogonal closure
like us.
Public/private future worlds A novel aspect of our logical relation is howwemodel the temporary,

revokable nature of local capabilities using public/private future worlds. The main insight is that this
special nature generalizes that of the syntactically-enforced unstorable status of evaluation contexts
in lambda calculi without control effects (of which well-bracketed control flow is a consequence).
To reason about code that relies on this (particularly, the original awkward example), Dreyer
et al. [2012] (DNB) formally capture the special status of evaluation contexts using Kripke worlds
with public and private future world relations. Essentially, they allow relatedness of evaluation
contexts to be monotone with respect to a weaker future world relation (public) than relatedness of
values, formalizing the idea that it is safe to make temporary internal state modifications (private
world transitions, which invalidate the continuation, but not other values) while an expression
is performing internal steps, as long as the code returns to a stable state (i.e. transitions to a
public future world of the original) before returning. We generalize this idea to reason about
local capabilities: validity of local capabilities is allowed to be monotone with respect to a weaker
future-world relation than other values, which we can exploit to distinguish between state changes
that are always safe (public future worlds) and changes that are only valid if we clear all local
capabilities (private future worlds). Our future world relations are similar to DNB’s (for example,
our proof of the awkward example uses exactly the same state transition system), but they turn up
in an entirely different place in the logical relation: rather than using public future worlds for the
special syntactic category of evaluation contexts, they are used in the value relation depending on
the locality of the capability at hand. Additionally, our worlds are a bit more complex because, to
allow local memory capabilities and write-local capabilities, they can contain (revokable) temporary
regions that are only monotonous w.r.t. public future worlds, while DNB’s worlds are entirely
permanent.
Local capabilities in high-level languages We point out that local capabilities are quite similar

to a feature proposed for the high-level language Scala: Osvald et al. [2016]’s second-class or local
values. They are a kind of values that can be provided to other code for immediate use without
allowing them to be stored in a closure or reference for later use. We believe reasoning about such
values will require techniques similar to what we provide for local capabilities.

Why use a logical relation and not a simpler proof technique? The concept of a capability exists
on different levels of abstraction on computers, so capabilities have been studied and safety proper-
ties proven about them in other contexts than assembly languages. Traditionally, logical relations
have not been used for safety property proofs, so why do we need one here? To answer this question
let’s compare this work to Sewell et al. [2011] where they prove integrity and authority confinement

for the seL4 Microkernel. The security properties they show are relative to a security policy that
specifies the upperbound of capabilities a subject in the system can posses. The security policy
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is expressed as a collection of possible capabilities in the system, e.g. subject A can have a write

capability for memory B. However, their policy are, in a sense, binary: subject A is either allowed to
write to memory B or not. If writing is allowed, then any value can be written, as long as that value
is itself legal. Sewell et al. [2011]’s results are not parametrised by a (possibly more restrictive)
policy that subject A should observe on memory B. Our approach is much more fine-grained and
allows us to define, for example, a policy that subject A can write to memory B, but only if the value
is an even number. Because our invariants are indexed by worlds themselves, we can even define
a policy that capabilities written to memory B must respect certain other invariants themselves.
It is exactly the expressive invariants that enable us to prove the awkward example. We place a
protocol on the memory where variable x is stored that says that it sometimes can be either 0 or 1
and at other times it has to be 1.
Capability safety is not just about the permission a capability carries, it is also about how the

capability is used. Say for instance, a program has a write capability that will only be used to write
even numbers. If this is the only write capability for that part of memory, then we should be able to
rely on that part of memory only containing even numbers. In order to rely on this in our proofs,
our notion of capability safety must be able to take the meaning of the program into account and
express the memory invariant.

10 RELATED WORK

In this section, we summarize how our work relates to previous work. We do not repeat the work
we discussed in Section 9.

Capability machines originate with Dennis and Van Horn [1966] and we refer to Levy [1984] and
N. M. Watson et al. [2015] for an overview of previous work. The capability machine formalized
in Section 2 is a simple but representative model modeled mainly after the M-Machine [Carter
et al. 1994] (the enter pointers resemble the M-Machine’s) and CHERI [N. M. Watson et al. 2015;
Woodruff et al. 2014] (the memory and local capabilities resemble CHERI’s). The latter is a recent
and relatively mature capability machine. CHERI combines capabilities with a virtual memory
approach in the interest of backwards compatibility and gradual adoption. As discussed, our local
capabilities can cross module boundaries contrary to what is enforced by CHERI’s default CCall
implementation.

Plenty of other papers enforce well-bracketed control flow at a low level but most are restricted
to preventing particular types of attacks and enforce only partial correctness of control flow. This
includes particularly the line of work on control-flow integrity [Abadi et al. 2005]. This line of work
uses a quite different attacker model than us. They assume an attacker that is unable to execute
code but can overwrite arbitrary data at any time during execution (to model buffer overflows). By
checking the address of every indirect jump and usingmemory access control to prevent overwriting
code, this work enforces what they call control-flow integrity formalized as the property that every
jump will follow a legal path in the control-flow graph. As discussed in Section 9, such a property
ignores temporal properties and seems hard to use for reasoning.

More closely related to our work are papers that use a trusted stack manager and some form of
memory isolation to enforce control-flow correctness as part of a secure compilation result [Juglaret
et al. 2016; Patrignani et al. 2016]. Our work differs from theirs in that we use a different form of
low-level security primitive (a capability machine with local capabilities rather than a machine
with a primitive notion of compartments). Further, we do not use a trusted stack manager but a
decentralized calling convention based on local capabilities. Also, both prove a secure compilation
result from a high-level language which clearly implies a general form of control-flow correctness
while we define a logical relation that can be used to reason about specific programs that rely on
well-bracketed control flow.
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Our logical relation is a unary, step-indexed Kripke logical relation with recursive worlds [Ahmed
2004; Appel and McAllester 2001; Birkedal et al. 2011; Pitts and Stark 1998], closely related to the
one used by Devriese et al. [2016] to formulate capability safety in a high-level JavaScript-like
lambda calculus. Our Fundamental Theorem is similar to theirs and expresses capability safety of
the capability machine. Because we are not interested in externally observable side-effects (like
console output or memory access traces), we do not require their notion of effect parametricity. Our
logical relation uses several ideas from previous work like Kripke worlds with regions containing
state transition systems [Ahmed et al. 2009], public/private future worlds [Dreyer et al. 2012] (see
Section 9 for a discussion), and biorthogonality [Benton and Hur 2009; Hur and Dreyer 2011; Pitts
and Stark 1998].
Swasey et al. [2017] have recently developed a logic, OCPL, for verification of object capability

patterns. The logic is based on Iris [Jung et al. 2016, 2015; Krebbers et al. 2017a], a state of the art
higher-order concurrent separation logic, and is formalized in Coq building on the Iris Proof Mode
for Coq [Krebbers et al. 2017b]. OCPL gives a more abstract and modular way of proving capability
safety for a lambda-calculus (with concurrency) compared to the earlier work by Devriese et al.
[2016]. In the future, we would like to develop a new program logic for reasoning about capability
safety for our capability machine model. In fact, we think the lemmas in Section 7 are suggestive of
the style of results that could be captured in such a logic. We think Iris would also be a natural
starting point for such an endeavour since Iris is a framework that can be instantiated with different
programming languages. OCPL was able to leverage existing Iris specifications for a high-level
programming language; for our capability machine model, however, it would be necessary to devise
new kinds of specifications for our low-level programs with unstructured control-flow. It is likely
that we could get inspiration from earlier work on logics for assembly programming languages,
such as XCAP [Ni and Shao 2006]. Building a logic around the semantic model presented here would
remove some of the tedious repetitive proof details making it more realistic to prove properties
about larger more realistic programs.
If we want to scale this approach even further, we would like to reason at a higher level of

abstraction namely at the level of a high-level language. That is, we would rather construct a
program logic for a high-level programming language, so we can reason about the programs in
the language we actually write them in and at the same time get guarantees about the compiled
program. To achieve this, we would have to construct a secure compilation [Patrignani et al. 2019]
that preserves the security abstraction of the high-level language.
El-Korashy also defined a formal model of a capability machine, namely CHERI, and uses it to

prove a compartmentalization result [El-Korashy 2016] (not implying control-flow correctness).
He also adapts control-flow integrity (see above) to the machine and shows soundness, seemingly
without relying on capabilities.
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A APPENDIX

In this appendix, we give more precise formulations of lemmas that were mentioned in the paper,
and the most important supporting definitions and lemmas. The goal is to provide details that can
help to understand in more detail what we discuss in the paper. Full details and proofs are not
given here, but for those we refer to the technical appendix [Skorstengaard et al. 2019a].
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A.1 Logical relation

𝑛-subset simulation

(𝑠, 𝜙pub, 𝜙) = (𝑠 ′, 𝜙 ′
pub, 𝜙

′) ∀�̂� . 𝐻 (𝑠) (�̂� )
𝑛
⊆ 𝐻 ′ (𝑠 ′) (�̂� )

(𝑣, 𝑠, 𝜙pub, 𝜙, 𝐻 )
𝑛
⊂
∼ (𝑣 ′, 𝑠 ′, 𝜙 ′

pub, 𝜙
′, 𝐻 ′)

where
𝑛
⊆ is defined as follows: define erasure for step-indexed sets as

⌊𝐴⌋𝑛 = {(𝑚,𝑎) ∈ 𝐴 | 𝑚 < 𝑛}

and define
𝑛
⊆ as

𝐴 ⊈ 𝐵 iff ⌊𝐴⌋𝑛 ⊆ ⌊𝐵⌋𝑛

Transition system relations

Rels = {(𝜙pub, 𝜙) ∈ P(RState2) × P(RState2) | 𝜙pub, 𝜙 is reflexive and transitive and 𝜙pub ⊆ 𝜙}

Erasure

⌊𝑊 ⌋𝑆
def
= 𝜆𝑟 .

{
𝑊 (𝑟 ) 𝑊 (𝑟 ).𝑣 ∈ 𝑆

⊥ otherwise

Active region projection

active : World → 2RegionName

active(𝑊 )
def
= dom(⌊𝑊 ⌋ {perm,temp})

Revoke temporary regions in a world

revokeTemp : World → World

revokeTemp(𝑊 )
def
= 𝜆𝑟 .

{
revoked if𝑊 (𝑟 ) = (temp, 𝑠, 𝜙pub, 𝜙, 𝐻 )

𝑊 (𝑟 ) otherwise

Projection of regions based on locality

localityReg(g,𝑊 )
def
=

{
dom(⌊𝑊 ⌋ {perm,temp}) if g = local

dom(⌊𝑊 ⌋ {perm}) if g = global

Address stratification

𝜄 = (𝑣, 𝑠, 𝜙pub, 𝜙, 𝐻 ) is address-stratified iff

∀𝑠 ′,�̂� , 𝑛,ms,ms′.

(𝑛,ms) , (𝑛,ms′) ∈ 𝐻 𝑠 ′ �̂� ⇒

dom(ms) = dom(ms′)∧

∀a ∈ dom(ms). (𝑛,ms[a ↦→ ms′(a)]) ∈ 𝐻 𝑠 ′ �̂�
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A.2 Complete ordered family of equivalences (c.o.f.e)

This is an excerpt from Birkedal and Bizjak [2014] about c.o.f.e.’s.

Definition A.1 (o.f.e.). An ordered family of equivalence (o.f.e) is a set and a family of equivalences(
𝑋,

(
𝑛
=

)∞

𝑛=0

)
that satisfy the following properties:

•
0
= is the total relation on 𝑋

• ∀𝑛.∀𝑥,𝑦 ∈ 𝑋 . 𝑥
𝑛+1
= 𝑦 ⇒ 𝑥

𝑛
= 𝑦

• ∀𝑥,𝑦 ∈ 𝑋 . (∀𝑛. 𝑥
𝑛
= 𝑦) ⇒ 𝑥 = 𝑦

We say that an o.f.e.
(
𝑋,

(
𝑛
=

)∞

𝑛=0

)
is inhabited if there exists an element 𝑥 ∈ 𝑋 .

If you are familiar with metric spaces observe that o.f.e.’s are but a different presentation of
bisected 1-bounded ultrametric spaces.

Definition A.2 (Cauchy sequences and limits). Let
(
𝑋,

(
𝑛
=

)∞

𝑛=0

)
be an o.f.e. and {𝑥𝑛}

∞
𝑛=0 be a se-

quence of elements of 𝑋 . Then {𝑥𝑛}
∞
𝑛=0 is a Cauchy sequence if

∀𝑘 ∈ N, ∃ 𝑗 ∈ N,∀𝑛 ≥ 𝑗, 𝑥 𝑗
𝑘
= 𝑥𝑛

or in words, the elements of the chain get arbitrarily close.
An element 𝑥 ∈ 𝑋 is the limit of the sequence {𝑥𝑛}

∞
𝑛=0 if

∀𝑘 ∈ N, ∃ 𝑗 ∈ N,∀𝑛 ≥ 𝑗, 𝑥
𝑘
= 𝑥𝑛 .

A sequence may or may not have a limit. If it has we say that the sequence converges. The limit is
necessarily unique in this case and we write lim𝑛→∞ 𝑥𝑛 for it.

Definition A.3 (c.o.f.e.). A complete ordered family of equivalences (c.o.f.e) is an o.f.e
(
𝑋,

(
𝑛
=

)∞

𝑛=0

)

where all Cauchy sequences have a limit.

Definition A.4. Let
(
𝑋,

(
𝑛
=𝑋

)∞

𝑛=0

)
and

(
𝑌,

(
𝑛
=𝑌

)∞

𝑛=0

)
be two ordered families of equivalences and

𝑓 a function from the set 𝑋 to the set 𝑌 . The function 𝑓 is

• non-expansive if for any 𝑥, 𝑥 ′ ∈ 𝑋 , and any 𝑛 ∈ N,

𝑥
𝑛
=𝑋 𝑥 ′

=⇒ 𝑓 (𝑥)
𝑛
=𝑌 𝑓 (𝑥 ′)

• contractive if for any 𝑥, 𝑥 ′ ∈ 𝑋 , and any 𝑛 ∈ N,

𝑥
𝑛
=𝑋 𝑥 ′

=⇒ 𝑓 (𝑥)
𝑛+1
= 𝑌 𝑓 (𝑥 ′)

Theorem A.5 (Banach’s fixed point theorem). Let
(
𝑋,

(
𝑛
=

)∞

𝑛=0

)
be a an inhabited c.o.f.e. and

𝑓 : 𝑋 → 𝑋 a contractive function. Then 𝑓 has a unique fixed point.

Definition A.6 (The categoryU). The categoryU of complete ordered families of equivalences has
as objects complete ordered families of equivalences and as morphisms non-expansive functions.

Definition A.7. The functor ▶ is a functor onU defined as

▶

(
𝑋,

(
𝑛
=

)∞

𝑛=0

)
=

(
𝑋,

(
𝑛
≡
)∞

𝑛=0

)

▶ (𝑓 ) = 𝑓

where
0
≡ is the total relation and 𝑥

𝑛+1
≡ 𝑥 ′ iff 𝑥

𝑛
= 𝑥 ′
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From now on, we often use the underlying set𝑋 to denote a (complete) o.f.e.
(
𝑋,

(
𝑛
=

)∞

𝑛=0

)
, leaving

the family of equivalence relations implicit.

Definition A.8. A functor 𝐹 : Uop ×U → U is locally non-expansive if for all objects 𝑋 , 𝑋 ′, 𝑌 ,
and 𝑌 ′ inU and 𝑓 , 𝑓 ′ ∈ U(𝑋,𝑋 ′) and 𝑔,𝑔′ ∈ U(𝑌 ′, 𝑌 ) we have

𝑓
𝑛
= 𝑓 ′ ∧ 𝑔

𝑛
= 𝑔′ =⇒ 𝐹 (𝑓 , 𝑔)

𝑛
= 𝐹 (𝑓 ′, 𝑔′) .

It is locally contractive if the stronger implication

𝑓
𝑛
= 𝑓 ′ ∧ 𝑔

𝑛
= 𝑔′ =⇒ 𝐹 (𝑓 , 𝑔)

𝑛+1
= 𝐹 (𝑓 ′, 𝑔′).

holds. Note that the equalities are equalities on function spaces.

Proposition A.9. If 𝐹 is a locally non-expansive functor then ▶ ◦𝐹 and 𝐹 ◦ (▶op × ▶) are locally

contractive. Here, the functor 𝐹 ◦ (▶op × ▶) works as

(𝐹 ◦ (▶op × ▶)) (𝑋,𝑌 ) = 𝐹
(
▶

op (𝑋 ),▶ (𝑌 )
)

on objects and analogously on morphisms and ▶
op: Uop → Uop is just ▶ working on Uop (i.e., its

definition is the same).

Definition A.10. A fixed point of a locally contractive functor 𝐹 is an object 𝑋 ∈ U, such that
𝐹 (𝑋,𝑋 ) � 𝑋 .

The following is America and Rutten’s fixed point theorem [America and Rutten 1989].

Theorem A.11. Every locally contractive functor 𝐹 such that 𝐹 (1, 1) is inhabited has a unique fixed
point. The fixed point is unique among inhabited c.o.f.e.’s. If in addition 𝐹 (∅, ∅) is inhabited then the

fixed point of 𝐹 is unique.

In Birkedal et al. [2010] one can find a category-theoretic generalization, which shows how to
obtain fixed points of locally contractive funtors on categories enriched in U, in particular on the
category of preordered c.o.f.e.’s. A preodered c.o.f.e. is a c.o.f.e. equipped with a preorder that is
closed under taking limits of converging sequences. The formulation in loc. cit. also applies to
solve mutually recursive domain equations on preordered c.o.f.e.’s; see Bizjak [2017] for an explicit
statement. That is the solution theorem we use to prove Theorem 4.1.

A.3 Load instruction sufficiency lemma

Lemma A.12 (Conditions for store instruction are sufficient). If

• ms = ms′ ⊎ms𝑓
• ms′ :𝑛 𝑊
• ((perm, g), b, e, a) = 𝑐

• (𝑛, 𝑐) ∈ V(𝑊 )

• writeAllowed (perm)

• withinBounds(c)

• (𝑛,w) ∈ V(𝑊 )

• if w = ((_, local), _, _, _), then perm ∈ {rwlx, rwl}

then a ∈ dom(ms′) (i.e. ms[𝑎 ↦→ 𝑤] = ms′[𝑎 ↦→ 𝑤] ⊎ms𝑓 ) and ms′[a ↦→ w] :𝑛 𝑊

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2019.



0:48 Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

A.4 Macros

Implementation of the macros used in scall. Implementations of the macros not presented here
can be found in the technical appendix [Skorstengaard et al. 2019a].
push 𝑟

1 lea r_stk 1

2 store r_stk r

pop 𝑟

1 load r r_stk

2 minus r_t1 0 1

3 lea r_stk r_t1

rclear 𝑟1, . . . , 𝑟𝑛

1 move 𝑟1 0

2 move 𝑟2 0

3 . . .

4 move 𝑟𝑛 0

mclear 𝑟

1 move r_t 𝑟

2 getb r_t1 r_t

3 geta r_t2 r_t

4 minus r_t2 r_t1 r_t2

5 lea r_t r_t2

6 gete r_t2

7 minus r_t1 r_t2 r_t1

8 plus r_t1 r_t1 1

9 move r_t2 pc

10 lea r_t2 off end

11 move r_t3 pc

12 lea r_t3 off iter

13 iter:

14 jnz r_t2 r_t1

15 store r_t 0

16 lea r_t 1

17 plus r_t1 r_t1 1

18 jmp r_t3

19 end:

20 move r_t 0

21 move r_t1 0

22 move r_t2 0

23 move r_t3 0

Where off end and off iter are the offsets to the label end and iter, respectively.

call 𝑟 (𝑟args, 𝑟priv)

The call macro constitutes a calling convention based on heap allocated activation records. This
alternative to scall is included to illustrate that the logical relation can be used to reason about
other calling conventions. In the following, 𝑟args and 𝑟priv are lists of registers. An overview of this
call:

• Set up activation record
• Create local enter capability for activation (protected return pointer)
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• Clear unused registers
• Jump
• Upon return: Run activation code
ś Restore private registers
ś Jump to return capability

1 malloc r_t 𝑠𝑖𝑧𝑒

2 // store private state in activation record

3 store r_t r_priv,1

4 lea r_t 1

5 store r_t r_priv,2

6 lea r_t 1

7 ...

8 lea r_t 1

9 store r_t r_priv,n

10 lea r_t 1

11 // store old pc

12 move r_t1 pc

13 lea r_t1 off end

14 store r_t r_t1

15 lea r_t1 1

16 // store activation record

17 store r_t encode(i_1)

18 lea r_t1 1

19 ...

20 lea r_t1 1

21 store r_t encode(i_m)

22 lea r_t1 𝑘

23 restrict r_t1 encodePermPair((local,e))

24 move r_0 r_t1

25 // Clear unused registers

26 rclear R // R = RegisterName - {r,pc,r_0,r_args}

27 jmp r

28 end:

Where ¯𝑟priv = 𝑟priv,1, . . . , 𝑟priv,𝑛 , 𝑠𝑖𝑧𝑒 is the size of the activation record, off end is the offset to the end
label, and 𝑘 is𝑚 − 1, i.e. the offset to the first instruction of the activation code.
The activation record. The instructions correspond to 𝑖1, . . . , 𝑖𝑚 in the above.

1 move r_t pc

2 getb r_t1 r_t

3 geta r_t2 r_t

4 minus r_t1 r_t1 r_t2

5 // load private state

6 lea r_t r_t1

7 load r_priv,1 r_t

8 lea r_t 1

9 load r_priv,2 r_t

10 lea r_t 1

11 ...

12 lea r_t 1

13 load r_priv,n r_t

14 lea r_t 1
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15 // load old pc

16 load pc r_t

A.5 Reasoning about programs definitions

Definition A.13. We say that (reg,ms) is looking at [𝑖0, · · · , 𝑖𝑛] followed by 𝑐next iff

• reg(pc) = ((𝑝,𝑔), 𝑏, 𝑒, 𝑎)

• 𝑝 = rwx, 𝑝 = rx, or 𝑝 = rwlx

• 𝑎 + 𝑛 ≤ 𝑒 , 𝑏 ≤ 𝑎 ≤ 𝑒

• ms(𝑎 + 0, · · · , 𝑎 + 𝑛) = [𝑖0, · · · , 𝑖𝑛]

• 𝑐next = ((𝑝,𝑔), 𝑏, 𝑒, 𝑎 + 𝑛 + 1)

Definition A.14. We say that ł(reg,ms) links key as 𝑗 to 𝑐ž iff

• reg(𝑝𝑐) = ((perm, g), b, e, a)

• ms(b) = ((_, _), blink, _, _)
• ms(blink + 𝑗) = 𝑐

Definition A.15. We say that reg points to stack with msstk used and msunused unused iff

• reg(𝑟stk) = ((rwlx, local), 𝑏stk, 𝑒stk, 𝑎stk)
• dom(msunused) = [𝑎stk + 1, · · · , 𝑒stk]
• dom(msstk) = [𝑏stk, · · · , 𝑎stk]

• 𝑏stk − 1 ≤ 𝑎stk

A.6 Example correctness lemmas

Lemma A.16 (Correctness lemma for f1, copy of Lemma 8.1).

For all 𝑛 ∈ N let

𝑐adv
def
= ((e, global), badv, eadv, badv + offsetLinkFlag)

𝑐 𝑓 1
def
= ((rwx, global), f1 − offsetLinkFlag, 1f, f1)

𝑐malloc
def
= ((e, global), bmalloc, emalloc, bmalloc + offsetLinkFlag)

𝑚
def
= ms𝑓 1 ⊎msflag ⊎mslink ⊎msadv ⊎msmalloc ⊎msframe

and

• 𝑐malloc satisfies the specification for malloc and 𝜄malloc,0 is the region from the specification.

where

dom(ms𝑓 1) = [f1 − offsetLinkFlag, 1f]

dom(msflag) = [flag, flag]

dom(mslink) = [link, link + 1]

dom(msadv) = [badv, eadv]

msmalloc :𝑛 [0 ↦→ 𝜄malloc,0]

and

• ms𝑓 1 (f1− offsetLinkFlag) = ((ro, global), link, link + 1, link), ms𝑓 1 (f1− offsetLinkFlag + 1) =
((rw, global), flag, flag, flag), the rest of ms𝑓 1 contains the code of 𝑓 1.

• msflag = [flag ↦→ 0]
• mslink = [link ↦→ 𝑐malloc, link + 1 ↦→ 𝑐adv]
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• msadv contains a global read-only capability for mslink on its first address. The remaining cells

of the memory segment only contain instructions.

if

(reg[pc ↦→ 𝑐 𝑓 1],𝑚) →𝑛 (halted,𝑚′),

then

𝑚′(flag) = 0

Lemma A.17 (Correctness lemma for f2, detailed version of Lemma 8.2). let

𝑐adv
def
= ((e, global), badv, eadv, badv + offsetLinkFlag)

𝑐 𝑓 2
def
= ((rwx, global), f2 − offsetLinkFlag, 2f, f2)

𝑐malloc
def
= ((e, global), bmalloc, emalloc, bmalloc + offsetLinkFlag)

𝑐stk
def
= ((rwlx, local), bstk, estk, bstk − 1)

𝑐link
def
= ((ro, global), link, link + 1, link)

reg ∈ Reg

𝑚
def
= ms𝑓 2 ⊎msflag ⊎mslink ⊎msadv ⊎msmalloc ⊎msstk ⊎msframe

and

• 𝑐malloc satisfies the specification for malloc and 𝜄malloc,0 is the region from the specification.

where

dom(ms𝑓 2) = [f2 − offsetLinkFlag, 2f]

dom(msflag) = [flag, flag]

dom(mslink) = [link, link + 1]

dom(msstk) = [bstk, estk]

dom(msadv) = [badv, eadv]

msmalloc :𝑛 [0 ↦→ 𝜄malloc,0] for all 𝑛 ∈ N

and

• ms𝑓 2 (f2− offsetLinkFlag) = ((ro, global), link, link + 1, link), ms𝑓 2 (f2− offsetLinkFlag + 1) =
((rw, global), flag, flag, flag), the rest of ms𝑓 2 contains the code of 𝑓 2.

• msflag = [flag ↦→ 0]
• mslink = [link ↦→ 𝑐malloc, link + 1 ↦→ 𝑐adv]

• msadv (badv) = 𝑐link and ∀a ∈ [badv + 1, e] .msadv (𝑎) ∈ Z

if

(reg[pc ↦→ 𝑐 𝑓 2] [𝑟stk ↦→ 𝑐stk],𝑚) →𝑛 (halted,𝑚′),

then

𝑚′(flag) = 0
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Lemma A.18 (Correctness lemma for f3, detailed version of Lemma 8.3). For all 𝑛 ∈ N let

𝑐adv
def
= ((e, global), badv, eadv, badv + offsetLinkFlag)

𝑐 𝑓 3
def
= ((rwx, global), f3 − offsetLinkFlag, 3f, f3)

𝑐stk
def
= ((rwlx, local), bstk, estk, bstk − 1)

𝑐malloc
def
= ((e, global), bmalloc, emalloc, bmalloc + offsetLinkFlag)

𝑐link
def
= ((ro, global), link, link + 1, link)

reg ∈ Reg

𝑚
def
= ms𝑓 3 ⊎msflag ⊎mslink ⊎msadv ⊎msmalloc ⊎msstk ⊎msframe

and

• 𝑐malloc satisfies the specification for malloc.

where

dom(ms𝑓 3) = [f3 − offsetLinkFlag, 3f]

dom(msflag) = [flag, flag]

dom(mslink) = [link, link + 1]

dom(msstk) = [bstk, estk]

dom(msadv) = [badv, eadv]

msmalloc :𝑛 [0 ↦→ 𝜄malloc,0]

and

• ms𝑓 3 (f3− offsetLinkFlag) = ((ro, global), link, link + 1, link), ms𝑓 3 (f3− offsetLinkFlag + 1) =
((rw, global), flag, flag, flag), the rest of ms𝑓 3 contains the code of 𝑓 3.

• msflag = [flag ↦→ 0]
• mslink = [link ↦→ 𝑐malloc, link + 1 ↦→ 𝑐adv]

• msadv (badv) = 𝑐link and all other addresses of msadv contain instructions.

if

(reg[pc ↦→ 𝑐 𝑓 3] [𝑟stk ↦→ 𝑐stk],𝑚) →𝑛 (halted,𝑚′),

then

𝑚′(flag) = 0

Lemma A.19 (Correctness of 𝑔1, detailed version of Lemma 8.4). For all 𝑛 ∈ N let

𝑐adv
def
= ((rwx, global), badv, eadv, badv + offsetLinkFlag)

𝑐𝑔1
def
= ((e, global), g1 − offsetLinkFlag, 4f, g1)

𝑐stk
def
= ((rwlx, local), bstk, estk, bstk − 1)

𝑐malloc
def
= ((e, global), bmalloc, emalloc, bmalloc + offsetLinkFlag)

𝑐link
def
= ((ro, global), link, link, link)

𝑚
def
= ms𝑔1 ⊎msflag ⊎mslink ⊎msadv ⊎msmalloc ⊎msstk ⊎msframe

where
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x = 0 x = 1

Fig. 17. Illustration of transition system in 𝜄𝑥 . The dashed line is the private transition.

• 𝑐malloc satisfies the specification for malloc with 𝜄malloc,0

dom(ms𝑔1) = [g1 − offsetLinkFlag, 4f]

dom(msflag) = [flag, flag]

dom(mslink) = [link, link]

dom(msstk) = [bstk, estk]

dom(msadv) = [badv, eadv]

msmalloc :𝑛 [0 ↦→ 𝜄malloc,0]

and

• ms𝑔1 (g1 − offsetLinkFlag) = ((ro, global), link, link, link), ms𝑔1 (g1 − offsetLinkFlag + 1) =

((rw, global), flag, flag, flag), the rest of ms𝑔1 contains the code of 𝑔1 immediately followed by

the code of 𝑓 4.
• msflag = [flag ↦→ 0]
• mslink = [link ↦→ 𝑐malloc]

• msadv (badv) = 𝑐link and all other addresses of msadv contain instructions.

• ∀𝑎 ∈ dom(msstk).msstk (𝑎) = 0

if

(reg0 [pc ↦→ 𝑐adv] [𝑟stk ↦→ 𝑐stk] [𝑟1 ↦→ 𝑐𝑔1],𝑚) →𝑛 (halted,𝑚′),

then

𝑚′(flag) = 0

A.7 Awkward example

The region for variable 𝑥 The region 𝜄𝑥 , is the region omitted from the proof sketch for the
awkward example. Figure 17 illustrates the transition system of 𝜄𝑥 .

Definition A.20.

𝜄𝑥 = (perm, 0, 𝜙pub, 𝜙, 𝐻𝑥 )

𝜙pub = {(0, 1)}∗

𝜙 = (1, 0) ∪ 𝜙pub

𝐻𝑥 𝑠 �̂� = {(𝑛,ms) | ms(𝑥) = 𝑠 ∧ 𝑛 > 0} ∪ {(0,ms)}

Static region This static region only requires that the memory segment is the given one. As it
does not require safety, capabilities for this region cannot be gives to adversarial code.

𝜄sta (𝑣,ms) = (𝑣, 1,=,=, 𝐻 sta ms)

𝐻 sta ms 𝑠 �̂� ={(𝑛,ms) | 𝑛 > 0} ∪ {(0,ms′) | ms′ ∈ Mem}
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Static safe region Static region that also requires safety. It is safe to give adversarial code read
capabilities for this region.

𝜄sta,𝑢 (𝑣,ms) = (𝑣, 1,=,=, 𝐻 sta,𝑢 ms)

𝐻 sta,𝑢 ms 𝑠 �̂� =





(𝑛,ms′)

����������

ms′ = ms ∧

∀a ∈ dom(ms) .

ms(a) is non-local ∧

(𝑛 − 1,ms(a)) ∈ V(𝜉 (�̂� ))





∪ {(0,ms′) | ms′ ∈ Mem}

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2019.


	Abstract
	1 Introduction
	2 A Capability Machine with Local Capabilities
	3 Stack and Return Pointer Management Using Local Capabilities
	4 Logical Relation
	4.1 Formalizing the guarantees of the capability machine
	4.2 Worlds
	4.3 Logical Relation
	4.4 Capability Machine Safety

	5 Malloc
	6 Reusable macro instructions
	7 Reasoning about programs on a capability machine
	8 Examples
	8.1 Encapsulation of Local State
	8.2 Well-Bracketed Control-Flow

	9 Discussion
	10 Related Work
	Acknowledgments
	References
	A Appendix
	A.1 Logical relation
	A.2 Complete ordered family of equivalences (c.o.f.e)
	A.3 Load instruction sufficiency lemma
	A.4 Macros
	A.5 Reasoning about programs definitions
	A.6 Example correctness lemmas
	A.7 Awkward example


