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Abstract

We present a family of sound and complete logics for reason-
ing about deliberation strategies for SimpleAPL programs.
SimpleAPL is a fragment of the agent programming language
3APL designed for the implementation of cognitive agents
with beliefs, goals and plans. The logics are variants of
PDL, and allow us to prove safety and liveness properties
of SimpleAPL agent programs under different deliberation
strategies. We show how to axiomatize different deliberation
strategies for SimpleAPL programs, and, for each strategy
we consider, prove a correspondence between the operational
semantics of SimpleAPL and the models of the correspond-
ing logic. We illustrate the utility of our approach with an
example in which we show how to verify correctness proper-
ties for a simple agent program under different deliberation
strategies.

Introduction
The design and development of software agents have be-
come important and challenging topics of research. How-
ever there remains a gap between theory and practice in this
area, in particular when the design of cognitive, BDI-based
agents is concerned. For this kind of advanced software
agent, methods are needed to verify whether their imple-
mentation conforms to their specification. In this paper we
pursue our investigations in this direction in the sense that
we aim at verifying (agent) programs written in a BDI-based
agent programming language. In particular we focus here on
logical means to reason about the agent’s deliberation strat-
egy.

The deliberation strategy, also called the deliberation pro-
cess, is the core building block of the interpreters of the
agent programming languages. The deliberation strategy de-
termines which goals the agent will attend to and when, and
how the agent’s plans to achieve these goals are executed.
Even if the agent’s program is capable in principle of achiev-
ing a particular goal in a given situation, a particular delib-
eration strategy may mean that the relevant actions never get
executed, or are executed in such a way as not to achieve the
goal.

For some existing BDI-based agent programming lan-
guages (Bordini et al. 2005) the deliberation strategy forms

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

integral part of their semantics, e.g., Jason (Bordini, Hübner,
& Vieira 2005). However most agent platforms provide
customization mechanisms that allow the agent developers
to influence aspects of the deliberation strategy, for exam-
ple, 3APL (Dastani, van Riemsdijk, & Meyer 2005), 2APL
(Dastani & Meyer 2007) and Jadex (Pokahr, Braubach, &
Lamersdorf 2005). In some cases, a BDI-based agent pro-
gramming language gives the agent developer complete con-
trol of the deliberation strategy. For example, PRS (Georgeff
& Lansky 1987) allows an agent’s deliberation strategy to be
tailored to a particular problem through the use of ‘Meta-
Acts’—plans which can determine which goals or events
give rise to intentions and the order in which the currently in-
tended plans are executed. In our opinion, such control over
(aspects of) program execution and the deliberation process
in particular is extremely important in allowing the agent
developer to tailor the execution of an agent’s program to
the requirements of a particular problem, e.g., by varying
the balance between reactive and deliberative behavior, or
varying the number of goals an agent will attend to simulta-
neously.

As an agent’s behavior is determined by both the agent’s
program and the deliberation strategy used, it is important
for the agent developers to verify properties of programs in
the context of a particular deliberation strategy. Of course,
one can ignore the impact of any particular deliberation
strategy and examine the properties of an agent program that
are valid under all deliberation strategies. However, we be-
lieve that most interesting properties of agent programs, e.g.,
goal attainment, depend critically on the chosen delibera-
tion strategy, and that the correctness of agent programs can
only be examined if one is able to reason about deliberation
strategies. While there has been considerable research on
reasoning about and verification of BDI agents, e.g., (Hin-
driks & Meyer 2007; Benerecetti, Giunchiglia, & Serafini
1998; Bordini et al. 2006; Lomuscio & Raimondi 2006;
Shapiro, Lespérance, & Levesque 2002), there has been
much less work on deliberation strategies. An exception
is the work of (Mulder, Treur, & Fisher 1997) who present
a model of the execution of PRS in an executable tempo-
ral logic, MML. Agent plans are represented as temporal
formulas and deliberation strategies are represented by sets
of MML rules. The rules define the behaviour of a meta-
interpreter operating on terms which are names for temporal
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formulas. The MML model allows the direct specification
and verification (via execution in concurrent MetateM) of
agent properties. We are not aware of any published results
on the complexity of MML, however it is likely to be high.

In this paper we present a family of PDL-like logics for
reasoning about deliberation strategies; deliberation strate-
gies are expressed as axioms in the logics, and the logics are
complete and decidable. We consider deliberation strategies
in the context of a simple APL-like (Dastani et al. 2004;
Bordini et al. 2005) agent programming language, Sim-
pleAPL introduced in (Alechina et al. 2007). We sketch the
syntax of SimpleAPL, give its operational semantics, and
define various alternative deliberation strategies for Sim-
pleAPL programs which are typical of those used in BDI-
based agent programming languages. We then introduce the
syntax and semantics of the logics to reason about safety
and liveness properties of SimpleAPL programs under these
deliberation strategies. We provide sound and complete ax-
iomatizations of the logics, and prove a correspondence be-
tween the operational semantics of SimpleAPL and the mod-
els of the logics for the program deliberation strategies we
consider. Finally, we show how to translate agent programs
written in SimpleAPL into logical expressions, and, using a
simple example program, show how the agent’s deliberation
strategy can determine whether a given program will achieve
a particular goal.

In contrast to previous work, e.g., (Alechina et al. 2007)
where two basic deliberation strategies, interleaved and non-
interleaved, were ‘hard-coded’ into the translation of an
agent program, the approach presented here uses a single
fixed translation of the agent program together with an ax-
iomatization of the agent’s deliberation strategy. As an ex-
ample, we axiomatize four deliberation strategies. Although
we focus on a particular agent programming language and
a small number of deliberation strategies, our methodology
is general enough to accommodate any deliberation strategy
that can be formulated in terms of distinct phases of exe-
cution and the kinds of operations that can be performed in
each phase. As such, we believe it represents a significant
advance on previous work, both in the ease with which meta
reasoning strategies can be expressed and in more clearly
characterising their properties.

SimpleAPL
SimpleAPL is a fragment of the agent-oriented program-
ming language 3APL (Dastani et al. 2004; Bordini et al.
2005). SimpleAPL contains the core features of 3APL, and
allows the implementation of agents with beliefs, goals, ac-
tions, plans, and planning rules. The main features of 3APL
we have omitted are a first order language for beliefs and
goals, belief and goal test actions and some basic actions
such as actions for adopting/dropping goals and beliefs. We
have omitted these features in order to simplify the presen-
tation; they do not present a significant technical challenge
for our approach. 3APL assumes finite domains and can be
reduced to a propositional language by considering all pos-
sible substitutions. Belief and goal test actions were consid-
ered in (Alechina et al. 2007) and the omission of actions
to adopt/drop subgoals, while an important practical issue,

does not result in a reduction in expressive power. Sim-
pleAPL retains the declarative goals of 3APL and the agent
chooses which plan to adopt to achieve a goal using planning
goal rules (see below).

In SimpleAPL, an agent’s state is specified in terms of
its beliefs and goals and its program by a set of plans. The
beliefs of an agent represent the agent’s information about its
environment, while its goals represent situations the agent
wants to realize (not necessary all at once). For simplicity,
we only allow the agent’s beliefs and goals to be literals. For
example, an agent might believe that it is at home and that it
is raining:

Beliefs: home, raining

and its goals may be to have breakfast and go to work:

Goals: breakfast, work

The beliefs and goals of an agent are related to each other:
if an agent believes p, then it will not pursue p as a goal. In
other words, in each state, the set of agent’s beliefs and the
set of goals are disjoint.

Belief update actions change the beliefs of the agent. A
belief update action is specified in terms of its pre- and post-
conditions (which are sets of literals), and can be executed if
the belief literals in one of its preconditions are in the agent’s
current set of beliefs. Executing the action adds the belief lit-
erals in the action’s postcondition to the agent’s beliefs. For
example, the following belief update specification

BeliefUpdates:
{home} walk work {-home, work}

can be read as “if the agent is at home it can walk to work,
after which it is at work”. Belief update actions maintain
consistency of the agent’s beliefs, i.e., if p is in the belief
set and its negation−p is added as a postcondition of an ac-
tion, p is replaced by−p. Goals which are achieved by the
postcondition of an action are dropped. For example, if the
agent is at home and has a goal of being at work, executing
a walk work action will cause it to drop the goal. For sim-
plicity, we assume that the agent’s beliefs about its environ-
ment are always correct and its actions in the environment
are always successful. This assumption can be relaxed in a
straightforward way by including the state of the environ-
ment in the models.

In order to achieve its goals, an agent adopts plans. A plan
consists of belief update actions composed by sequence,
conditional choice and conditional iteration operators. The
sequence operator ‘;’ takes two plans as arguments and in-
dicates that the first plan should be performed before the sec-
ond plan. The conditional choice and conditional iteration
operators allow branching and looping and generate plans
of the form ‘if φ then π1 else π2’ and ‘while φ
do π’ respectively. The condition φ is evaluated with re-
spect to the agent’s current beliefs. For example, the plan

π = if raining then take umbrella
else take sunglasses ;
walk work

causes the agent to take an umbrella if it is raining and sun-
glasses if it is not, and then walk to work.
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To select appropriate plans, the agent uses planning goal
rules. A planning goal rule consists of three parts: an (op-
tional) goal query specifying the goal(s) the plan achieves, a
belief query characterizing situation(s) in which it could be
a good idea to adopt the plan, and the body of the rule. Fir-
ing a planning goal rule causes the agent to adopt the plan
which forms the body of the rule. For example, the planning
goal rule:

work <- home | π

states that “if the agent’s goal is to be at work and it is at
home, then it will adopt the plan π”. For simplicity, we as-
sume that agents do not have initial plans, i.e., plans can only
be generated during the agent’s execution by planning goal
rules.

The syntax of SimpleAPL in EBNF notation can be found
in (Alechina et al. 2007).

Operational Semantics
We define the formal semantics of SimpleAPL in terms of
a transition system. Each transition corresponds to a single
execution step and takes the system from one configuration
(defined as the agent’s current beliefs, goals and plans) to
another. We assume that the execution of basic actions and
the application of planning goal rules are atomic operations.

Definition 1 The configuration of an agent is defined as
〈σ, γ,Π〉 where σ is a set of literals representing the agent’s
beliefs, γ is a set of literals representing the agent’s goals,
and Π is a set of plan entries ri : π representing the agent’s
current active plans, where π is a plan (possibly partially
executed) and ri the planning goal rule which caused the
agent to adopt this plan.

An agent’s initial beliefs and goals are specified by its pro-
gram, and Π is initially empty. Executing the agent’s pro-
gram modifies its initial configuration in accordance with
the transition rules presented below.

Each belief update action α has a set of preconditions
prec1(α), . . . , preck(α). Each preci(α) is a finite set
of belief literals, and any two preconditions for an action
α, preci(α) and precj(α) (i �= j), are mutually exclu-
sive (both sets of propositional variables cannot be satisfied
simultaneously). For each preci(α) there is a unique cor-
responding postcondition posti(α), which is also a finite
set of literals. A belief update action α can be executed if
precj(α) ⊆ σ for some precondition j, and the effect of
updating σ with α in the resulting configuration is given by
Tj(α, σ) = σ ∪ postj(α)\ ({p :−p ∈ postj(α)} ∪ {−p :
p ∈ postj(α)}), i.e., executing the belief update action α
adds the literals in its postcondition to the agent’s beliefs and
removes any existing beliefs which are inconsistent with the
postcondition.

The successful execution of a belief update action α in a
configuration where the plan ri : α;π is in the set of the
agent’s current plans is then:

(1a)
ri : α; π ∈ Π precj(α) ⊆ σ Tj(α, σ) = σ′

〈σ, γ, Π〉 −→ 〈σ′, γ′, (Π \ {ri : α; π}) ∪ {ri : π}〉
where γ′ = γ \ {φ ∈ γ | φ ∈ σ′} (executing a belief

update action causes the agent to drop any goals it believes

to be achieved as a result of the update). We stipulate that
Π ∪ {ri : } = Π.

If an agent has a plan ri : α;π but none of the precon-
ditions of α hold, then attempting to execute α removes the
plan from the plan base and does not change the agent’s be-
liefs and goals:

(1b)
ri : α; π ∈ Π ∀j precj(α) 	⊆ σ

〈σ, γ, Π〉 −→ 〈σ, γ, Π \ {ri : α; π}〉
Composite plans. The following transition rules specify the
effect of executing the conditional choice and conditional
iteration operators, respectively.

(2a)
ri : (if φ then π1 else π2); π ∈ Π σ |= φ

〈σ, γ, Π〉 −→ 〈σ, γ, Π′ ∪ {ri : π1; π}〉

(2b)
ri : (if φ then π1 else π2); π ∈ Π σ 	|= φ

〈σ, γ, Π〉 −→ 〈σ, γ, Π′ ∪ {ri : π2; π}〉
where Π′ = Π \ {ri : (if φ then π1 else π2);π}.

(3a)
ri : (while φ do π1); π ∈ Π σ |= φ

〈σ, γ, Π〉 −→ 〈σ, γ, Π′ ∪ {ri : (π1; while φ do π1); π}〉

(3b)
ri : (while φ do π1); π ∈ Π σ 	|= φ

〈σ, γ, Π〉 −→ 〈σ, γ, Π′ ∪ {ri : π}〉
where Π′ = Π \ {ri : (while φ do π1);π}. Note that the

sequence operator is specified implicitly by the other rules
which specify how to execute the first operation in the se-
quence.

A planning goal rule ri = κi ← βi|πi can be applied
if κi is entailed by the agent’s goals and βi is entailed by
the agent’s beliefs, and provided that the plan base does not
already contain a (partially executed) plan added by ri. Ap-
plying the rule ri adds πi to the agent’s plans.

(4)
γ |= κi σ |= βi ri : π 	∈ Π

〈σ, γ, Π〉 −→ 〈σ, γ, Π ∪ {ri : πi}〉

Specifying deliberation strategies
The transition rules presented above define the most gen-
eral model of agent execution in which any atomic opera-
tion can be interleaved with any other. More precisely, this
fully-interleaved deliberation strategy (which we denote by
(i)) can be defined as: “either apply a planning goal rule,
or execute the first action in any of the current plans; re-
peat”. Particular deliberation strategies are restrictions of
this fully-interleaved deliberation which prohibit certain ex-
ecution paths. For example, a simple non-interleaved de-
liberation strategy which executes a single plan to comple-
tion before choosing another plan, i.e., “when in a con-
figuration with no plan, choose a planning goal rule non-
deterministically, apply it, execute the resulting plan; re-
peat”.

Many deliberation strategies are possible and we do not
have space to consider them all in detail. Instead we char-
acterize some typical deliberation strategies in terms of the
execution paths they admit. We focus on the non-interleaved
strategy (which we denote by (ni)) and two simple ‘alternat-
ing’ strategies: one which first applies a planning goal rule
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and then executes a single basic action of one of the agent’s
current plans (which we denote (as)); and another which first
applies a planning goal rule and then executes a single ba-
sic action from each of the agent’s current plans (which we
denote (am)). These strategies were chosen as representa-
tive of deliberation strategies found in the literature and in
current implementations of BDI-based agent programming
languages. However none of these strategies (or any other
single strategy) is clearly “best” for all agent task environ-
ments. For example, the (ni) strategy is appropriate in situ-
ations where a sequence of actions must be executed ‘atom-
ically’ in order to ensure the success of a plan. However
it means that the agent is unable to respond to new goals
until the plan for the current goal has been executed. Con-
versely, the (am) strategy allows an agent to pursue multiple
goals at the same time, e.g., allowing an agent to respond to
an urgent, short-duration task while engaged in a long-term
task. However it can increase the risk that actions in differ-
ent plans will interfere with each other. It is therefore impor-
tant that the agent developer has the freedom to choose the
strategy which is most appropriate to a particular problem.

To define the deliberation strategies, we assume that the
following control actions are available:

choose rule(Λ, condition) returns a planning
goal rule ri from Λ which satisfies condition; if no
rule satisfies condition, returns an arbitrary rule from
Λ

apply(Π, ri) if the conditions of transition rule (4) are
satisfied for planning goal rule ri, returns Π ∪ {ri : πi},
where πi is the plan produced by ri; otherwise returns Π

choose plan(Π, condition) returns a plan πi

from Π which satisfies condition; if no plan satisfies
condition, returns an arbitrary plan from Π

next(Π, πi) if the appropriate conditions of transition
rules (1a)–(3b) are satisfied, executes the next action in
πi ∈ Π (and any preceding if and while tests), updates
the configuration accordingly and returns the updated plan
base; otherwise returns Π \ {πi}.
The non-interleaved strategy (ni) can then be defined as:

repeat
ri = choose rule(Λ, applicable)
Π = apply(Π, ri)
πi = choose plan(Π, true)
while (Π != {})

Π = next(Π, πi)

The applicable condition of the choose rule control ac-
tion is true for a planning goal rule ri if the belief and goal
conditions of ri are true in the current configuration and no
plan associated with ri is in the plan base (i.e., it mirrors the
conditions of transition rule (4)), and has the effect of caus-
ing the agent to adopt plans which are relevant to its current
beliefs and goals.

The alternating (single action) strategy (as) can be de-
fined as:

repeat
ri = choose rule(Λ, applicable)
Π = apply(Π, ri)

πi = choose plan(Π, true)
Π = next(Π, πi)

and the alternating (multi-action) (am) as:

repeat
ri = choose rule(Λ, applicable)
Π = apply(Π, ri)
foreach πi in Π

Π = next(Π, πi)

Other strategies can be defined in a similar way. For exam-
ple, by changing the true condition of the choose plan
control action to be executable, we can delay discarding
plans which are currently not executable (i.e., where the next
action α in the plan would fail if executed in the current con-
text) in the hope that an action in an executable plan will
make the preconditions of α true.

Logic
In this section we introduce a series of logics to describe
transition systems corresponding to the (i), (ni), (as) and
(am) deliberation strategies.

The language of our logic is based on PDL (see, e.g.,
(Harel, Kozen, & Tiuryn 2000)). Standard PDL is a logic to
reason about programs. Its language is defined with respect
to a set of propositional variables and a set of atomic pro-
grams. Complex program expressions are built from atomic
programs, tests on formulas ‘?’ (φ? is executable in a state
if φ is true in that state), sequential composition ‘;’ (ρ1; ρ2

means program ρ1 followed by ρ2), union ‘∪’ (ρ1∪ρ2 means
executing either ρ1 or ρ2), and finite iteration ‘∗’ (ρ∗ means
executing ρ 0 or finitely many times). For each program
expression ρ, the language contains a modality 〈ρ〉. PDL
formulas are defined as follows: p | ¬φ | φ1 ∧ φ2 | 〈ρ〉φ
and interpreted on labelled transition systems, where labels
are atomic programs. A formula 〈ρ〉φ is true in a state s if
there exists a state reachable from s by a path described by ρ,
which satisfies φ; intuitively, if there is a possible execution
of program ρ which results in a state satisfying φ.

We extend the standard language of PDL with belief and
goal operators, and an interleaving program constructor ‖
(Abrahamson 1980), where ρ1 ‖ ρ2 means interleave exe-
cuting actions of ρ1 with executing actions of ρ2.1 We de-
fine the language of our logic relative to an agent program
(set of rules) Λ with a given set of plans Π(Λ) and pre- and
post conditions for belief updates C(Λ).

Let Λ = {r1, . . . , rn} be the set of planning goal rules,
each of which is of the form ri = κi ← βi | πi. Let
Π(Λ) = {π1, . . . πn} be the set of plans occurring in the
rules, and Ac(Λ) the finite set of belief update actions oc-
curring in those plans. Let P be the set of positive belief
and goal literals occurring in Λ. For each belief update
α, we have a set of pre- and postcondition pairs C(α) =
{(prec1(α), post1(α)),. . . , (preck(α), postk(α))}. We
denote the set of all pre- and postconditions for all belief up-
dates in Λ by C(Λ), that is, C(Λ) = {C(α) : α ∈ Ac(Λ)}.

1Note that every formula with the interleaving operator can be
rewritten without the interleaving operator, however the resulting
formula may be doubly exponentially larger (Abrahamson 1980).
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We represent key phases in the deliberation cycle by
propositional flags, and then write axioms which capture the
possible transitions between phases. For the (i), (ni), (as)
and (am) strategies we consider, the flags are: starti, which
indicates that plan πi has started execution; stepi, which
indicates that the next step (basic action) of πi has been ex-
ecuted; and faili, which indicates that πi has failed.

The set of atomic propositions of our logic consists of:

• a set of propositional variables P

• a set of boolean flags Pc = {starti, faili, stepi : ri ∈
Λ};

The set of ‘atomic programs’ of our logic consists of:

• for every rule ri ∈ Λ, an atomic action δri for apply ri
• a set of atomic actions Acind(Λ) = {αi | α ∈ Ac(Λ) and
α appears in πi ∈ Π(Λ)} (i.e. we introduce a new atomic
action αi for every plan πi in which the belief update ac-
tion α appears)

• for each plan πi, an atomic action ei. This action is in-
troduced for technical reasons, and will be used in our
translation of the agent program Λ as a PDL expression.
We append it after each plan to reset the control flags after
the plan has finished executing.

The language L is the language of PDL with interleaving,
extended with a belief operator B and a goal operator G. A
formula of L is defined as follows: if p ∈ P , then B(−)p and
G(−)p are formulas; if p ∈ Pc, then p is a formula; if ρ is a
program expression and φ a formula, then 〈ρ〉φ is a formula;
and L is closed under the usual boolean connectives. We
define [ρ]φ as ¬〈ρ〉¬φ and use the abbreviation 〈[ρ]〉φ for
[ρ]φ ∧ 〈ρ〉φ.

The beliefs, goals and plans of agent programs are trans-
lated into PDL expressions using translation functions fb, fg

and fp as follows:

• translation of belief formulas: let p ∈ P and φ, ψ be belief
query expressions of SimpleAPL (boolean combinations
of literals)

– fb((−)p) = B(−)p
– fb(φ and ψ) = fb(φ) ∧ fb(ψ)
– fb(φ or ψ) = fb(φ) ∨ fb(ψ)
• translation of goal formulas: analogous to beliefs, with
φ, ψ replaced by goal query expressions, B replaced by
G and fb replaced by fg

• translation of plan expressions: let αi be a belief update
action, φ and ψ be belief and goal query expressions, and
π, π1, π2 be plan expressions of SimpleAPL

– fp(αi) = αi

– fp(π1;π2) = fp(π1); fp(π2)
– fp(if φ then π1 else π2) = (fb(φ)?; fp(π1)) ∪

(¬fb(φ)?; fp(π2))
– fp(while φ do π) = (fb(φ)?; fp(π))∗;¬fb(φ)?
Different deliberation strategies require different condi-

tions on models. We now state these conditions and provide
complete axiomatizations for the corresponding classes of
models.

Conditions on models
A model M = (W, {Rαi : αi ∈ Acind(Λ)}, {Rδri

: ri ∈
Λ}, Rei , V ) where

• W is a non-empty set of states

• V = (Vb, Vg, Vc) is the evaluation function consisting of
belief and goal valuation functions Vb and Vg and control
valuation function Vc such that for every s ∈ W ,
Vb(s) = {(−)p1, . . . , (−)pm : pi ∈ P} is a set of agent’s
beliefs in s (note that Vb assigns literals rather than propo-
sitional variables)
Vg(s) = {(−)u1, . . . , (−)un : ui ∈ P} is a set of agent’s
goals in s
Vc(s) ⊆ Pc is a set of control variables true in s

• Rαi , Rδri
, Rei are binary relations on W ; Rαi corre-

spond to belief updates, Rδri
to firing a rule, and Rei

corresponding to executing the ei action.

The conditions on Rαi , Rδri
and Rei depend on the delib-

eration strategy and are defined below.
Given the relations corresponding to basic actions in M ,

we can define sets of paths in the model corresponding to
any PDL program expression ρ in M . A set of paths τ(ρ) ⊆
(W ×W )∗ is defined inductively:

• τ(αi) = {(s, s′) : Rαi(s, s′)}
• τ(φ?) = {(s, s) : M, s |= φ}
• τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)}
• τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦

is concatenation of paths.

• τ(ρ∗) is the set of all paths consisting of zero or finitely
many concatenations of paths in τ(ρ)

• τ(ρ1 ‖ ρ2) is the set of all paths obtained by interleaving
atomic actions and tests from τ(ρ1) and τ(ρ2).

In order to be able to define all possible interleavings of
paths, we allow ‘illegal paths’ of the form (s0, s1), (s2, s3),
where s1 �= s2; in other words, concatenation z1 ◦ z2 is de-
fined for paths z1 and z2 even when the last state of z1 is not
the same as the first state of z2. To see why this is necessary,
consider the following example. A path (s0, s1),(s1, s2),
(s2, s3) where (s0, s1) ∈ τ(α1), (s1, s2) ∈ τ(α3) and
(s2, s3) ∈ τ(α2) should be in τ(α1;α2 ‖α3) but this means
that (s0, s1),(s2, s3) should be in τ(α1;α2). We will call
paths without such ‘jumps’ legal paths. Only legal paths are
used in evaluating PDL modalities (see the truth definition
below).

The relation |= of a formula being true in a state of a
model is defined inductively as follows:

• M, s |= B(−)p iff (−)p ∈ Vb(s), where p ∈ Pb

• M, s |= G(−)p iff (−)p ∈ Vg(s), where p ∈ Pg

• M, s |= p iff p ∈ Vc(s), where p ∈ Pc

• M, s |= ¬φ iff M, s �|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= 〈ρ〉φ iff there is a legal path in τ(ρ) starting in s
which ends in a state s′ such that M, s′ |= φ.
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We use the starti flag to signal that plan πi has started
executing; it is set to true when the planning goal rule ri is
fired and prevents repeated firing of ri. If a belief update
action αi of plan πi cannot be executed, the faili flag is set.
Finally, the special action ei, which is appended to the end
of plan πi in our translation of the agent program, resets the
starti and faili flags to false.

Models for all deliberation strategies satisfy the following
condition, for all s ∈ W :

C1 Vb(s) ∩ Vg(s) = ∅ and Vb(s) is consistent, i.e., for no
p ∈ Pb both p and−p ∈ Vb(s).
(Beliefs and goals are disjoint and beliefs are consistent.)

C2 If faili ∈ Vc(s), then for every action αi of plan πi,
Rαi(s, s) and for no s′ �= s, Rαi(s, s′).
(If the faili flag has been set, this causes all subsequent
actions in πi to be ‘consumed’ without changing the state,
mimicking the deletion of the remaining steps of πi.)

C3 Rei(s, s′) iff Vb(s′) = Vb(s), Vg(s′) = Vg(s) and
Vc(s′) = Vc(s) \ {starti, faili}.
(ei sets starti and faili to false.)

In addition, different strategies require different conditions
on applicability of actions and rules.

Conditions on models for (i)
Models corresponding to the (i) strategy in addition conform
to the following constraints.

C4 If ¬starti, fg(κi), fb(βi) are true in s, then Rδri
(s, s′)

iff Vb(s′) = Vb(s), Vg(s′) = Vg(s), and Vc(s′) = Vc(s)∪
{starti}.
(ri can be fired if, and only if, πi has not started and the
belief and goal conditions of ri are true.)

C5 If fb(precj(α)) and ¬faili are true in s, then
Rαi(s, s′) iff Vb(s′) = Tj(α, Vb(s)), Vg(s′) = Vg(s) \
Vb(s′) and Vc(s′) = Vc(s).
(Corresponds to transition (1a).)

C6 If ∨jfb(precj(α)) and faili are false in s, then
Rαi(s, s

′) iff Vb(s′) = Vb(s) and Vg(s′) = Vg(s) and
Vc(s′) = Vc(s) ∪ {faili}.
(Corresponds to transition (1b): if an action of πi is not
executable (i.e., its preconditions don’t hold) transit to a
state where faili is true.)

Let the class of transition systems defined above be denoted
M(Λ, i).

Axiomatization for (i)
CL classical propositional logic

PDL axioms of PDL (see, e.g., (Harel, Kozen, & Tiuryn
2000)) excluding interleaving since it is expressible

A1 ¬(Bp ∧B−p) (corresponds to C1)

A2 B(−)p→ ¬G(−)p (corresponds to C1)

A3 faili ∧ φ → 〈[αi]〉(faili ∧ φ) where φ is any formula
(corresponds to C2)

A4 φ→ 〈[ei]〉(φ∧¬starti ∧¬faili) for any formula φ not
containing starti and faili (corresponds to C3).

A5 ¬starti ∧ fg(κi) ∧ fb(βi) ∧ φ → 〈[δri]〉(starti ∧ φ),
where φ does not contain starti (corresponds to C4; φ
encodes the frame condition that the state does not change
apart from setting the starti flag to true)

A6 starti ∨ ¬(fg(κi) ∧ fb(βi)) → [δri]⊥ (corresponds to
C4 ‘only if’)

A7 fb(precj(α)) ∧ ¬faili ∧ φ → 〈[αi]〉(fb(postj(α)) ∧
φ), where φ does not contain variables from postj(α)
(corresponds to C5)

A8
∧

j ¬fb(precj(α)) ∧ ¬faili ∧ φ → 〈[αi]〉(faili ∧ φ)
where φ does not contain faili (corresponds to C6)

Let us call the axiom system above Ax(Λ, i).
Theorem 1 Ax(Λ, i) is sound and (weakly) complete for
the class of models M(Λ, i).

Conditions on models for (ni)
Models corresponding to the (ni) strategy satisfy conditions
C1-C3, C5 and C6 above, and

C7 If ∧j¬startj , fg(κi) and fb(βi) are true in s, then
Rδri

(s, s′) iff Vb(s′) = Vb(s), Vg(s′) = Vg(s) and
Vc(s′) = Vc(s) ∪ {starti}.
(This strengthens C4 to require that no other planning rule
has been fired (not just ri) to ensure that the agent has only
one plan at a time.)

Let the class of transition systems defined above be denoted
M(Λ,ni).

Axiomatization for (ni)
CL, PDL, A1, A2, A3, A4, A7, A8 as before;

A9
∧

j ¬startj∧fg(κi)∧fb(βi)∧φ→ 〈[δri]〉(starti∧φ),
where φ does not contain starti

A10
∨

j startj ∨ ¬(fg(κi) ∧ fb(βi))→ [δri]⊥.

A9 and A10 replace A5 and A6 and correspond to C7. Let
us call the axiom system above Ax(Λ,ni).

Theorem 2 Ax(Λ,ni) is sound and (weakly) complete for
the class of models M(Λ,ni).

Conditions on models for (as)
We use boolean flags stepi to say that a single step of plan
πi has been executed; when this flag is true for some i, all
actions are disabled and we must apply a planning goal rule.
Rule application sets all stepi flags to false, re-enabling ac-
tion execution and disabling rule application. If some stepi

is true, but no rules are applicable, we continue to execute
actions; conversely, if all stepi are false but all current plans
have failed, we re-enable rule application.

To make the conditions more readable, we introduce sev-
eral abbreviations:

• execution phase: x =
∧

ri∈Λ ¬stepi

• plan base is empty:
noplans =

∧
ri∈Λ(starti → faili)
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• no rules are applicable:
norules =

∧
ri∈Λ(starti ∨ ¬(fg(κi) ∧ fb(βi)))

C8 If ¬starti, fg(κi), fb(βi) and ¬x ∨ noplans are true
in s, then Rδri

(s, s′) iff Vb(s′) = Vb(s), Vg(s′) = Vg(s)
and Vc(s′) = Vc(s) ∪ {starti} ∪ {¬stepj : rj ∈ Λ}.
(Corresponds to transition (4) for the (as) strategy: a rule
is applicable if the corresponding plan is not in the plan
base, the belief and goal conditions of the rule hold, and
either rule execution is enabled or all the plans in the plan
base have failed.)

C9 If fb(precj(α)), ¬faili and x ∨ norules are true in
s, then Rαi(s, s′) iff Vb(s′) = Tj(α, Vb(s)), Vg(s′) =
Vg(s) \ Vb(s′) and Vc(s′) = Vc(s) ∪ {stepi}.
(Corresponds to transition (1a) for (as): an action can be
executed if one of its preconditions holds and either action
execution is enabled or no rules are applicable.)

C10 If ∨jfb(precj(α)) and faili are false in s, and x ∨
norules is true, then Rαi(s, s′) iff Vb(s′) = Vb(s) and
Vg(s′) = Vg(s) and Vc(s′) = Vc(s) ∪ {faili, stepi}.
(Corresponds to transition (1b): if an action is chosen to
be executed but none of its preconditions hold, the plan is
removed and rule execution is enabled.)

Let the class of transition systems defined above be denoted
M(Λ, as).

Axiomatisation for (as)
CL, PDL, A1, A2, A3, A4, A6 as before;

A11 ¬starti ∧ fg(κi) ∧ fb(βi) ∧ (¬x ∨ noplans)∧ φ→
〈[δri]〉(starti ∧

∧
j ¬stepj ∧φ) where φ does not contain

starti and stepj for any j.

A12 fp(precj(α)) ∧ ¬faili ∧ (x ∨ norules) ∧ φ →
〈[αi]〉(stepi ∧ fp(postj(α))∧ φ), where φ does not con-
tain variables from postj(α) and stepi

A13
∧

j ¬fp(precj(α))∧¬faili∧ (x ∨ norules)∧φ→
〈[αi]〉(faili ∧ stepi ∧ φ) where φ does not contain faili
and stepi

A11–A12 correspond to the conditions C8–C10, respec-
tively.

Let us call the axiom system above Ax(Λ, as).

Theorem 3 Ax(Λ, as) is sound and (weakly) complete for
the class of models M(Λ, as).

Conditions on models for (am)
Below we use the following abbreviation:

• planning phase: p =
∧

ri∈Λ(starti → stepi ∨ faili)
Models corresponding to the (am) strategy satisfy C1-C3

above and

C11 As C8 but with ¬x ∨ noplans replaced with p.
(A rule can be fired if the corresponding plan has not
started, the belief and goal conditions of the rule hold,
and all current plans have performed a step or failed.)

C12 As C9 but with x ∨ norules replaced with ¬stepi.
(Corresponds to transition (1a) with the additional re-
quirement that πi has not yet executed the next step; exe-
cuting αi sets stepi to true.)

C13 As C9 but with x ∨ norules replaced with stepi ∧
norules and the condition on Vc(s′) changed to Vc(s′) =
Vc(s) \ {stepj : j �= i}.
(Corresponds to transition (1a) with the additional re-
quirement that no planning rules are applicable; in such
a case every current plan gets to execute one more step.)

C14 As C10 but with x ∨ norules replaced with ¬stepi.
(Corresponds to transition (1b) for the case when πi has
not performed a step.)

C15 As C10 but with x ∨ norules replaced with stepi ∧
norules and the condition for Vc(s′) changed to
Vc(s′) = (Vc(s) ∪ {faili}) \ {stepj : j �= i}.
(Corresponds to transition (1b) when πi has performed a
step, but no rules are applicable.)

Let the class of transition systems defined above be denoted
M(Λ, am).

Axiomatization for (am)
CL, PDL, A1, A2, A3, A4, A6 as before;

A14 ¬starti ∧ Gκi ∧ Bβi ∧ p ∧ φ → 〈[δri]〉(starti ∧∧
j ¬stepj∧φ) where φ does not contain starti and stepj

for any j.

A15 fp(precj(α))∧¬faili∧¬stepi∧φ→ 〈[αi]〉(stepi∧
fp(postj(α)) ∧ φ), where φ does not contain variables
from postj(α) and stepi

A16 fp(precj(α)) ∧ ¬faili ∧ stepi ∧ norules∧ φ→
〈[αi]〉(fp(postj(α)) ∧∧

j �=i ¬stepj ∧ φ), where φ does
not contain variables from postj(α) and stepj for all j �=
i

A17
∧

j ¬fp(precj(α)) ∧ ¬faili ∧ ¬stepi ∧ φ →
〈[αi]〉(faili ∧ stepi ∧ φ) where φ does not contain faili
and stepi

A18
∧

j ¬fp(precj(α))∧¬faili∧stepi∧norules∧φ→
〈[αi]〉(faili∧

∧
j �=i ¬stepj∧φ) where φ does not contain

faili and stepj for all j �= i

A14–A18 correspond to C11–C15, respectively. Let us call
the axiom system above Ax(Λ, am).

Theorem 4 Ax(Λ, am) is sound and (weakly) complete
for the class of models M(Λ, am).
Proof sketch for Theorems 1 - 4.

The proof of soundness is by straightforward induction
on the length of a derivation. All axioms are clearly sound
(since they closely correspond to conditions on models), and
the inference rules are standard.

The proof of completeness is standard as far as the PDL
part is concerned, see for example (Blackburn, de Rijke, &
Venema 2001). Take a consistent formula φ; we are going
to build a finite satisfying model M for φ. We take a Fisher-
Ladner closure of the set of subformulas of φ; we add an
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extra condition that if an action αi occurs in φ, then the clo-
sure CL(φ) should contain all pre- and postconditions for
αi. The states of the satisfying model M will be all maxi-
mal consistent subsets ofCL(φ). LetA, B be such maximal
consistent sets, and a be a basic action αi, δri or ei. Then
Ra(A,B) holds if and only if the conjunction of formulas in
A, Â, is consistent with 〈a〉B̂ (conjunction of formulas in B
preceded by 〈a〉). Similarly for accessibility relations corre-
sponding to complex programs ρ: Rρ(A,B) iff Â∧ 〈ρ〉B̂ is
consistent. By the standard PDL proof, Rρ so defined does
in fact correspond to the relation in a regular model, for ex-
ample Rρ1∪ρ2 = Rρ1 ∪Rρ2 , similarly for ; and ∗.

We define the assignments Vb, Vg and Vc in an obvious
way:

• (−)p ∈ Vb(A) iff B(−)p ∈ A, where B(−)p ∈ CL(φ);

• (−)p ∈ Vg(A) iff G(−)p ∈ A, where G(−)p ∈ CL(φ);

• p ∈ Vc(A) iff p ∈ A.

The truth lemma follows easily: for every ψ ∈ CL(φ),

ψ ∈ A ⇔ M,A |= ψ

Since our formula φ is consistent, it belongs to at least one
maximal consistent set A, so it is satisfied in some state in
M .

Now we have to show that the model we constructed sat-
isfies conditions on M(Λ, (x)) for x ∈ {i, ni, as, am}.
Here we show the common conditions:

C1 Clearly, since the states are consistent with respect to
the axiom schemas A1 and A2, and by the truth lemma,
beliefs are consistent, and beliefs and goals are disjoint.

C2 Let A be a maximal consistent set containing faili. By
axiom A3, if faili∧Â is consistent, then faili∧Â∧〈αi〉Â
is consistent, so Rαi(A,A) holds. Observe that for any
B �= A, Rαi(A,B) does not hold because by A3 again,
faili ∧ Â → [αi]Â so all the states accessible by Rαi

should satisfy all the formulas in A. Since the states are
maximal, this means that the only accessible state is A.

C3 Let Rei(A,B). Let us denote by Ab (Bb) the set of all
formulas in A (B) starting with the belief operator. Since
Âb does not contain starti and faili, by axiom A4, Âb →
[ei]Âb, so since Â ∧ 〈ei〉B̂ is consistent, so is Âb ∧ B̂,
therefore Bb = Ab and Vb(B) = Vb(A). Similarly
for the goal formulas and control flags other than starti
and faili. Finally, since Â → [ei](¬starti ∧ ¬faili),
Vc(B) = Vc(A) \ {starti, faili}. Similarly, using the
〈ei〉 version of A4 we can show that for any B which dif-
fers from A at most in its assignment to starti and faili,
Rei(A,B) holds.

For each of the deliberation strategies, there is a similar close
correspondence between conditions on models and axioms.
�

Verifying agent programs
Our aim is to verify properties of the agent such as ‘in all
states (or in some state) reachable by a path corresponding

to the agent’s execution, property φ holds’. In this section
we show how to translate the agent’s program into an expres-
sion of L which does not depend on the agent’s deliberation
strategy but which describes exactly the paths corresponding
to the agent’s execution under a given deliberation strategy
in the models for this strategy.

The basic building blocks of our translation are expres-
sions of the form δri; fp(πi); ei which correspond to fir-
ing a rule, executing the corresponding plan, and resetting
the boolean flags for this plan. Before the agent fires the
rule ri again, it has to finish executing the plan (or the plan
has to fail). The agent may also interleave this plan execu-
tion with firing other rules and executing the corresponding
plans. It may also be that several consecutive executions of
δri; fp(πi); ei, that is (δri; fp(πi); ei)+, may be interleaved
with several consecutive executions of δrj ; fp(πj); ej , that
is, (δrj ; fp(πj); ej)+. Note that the agent does not have to
and probably will not be able to execute all of its rules and
plans.

This gives rise to the following translation of the agent
program:

ξ(Λ) =
⋃

Λ′⊆Λ,Λ′ �=∅
‖ri∈Λ′ (δri; fp(πi); ei)+

that is, the interleaving of one or more repetitions of some
subset of the agent’s plans.

We are interested in safety and liveness properties of agent
programs, namely properties of the form φ0 → [ξ(Λ)]φ and
φ0 → 〈ξ(Λ)〉φ where φ0 is the description of the initial
state and φ is the property of interest (such as achievement
of a goal). To prove properties of the agent program un-
der a particular deliberation strategy we need to show that
the property is derivable from the corresponding axioms.
For example, to show that an agent with program Λ, ini-
tial belief p and goal q is guaranteed to achieve its goal
under the interleaved deliberation strategy, we need to de-
rive Bp ∧ Gq ∧ init → [ξ(Λ)]Bq from Ax(Λ, i) (where
init =

∧
ri∈Λ(¬starti ∧ ¬faili ∧ ¬stepi) describes the

initial configuration).
To prove such properties, we must ensure that there is a

correspondence between paths in the operational semantics
plus a deliberation strategy and paths in the PDL models
satisfying the axioms for this strategy. If a path exists in the
operational semantics, then there is a corresponding path in
the PDL model. Note that the converse is not true; for ex-
ample, in the PDL model from any state there is a transition
by a belief update action, and in the operational semantics
this only holds if the belief update is the first action of some
plan which is in the plan base in that state. However, we
can prove that if a there is a path in the PDL model which is
described by ξ(Λ), then there is a corresponding path in the
operational semantics.

Before we state the theorems precisely, we need to intro-
duce some definitions. For each deliberation strategy, we de-
fine what it means for configurations of an agent and states in
the models of the logic to correspond to each other. First we
define this correspondence for the (i) deliberation strategy.
Given a configuration c = 〈σ, γ,Π = {r1 : π′

1, . . . , rn :
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π′
n}〉, a state s is in the correspondence relation ∼(i) to c,
s ∼(i) c, if:

• Vb(s) = σ, Vg(s) = γ (beliefs and goals are the same in
c and s),

• starti ∈ Vc(s) iff ri : π ∈ Π (starti means that a plan
has been added to the plan base by ri)

• faili �∈ Vc(s) for any ri ∈ Λ (only the states where faili
is false for all plans correspond to ‘real’ configurations).

By a path in an operational semantics transition system
S, we will mean a sequence of configurations c1, label1,
c2, label2, . . . , cm where cj+1 is obtained from cj by one of
the transition rules (1a)-(4). For convenience, we label each
transition by the corresponding operation; a (1a) transition
executing an update action α by ‘execute α in πi’, a (1b)
transition by ‘fail α in πi’, a (2a) transition by ‘test if φ in
πi’, a (2b) transition by ‘test if ¬φ in πi’, similarly for (3a)
and (3b), and a (4) transition of firing a rule ri by ‘fire ri’.
We claim that if there is a path c = c1, . . . , cn = c′ in S
with a certain sequence of labels, then there is a correspond-
ing path s = s1, . . . , sk = s′ in M such that s ∼(i) c and
s′ ∼(i) c

′. It remains to define what we mean by a ‘cor-
responding path’. For each single step cj , labelj, cj+1 on a
path in S, the corresponding path in M is as follows:

(1a): cj , ‘execute α in πi’, cj+1: the corresponding path
is sj , t, sj+i or sj , sj+1 depending on whether α is the last
action in πi, where sj ∼(i) cj and sj+1 ∼(i) cj+1. If α is
the last action in πi, then Rαi(sj , t) and Rei(t, sj+1). If α
is not the last action, then Rαi(sj , sj+1).

(1b): cj , ‘fail α in πi’, cj+1: the corresponding path
is sj , t, . . . , t, sj+1 where sj ∼(i) cj , sj+1 ∼(i) cj+1,
Rαi(sj , t), t satisfies faili and has otherwise the same as-
signments as sj , and Rei(t, sj+1). Intuitively, the path con-
tains as many t loops as there are update actions remaining
in the plan when it failed, and the last step on the path is
along the ei action which resets the starti and faili flags to
false and leaves the rest of the assignments the same.

(2a)-(3b): the corresponding path is sj , sj+1 where
sj ∼(i) cj , sj+1 ∼(i) cj+1 and sj+1 = sj .

(4): the corresponding path is sj , sj+1 where sj ∼(i) cj ,
sj+1 ∼(i) cj+1 and Rδri

(sj , sj+1).
Theorem 5 Let Λ be the program of an agent using the (i)
deliberation strategy. Let c0 be an initial configuration in a
operational semantics transition system S for this agent. Let
M ∈ M(Λ, i) be generated by s0 ∼(i) c0. There exists a
path from c0 to c in S, if, and only if, there is a path in M
described by ξ(Λ) from s0 to a state s ∼(i) c.

To prove the theorem, we need the following two lemmas.
S and M in the lemmas refer to S and M in Theorem 5.

Lemma 1 For any two configurations c = 〈σ, γ,Π〉 and
c′ = 〈σ′, γ′,Π′〉 in S, if there is a path between them in
S, then there is a corresponding path in M between a state
s ∼(i) c and a state s′ ∼(i) c

′.

Proof sketch. By induction on the number of labels in
the path in S, using the preconditions of the transitions of
the operational semantics, the definition of the deliberation
strategy cycle, and conditions on M(Λ, i). We show that for

every configuration c, the set of transitions possible in c is
included in the set of transitions possible in a state s ∼(i) c,
and moreover the configurations reachable from c are in the
relation ∼(i) with the states reachable by the corresponding
transitions from s.

Under the interleaved execution strategy, the possible
transitions from c = 〈σ, γ,Π = {r1 : π′

1, . . . , rn : π′
n}〉

are (1a)–(4), namely the agent can fire an applicable rule
ri which is not in {r1, . . . , rn}, or apply transition rules
(1a)–(3) with respect to one of its plans {π′

1, . . . , π
′
n}. Let

s ∼(i) c.
(1a): if some plan in Π is of the form ri : α;π and

precj(α) ⊆ σ, then there is a transition to c′ where the
belief base is σ′ = Tj(α, σ), the goal base is the same apart
from removing goals which became true, and instead of
ri : α;π the plan base contains ri : π. By the condition C5,
Rαi(s, s′) where Vb(s′) = Tj(α, Vb(s), Vg(s′) = Vg\Vb(s′)
and control flags do not change. In other words, s′ ∼(i) c

′.
(1b): if some plan in Π is of the form ri : α;π and none

of the preconditions of α holds in σ, there is a transition
to c′ with the same belief and goal base but the plan base
Π′ = Π \ {ri : α;π}. By C6, Rαi(s, t) where t has the
same beliefs and goals but satisfies faili. By C3, Rei(t, s′)
where s′ has the same beliefs and goals, but faili is false
and starti is false. So, s′ ∼(i) c

′.
(2a), (2b), (3a), (3b): if φ is true in c, then fb(φ) is true

in s, so Rfb(φ)?(s, s) and s ∼(i) c
′; otherwise ¬φ is true in

c, and R¬fb(φ)?(s, s) and s ∼(i) c
′.

(4): if there is some rule ri which is not among {r1,
. . . , rn}, and its belief and goal conditions βi and κi hold
in c, then there is a reachable configuration c′ which has the
same belief and goal base, and contains the plan ri : πi will
in its plan base. Then by condition C4, Rδri

(s, s′) where
beliefs and goals are the same as in s and starti is set to
true. Therefore, s′ ∼(i) c

′. �

Lemma 2 For every pair of states s and s′ in M , which
have a corresponding configuration with an empty plan base
in S, there exists a path between s and s′ described by ξ(Λ)
iff there is a corresponding path between c and c′, where
s ∼(i) c and s′ ∼(i) c

′.

Proof sketch. The ‘only if’ direction is easy to show by
an argument similar to the previous lemma. For the ‘if’ di-
rection, assume that there is a path between s and s′ which
is described by ξ(Λ). We want to show that a correspond-
ing path exists between c and c′. Imagine that we have two
markers, one for states in M and another for configurations
in S. The first marker starts at s and the second at c. We
move the first marker along the path in M , sometimes sev-
eral steps at a time, and the second marker along the cor-
responding transition in S, so that when the markers are
on sj and cj , sj ∼(i) cj . If such a move is always pos-
sible, we will find a corresponding path in S, because by
the time the first marker reaches s′, the second one is on
c′ such that s′ ∼(i) c

′. Since the path in M is fixed, we
always know what is the next move in M and hence what
should be the answering move in S. The existence of the
corresponding transition in S follows from the fact that the
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conditions enabling a transition inM match exactly the con-
ditions for corresponding configurations in S, given the his-
tory of the corresponding configuration. For example, if the
next transition from sj is αi, this means that earlier on the
path there was an δri transition, followed by transitions cor-
responding to the statements preceding α in πi (this is be-
cause the path is described by ξ(Λ)). So we can assume that
cj has ri : α;π′

i in its plan base, and the preconditions of
α hold in cj ; the first marker moves to a state sj+1 such
that Rαi(sj , sj+1) and the second marker to a configuration
cj+1 such that sj+1 ∼(i) cj+1 where the plan base contains
ri : π′

i. �

Theorem 5 follows immediately from the two lemmas.
Correspondence proofs for other deliberation strategies are
similar.

Theorem 6 Let Λ be the program of an agent using the (ni)
deliberation strategy. Let S be the transition systems gen-
erated by the operational semantics for this agent with ini-
tial configuration c0. Let M ∈ M(Λ,ni) be generated by
s0 ∼(i) c0. There exists a path from c0 to c if, and only if,
in M there is a path described by ξ(Λ) from s0 to a state
s ∼(i) c.

The proof is similar to the proof of Theorem 5 but uses the
restrictions imposed by (ni) strategy on transition rules, and
corresponding conditions on M(Λ,ni).

Correspondence for the alternating strategies needs to
take into account the stepi flags. We define s ∼(as) c to hold
if s ∼(i) c and in addition the following condition holds:

• stepi ∈ Vc(s) iff this configuration has been obtained by
transition (1a) (executing a belief update for plan πi).

Theorem 7 Let Λ be the program of an agent using the (as)
deliberation strategy. Let S be the transition systems gen-
erated by the operational semantics for this agent with ini-
tial configuration c0. Let M ∈ M(Λ, as) be generated by
s0 ∼(as) c0. There exists a path from c0 to c if, and only if,
in M there is a path described by ξ(Λ) from s0 to a state
s ∼(as) c.

The proof is similar to the proof of Theorem 5 but uses the
restrictions imposed by (as) strategy on transition rules, and
corresponding conditions on M(Λ, as).

Correspondence between states and configurations for
(am) is defined as: s ∼(am) c if s ∼(i) c and in addition
the following condition holds:

• stepi ∈ Vc(s) iff on the path leading to c, since the last
execution of a planning rule, a belief update in πi was
executed.

Theorem 8 Let Λ be the program of an agent using the (am)
deliberation strategy. Let S be the transition systems gener-
ated by the operational semantics for this agent with ini-
tial configuration c0. Let M ∈M(Λ, am) be generated by
s0 ∼(am) c0. There exists a path from c0 to c if, and only if,
in M there is a path described by ξ(Λ) to a state s ∼(am) c.

The proof is similar to the proof of Theorem 5 but uses the
restrictions imposed by (am) strategy on transition rules, and
corresponding conditions on M(Λ, am).

Example
As an example, we briefly illustrate how to prove properties
of agents in our logic using a simple agent program. The
agent has two goals, to have breakfast and to be at work.
The agent’s program is:

r1: work <- home |
if raining then take umbrella
else take sunglasses;
walk work

r2: breakfast <- home | eat breakfast

The pre- and postconditions of the agent’s updates are:

BeliefUpdates:
{home} take umbrella {umbrella}
{home} take sunglasses {sunglasses}
{home} walk work {-home, work}
{home} eat breakfast {breakfast}

and its initial beliefs and goals are given by:

Beliefs: home, raining
Goals: breakfast, work

Let us abbreviate home as h, work as o (for “of-
fice”), breakfast as b, raining as r, take umbrella
as u, take sunglasses as s, walk work as w, and
eat breakfast as t.

The translation of the agent’s program Λ = {r1; r2} is

ξ(Λ) =
(δr1; ((Br?;u1) ∪ (B−r?; s1));w1; e1)+ ∪
(δr2; t2; e2)

+ ∪
((δr1; ((Br?;u1) ∪ (B−r?; s1));w1; e1)+ ‖ (δr2; t2; e2)

+)

The expression ξ(Λ) has an equivalent interleaving-free
form which can be generated automatically, and we can use a
PDL theorem prover such as PDL-TABLEAU (Schmidt 2003)
to automatically verify properties of the agent program. For
example, the agent is guaranteed to achieve both its goals
under the (am) strategy. Namely, the following formula:

init ∧Bh ∧Br ∧Gb ∧Go→ 〈[ξ(Λ)]〉(Bb ∧Bo)
where init =

∧
i=1,2(¬starti ∧ ¬faili ∧ ¬stepi), is deriv-

able in Ax(Λ, am) from the axioms such as the following
instances of A14 and A15:

(r1) ¬start1 ∧Go ∧Bh ∧Br ∧Gb ∧ (start2 → step2 ∨
fail2)→ 〈[δr1]〉(start1 ∧Bh ∧Br ∧Gb)

(r2) ¬start2 ∧Gb∧Bh∧ (Br ∧Go)∧ (start1 → step1 ∨
fail1)→ 〈[δr2]〉(start2 ∧Bh ∧Br ∧Go)

(u) Bh ∧ ¬fail1 ∧ ¬step1 ∧ Go ∧ Gb → 〈[u1]〉(step1 ∧
Bh ∧Go ∧Gb)

(w) Bh ∧ ¬fail1 ∧ ¬step1 → 〈[w1]〉(step1 ∧Bo ∧B−h)
(t) Bh∧¬fail2∧¬step2∧Go→ 〈[t2]〉(step2∧Bb∧Bh∧
Go)
Under other strategies, the agent is not guaranteed to

achieve both its goals. As a simple counterexample, con-
sider the following path which is possible from the start state
under (i) and (ni): δr1;u1;w1; e1. In the state reachable by
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this path, δr2 cannot be applied since its belief condition h
fails. Therefore, from that state it is impossible to reach a
state whereBb is true by following δr2; t2; e2. Similarly, for
(as), a sequence δr1;u1; δr2;w1; t2 does not reach the goal,
because w1 destroys the preconditions of t2, so although,
there are states reachable by this sequence under (as), exe-
cution of t2 fails and does not make its postcondition true.

Conclusion
In this paper we analyzed the implications of an agent’s de-
liberation strategy in determining the behavior of BDI-based
agent programs. In order to illustrate the problem, we pre-
sented a simple agent programming language, SimpleAPL,
and explored some of its possible execution strategies. We
proposed a family of logics to reason about deliberation
strategies of SimpleAPL programs and showed how these
can be used to verify the correctness of agent programs. Us-
ing a simple example program, we illustrated how the choice
of deliberation strategy can determine whether a given pro-
gram will achieve a particular goal. Although we investi-
gated only a small number of deliberation strategies, our ap-
proach of associating propositions with phases in the agent’s
deliberation cycle and using these transitions to axiomatize
the possible transitions between phases is general enough to
accommodate any deliberation strategy that can be formu-
lated in terms of distinct phases of execution and the kinds
of operations that can be performed in each phase. The ax-
iomatizations share significant structure, concisely charac-
terising the similarities and differences between strategies,
and facilitating the formalization of new strategies.

In future work we plan to investigate other deliberation
strategies. For example, it would also be interesting to in-
vestigate strategies which prioritize particular goals and the
plans that achieve them. Another direction for future work
is extending the programming language, e.g., to introduce
variables in the language of beliefs, goals, plans and plan-
ning goal rules, and to extend the setting to include addi-
tional phases in the agent’s cycle, such as events or sensing,
and actions performed in an external environment.
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