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Abstract. We focus on the aspect of sensing in reasoning abougralization of the situation calculus. A companion paper [4] presents
actions under qualitative and probabilistic uncertainty. We extenda generalization of Golog, called DTGolog, that combines robot pro-
an A-related action language by actions with nondeterministic andgramming in Golog with decision-theoretic planning in MDPs. Other
probabilistic effects, and define a formal semantics in terms of deprobabilistic extensions of the situation calculus and Golog are given
terministic, nondeterministic, and probabilistic transitions betweenn [16, 10]. A probabilistic extension of the action languades
epistemic states. We then introduce the notions of a conditional plagiven by Baral et al. [2], which aims especially at an elaboration-
and its goodness in this framework, and we formulate the conditionalolerant representation of MDPs and at formulating observation as-
planning problem. We present an algorithm for solving it, which is similation and counterfactual reasoning.

proved to be sound and complete in the sense that it produces all opti- Even though there is extensive work on reasoning about actions
mal plans. We also report on a first prototype implementation of thisunder qualitative and probabilistic uncertainty separately, there is
algorithm. An application in a robotic-soccer scenario underlines thenly few work that orthogonally combines qualitative and proba-

usefulness of our formalism in realistic applications. bilistic uncertainty in a uniform framework for reasoning about ac-
tions. One important such approach is due to Halpern and Tuttle [11],
1 INTRODUCTION which combines nondeterminism and probabilistic uncertainty in a

game-theoretic framework. Halpern and Tuttle argue in particular

In reasoning about actions for mobile robots in real-world environ- . . . - ) )
. . that “some choices in a distributed system must be viewed as inher-
ments, one of the most crucial problems that we have to face is uncer-

tainty, both about the initial situation of the robot’s world and aboutently nondeterministic (or, perhaps better, nonprobabilistic), and that

i ) itis inappropriate, both philosophically and pragmatically, to model
the results of the actions taken by the robot. One way of adding un robabilistically what is inherently nondeterministic”. This under-

certainty to reasoning about actions is based on qualitative models, {n L ; o :
. . : . Ines the strong need for explicitly modeling qualitative uncertainty

which all possible alternatives are equally considered. Another wa " S o . i

. " ... 1n addition to probabilistic uncertainty in reasoning about actions.

is based on quantitative models, where we have a probability distri-

bution on the set of possible alternatives, and thus can numerlcallgxamme 1.1 In robotic soccer, the action “align to ball” may suc-

distinguish between possible alternatives. ) ~ ceed (resp., fail) with probability 0.7 (resp., 0.3), while the goal-
Well-known first-order formalisms for reasoning about aCt'O”S'keeper’s action “open legs” may either save the goal or not. In the

such as the situation calculus, easily allow for expressing qualitativgyiter case, the effect is nondeterministic rather than probabilistic, as
uncertainty about the initial situation of the world and the effects ofj; is not possible to assign probabilities to the possible effects, which

actions through disjunctive knowledge. Similarly, recent formalisms;p, t5ct depend on external factors (e.g., speed and kind of kick per-

for reasoning about actions that are inspired by the action languagg,meg by an opponent robot) and cannot be evaluated a prori.
A, such as the action language- [9] and the planning languagé

[6], allow for qualitative uncertainty in the form of incomplete initial ~ The work [7] is among the few papers that orthogonally combine
states and nondeterministic effects of actions. qualitative and probabilistic uncertainty in a uniform framework for
There are a number of formalisms for probabilistic reasoningreasoning about actions. It presents the langiRite for probabilis-
about actions. In particular, Bacchus et al. [1] propose a probabilisti¢ic reasoning about actions that allows for expressing probabilistic
generalization of the situation calculus, which is based on first-ordeand nondeterministic effects of actions as well as probabilistic and
logics of probability, and which allows to reason about an agent'sjualitative uncertainty about the initial situation of the world. A for-
probabilistic degrees of belief and how these beliefs change whemal semantics aPC+ is defined in terms of probabilistic transitions
actions are executed. Poole’s independent choice logic [18] is basdsktween sets of states. This work, however, does not consider the
on acyclic logic programs under different “choices”. Each choicecrucial issue of sensing and thus of conditional planning.
along with the acyclic logic program produces a first-order model. In this paper, we aim at filling this gap. We develop a formalism
By placing a probability distribution over the different choices, onethat additionally allows fosensing in reasoning about actions un-
then obtains a distribution over the set of first-order models. Boutilierder qualitative and probabilistic uncertaintyand thus to formulate
et al. [3] introduce and explore an approach to first-order Markov dethe problem ofconditional planning under qualitative and proba-
cision processes (MDPs) that are formulated in a probabilistic genbilistic uncertainty In particular, we elaborate a sound and complete
I — - - ~ - algorithm for solving it. For ease of presentation, the base action lan-
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the present paper are the following: the current state, thegy holds also after the execution of if it is
e We extend a language for reasoning about actions with sensin onS|stent.W|th the e.ﬁeCtS. @f .
A domain constraint axiorns of the formcausedy if ¢, whereg

by actions with nondeterministic and probabilistic effects. We de-

fine a formal semantics of action descriptions through systems o?nq ¥ are qu_ent formulas. It represents _background knowledge,

deterministic, nondeterministic, and probabilistic transitions be-WhICh Is invariant w.r.t. the execution of actions.
tween epistemic states, which are sets of possible world states. Definition 2.1 An initial state descriptiong; is a fluent formula.

e We formulate the problem of conditional planning under quali- An action descriptionk B is a finite set of precondition, conditional
tative and probabilistic uncertainty and define conditional planseffect, sensing effect, default frame, and domain constraint axioms.
Based on the concept of a belief tree, we then define the goodnegsgoal description)¢ is a fluent formula.
of a conditional plan relative to a goal and an initial observation.

e We present an algorithm for conditional planning under qualita- Semantics. An initial state description represents an epistemic
tive and probabilistic uncertainty, and we prove in particular thatstate (that is, a set of possible states), while an action descrifstibn
this algorithm is sound and complete in the sense that it generateshcodes a system of state transitions between epistemic states (a di-
the set of all optimal conditional plans. We also describe a firstrected graph, where epistemic states serve as nodes, and the outgoing

prototype implementation of the above algorithm. arrows of each node are labeled with pairwise distinct actions). We
o A formulation of a robotic-soccer scenario gives evidence of thefirst define states, epistemic states, the executability of an action, and
usefulness of our formalism in realistic applications. the transition between epistemic states by executing an action.

Note that all proofs and further details (especially on implementa- A states is a truth assignment to the fluentsin Itis admissible

tion and experimental results) are given in the extended report [12].‘,’\’Ith an action degcnptlo[f(]? iff s satisfies all domaln.con.stralnt ax-
ioms in KB (that is,s satisfiesp=- ¢ for all causedy if ¢ in KB).

An epistemic stat€or e-statg is a setS of admissible states. An
2 ACTION LANGUAGE e-stateS satisfiesa fluent formulay iff every s € S satisfiesp.

In this section, we describe the base formalism that we use for rea- An actiona is executablen an e-states iff S satisfiesp, for ev-
soning about actions. It is related to the action langudgbeut any  €ry precondition axionexecutablex if ¢ in KB. Given an e-stat§
other action language with similar expressiveness could also be use@nd an effect action executable irf, we denote bylirect(«, S) the
As main features, it allows for sensing actions and for modeling arconjunction of alk) such thatausedy after o« when¢isin KB and
agent'sepistemic statewhich encodes what the agent knows about ¢ is satisfied byS. Then, thesuccessor e-statef S under an effect
the world, in contrast to what is true in the world. Following the lit- actiona, denotedd(S, «), is the setS” of all admissible states that
erature (e.g. [15, 20]), the knowledge of the agent is characterizegatisfy (i)direct(c, 5), and (i) everys such thatnertial ¢ after o
through the set of possible states which satisfy the known propertieds in KB, ¢ is satisfied byS, and¥ A direct(a, S) A ¢ is satisfi-
Reasoning in presence of sensing is done by modeling the dynami@ble, wherel is the conjunction of al=-+ for eachcausedy if ¢
of the agent’s epistemic state, rather than the dynamics of the worldn KB. Intuitively, S” encodes the direct effects of (since it sat-

A dynamic system is specified through an initial state descriptiorisfiesdirect(c, S)), the indirect effects due to the domain constraint
and an action description, which allow for modeling what an agen@xioms, and the propagation of inertial properties that are consistent
knows about the initial properties of the world and how this knowl- With the above direct and indirect effects.
edge changes through the execution of actions. We now describe the Thesuccessor e-statef S under a sensing actianwith outcome
syntax and the semantics of the initial state and action descriptionsg € {w, ~w}, denoted®(S, a.), is the set of all admissible states

that satisfyo and everyp such thainertial ¢ after ais in KB, ¢ is
Syntax. We assume a nonempty finite set of variabféscalled  satisfied byS, and the formulall A o A ¢ is satisfiable, wherd is
fluents which are divided intstaticanddynamicfluents. We use. the conjunction of alty= 1 for eachcausedy’ if ¢ in KB.

and T to denote the constanfalse and true, respectively. Afluent
literal is either a fluentf or its negation—f. A fluent conjunction
is of the formi; A --- Aly, Wherely, ... I, are fluent literals and
n > 1. The set ofluent formulass the closure ofF U {_L, T} under
the Boolean operators, A, andV (that is, if ¢ and are fluent
formulas, then alse¢, ¢ A ¥, and¢ Vv ¢). We assume a set of
actions.A, which are divided int@effectandsensingactions.

A precondition axioms of the formexecutable« if ¢, where¢
is a fluent formula, .an.dz is an action. Informallya is executable in 3 NONDETERMINISM AND PROBABILITIES
every state that satisfies If ¢ = T, thena is always executable.

A conditional effect axiorhas the forntausedy after o when ¢ We now extend the action language of the previous section by actions
(abbreviated asausedy after ., wheng = T), whereg is a fluent ~ With nondeterministic and probabilistic effects.
formula,+ is a fluent conjunction, and is an action. Informally, if
the current state satisfies then executingr produces the effeap.

A sensing effect axions of the formcaused to knoww or —w
after o, wherew is a fluent conjunction, and is a sensing action.
Informally, after executingy, the agent knows that is either true or

Definition 2.2 An action descriptiori B encodes the directed graph
Gkp= (N, E), where N is the set of all e-states, antl con-
tains S — S’ labeled with an effect actiom (resp., sensing ac-
tion a with outcomeo € {w, ~w}) iff (i) « is executable inS and
(i) S'=®(S,a) (resp.,S' =®(S, a,)). An initial state descrip-
tion ¢ encodes the sét; of all admissible states that satisfy

Syntax. We divide the set of effect actions intieterministicnon-
deterministi¢c and probabilistic actions. The possible effects of the
latter two types of actions are encoded in dynamic context formulas.
A nondeterministic dynamic context formuias the form

false. That is, sensing actions modify the epistemic state of the agent causedr, . . ., v, after o when g, (1)
without affecting the state of the world [15].
A default frame axionhas the forminertial ¢ after «, where¢ whereg is a fluent formulasg)q, . . . , ¥, are fluent conjunctionsy is

is a fluent conjunction, and is an action. Informally, if» holds in an action, ande > 2. Informally, if the current state satisfies then



executingy has at least one of the effeats. A probabilistic dynamic
context formulds an expression of the form

causedy: : p1,...,Yn: pn after a when g,

@

where additionallys, . . ., p, > 0andp;+ - - - +p, = 1. Informally,
if the current state satisfigs then executing has the effect); with
the probabilityp;. We omit ‘when ¢” in (1) and (2), whenp=T.

Definition 3.1 An extended action descriptioP = (KB, C') con-
sists of an action descriptiddB and a finite seC’ containing exactly

executablegotoball if baA—bm
executablebodykick if cb
executablestraightkick if cbAfa
executablesidekick if cbA—fa
executablealigntoball if bm
executableopenlegs if bm
executablesensealignedtoball if bm

causedgs after openlegs whenab

caused to knowcb or —cb after senseballclose
caused to knowfa or —fa after sensefreeahead
caused to knowab or —ab after sensealignedtoball

inertial [ after o (for every fluent literal and actiom)

one nondeterministic (resp., probabilistic) dynamic context formulacaysedba if cb

for each nondeterministic (resp., probabilistic) actiorkiB.

causedgs, —gs after openlegs
causedcb:0.8, —ba:0.1, —cb:0.1 after gotoball

Semantics. We define the semantics of an extended action descripc@used—baA-ip:0.1, ~baAip:0.5, -ip:0.1, T:0.3 after bodykick

tion D= (KB, C) through a system of deterministic, nondetermin-

caused—ba:0.9, T:0.1 after straightkick
caused—ba:0.7, T:0.3 after sidekick

istic, and probabilistic transitions between e-states. To this end, Weausedab:0.7, —ab:0.3 after aligntoball

add to the transition system & B a mapping that assigns to each
pair (S, ) of a current e-stat® and a nondeterministic (resp., prob-
abilistic) actiona executable ir5, a set (resp., a probability distribu-
tion on a set) of successor e-states after executing

Note thatprobabilistic transitionsare like in partially observable

Markov decision processes (POMDPSs) [13], but they are betweeﬂ1

epistemic states and thasts of stategther tharsingle states
Each nondeterministic (resp., probabilistic) actioim KB, which
has its dynamic context formula (1) (resp., (2))dh is associated
with a set ofcontextd/,, = {v1, . . ., v }, Where eachy; has the prob-
ability Prq(v;) =ps, if « is probabilistic. We us&B.(v;) to de-
note KB enlarged bycausedy; after o when ¢. If « is executable
in an e-stateS, then thesuccessor e-statef .S after executingy in its
contextv, denotedd,, (S, «), is the e-stat@ (S, o) underKB, (v).

Definition 3.2 Let « be an action that is executable in an e-state

If « is nondeterministic, then theet of successor e-statefS un-
der « is defined asF,(S)={®.,(S,a)|veV.}. If a is proba-
bilistic, then theprobability distribution on the successor e-states
of S under «, denotedPr,(-|S), is defined byPr,(S’|S)
Y vV, §'=d, (5.0) PTa(v). We sayD is consisteniff (¢ F(S)
(resp.,Prq(0]S) = 0) for every nondeterministic (resp., probabilis-
tic) actiona and every e-staté in which « is executable.

Intuitively, executing a nondeterministic actienin an e-states
nondeterministically leads to sonf¥ € F,,(S), while executing a
probabilistic actiona in S leads t0S' = ®, (S5, a), v € Vy, with
probability Pr,(S’|S). In the rest of this paper, we implicitly as-
sume that every action descriptidh= (KB, C) is consistent.

Example 3.3 We describe the actions of a goalkeeper in robotic soc

cer, specifically in the RoboCup Four-Legged League. The extendegonditional plans. We often abbreviate;“\"

action description is shown in Fig. 1. It includes the fluetligthe
robot is close to the ballpa (the ball is in the penalty aredh (the
space ahead the goalkeeper is frge)the goalkeeper is in the cor-
rect position) bm (the ball is moving towards its own goafb (the
goalkeeper is aligned with the direction of the ball), gadthe goal
has been saved). The actions geeoball (a movement towards the

Figure 1. Extended action description

capability of saving the goal even when the alignment is not known.
In addition, if the robot is assumed to be always in its own area, then
e axiomcausedba if cb allows for defining indirect effects of ac-
tions (e.g., in several actions, the effedfa indirectly implies—cb).
Finally, all the fluents are inertial in this example.

4 CONDITIONAL PLANS

The conditional planning problem can be described as follows. Given
an extended action description, an initial state descriptiorand a
goal description)c, compute the best conditional plan to achieve
¥a from ¢;. In this section, we first define conditional plans in our
framework. We next introduce belief trees, which are then used to
define the goodness of a conditional plan for achievirfgom ¢.

Conditional plans. A conditional plan is a binary directed tree
where each arrow represents an action, and each branching expresses
the two outcomes of a sensing action, which can thus be used to
select the proper actions. Recall that a directed tree is a directed
acyclic graph (DAG) in which every node has exactly one parent,
except for theoot, which has no parents; nodes without children are
leaves Formally, aconditional planII is either (i) theempty condi-
tional plan denoted\, or (ii) of the forma; IT', or (iii) of the form
B;if w then {Il,} else {II-. }, wherea is an effect actiong is
a sensing action of outcomesand —w, andIl’, II,,, andII_, are

by

Example 4.1 We use the domain of Example 3.3 for defining two
planning problems. The first specifies an initial situatign=ba A
ipA—bm, in which the robot is in its standard position and the
ball is in its own area and it is not moving, and a goal de-
scription )¢ = —baAip, which requires the robot to kick away

.

ball, which possibly touches the ball and moves it outside the penaltyhe ball and to remain in its position. Two conditional plans that

area),bodykick, straightkick, andsidekick (three different kinds of
kicks with different capabilitieslopenlegs (a position for intercept-
ing a ball kicked towards its own goaBligntoball (a movement for
aligning to the direction of the ball moving towards its own goal),
and several sensing actions for some of the properties.

Note that the actionpenlegs has both the deterministic effect that

solve this problem arél; = gotoball; bodykick andIl, = gotoball;
sensefreeahead; if fa then {straightkick} else {sidekick}.

The second problem specifies an initial situatign =bm,
in which the ball is moving, and a goal descriptiaf; = gs,

where the goal has been saved. Some conditional plans that

solve this second problem aK@, = openlegs, 2> = aligntoball;

the goalkeeper is able to save the goal when it is aligned to the ball depenlegs, and Q3 = sensealignedtoball; if ab then {openlegs}
rection, as well as nondeterministic effects, which encode a possiblelse {aligntoball; openlegs}. O



Algorithm Plan Generation.

Input: G kg, initial state descriptiow, goal description).

Output: SP = {II; = {(S;, A, S;)}}: set of conditional plans
with positive goodness.

S o = o

So is an initial e-state in whicky; holds;
SP = findAllPaths(G kg, So, Y, 0);
while 3P € SP: (S;, A;, Sj) eP A (Si,nA;,Sk) ¢ Pdo
SPauz = findAllPaths(Gkp, Sk, Ve, Fp(So,Sk));
SP=SP—{P};
for each Pyuz € SPaus dO
Pnew =PU {(Sw _‘A'L:Sk)} U Paum )

0.66

Q . Q, . anP:SPU{Pnew}
5 _u—=—-01 , end for
0 O/%\:::z o 1 ¢ 2 .01 end while;
g P 1 5 SP = unify(SP);
: 3 4 return SP.
0\5‘\-0 0 % 1

=
(/
<

Figure 3. Plan Generation Algorithm

Figure 2. Computing the goodness of a conditional plan

5 CONDITIONAL PLANNING

Belief trees. A belief tree is a directed tree over epistemic states asl_h bl f ditional planning i f K be d
nodes. Each arrow (eventually with a probability) represents a transi: € probiem of conditional planning In our framework can be de-

tion, and every branching represents the different effects (resp., ou ined as follows. Given an extended action descripfios (K, C),

comes) of some effect (resp., sensing) action. Formallybtef an in?t!al state description;, and a goal description, co_mput_e a
treeT = (G, Pr) for IT underg, denotedl 411, consists of a directed conditional plaril that, When e>l<ecuted from an e-state in WW‘
tree G = (V, E), where the nodes are pai$, ) of an epistemic holds, leads to an e-sta}e in WhICh the goalholds (for any possible
state.S and a conditional plaf2, and a mapping’r: E — [0, 1], outcome of sensing) with maximum goodness. . .
which are constructed by the following steps (1)—(3): We now present a planning method for solving this problem,
(1) Initially, ' is only the node.S,, 1) which is divided into two steps: (1) computing all the valid condi-
@) LetTy' G.P ))L)e the tree g’ it t.h s far. For each I ©) tional plans that are solutions to the planning problem; (2) evaluating
= s T ul u . y ]

’ - ’ ) : the goodness for each of these conditional plans and selecting the
where the first action: of 2 is executable irb, enlargel” by: best one (that is, the conditional plan with maximum goodness).

(2.1) If o is @ sensing action, and has the formo; if w then The first step of the planning method is achieved by the algorithm
{2} elseiﬂw}, then add td" each arrow(S, 2)—(5",5)  shown in Fig. 3 for extracting plans from the grapfs, represent-
such thats” = ®(S, ar) # 0 ando € {w, ~w}. ing a planning problem, as shown in the previous sections. The output

(2.2) If o is a deterministic (resp., nondeterministic) effect ac- of this algorithm is the set of all conditional plans that are solutions
tion, andQ2 has the forma; ', then add toI’ every arrow  of the planning problem. Each plan is a directed acyclic graph repre-
(S,Q) — (S',Q) with S’ = ®(S, ) (resp.,S’ € Fa(S)). sented as a set of tuplés;, A;, S;), whose meaning is that from the

(2.3) If ais a probabilistic effect action, arfdl = «; ', thenadd ~ e-stateS; it is possible to execute the actieh leading to the succes-
to T all e=(S,Q)— (9',Q) with $'=®,(S,a) for some  sor e-states;. When the action!; is a sensing action, then the tuple

veVyalongwithPr(e) =32 v g—q, (5.0) Pra(v). (Si, As, S;) denotes an execution df; whose outcome is true, while
(3) Repeat (2) untill'is free of leaveg S, ) such that the first ac- the tuple(Si, ~4;, S) denotes an execution of; whose outcome
tion « of Q) is executable irs. is false. Now, the definition of conditional plan implies that, for each

tuple(S;, A, S;) in P there exists a tuple of the for($;, —A;, Sk)
Goodness. The goodness of a conditional pldhfor achieving in P. If this condition is not satisfied in a given (partially built) plan
a goalt under an initial state description is defined using the £ then the e-stats; in P must be further expanded.
belief treeT,; = ((V, E), Pr) as follows. The success (resp., fail-  1he algorithm uses the functiofindAllPaths(G ks, S, Ya, F)
ure) leaves of ,,i; have goodnesk(resp.,0). We then propagate the that returns the set of all possible paths (without cycles) i from

goodness to every node Bf,1, using the goodness of the children he e-states' to an e-state in whiclyc holds, without considering any
and the probabilities associated with an arrow. The goodneEs of of the e-states specified if. Since a path is a sequence of actions,

is the goodness of the root @f,r;. Formally, thegoodnesf IT for in this function, only one outcome of a sensing action or one context
achieving:y undere is defined ag,.,, (IT) = g(R), whereR is the of an action with either nondeterministic or probabilistic effects is
root of T,r1, and the functiory: V— [0, 1] is defined by: considered. The returned linear path may have e-states that must be

e g(v)=1 (resp., g(v)=0) for every leafv=(S,Q) eV (suc- further expand_ed, when they Iac_k the other_outcome gf sensin_g_.
cess leafresp. failure lea) such that2 = A andVs € S: s = Moreqver, since we are only |nteresteq in generating conditional
(resp.Q#Nor3se S: s - ) plans (without cycles), it is necessary to limit the search of the paths

e g(v)= min,_,cx g(v') for every nodev=(S,Q) €V such in ﬁ@dAllPa_ths, by excluding thfe _e_-states that have already been

that the first action of2 is either a sensing action, or a determin- considered in the path from the initial e-state to the current e-state:

istic effect action, or a nondeterministic effect action; this is obtained by the computation of the set of e-st#tes5o, Sk),
90)=5 e Prw—1') - g(v') for all v=(S, )€V such which includes all the e-states in the current pfasuch that there
ot exists a path fronf, to Sk. In this way, the functiorfindAllPaths
) B never returns a path that can produce cycles.

Example 4.2 The belief trees and the goodness of the conditional - opserve that the first part of the algorithm only finds those plans

plans given in Example 4.1 are shown in Fig[2. that are valid by considering a single context for each nondetermin-

that the first action of2 is a probabilistic effect action.



istic or probabilistic action. However, it is also necessary to derive Our approach can be seen as combining conditional planning un-
plans that consider at the same time multiple contexts. To this endler nondeterministic and under probabilistic uncertainty, where the
it is possible to generate more general plans by combining pairs dhtter is perhaps closest to generalizations of classical planning in
previously computed ones. This is performed by a unification operAl. But instead of giving a threshold for the success probability of a
ation (implemented by thenify procedure) that unifies terms that plan, we aim at all plans with highest possible success probability. In
suitably represent conditional plans. contrast to the decision-theoretic framework, we do not assume costs
The second step of the planning method is a procedure that conand/or rewards associated with actions and/or states. Furthermore,
putes the goodness for all the conditional plans retrieved in the presensing actions in our approach are more flexible than observations
vious step and returns the best one. Observe that, for efficiency reea POMDPSs, since they allow for preconditions, and they can be per-

sons, the planning algorithm given above generally builds condiformed at any time point when executable.

tional plans in the form of DAGs, while the goodness of such plans is

defined on conditional plans expressed in the form of trees. Thus, fo"\cknowledgments. This work has been partially supported by
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Our current implementation of the Plan Generation algorithm con-

siders the following aspects: (@ x5 is generated on-line during the
search for the plan, according to Definition 2.2; (i) the algorithm [2]
finds a plan that has an overall goodness greater than a given thresrﬂg]
old v and thus the computation of the optimal plan (the one with
the maximum goodness) can be obtained by a small number of ex{4]
ecutions of this procedure; (iii) the unification process is not imple-
mented as a separate step, but within the process of plan generatioES]
and, for efficiency reasons, it makes use of an heuristic that consider
only a particular but significative portion of the possible unification
forms. These implementation choices allowed us to realize an effi-[6]
cient implementation of the planner that has been used for generating
significant plans both in abstract domains (taken from the Iiterature)m
and in the mobile robot domain described before.

(8]
6 RELATED WORK o]

With regard to the literature on reasoning about actions with prob-
abilistic effects, the most closely related approach is Poole’s indd10]
pendent choice logic (ICL) [18], which uses a similar way of adding 11]
probabilities to an approach based on acyclic logic programs. But th[e
central conceptual difference is that Poole’s ICL does not allow for12]
qualitative uncertainty in addition to probabilistic uncertainty. Poole
circumvents the problem of dealing with qualitative uncertainty by
imposing the strong condition of acyclicity on logic programs. 1

From a more general perspective, our approach is also related Eo
planning under uncertainty in Al, since it can roughly be understood
as a combination of conditional planning under nondeterministic unf4]
certainty in Al [8] with conditional planning under probabilistic un- [15]
certainty in Al, both in partially observable environments.

Generalizations of classical planning in Al including actions with[16]
probabilistic effects, see for example [5, 17, 14], typically consider
the problem of determining a sequence of actions given a succeby']
threshold, with some extension that considers also sensing and con-
ditional plans. On the other hand, decision-theoretic planning in A{1g]
considers fully or partially observable Markov decision processes
(MDPs [19] or POMDPs [13]), which also include costs and/or re-[19]
wards associated with actions and/or e-states, and their solutions ]
mappings from situations to actions of high expected utility, rathealt
than courses of actions achieving a goal with high probability.
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