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Abstract. We focus on the aspect of sensing in reasoning about
actions under qualitative and probabilistic uncertainty. We extend
anA-related action language by actions with nondeterministic and
probabilistic effects, and define a formal semantics in terms of de-
terministic, nondeterministic, and probabilistic transitions between
epistemic states. We then introduce the notions of a conditional plan
and its goodness in this framework, and we formulate the conditional
planning problem. We present an algorithm for solving it, which is
proved to be sound and complete in the sense that it produces all opti-
mal plans. We also report on a first prototype implementation of this
algorithm. An application in a robotic-soccer scenario underlines the
usefulness of our formalism in realistic applications.

1 INTRODUCTION
In reasoning about actions for mobile robots in real-world environ-
ments, one of the most crucial problems that we have to face is uncer-
tainty, both about the initial situation of the robot’s world and about
the results of the actions taken by the robot. One way of adding un-
certainty to reasoning about actions is based on qualitative models, in
which all possible alternatives are equally considered. Another way
is based on quantitative models, where we have a probability distri-
bution on the set of possible alternatives, and thus can numerically
distinguish between possible alternatives.

Well-known first-order formalisms for reasoning about actions,
such as the situation calculus, easily allow for expressing qualitative
uncertainty about the initial situation of the world and the effects of
actions through disjunctive knowledge. Similarly, recent formalisms
for reasoning about actions that are inspired by the action language
A, such as the action languageC+ [9] and the planning languageK
[6], allow for qualitative uncertainty in the form of incomplete initial
states and nondeterministic effects of actions.

There are a number of formalisms for probabilistic reasoning
about actions. In particular, Bacchus et al. [1] propose a probabilistic
generalization of the situation calculus, which is based on first-order
logics of probability, and which allows to reason about an agent’s
probabilistic degrees of belief and how these beliefs change when
actions are executed. Poole’s independent choice logic [18] is based
on acyclic logic programs under different “choices”. Each choice
along with the acyclic logic program produces a first-order model.
By placing a probability distribution over the different choices, one
then obtains a distribution over the set of first-order models. Boutilier
et al. [3] introduce and explore an approach to first-order Markov de-
cision processes (MDPs) that are formulated in a probabilistic gen-
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eralization of the situation calculus. A companion paper [4] presents
a generalization of Golog, called DTGolog, that combines robot pro-
gramming in Golog with decision-theoretic planning in MDPs. Other
probabilistic extensions of the situation calculus and Golog are given
in [16, 10]. A probabilistic extension of the action languageA is
given by Baral et al. [2], which aims especially at an elaboration-
tolerant representation of MDPs and at formulating observation as-
similation and counterfactual reasoning.

Even though there is extensive work on reasoning about actions
under qualitative and probabilistic uncertainty separately, there is
only few work that orthogonally combines qualitative and proba-
bilistic uncertainty in a uniform framework for reasoning about ac-
tions. One important such approach is due to Halpern and Tuttle [11],
which combines nondeterminism and probabilistic uncertainty in a
game-theoretic framework. Halpern and Tuttle argue in particular
that “some choices in a distributed system must be viewed as inher-
ently nondeterministic (or, perhaps better, nonprobabilistic), and that
it is inappropriate, both philosophically and pragmatically, to model
probabilistically what is inherently nondeterministic”. This under-
lines the strong need for explicitly modeling qualitative uncertainty
in addition to probabilistic uncertainty in reasoning about actions.

Example 1.1 In robotic soccer, the action “align to ball” may suc-
ceed (resp., fail) with probability 0.7 (resp., 0.3), while the goal-
keeper’s action “open legs” may either save the goal or not. In the
latter case, the effect is nondeterministic rather than probabilistic, as
it is not possible to assign probabilities to the possible effects, which
in fact depend on external factors (e.g., speed and kind of kick per-
formed by an opponent robot) and cannot be evaluated a priori.2

The work [7] is among the few papers that orthogonally combine
qualitative and probabilistic uncertainty in a uniform framework for
reasoning about actions. It presents the languagePC+ for probabilis-
tic reasoning about actions that allows for expressing probabilistic
and nondeterministic effects of actions as well as probabilistic and
qualitative uncertainty about the initial situation of the world. A for-
mal semantics ofPC+ is defined in terms of probabilistic transitions
between sets of states. This work, however, does not consider the
crucial issue of sensing and thus of conditional planning.

In this paper, we aim at filling this gap. We develop a formalism
that additionally allows forsensing in reasoning about actions un-
der qualitative and probabilistic uncertainty, and thus to formulate
the problem ofconditional planning under qualitative and proba-
bilistic uncertainty. In particular, we elaborate a sound and complete
algorithm for solving it. For ease of presentation, the base action lan-
guage that we use in this paper is anA-related language that is less
expressive thanC+, but our results can be easily extended toC+ and
related languages as base action language. The main contributions of



the present paper are the following:

• We extend a language for reasoning about actions with sensing
by actions with nondeterministic and probabilistic effects. We de-
fine a formal semantics of action descriptions through systems of
deterministic, nondeterministic, and probabilistic transitions be-
tween epistemic states, which are sets of possible world states.

• We formulate the problem of conditional planning under quali-
tative and probabilistic uncertainty and define conditional plans.
Based on the concept of a belief tree, we then define the goodness
of a conditional plan relative to a goal and an initial observation.

• We present an algorithm for conditional planning under qualita-
tive and probabilistic uncertainty, and we prove in particular that
this algorithm is sound and complete in the sense that it generates
the set of all optimal conditional plans. We also describe a first
prototype implementation of the above algorithm.

• A formulation of a robotic-soccer scenario gives evidence of the
usefulness of our formalism in realistic applications.

Note that all proofs and further details (especially on implementa-
tion and experimental results) are given in the extended report [12].

2 ACTION LANGUAGE

In this section, we describe the base formalism that we use for rea-
soning about actions. It is related to the action languageA, but any
other action language with similar expressiveness could also be used.
As main features, it allows for sensing actions and for modeling an
agent’sepistemic state, which encodes what the agent knows about
the world, in contrast to what is true in the world. Following the lit-
erature (e.g. [15, 20]), the knowledge of the agent is characterized
through the set of possible states which satisfy the known properties.
Reasoning in presence of sensing is done by modeling the dynamics
of the agent’s epistemic state, rather than the dynamics of the world.

A dynamic system is specified through an initial state description
and an action description, which allow for modeling what an agent
knows about the initial properties of the world and how this knowl-
edge changes through the execution of actions. We now describe the
syntax and the semantics of the initial state and action descriptions.

Syntax. We assume a nonempty finite set of variablesF , called
fluents, which are divided intostaticanddynamicfluents. We use⊥
and> to denote the constantsfalse andtrue, respectively. Afluent
literal is either a fluentf or its negation¬f . A fluent conjunction
is of the forml1 ∧ · · · ∧ ln, wherel1, . . . , ln are fluent literals and
n> 1. The set offluent formulasis the closure ofF ∪{⊥,>} under
the Boolean operators¬, ∧, and∨ (that is, if φ andψ are fluent
formulas, then also¬φ, φ ∧ ψ, andφ ∨ ψ). We assume a set of
actionsA, which are divided intoeffectandsensingactions.

A precondition axiomis of the formexecutableα if φ, whereφ
is a fluent formula, andα is an action. Informally,α is executable in
every state that satisfiesφ. If φ=>, thenα is always executable.

A conditional effect axiomhas the formcausedψ after α whenφ
(abbreviated ascausedψ after α, whenφ=>), whereφ is a fluent
formula,ψ is a fluent conjunction, andα is an action. Informally, if
the current state satisfiesφ, then executingα produces the effectψ.

A sensing effect axiomis of the formcaused to knowω or ¬ω
after α, whereω is a fluent conjunction, andα is a sensing action.
Informally, after executingα, the agent knows thatω is either true or
false. That is, sensing actions modify the epistemic state of the agent
without affecting the state of the world [15].

A default frame axiomhas the forminertial φ after α, whereφ
is a fluent conjunction, andα is an action. Informally, ifφ holds in

the current state, thenφ holds also after the execution ofα, if it is
consistent with the effects ofα.

A domain constraint axiomis of the formcausedψ if φ, whereφ
and ψ are fluent formulas. It represents background knowledge,
which is invariant w.r.t. the execution of actions.

Definition 2.1 An initial state descriptionφI is a fluent formula.
An action descriptionKB is a finite set of precondition, conditional
effect, sensing effect, default frame, and domain constraint axioms.
A goal descriptionψG is a fluent formula.

Semantics. An initial state descriptionφ represents an epistemic
state (that is, a set of possible states), while an action descriptionKB
encodes a system of state transitions between epistemic states (a di-
rected graph, where epistemic states serve as nodes, and the outgoing
arrows of each node are labeled with pairwise distinct actions). We
first define states, epistemic states, the executability of an action, and
the transition between epistemic states by executing an action.

A states is a truth assignment to the fluents inF . It is admissible
with an action descriptionKB iff s satisfies all domain constraint ax-
ioms inKB (that is,s satisfiesφ⇒ψ for all causedψ if φ in KB ).
An epistemic state(or e-state) is a setS of admissible states. An
e-stateS satisfiesa fluent formulaφ iff every s∈S satisfiesφ.

An actionα is executablein an e-stateS iff S satisfiesφ, for ev-
ery precondition axiomexecutableα if φ in KB . Given an e-stateS
and an effect actionα executable inS, we denote bydirect(α, S) the
conjunction of allψ such thatcausedψ after αwhenφ is inKB and
φ is satisfied byS. Then, thesuccessor e-stateof S under an effect
actionα, denotedΦ(S, α), is the setS′ of all admissible states that
satisfy (i)direct(α, S), and (ii) everyφ such thatinertial φ after α
is in KB , φ is satisfied byS, andΨ ∧ direct(α, S) ∧ φ is satisfi-
able, whereΨ is the conjunction of allφ⇒ψ for eachcausedψ if φ
in KB . Intuitively, S′ encodes the direct effects ofα (since it sat-
isfiesdirect(α, S)), the indirect effects due to the domain constraint
axioms, and the propagation of inertial properties that are consistent
with the above direct and indirect effects.

Thesuccessor e-stateof S under a sensing actionα with outcome
σ ∈{ω,¬ω}, denotedΦ(S, ασ), is the set of all admissible states
that satisfyσ and everyφ such thatinertial φ after α is in KB , φ is
satisfied byS, and the formulaΨ ∧ σ ∧ φ is satisfiable, whereΨ is
the conjunction of allφ⇒ψ for eachcausedψ if φ in KB .

Definition 2.2 An action descriptionKB encodes the directed graph
GKB = (N,E), whereN is the set of all e-states, andE con-
tains S→S′ labeled with an effect actionα (resp., sensing ac-
tion α with outcomeσ ∈{ω,¬ω}) iff (i) α is executable inS and
(ii) S′ = Φ(S, α) (resp.,S′ = Φ(S, ασ)). An initial state descrip-
tion φ encodes the setSφ of all admissible states that satisfyφ.

3 NONDETERMINISM AND PROBABILITIES

We now extend the action language of the previous section by actions
with nondeterministic and probabilistic effects.

Syntax. We divide the set of effect actions intodeterministic, non-
deterministic, andprobabilistic actions. The possible effects of the
latter two types of actions are encoded in dynamic context formulas.
A nondeterministic dynamic context formulahas the form

causedψ1, . . . , ψn after α whenφ, (1)

whereφ is a fluent formula,ψ1, . . . , ψn are fluent conjunctions,α is
an action, andn> 2. Informally, if the current state satisfiesφ, then



executingα has at least one of the effectsψi. A probabilistic dynamic
context formulais an expression of the form

causedψ1 : p1, . . . , ψn : pn after α whenφ, (2)

where additionallyp1, . . . , pn> 0 andp1+ · · ·+pn = 1. Informally,
if the current state satisfiesφ, then executingα has the effectψi with
the probabilitypi. We omit “whenφ” in (1) and (2), whenφ=>.

Definition 3.1 An extended action descriptionD= (KB ,C ) con-
sists of an action descriptionKB and a finite setC containing exactly
one nondeterministic (resp., probabilistic) dynamic context formula
for each nondeterministic (resp., probabilistic) action inKB .

Semantics. We define the semantics of an extended action descrip-
tion D= (KB , C) through a system of deterministic, nondetermin-
istic, and probabilistic transitions between e-states. To this end, we
add to the transition system ofKB a mapping that assigns to each
pair (S, α) of a current e-stateS and a nondeterministic (resp., prob-
abilistic) actionα executable inS, a set (resp., a probability distribu-
tion on a set) of successor e-states after executingα.

Note thatprobabilistic transitionsare like in partially observable
Markov decision processes (POMDPs) [13], but they are between
epistemic states and thussets of statesrather thansingle states.

Each nondeterministic (resp., probabilistic) actionα in KB , which
has its dynamic context formula (1) (resp., (2)) inC, is associated
with a set ofcontextsVα = {v1, . . . , vn}, where eachvi has the prob-
ability Prα(vi)= pi, if α is probabilistic. We useKBα(vi) to de-
noteKB enlarged bycausedψi after α whenφ. If α is executable
in an e-stateS, then thesuccessor e-stateof S after executingα in its
contextv, denotedΦv(S, α), is the e-stateΦ(S, α) underKBα(v).

Definition 3.2 Let α be an action that is executable in an e-stateS.
If α is nondeterministic, then theset of successor e-statesof S un-
der α is defined asFα(S)= {Φv(S, α) | v ∈Vα}. If α is proba-
bilistic, then theprobability distribution on the successor e-states
of S underα, denotedPrα( · |S), is defined byPrα(S′|S) =∑
v∈Vα, S′=Φv(S,α) Prα(v). We sayD is consistentiff ∅ 6∈Fα(S)

(resp.,Prα(∅|S)= 0) for every nondeterministic (resp., probabilis-
tic) actionα and every e-stateS in whichα is executable.

Intuitively, executing a nondeterministic actionα in an e-stateS
nondeterministically leads to someS′ ∈Fα(S), while executing a
probabilistic actionα in S leads toS′ = Φv(S, α), v ∈Vα, with
probability Prα(S′|S). In the rest of this paper, we implicitly as-
sume that every action descriptionD= (KB , C) is consistent.

Example 3.3 We describe the actions of a goalkeeper in robotic soc-
cer, specifically in the RoboCup Four-Legged League. The extended
action description is shown in Fig. 1. It includes the fluentscb (the
robot is close to the ball),ba (the ball is in the penalty area),fa (the
space ahead the goalkeeper is free),ip (the goalkeeper is in the cor-
rect position),bm (the ball is moving towards its own goal),ab (the
goalkeeper is aligned with the direction of the ball), andgs (the goal
has been saved). The actions aregotoball (a movement towards the
ball, which possibly touches the ball and moves it outside the penalty
area),bodykick, straightkick, andsidekick (three different kinds of
kicks with different capabilities),openlegs (a position for intercept-
ing a ball kicked towards its own goal),aligntoball (a movement for
aligning to the direction of the ball moving towards its own goal),
and several sensing actions for some of the properties.

Note that the actionopenlegs has both the deterministic effect that
the goalkeeper is able to save the goal when it is aligned to the ball di-
rection, as well as nondeterministic effects, which encode a possible

executablegotoball if ba∧¬bm
executablebodykick if cb
executablestraightkick if cb∧fa
executablesidekick if cb∧¬fa
executablealigntoball if bm
executableopenlegs if bm
executablesensealignedtoball if bm

causedgs after openlegs whenab

caused to knowcb or ¬cb after senseballclose
caused to knowfa or ¬fa after sensefreeahead
caused to knowab or ¬ab after sensealignedtoball

inertial l after α (for every fluent literall and actionα)
causedba if cb

causedgs,¬gs after openlegs

causedcb:0.8,¬ba:0.1,¬cb:0.1 after gotoball
caused¬ba∧¬ip:0.1,¬ba∧ip:0.5,¬ip:0.1,>:0.3 after bodykick
caused¬ba:0.9,>:0.1 after straightkick
caused¬ba:0.7,>:0.3 after sidekick
causedab:0.7,¬ab:0.3 after aligntoball

Figure 1. Extended action description

capability of saving the goal even when the alignment is not known.
In addition, if the robot is assumed to be always in its own area, then
the axiomcausedba if cb allows for defining indirect effects of ac-
tions (e.g., in several actions, the effect¬ba indirectly implies¬cb).
Finally, all the fluents are inertial in this example.2

4 CONDITIONAL PLANS

The conditional planning problem can be described as follows. Given
an extended action description, an initial state descriptionφI , and a
goal descriptionψG, compute the best conditional plan to achieve
ψG from φI . In this section, we first define conditional plans in our
framework. We next introduce belief trees, which are then used to
define the goodness of a conditional plan for achievingψ from φ.

Conditional plans. A conditional plan is a binary directed tree
where each arrow represents an action, and each branching expresses
the two outcomes of a sensing action, which can thus be used to
select the proper actions. Recall that a directed tree is a directed
acyclic graph (DAG) in which every node has exactly one parent,
except for theroot, which has no parents; nodes without children are
leaves. Formally, aconditional planΠ is either (i) theempty condi-
tional plan, denotedλ, or (ii) of the formα; Π′, or (iii) of the form
β; if ω then {Πω} else {Π¬ω}, whereα is an effect action,β is
a sensing action of outcomesω and¬ω, andΠ′, Πω, andΠ¬ω are
conditional plans. We often abbreviate “π;λ” by “π”.

Example 4.1 We use the domain of Example 3.3 for defining two
planning problems. The first specifies an initial situationφI = ba ∧
ip∧¬bm, in which the robot is in its standard position and the
ball is in its own area and it is not moving, and a goal de-
scription ψG =¬ba∧ip, which requires the robot to kick away
the ball and to remain in its position. Two conditional plans that
solve this problem areΠ1 = gotoball; bodykick andΠ2 = gotoball;
sensefreeahead; if fa then {straightkick} else {sidekick}.

The second problem specifies an initial situationφI = bm,
in which the ball is moving, and a goal descriptionψG = gs,
where the goal has been saved. Some conditional plans that
solve this second problem areΩ1 = openlegs, Ω2 = aligntoball;
openlegs, and Ω3 = sensealignedtoball; if ab then {openlegs}
else {aligntoball; openlegs}. 2
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Figure 2. Computing the goodness of a conditional plan

Belief trees. A belief tree is a directed tree over epistemic states as
nodes. Each arrow (eventually with a probability) represents a transi-
tion, and every branching represents the different effects (resp., out-
comes) of some effect (resp., sensing) action. Formally, thebelief
treeT = (G,Pr) for Π underφ, denotedTφΠ, consists of a directed
treeG= (V,E), where the nodes are pairs(S,Ω) of an epistemic
stateS and a conditional planΩ, and a mappingPr : E→ [0, 1],
which are constructed by the following steps (1)–(3):
(1) Initially, T is only the node(Sφ,Π).

(2) Let T = (G,Pr) be the tree built thus far. For each leaf(S,Ω),
where the first actionα of Ω is executable inS, enlargeT by:
(2.1) If α is a sensing action, andΩ has the formα; if ω then
{Ωω} else{Ω¬ω}, then add toT each arrow(S,Ω)→(S′,Ωσ)
such thatS′ = Φ(S, ασ) 6= ∅ andσ ∈{ω,¬ω}.

(2.2) If α is a deterministic (resp., nondeterministic) effect ac-
tion, andΩ has the formα; Ω′, then add toT every arrow
(S,Ω)→ (S′,Ω′) with S′ = Φ(S, α) (resp.,S′ ∈Fα(S)).

(2.3) If α is a probabilistic effect action, andΩ = α; Ω′, then add
to T all e= (S,Ω)→ (S′,Ω′) with S′ = Φv(S, α) for some
v ∈Vα along withPr(e) =

∑
v∈Vα, S′=Φv(S,α) Prα(v).

(3) Repeat (2) untilT is free of leaves(S,Ω) such that the first ac-
tionα of Ω is executable inS.

Goodness. The goodness of a conditional planΠ for achieving
a goalψ under an initial state descriptionφ is defined using the
belief treeTφΠ = ((V,E),Pr) as follows. The success (resp., fail-
ure) leaves ofTφΠ have goodness1 (resp.,0). We then propagate the
goodness to every node ofTφΠ, using the goodness of the children
and the probabilities associated with an arrow. The goodness ofΠ
is the goodness of the root ofTφΠ. Formally, thegoodnessof Π for
achievingψ underφ is defined asgφ,ψ(Π)= g(R), whereR is the
root ofTφΠ, and the functiong : V → [0, 1] is defined by:
• g(v)= 1 (resp.,g(v)= 0) for every leafv= (S,Ω)∈V (suc-

cess leaf(resp.,failure leaf)) such thatΩ =λ and∀s∈S : s |=ψ
(resp.,Ω 6=λ or ∃s∈S : s 6|= ψ);

• g(v)= minv→v′∈E g(v
′) for every nodev= (S,Ω)∈V such

that the first action ofΩ is either a sensing action, or a determin-
istic effect action, or a nondeterministic effect action;

• g(v)=
∑
v→v′∈E Pr(v→ v′) · g(v′) for all v=(S,Ω)∈V such

that the first action ofΩ is a probabilistic effect action.

Example 4.2 The belief trees and the goodness of the conditional
plans given in Example 4.1 are shown in Fig. 2.2

Algorithm Plan Generation.
Input: GKB , initial state descriptionφI , goal descriptionψG.
Output: SP = {Πi = {(Si, A, Sj)}}: set of conditional plans

with positive goodness.

S0 is an initial e-state in whichφI holds;
SP = findAllPaths(GKB , S0, ψG, ∅);
while ∃P ∈SP : (Si, Ai, Sj)∈P ∧ (Si,¬Ai, Sk) 6∈P do

SPaux = findAllPaths(GKB , Sk, ψG,FP (S0, Sk));
SP = SP − {P};
for eachPaux ∈ SPaux do
Pnew = P ∪ {(Si,¬Ai, Sk)} ∪ Paux ;
SP = SP ∪ {Pnew}

end for
end while;
SP = unify(SP );
return SP .

Figure 3. Plan Generation Algorithm

5 CONDITIONAL PLANNING

The problem of conditional planning in our framework can be de-
fined as follows. Given an extended action descriptionD= (KB , C),
an initial state descriptionφI , and a goal descriptionψG, compute a
conditional planΠ that, when executed from an e-state in whichφI
holds, leads to an e-state in which the goalψG holds (for any possible
outcome of sensing) with maximum goodness.

We now present a planning method for solving this problem,
which is divided into two steps: (1) computing all the valid condi-
tional plans that are solutions to the planning problem; (2) evaluating
the goodness for each of these conditional plans and selecting the
best one (that is, the conditional plan with maximum goodness).

The first step of the planning method is achieved by the algorithm
shown in Fig. 3 for extracting plans from the graphGKB , represent-
ing a planning problem, as shown in the previous sections. The output
of this algorithm is the set of all conditional plans that are solutions
of the planning problem. Each plan is a directed acyclic graph repre-
sented as a set of tuples(Si, Ai, Sj), whose meaning is that from the
e-stateSi it is possible to execute the actionAi leading to the succes-
sor e-stateSj . When the actionAi is a sensing action, then the tuple
(Si, Ai, Sj) denotes an execution ofAi whose outcome is true, while
the tuple(Si,¬Ai, Sk) denotes an execution ofAi whose outcome
is false. Now, the definition of conditional plan implies that, for each
tuple(Si, Ai, Sj) in P there exists a tuple of the form(Si,¬Ai, Sk)
in P . If this condition is not satisfied in a given (partially built) plan
P , then the e-stateSi in P must be further expanded.

The algorithm uses the functionfindAllPaths(GKB , S, ψG,F)
that returns the set of all possible paths (without cycles) inGKB from
the e-stateS to an e-state in whichψG holds, without considering any
of the e-states specified inF . Since a path is a sequence of actions,
in this function, only one outcome of a sensing action or one context
of an action with either nondeterministic or probabilistic effects is
considered. The returned linear path may have e-states that must be
further expanded, when they lack the other outcome of sensing.

Moreover, since we are only interested in generating conditional
plans (without cycles), it is necessary to limit the search of the paths
in findAllPaths, by excluding the e-states that have already been
considered in the path from the initial e-state to the current e-state:
this is obtained by the computation of the set of e-statesFP (S0, Sk),
which includes all the e-states in the current planP such that there
exists a path fromS0 to Sk. In this way, the functionfindAllPaths
never returns a path that can produce cycles.

Observe that the first part of the algorithm only finds those plans
that are valid by considering a single context for each nondetermin-



istic or probabilistic action. However, it is also necessary to derive
plans that consider at the same time multiple contexts. To this end,
it is possible to generate more general plans by combining pairs of
previously computed ones. This is performed by a unification oper-
ation (implemented by theunify procedure) that unifies terms that
suitably represent conditional plans.

The second step of the planning method is a procedure that com-
putes the goodness for all the conditional plans retrieved in the pre-
vious step and returns the best one. Observe that, for efficiency rea-
sons, the planning algorithm given above generally builds condi-
tional plans in the form of DAGs, while the goodness of such plans is
defined on conditional plans expressed in the form of trees. Thus, for
the computation of the goodness a transformation of the DAG into a
tree (by recursively duplicating those subgraphs in the DAG whose
root has more than one parent) is needed.

Correctness of the algorithm is formally expressed as follows.

Theorem 5.1 (Plan Generation)Given an extended action descrip-
tion D= (KB , C), an initial state descriptionφI , and a goal de-
scriptionψG, the algorithm Plan Generation terminates and is sound
and complete, i.e., it returns all the solutions (and only solutions) to
the conditional planning problem.

Our current implementation of the Plan Generation algorithm con-
siders the following aspects: (i)GKB is generated on-line during the
search for the plan, according to Definition 2.2; (ii) the algorithm
finds a plan that has an overall goodness greater than a given thresh-
old γ and thus the computation of the optimal plan (the one with
the maximum goodness) can be obtained by a small number of ex-
ecutions of this procedure; (iii) the unification process is not imple-
mented as a separate step, but within the process of plan generation,
and, for efficiency reasons, it makes use of an heuristic that considers
only a particular but significative portion of the possible unification
forms. These implementation choices allowed us to realize an effi-
cient implementation of the planner that has been used for generating
significant plans both in abstract domains (taken from the literature)
and in the mobile robot domain described before.

6 RELATED WORK

With regard to the literature on reasoning about actions with prob-
abilistic effects, the most closely related approach is Poole’s inde-
pendent choice logic (ICL) [18], which uses a similar way of adding
probabilities to an approach based on acyclic logic programs. But the
central conceptual difference is that Poole’s ICL does not allow for
qualitative uncertainty in addition to probabilistic uncertainty. Poole
circumvents the problem of dealing with qualitative uncertainty by
imposing the strong condition of acyclicity on logic programs.

From a more general perspective, our approach is also related to
planning under uncertainty in AI, since it can roughly be understood
as a combination of conditional planning under nondeterministic un-
certainty in AI [8] with conditional planning under probabilistic un-
certainty in AI, both in partially observable environments.

Generalizations of classical planning in AI including actions with
probabilistic effects, see for example [5, 17, 14], typically consider
the problem of determining a sequence of actions given a success
threshold, with some extension that considers also sensing and con-
ditional plans. On the other hand, decision-theoretic planning in AI
considers fully or partially observable Markov decision processes
(MDPs [19] or POMDPs [13]), which also include costs and/or re-
wards associated with actions and/or e-states, and their solutions are
mappings from situations to actions of high expected utility, rather
than courses of actions achieving a goal with high probability.

Our approach can be seen as combining conditional planning un-
der nondeterministic and under probabilistic uncertainty, where the
latter is perhaps closest to generalizations of classical planning in
AI. But instead of giving a threshold for the success probability of a
plan, we aim at all plans with highest possible success probability. In
contrast to the decision-theoretic framework, we do not assume costs
and/or rewards associated with actions and/or states. Furthermore,
sensing actions in our approach are more flexible than observations
in POMDPs, since they allow for preconditions, and they can be per-
formed at any time point when executable.
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