

Reasoning about Digital Circuits

b
Benjamin C. Mosckowski
Contract NOOO39-82-C-0250 AFOSR Grant 81-0014

Department of Computer Science

Staiford Ualversity
Stamford, CA 93305

REASONING ABOUT DIGITAL CIRCUITS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULPLLLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

By
Benjamin Charles Mosskowaki June 1983

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

> Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies \& Research

Abstract

Predicate logic is a powerful and general descriptive formalism with a long history of development. However, since the logic's underlying semantics have no notion of time, statements such as " I increases by 2 " and "The bit signal X rises from 0 to 1^{n} can not be directly expressed. We present a formalism called interval temporal logic (ITL) that angments standard predicate logic with timedependent operators. ITL is like discrete linear-time temporal logic but includes time intervals. The behavior of programs and hardware devices can often be decomposed into successively smaller intervals of activity. State transitions can be characterised by properties relating the initial and final values of variables over intervals. Furthermore, these time periods provide a convenient framework for introducing quantitative timing details.

After giving some motivation for reasoning about hardware, we present the propositional and first-order syntax and semantics of ITL. We demonstrate ITL's utility for uniformly deacribing the structure and dynamics of a wide variety of timing-dependent digital circuits. Devices discussed include delay elements, adders, latches, flip-flopa, counters, random-access memories, a clocked multiplication circuit and the Am2001 bit alice. ITL aloo provides a means for expressing properties of such specifications. Throughout the dissertation, we examine such concepts as device equivalence and internal states. Propositional ITL is shown to be undecidable although useful subeets are of relatively reasonable computational complexity.

This work was supported in part by the National Science Foundation under a Graduate Pellowehip, Grants MCS79-09495 and MCS81-11586, by DARPA under Contract No00se-8i-C-0i50, and by the United States Air Force Office of Scientific Rescarch mader Grant AFOSR-81-0014.

Acknowledgements

Professors John McCarthy and Zohar Manna gave much support and guidance as this research developed. Zohar's'insistence on clear writing and notation has set a standard I will always aim for. Joseph Halpern provided valuable insights into the logic's theoretical complexity. His friendliness, curiosity and desire for mathematical simplicity combined to make him a wonderful collaborator. The thought-provoking lectures of Professor Vaughan Pratt provided an endless source of stimulation and challenge. Professors Michael Melkanoff and Mickey Krieger helped get me started when I was an undergraduate. My fellow students Russell Greiner, Yoni Malachi and Pierre Wolper are thanked for the numerous conversations we had on all matter of things temporal.

Many thanks also go to the following people for discussions and suggestions concerning the notation's readability (or lack thereof): Martin Abadi, Patrick Barkhordarian, Kevin Karplus, Amy Lansky, Fumihiro Maruyama, Gudrun Polak, Richard Schwartz, Alex Strong, Carolyn Talcott., Moshe Vardi, Richard Waldinger, Richard Weyhrauch and Frank Yellin. If it had not been for my friends at Siemens AG and the Polish Academy of Sciences, it is unlikely I would have undertaken this investigation. Late-night transatlantic discussions with Mike Gordon helped provide a sense of intrigue. Highest-quality chocolate and enthusiasm were always available from the Trischlers.

Table of Contente

Abstract v
Acknowlodgements vi
Table of Contenta vii
Chapter 1 - Introduction 1
1.1 Motivation 1
1.2 Contribations of Thenis 5
1.3 Organiastion of Theais 6
Chapter 2 - Propositional Interval Temporal Logic 7
2.1 The Basic Formalimen 7
Syntax 7
Models 8
Interpretation of formulas 8
2.2 Expreming Temporal Concepts in Propositional ITL 10
Some properties of next and semicolon 11
Eramining subintervals 11
Initial and terminal subintarvala 12
The yielde operator 13
Tomporal langth 15
Initial and final atates 16
The operatora halt and keop 17
2.3 Proponitional ITL with Quantification 17
The until operator 18
Iteration 10
2.4 Some Compladity Remulte 8
Undocidability of proponitional MLL 20
Docidability of a subent of IIL 23
Lewe bouad for matienability 2
Chapter 8 - Firat-Order Interval Temporal Logic 26
3.1 The Basic Formalism 26
Syntax of expresaions 26
Syntax of formulas 26
Models 27
Interpretation of expressions and formulas 27
Arithmetic domain 28
Temporal domain 29
Naming conventions for variables 29
3.2 Some First-Order Temporal Concepts 30
Temporal assignment 30
Temporal equality 32
Temporal stability 33
Iteration 33
Measuring the length of an interval 34
Expressions based on nest 36
Initial and terminal stability 36
Blocking 37
Rising and falling signals 38
Smoothness 40
Chapter 4 - Delaye and Combinational Elementa 41
4.1 Unit Delay 41
4.2 Transport Delay 42
4.3 Functional Delay 43
4.4 Delay Based on Shift Reginter 4
4.5 Variable Tranaport Delay 45
4.6 Delay with Sampling 46
4.7 An Equivalent Delay Model with an Intarnal Stata 46
4.8 Delay with Separate Propagation Timen for 0 and 1 47
4.9 Smooth Delay Elements 48
4.10 Delay with Tolerance to Noine 48
4.11 Gatea with Input and Ontput Delaye 40
4.12 High-Impedance 40
Chapter 5 - Additional Notation 51
5.1 Reverse Subscripting 51
5.2 Conversion from Bit Vectors to Integers 52
5.3 Tuples and Field Names 52
5.4 Types for Lists and Tuples 52
5.5 Temporal Conversion 53
Chapter 6 - Adders 55
6.1 Basic Adder 56
Formal specification of addition circuit 56
Combining two addera 58
6.2 Adder with Internal Status Bit 59
6.3 Adder with More Detailed Timing Information 60
6.4 Adder with Carry Look-Ahead Outputs 62
Chapter 7 - Latches 65
7.1 Simple Latch 65
7.2 Conventional SR-Latch 66
Constructing an SR-latch 68
7.3 Smooth SR-Latch 69
7.4 D-Latch 69
Building a D-latch 71
Combining the interface with SR-latch 73
Introducing a hold time 74
Chapter 8 - Flip-Flops 75
8.1 Simple D-Flip-Flop 75
8.2 A Flip-Flop with More Timing Information 77
Comparison of the predicates SimpleDFlipFlop and DFlipFlop 79
Simplifying the predicate Store in DFlipFlop 79
8.3 Implementation of D-Flip-Flip 80
Specification of the master latch 80
Combining the latches 82
8.4 D-Flip-Flope with Anyachronows Initialisation Signals 83
Chapter 9 - More Digital Devicen 86
9.1 Multiplexer 86
Alternative specifications 88
9.2 Memory 88
9.3 Counters 92
Clocked counter 92
9.4 Shift Register 94
Variant specifications 98
Combining shift registers 99
Chapter 10 - Multiplication Circuit 101
10.1 Specification of Multiplier 101
Variants of the specification 104
10.2 Development of Multiplicstion Algorithm 104
Deriving the predicate Init 106
Deriving the predicate Step 106
10.3 Description of Implementation 107
Implementation theorem 109
Chapter 11 - The Am2901 Bit Slice 111
11.1 Behavior of Ramdom-Access Memory 114
11.2 Behavior of Q-Register 116
11.3 Behavior of Arithmetic Logic Unit 117
11.4 Behavior of Bus Interface 121
11.5 Composition of Two Bit Slices 121
11.6 Timing Details 122
Chapter 12 - Discussion 128
12.1 Related Work 123
12.2 Puture Research Directions 125
Proof theory 125
Some variante of temporal logic 125
Temporal types and higher-order temporal objecta 128
Temporal logic as a programming language 128

Hardwere . 130
12.3 Conclunion . 130

Bibliography . 181

Chapter 1

INTRODUCTION

§1.1 Motivation

Computer systems continue to grow in complexity and the distinctions between hardware and software keep on blurring. Out of this has come an increasing awareness of the need for behavioral models suited for specifying and reasoning about both digital devices and programs. Contemporary hardware description languages (for example [$5,35,46]$) are not sufficient because of various conceptual limitations:

- Most such tools are intended much more for simulation than for mathematically sound reasoning about digital systems.
- Difficulties arise in developing circuit specifications that out of necessity must refer to different levels of behavioral abstraction.
- Existing formal tools for such languages are in general too restrictive to deal with the inherent parallelism of circuits.

Consider now some of the advantages of using predicate logic [12] as a tool for specification and reasoning:

- Every formula and expression in predicate logic has a simple semantic interpretation.
- Conceptas such as recursion can be characterised and explored.

CHAPTER 1-INTRODUCTION

- Subsets of predicate logic can be used for programming (e.g., Prolog [24]).
- Theorems about formulas and expressions can themselves be stated and proved within the framework of predicate logic.
- Reasoning in predicate logic can often be reduced to propositional logic. Propositional logic also provides a means for reasoning about bits in digital circuits.
- Decades of research lie behind the overall predicate logic formalism.

One problem with predicate logic is that it has no built-in notion of time and therefore cannot directly express such dynamic tasks as
"I increases by 2 "
"The values of A and B are exchanged"
or
"The bit signal X rises from 0 to $1 . "$
Here are some ways to handle this limitation:

- We can simply try to ignore time. For example, the statement "I increases by 2^{n} can be represented by the formula

$$
I=I+2
$$

Similarly, the statement "The values of A and B are exchanged" can be expressed as

$$
(A=B) \wedge(B=A)
$$

Unfortunately, this technique doesn't work since neither of these formulas has the intended meaning.

- Each variable can be represented as a function of time. Thus, we might express the statement " I increases by 2 " as the formula

$$
I\left(t_{f}\right)=I\left(t_{0}\right)+2
$$

CHAPTER 1—INTRODUCTION

where to deaignatea the initial time and t_{f} is the final time. In an analogous manner, we can exprese the statement "The values of A and B are exchanged" 3

$$
\left[A\left(t_{f}\right)=B\left(t_{0}\right)\right] \wedge\left[B\left(t_{f}\right)=A\left(t_{0}\right)\right] .
$$

Because of the extra time variables such as t_{0}, this approach rapidly becomes tedious and lacks both clarity and modularity. For example, it is not straightforward to alter the above formulas to concisely express the statements " I increases by 2 and then by 3 " and "The values of A and B are exchanged n times in succession."

- Variables can be represented as lists or histories of values. Thus, the statement " I increases by 2 " corresponds to the formula

$$
\operatorname{last}(I)=\operatorname{first}(I)+2
$$

where firat (I) equals I 's first element and last (I) equals I 's last element. This technique is very much like the previous one and suffers from similar problems.

The logic presented in this paper overcomes these problems and unifies in a single notation digital circuit behavior that is generally described by means of the following techniques:

- Register tranafer operations
- Flowgraphe and transition tables
- Tablea of functions
- Timing diagrams
- Schematics and block diagrams

Using the formalism, we can deacribe and reason about qualitative and quantitotive properties of signal stability, delay and other fundamental mpecta of circuit operation.

We present an extension of linear-time temporal logic $[31,39]$ called intervel temporal logic (IIL). The behavior of programs and hardware devices can often be

CHAPTER 1—INTRODUCTION

decomposed into successively smaller periods or intervals of activity. These intervals provide a convenient framework for introducing quantitative timing details. State transitions can be characterized by properties relating the initial and final values of variables over intervals of time. The principle feature of ITL is that every formula refers to some implicit interval of time. The dissertation will later examine the logic's formal syntax and semantics in great depth. Below are a few Englishlanguage statements and corresponding formulas in ITL. These examples are meant to give an feel for what ITL looks like.

- I increases by 2:

$$
I+2 \rightarrow I
$$

- The values of A and B are exchanged:

$$
(A \rightarrow B) \wedge(B \rightarrow A)
$$

- I increases by 2 and then by 3:

$$
(I+2 \rightarrow I) ;(I+3 \rightarrow I)
$$

- The values of A and B are exchanged n times in succession:

$$
([A \rightarrow B] \wedge[B \rightarrow A])^{n}
$$

- The bit signal X rises from 0 to 1:

$$
(X \approx 0) ; \operatorname{skip} ;(X \approx 1)
$$

As in conventional logic, we can express properties without the need for a separate "assertion language." For example, the formula

$$
[(I+1 \rightarrow I) ;(I+1 \rightarrow I)] \supset(I+2 \rightarrow I)
$$

states that if the variable I twice increases by 1 in an interval, then the overall result is that I increases by 2.

CHAPIER 1-INTRODUCTION

ITL's applicability if not limited to the goale of computer-ancinted verificetion and aynthesis of circuits. This type of notation, with appropriate "eynatactic sugar," can provide a fundamental and rigorous basis for communicating, reasoning or teaching about the behavior of digital devicen, computar programs and other discrete aystems. We apply it to describing and comparing devices ranging from delay elements up to a clocked multiplication circuit and the Am2901 ALU bit slice developed by Advanced Micro Devices, Inc. Interval temporal logic also provides a basic framework for exploring the computational complexity of reasoning about time. Simulation-based languages can perhaps use such a formalism as a vehicle for deacribing the intended semantics of delays and other features. In fact, we feel that ITL provides a sufficient basis for directly describing a wide range of devices and programa. For our purposes, the distinctions made in dynamic logic $[19,37]$ and process logics $[11,20,38]$ between programs and propositions seem unnecessary. Manna and Mosskowski $[29,30$] show how ITL can itself serve as the basis for a programming language.

§1.2 Contributions of Thesis

Here is a summary of the key ideas developed in this thesis:

- The propositional and first-order syntax and semantics of interval temporal logic are presented.
- We give complexity results regarding satisfiability of formulas in propositional ITL.
- We demonstrate the utility of ITL for uniformly describing and reasoning about the structure and dynamics of a wide variety of timingdependent digital circuits. Devices discussed include delay elements, adders, latches, flip-flops, counters, random-access memories, a clocked multiplication circuit and the Am2901 bit alice.
- The overall approach used indicates that multi-valued logica and partial valuce are such as \perp are not necessary in the treatment of timingdependent hardware.

CHAPTER 1-INTRODUCTION

§1.3 Organization of Thesis

Chapter 2 introduces the propositional form of interval temporal logic. The logic's basic syntax and semantics are given. In addition, ITL serves to express a number of general temporal concepts and properties. The chapter concludes with some results on the theoretical complexity of propositional ITL.

In chapter 3, we present first-order ITL. A variety of useful predicates are introduced to capture dynamic notions such as assignment and signal transitions.

The next few chapters show how to formalize specifications and properties of a number of digital devices. Chapter 4 describes and compares a number of delay models that arise in digital systems. In chapter 5 we introduce some extra notation for dealing with subscripting, conversion and tuples. Chapter 6 looks at adders, chapter 7 discusses latches and chapter 8 examines flipflops. Chapter 9 contains descriptions and properties of multiplexers, random-access memories, counters and shift registers.

Chapter 10 discusses a clocked multiplication circuit and shows one way to derive a suitable multiplication algorithm in ITL. In chapter 11, we use ITL to describe and reason about the functional behavior of the Am2901 bit slice, a largescale integrated circuit. The dissertation concludes with chapter 12 containing a discussion of some related work and future research directions.

Chaptrr 2

PROPOSITIONAL INTERVAL TEMPORAL LOGIC

We first present propositional ITL; this later provides a bagis for first-order ITL.

§2.1 The Basic Formalism

Syntax

Propositional ITL basically consists of propositional logic with the addition of modal constructs to reason about intervals of time.

Formulas are built inductively out of the following:

- A nonempty set of propositional variables:
P, Q, \ldots
- Logical connectives:
${ }^{7} w$ and $w_{1} \wedge w_{2}$, where w, w_{1} and w_{2} are formulas.
- Next:
$O w$ (read "next w "), where w is a formula.
- Semicolon:
$w_{1} ; w_{2}$ (read " w_{1} semicolon $w_{2} "$ or " w_{1} followed by w_{2} "), where w_{1} and w_{2} are formulas.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Examples:

Here are some sample formulas:

$$
\begin{aligned}
& P \\
& P \wedge Q \\
& O(P \wedge \neg R) \\
& Q ;(P \wedge R) \\
& -Q \wedge O[P ; \neg O(Q ; R)]
\end{aligned}
$$

Notice that all constructs, including O and semicolon, can be arbitrarily nested.

Models

Our logic can be viewed as linear-time temporal logic with the addition of the "chop" operator of process logic $[11,20]$. The truth of variables depends not on states but on intervals. A model is a pair (Σ, \mathcal{M}) consisting of a set of states $\Sigma=$ $\{s, t, \ldots\}$ together with an interpretation M mapping each propositional variable P and nonempts interval $s_{0} \ldots s_{n} \in \Sigma^{+}$to a some truth value $M_{s_{0} \ldots s_{n}} \llbracket P \rrbracket$. In what follows, we assume $\boldsymbol{\Sigma}$ is fixed.

The length of an interval $s_{0} \ldots s_{n}$ is n. An interval consisting of a single state has length 0 . It is possible to permit infinite intervals although for simplicity we will omit them here. An interval can also be thought of as the sequence of states of a computation. In the language of Chandra et al. [11], our logic is "non-local" with intervals corresponding to "paths."

Here is a sample model:

- States:

$$
\Sigma=\{s, t, u\}
$$

- Assignments:

Variables	Where M is true
P	s, t, tus, tt, ts, su
Q	$t, t s, t s t, t s t s$
R	-
\vdots	\vdots

8

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Interpretation of formulas

We now extend the meaning function \mathcal{M} to arbitrary formulas:

- $M_{s_{0} \ldots o_{n}} \llbracket \cdot w \rrbracket=$ true \quad iff $\quad M_{s_{0} \ldots s_{n}} \llbracket w \rrbracket=$ false

The formula $\neg w$ is true in an interval $s_{0} \ldots s_{n}$ iff w is false.

- $M_{\Delta_{0} \ldots s_{n}} \llbracket w_{1} \wedge w_{2} \rrbracket=$ true \quad iff $\quad \mathcal{M}_{\iota_{0} \ldots \rho_{n}} \llbracket w_{1} \rrbracket=$ true and $\mathcal{M}_{\rho_{0} \ldots \rho_{n}} \llbracket w_{2} \rrbracket=$ true The conjunction $w_{1} \wedge w_{2}$ is true in $s_{0} \ldots s_{n}$ iff w_{1} and w_{2} are both true.
- $M_{s_{0} \ldots o_{n}} \llbracket O w \rrbracket=$ true \quad iff $n \geq 1$ and $M_{s_{1} \ldots o_{n}} \llbracket w \rrbracket=$ true.

The formula $O w$ is true in an interval $s_{0} \ldots s_{n}$ iff w is true in the subinterval $s_{1} \ldots s_{n}$. If the original interval has length 0 , then $O w$ is false.

- $M_{a_{0} \ldots a_{n}} \llbracket w_{1} ; w_{2} \rrbracket=$ true \quad iff $\quad \mathcal{M}_{s_{0} \ldots s_{i}} \llbracket w_{1} \rrbracket=$ true and $\mathcal{M}_{\mathrm{a}_{i} \ldots o_{n}} \llbracket w_{2} \rrbracket=$ true, for some $i, 0 \leq i \leq n$.
Given an interval $s_{0} \ldots s_{n}$, the formula $w_{1} ; w_{2}$ is true if there is at least one way to divide the interval into two adjacent subintervals $s_{0} \ldots s_{i}$ and $s_{i} \ldots s_{n}$ such that the formula w_{1} is true in the first one, $s_{0} \ldots s_{i}$, and the formula w_{2} is true in the second, $s_{i} \ldots s_{n}$.

Examples:
We now given the interpretations of some formulas with respect to the particular model discussed earlier:

- $M_{t s} \llbracket P \wedge Q \rrbracket=$ true since $M_{t s} \llbracket P \rrbracket=$ true and $M_{t a} \| Q \rrbracket=$ true.
- $M_{t s u} \| Q ; P \rrbracket=$ true since $M_{t \rho} \llbracket Q \rrbracket=$ true and $M_{o u}\|P\|=$ true.
- $M_{t} \llbracket \neg(P \wedge Q) \rrbracket=$ false since $M_{t} \llbracket P \wedge Q \rrbracket=$ true.
- $M_{t o} \llbracket O(P \wedge \neg R) \rrbracket=$ true since $M_{0} \llbracket P \wedge \neg R \rrbracket=$ true.

A formula w is satisfied by a pair $\left(\mathcal{M}, s_{0} \ldots s_{n}\right)$ ifi

$$
M_{\rho_{0} \ldots \rho_{n}}|w|=\text { true }
$$

CRAPTER 2-PROPOSITIONAL INTHRVAL TEMPORAL LOCIC
This in denoted as follow:

$$
\left(M, e_{0} \ldots s_{n}\right) \vDash \text { w. }
$$

We sometimes make M implicit and write

$$
s_{0} \ldots s_{n} F w
$$

If all pairs of M and $s_{0} \ldots s_{n}$ satiafy w then w is valid, written $₹ w$.
§2.2 Expressing Temporal Concepts in Propositional ITL
We illuntrate propositional ITL's descriptive power by giving a variety of useful temporal concopte. The connectives \neg and \wedge clearly suffice to express other basic logical operators much as \vee and $\overline{z=}$:

- $w_{1} \vee w_{2}$ - logical-or:

$$
w_{1} \vee w_{2} \quad \equiv \equiv_{\text {dof }} \quad \neg\left(\neg w_{1} \wedge \neg w_{2}\right)
$$

- $w_{1} \supset w_{2}$ - implication:

$$
w_{1} \supset w_{2} \quad \equiv_{\text {dof }} \quad \neg w_{1} \vee w_{2}
$$

- $w_{1}=w_{2}$ - equivalence:

$$
w_{1} \equiv w_{2} \quad \Xi_{\text {dof }} \quad\left(w_{1} \supset w_{2}\right) \wedge\left(w_{2} \supset w_{1}\right)
$$

- if w_{1} then w_{2} else w_{3} - conditional formula:

$$
\text { if } w_{1} \text { then } w_{2} \text { else } w_{3} \quad \hat{z}_{\text {dof }} \quad\left(w_{1} \supset w_{2}\right) \wedge\left(-w_{1} \supset w_{3}\right)
$$

- true - truth:

$$
\text { true } \equiv_{\text {def }} P \vee \neg P
$$

- falce - faluity:

$$
\text { falee } \mathrm{E}_{\text {dof }} \text {-true }
$$

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Some propertien of nest and semicolon

Throughout thin thesin, numerous sample formules are given in order to convey the utility of ITL for expreasing temporal and digital concepts. The reader need not look at every single formula. Here are some representative properties of the operators next and semicolon. All follow from the semantic model just covered.

- $(P ; Q) ; R \equiv P ;(Q ; R)$

Semicolon is associative. Therefore a formula such as $P ; Q ; R$ is unambiguous.
$f[(P \vee Q) ; R] \equiv[(P ; R) \vee(Q ; R)]$
The left of semicolon distributes with logical-or. An analogous property applies to the right of semicolon.

- $[P ;(Q \wedge R)] \supset[(P ; Q) \wedge(P ; R)]$

A logical-and can be removed from semicolon's right. The left of semicolon has a similar property.

$$
\vDash(O P) ; Q \equiv O(P ; Q)
$$

The operator O commutes with the left of semicolon.
We now introduce a variety of other useful temporal concepts that are expressible by means of the constructs just defined.

Examining subintervals

For a formula w and an interval $s_{0} \ldots s_{n}$, the construct w is true if w is true in at least one subinterval $s_{i} \ldots s_{j}$ contained within $s_{0} \ldots s_{n}$ and possibly the entire interval $s_{0} \ldots s_{n}$ itself. Note that the $" a n$ in simply stands for "any" and is not a variable.

$$
M_{o_{0} . . . o_{n}}[\nsim \|]=\text { true iff } \quad M_{\delta_{s} \ldots o_{j}}[w]=\text { true, for some } 0 \leq i \leq j \leq n
$$

Similarly, the formula $\mathbb{\square} \boldsymbol{w}$ in true if the formula w itself is true in all subintervals of $s_{0} \ldots s_{n}$:

$$
\left.M_{e_{0} \ldots o_{n}} \mid \square w\right]=\text { true iff } \quad M_{a_{1} \ldots o_{j}}[w]=\text { true, for all } 0 \leq i \leq j \leq n
$$

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

These constructe can be expressed as follows:

$$
\begin{gathered}
\Delta w \quad \equiv_{\text {dof }} \quad \text { (true; w; true) } \\
\square \dot{w} \equiv \equiv_{\text {def }} \neg \neg \boldsymbol{w} .
\end{gathered}
$$

Because semicolon is associative, the definition of is unambiguous. Together, - and \square fulfill all the axioms of the modal system $S 4$ [23], with interpreted as possibly and as necessarily.

Properties:

1 ■ $P \supset P$
If the proposition P is true in all subintervals then it is true in the primary interval.

$$
F \square(P \wedge Q) \equiv[\square P \wedge \square Q]
$$

The logical-and of two propositions P and Q is true in every subinterval if and only if both propositions are true everywhere.

$$
F \mapsto P \equiv \mapsto P
$$

A proposition P is somewhere true exactly if there is some subinterval in which P is somewhere true.

$$
\vDash[\square P \wedge Q] \supset(P \wedge Q)
$$

If P is true in all subintervals and Q is true in some subinterval then both are simultaneously true in at least one subinterval.

Initial and terminal subintervals

For a given interval $s_{0} \ldots s_{n}$ the operators \downarrow and $\mathbb{\square}$ are similar to and \square but only look at initial subintervals of the form $s_{0} \ldots s_{i}$ for $i \leq n$. We can express Φw and $\mathbb{D} w$ as shown below:

$$
\begin{aligned}
& \text { © } w \equiv_{\text {dof }} \quad(w ; \text { true })
\end{aligned}
$$

CHAPTER 2－PROPOSITIONAL INTERVAL TEMPORAL LOGIC

For example，the formula $\square(P \wedge Q)$ is true on an interval if P and Q are both true in all initial subintervals．The connectives and $\mathbb{0}$ refer to terminal subintervals of the form $s_{i} \ldots s_{n}$ and are expressed as follows：

$$
\begin{aligned}
& \text { - } \left.\boldsymbol{w} \equiv_{\text {dof }} \text { (true; } w\right) \\
& \text { 回 } \boldsymbol{w} \equiv_{\text {det }} \neg \rightarrow \boldsymbol{w}
\end{aligned}
$$

Both pairs of operators satisfy the axioms of S4．The operators Δ and ${ }^{\square}$ correspond directly to \bigcirc and \square in linear－time temporal logic［31］．

Properties：

－（ロ $P \equiv$ ■回 P ）$\wedge(\square P \equiv$ 回 P ）
The proposition P is true in all subintervals exactly if P is true in all initial subintervals of all terminal subintervals．In fact，the operators \square and \square commute．
－$[⿴(P \supset Q) \wedge(P ; R)] \supset(Q ; R)$
If P implies Q in all initial subintervals and P is followed by R ，then Q is followed by R ．
－$(\phi) ; Q \equiv(P ; Q)$
The operator (ϕ) commutes with the left of semicolon．

The yields operator

It is often desirable to say that within an interval $s_{0} \ldots s_{n}$ whenever some formula w_{1} is true in any initial subinterval $s_{0} \ldots s_{i}$ ，then another formula w_{2} is true in the corresponding terminal interval $s_{i} \ldots s_{n}$ for any $i, 0 \leq i \leq n$ ．We say that w_{1} yields w_{2} and denote this by the formula $w_{1} \rightarrow w_{2}$ ：

$$
M_{\rho_{0} \ldots \rho_{n}} \llbracket w_{1} \rightarrow w_{2} \rrbracket=\text { true }
$$

iff $\quad M_{s_{0} \ldots o_{i} \|}\left\|w_{1}\right\|=$ true implies $M_{s_{1} \ldots o_{0}}\left\|w_{2}\right\|=$ true，for all $0 \leq i \leq n$ The yields operator can be viewed as ensuring that no counterexample of the form $\left.w_{1} ;\right\urcorner w_{2}$ exists in the interval：

$$
\left(w_{1} \rightarrow w_{2}\right) \quad \equiv_{\text {dof }} \quad \neg\left(w_{1} ; \neg w_{2}\right)
$$

This is similar to interpreting the implication $w_{1} \supset w_{2}$ as the formula $\gamma\left(w_{1} \wedge \neg w_{2}\right)$ ．

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Examples:

Concept

After P, both Q and R are true
After P, Q yields R
P always yields Q
After P and Q, R is false

Formula

$$
P \rightarrow(Q \wedge R)
$$

$$
P \leadsto(Q \leadsto R)
$$

$$
\square(P \leadsto Q)
$$

$(P \wedge Q) \rightarrow(\neg R)$

Properties:

$$
\vDash([P ; Q] \rightarrow R) \equiv(P \leadsto[Q \rightarrow R])
$$

The formula $P ; Q$ yields R exactly if after P is true, Q yields R. This is analogous to the propositional tautology

$$
\begin{aligned}
& F[(P \wedge Q) \supset R] \equiv[P \supset(Q \supset R)] \\
& F \text { false } \rightarrow P
\end{aligned}
$$

After false, anything can happen. Since false never occurs, this is a vacuous assertion.

When combined with other temporal operators, yield exhibits a number of interesting properties based on the underlying behavior of semicolon. Here are some examples:

```
F \(\mathbb{Q} P(\) true \(\rightarrow P)\)
```

The proposition P is true in all terminal subintervals exactly if P is true after any initial subinterval satisfying true.

$$
\vDash(P \rightarrow \boxtimes Q) \equiv(\oplus P \leadsto Q)
$$

After P, Q is true in all terminal subintervals iff the result of P being true in some initial subinterval yields \boldsymbol{Q}.

$$
\vDash(P \rightarrow \square Q) \equiv \boxplus(P \rightarrow Q)
$$

After any initial subinterval where P is true, the formula $⿴ 囗 Q$ results iff in all initial subintervals, P yields Q.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Temporal length

The construct empty checks whether an interval has length $\mathbf{0}$:

$$
M_{\iota_{0} \ldots . . o_{n}} \llbracket \text { empty } \rrbracket \equiv \text { true iff } n=0
$$

Similarly, the construct skip checks whether the interval's length is exactly 1 :

$$
M_{\iota_{0} \ldots o_{n}} \llbracket s k i p \rrbracket \equiv \text { true iff } n=1
$$

These operators are expressible as shown below:

$$
\begin{aligned}
& \text { empty } \equiv_{\text {dof }} \neg \bigcirc \text { true } \\
& \text { skip } \equiv_{\text {def }} \text { O empty }
\end{aligned}
$$

Combinations of the operators skip and semicolon can be used to test for intervals of some fixed length. For example, the formula

> ship; skip; skip
is true exactly for intervals of length 3. Alternatively, the connective next suffices:

$$
000 \text { empty }
$$

Examples:

Concept

After two units of time, P holds P is true in some unit subinterval

Formula

skip; skip; P - (skip ^P)

Properties:

- empty

Eventually time runs out because intervals are finite.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

$$
F(\text { skip } ; P) \equiv O P
$$

The operators skip and semicolon can be used instead of next.

$$
F(\text { empty } ; P) \equiv P
$$

The construct empty disappears on the left of semicolon. An analogous theorem applies to the right of semicolon as well.

Initial and final states

The construct beg w tests if the formula w is true in an interval's starting state:

$$
M_{c_{0} \ldots c_{n}} \| \text { beg } w \rrbracket \equiv M_{c_{0}} \llbracket w \rrbracket
$$

The connective beg can be expressed as follows:

$$
\operatorname{beg} w \equiv \operatorname{jef} \oplus(\text { empty } \wedge w)
$$

This checks that w holds for an initial subinterval of length 0 , i.e., the interval's first state. By analogy, the final state can be examined by the operator fin w:

$$
\operatorname{fin} w \equiv \operatorname{dei} \quad(\text { empty } \wedge w)
$$

This checks that w holds for a terminal subinterval of length 0 , i.e., the interval's final state. The construct beg corresponds directly to the construct f in the process logic of Harel et al. [20]. Similarly, fin corresponds to the pro:ess logic's construct last.

Examples:

Concept
If P is initially true, it ends true P and Q end true

Formula
beg $P \supset$ fin P
$\operatorname{fin}(P \wedge Q)$

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Propertica:

$$
\text { b beg } P \equiv \neg \text { beg }(\neg P)
$$

P is true in the first state iff $\neg P$ is not.
$F \quad \operatorname{fin}(P \vee Q) \equiv[\operatorname{fin} P \vee \operatorname{fin} Q]$
The logical-or of P and Q ends up true exactly if either P ends true or Q ends true.

The operators halt and keep

Various other useful operators can be expressed in propositional ITL. For example, the construct halt w is true for intervala that terminate the first time the formula w is true:

$$
\text { halt } w \equiv_{\text {dof }} \boxtimes(w \equiv \text { empty })
$$

Thus halt w can be thought of as forcing an interval to wait until w occurs.
The construct keep w is true if the formula w is true in all nonempty terminal intervals:

$$
\text { keep } w \equiv_{\text {dof }} \text { 四 }([\text { empty }] \supset w)
$$

§2.3 Propositional ITL with Quantification

It is very useful to extend propositional ITL to permit existential and universal quantification over variables. In order for quantification to properly work, we require that $\boldsymbol{\Sigma}$, the model's set of states, be varied enough so that any possible combined behavior of variables is represented by some interval. More precisely, let P be a propositional variable, $s_{0} \ldots s_{n}$ be an interval and $\alpha(i, j)$ be a function mapping ordered pairs $0 \leq i \leq j \leq n$ to truth values. We require some interval $s_{0}^{\prime} \ldots s_{n}^{\prime}$ exist such that $s_{i}^{\prime} \ldots s_{j}^{\prime}$ agrees with the corresponding subinterval $s_{i} \ldots s_{j}$ on assignments to all variables with the exception that each subinterval $s_{i}^{\prime} \ldots s_{j}^{\prime}$ gives P the value $\alpha(i, j)$:

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

We denote the interval $s_{0}^{\prime} \ldots \delta_{n}^{\prime}$ as

$$
\left(s_{0} \ldots s_{n}\right)[P / \alpha]
$$

The construct

$$
\exists P . w
$$

represents existential quantification and has the semantics

$$
M_{s_{0} \ldots s_{n}} \llbracket \exists P . w \rrbracket=\text { true } \quad \text { iff } \quad \text { for some } \alpha, \quad M_{s_{0}^{\prime}} \ldots s_{n}^{\prime} \llbracket w \rrbracket=\text { true },
$$

where $s_{0}^{\prime} \ldots s_{n}^{\prime}=\left(s_{0} \ldots s_{n}\right)[P / \alpha]$.
Universal quantification is expressed as the dual of existential quantification:

$$
\forall P . w \quad \equiv_{\mathrm{dof}} \quad \neg \exists P . \neg \boldsymbol{w}
$$

Property:

$$
\vDash(\neg \text { empty }) \supset \exists P \cdot[\text { beg } P \wedge \text { fin }(\neg P)]
$$

In a nonempty interval, a variable can be constructed that starts true and ends false.

The until operator

Linear-time temporal logic has the until operator $w_{1} U w_{2}$ which is true in an interval if the formula w_{2} is eventually true and w_{1} is true until then:

$$
\begin{aligned}
& \mathcal{M}_{\rho_{0} \ldots \rho_{n}} \llbracket w_{1} U_{w_{2}} \rrbracket \equiv \text { true } i f f \\
& \qquad M_{\rho_{1} \ldots \rho_{n}} \llbracket w_{2} \rrbracket \text { for some } 0 \leq i \leq n \text { and } M_{\rho_{j} \ldots o_{n}} \llbracket w_{1} \rrbracket \text { for all } 0 \leq j<i
\end{aligned}
$$

We can express until as follows:

$$
w_{1} U_{w_{2}} \equiv \operatorname{def} \quad \exists P \cdot\left[\text { beg } P \wedge ⿴\left(\text { beg } P \supset\left[w_{2} \vee\left(w_{1} \wedge O \text { beg } P\right)\right]\right)\right]
$$

where P does not occur free in w_{1} or w_{2}. In essence, P is initially true and inductively remains so until w_{2} is true.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Iteration

An interval can be broken up into an arbitrary number of successive subintervals, each satisfying some formula w. We can use, for example, the construct w^{3} as an abbreriation for

$$
w ; w ; w
$$

In general, we abbreviate repetition by induction:

$$
\begin{gathered}
w^{0} \equiv \equiv_{\text {def }} \text { empty } \\
w^{i+1} \equiv_{\text {def }} w ; w^{i}
\end{gathered}
$$

Thus, for the case of $i=0$, an interval $s_{0} \ldots s_{n}$ satisfies the operator exactly if the interval's length is 0 . We can extend propositional ITL to include the Kleene closure of semicolon:

$$
M_{s_{0} \ldots o_{n}} \llbracket w^{*} \rrbracket=\text { true } \quad \text { iff } \quad M_{e_{0} \ldots s_{n}} \llbracket w^{i} \rrbracket=\text { true }, \text { for some } i \geq 0 \text {. }
$$

Iteration can be expreased by quantifying over a variable P that is true at the end-points of the steps:

$$
w^{*} \quad \equiv_{\text {def }} \exists P .(\text { beg } P \wedge \boxtimes[\text { beg } P \supset(\text { empty } \vee \odot[w \wedge O \text { halt }(\text { beg } P)])])
$$

where P does not occur free in w. Other constructs such as while-loops can also be expressed within ITL:

$$
\text { while } P \text { do } Q \quad \equiv \text { dof } \quad\left[(\text { beg }[P] \wedge Q)^{*} \wedge \text { fin }(\neg P)\right]
$$

Properties:
1 P P^{*} 프 ($P \wedge$ ᄀempty)*
During iteration, each step can be asoumed to have length ≥ 1.

- false* $=$ empty

An interval in which false is iterated must be empty.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

s2.4 Some Complexity Results

We prove that satisfiability for arbitrary formulas in propositional ITL is undecidable but demonstrate the decidability of a useful subset.

Undecidability of propositional ITL

Theorem (Halpern and Moszkowski): Satisfiability for propositional ITL is undecidable.

Proof: Our proof is very similar to the one presented by Chandra et al. [11]. for showing the undecidability of satisfiability for a propositional process logic. We strengthen their result since we do not require programs in order to obtain undecidability.

Given two context-free grammars G_{1} and G_{2}, we can construct an propositional ITL formula that is satisfiable iff the intersection of the languages generated by G_{1} and G_{2} is nonempty. Since this intersection problem is undecidable [22], it follows that satisfiability for propositional ITL is also.

Without lose of generality, we assume that G_{1} and G_{2} contain no ϵ-productions, use 0 and 1 as the only terminal symbols and are in Greibach normal form (that is, the right-hand side of each production starts with a terminal symbol).

For a given an interval $s_{0} \ldots s_{n}$ and an interpretation M, we form the trace $\sigma_{s_{0} \ldots o_{n}}(P)$ of a variable P by observing $P ' s$ behavior over the states s_{0}, \ldots, s_{n}. We define σ as follows:

$$
\begin{aligned}
& \sigma_{\Delta}(P)= \begin{cases}0 & \text { if } M_{\Perp} \| P \rrbracket=\text { false } \\
1 & \text { if } M_{\Delta} \| P \rrbracket=\text { true }\end{cases} \\
& \sigma_{s_{0} \ldots s_{n}}(P)=\sigma_{s_{0}}(P) \ldots \sigma_{s_{n}}(P)
\end{aligned}
$$

Suppose that G is a context-free grammar consisting of a list π of \boldsymbol{m} production sets π_{1}, \ldots, π_{m}, one for each nonterminal symbol A_{i} :

$$
\begin{gathered}
\pi_{1}: A_{1} \rightarrow \pi_{11}\left|\pi_{12}\right| \cdots \mid \pi_{1,\left|\pi_{1}\right|} \\
\pi_{2}: A_{2} \rightarrow \pi_{21}\left|\pi_{22}\right| \cdots \mid \pi_{2,\left|\pi_{2}\right|} \\
\vdots \\
\pi_{m}: A_{m} \rightarrow \pi_{m 1}\left|\pi_{m 2}\right| \cdots \mid \pi_{m,\left|\pi_{m}\right|}
\end{gathered}
$$

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Let $L\left(G, A_{i}\right)$ be the language generated by G with A_{i} ae the start symbol. We give a tranalation $f\left(G, A_{i}\right)$ into ITL such that an interval $a_{0} \ldots s_{n}$ satisfies $f\left(G, A_{i}\right)$ iff $P^{\prime} s$ trace in $s_{0} \ldots s_{n}$ is in $L\left(G, A_{i}\right)$:

$$
\begin{equation*}
\omega_{0} \ldots s_{n} \vDash f\left(G, A_{i}\right) \text { iff } \quad \sigma_{\varepsilon_{0} \ldots . . o_{n}}(P) \in L\left(G, A_{i}\right) . \tag{*}
\end{equation*}
$$

For esch of the production sets π_{i}, the associated translation $f\left(\pi_{i}\right)$ is the ITL formula

$$
\square\left(A_{i} \equiv\left[f\left(\pi_{i 1}\right) \vee f\left(\pi_{i 2}\right) \vee \cdots \vee f\left(\pi_{i, 1} \pi_{i}\right) \mid\right)\right.
$$

Each production atring $\pi_{i j}=V_{1} V_{2} \ldots V_{|\pi i,|}$ has the translation

$$
f\left(V_{1} V_{2} \ldots V_{m}\right)=f\left(V_{1}\right) ; s k i p ; f\left(V_{2}\right) ; s k i p ; \ldots s k i p ; f\left(V_{|x, 1|}\right)
$$

where

$$
\begin{aligned}
& f(0)=(\neg P \wedge \text { empty }) \\
& f(1)=(P \wedge \text { empty }) \\
& f\left(A_{i}\right)=A_{i}, \text { for each nonterminal symbol } A_{i}
\end{aligned}
$$

Recall that the variable P determines whether a state maps to 0 or 1 . In order to avoid conflicta, we require that P not occur in the grammar. The overall translation $f\left(G, A_{i}\right)$ is

$$
A_{i} \wedge f(\pi)
$$

It is now eagy to show (*) by induction on the size of the interval $s_{0} \ldots s_{n}$. We need the grammar to be in Greibach normal form in order for the inductive step to go through. See Chandra et al. [11] for details.

Given two context-free grammars G_{1} and G_{2} with disjoint sets of nonterminals and respective start symbola S_{1} and S_{2}, the ITL formula

$$
f\left(G_{1}, S_{1}\right) \wedge f\left(G_{2}, S_{2}\right)
$$

is satisfiable iff the intersection of the languages $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ in nonempts. Because thin emptinese problem is undecidable [22], it followa that astisfiability in proporitional ITL is aleo.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Corollary: Validity for propositional ITL is undecidable.
Remark: Undecidability can be shown to hold even if we are restricted to just using empty instead of skip. To do this, we use propositional variables P and Q. We introduce an operator group (P, Q) which is true in intervals satisfying the formula
(四 beg Q); skip; (\square beg $(P \wedge \neg Q])$ skip; ($(\square \operatorname{beg} Q)$

Such intervals are in effect delimited on both sides by states with Q true and contain internal states with $P \wedge \neg Q$ true. Hence, Q acts as a delimiter around a group of states where P is true. The following is a sample 5 -state interval $s_{0} \ldots s_{4}$ satisfying group (P, Q) :

\boldsymbol{s}_{0}	s_{1}	s_{2}	s_{3}	s_{4}
\boldsymbol{Q}	P	P	Q	Q
	\hat{Q}	\hat{Q}		
	$-\boldsymbol{Q}$	$-\boldsymbol{Q}$		

Similarly, group $(\neg P, Q)$ denotes a delimited group of states with $\neg P$ true in the interior. If we take empty as a primitive operator, the operator group can be expressed without the use of next:

$$
\operatorname{group}(P, Q) \equiv \equiv_{\operatorname{def}} \quad[\operatorname{grp}(P, Q) \wedge \neg(\operatorname{grp}(P, Q) ; \operatorname{grp}(P, Q))]
$$

where $\operatorname{grp}(P, Q)$ has the definition

$$
\operatorname{grp}(P, Q) \equiv \equiv_{\operatorname{def}} \quad[\operatorname{beg} Q \wedge f i n Q \wedge \Phi(\operatorname{beg}(P \wedge \neg Q) \vee Q) \wedge \text { beg } P]
$$

Recall that beg and fin are defined using empty and semicolon:

$$
\begin{aligned}
& \text { begw } \equiv_{\text {dof }} \oplus(\text { empty } \wedge \boldsymbol{w}) \\
& \text { fin } \left.w \equiv_{\text {dof }} \text { (empty } \wedge w\right)
\end{aligned}
$$

The modified translation f^{\prime} is like f with the following exceptions:

$$
\begin{aligned}
& f^{\prime}\left(V_{1} V_{2} \ldots V_{m}\right)=f^{\prime}\left(V_{1}\right) ; f^{\prime}\left(V_{2}\right) ; \ldots ; f^{\prime}\left(V_{m}\right) \\
& f^{\prime}(0)=\operatorname{group}(\neg P, Q) \\
& f^{\prime}(1)=\operatorname{group}(P, Q)
\end{aligned}
$$

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Decidability of a aubset of ITL

In local ITL (LITL), we restrict each variable P to be true of an interval $80 \ldots{ }_{n}$ if P is true of the first state s_{0} :

$$
M_{s_{0} \ldots s_{n}} \llbracket P \rrbracket=M_{s_{0}} \llbracket P \rrbracket
$$

Theorem (Halpern and Moszkowski): Propositional local ITL with quantification is decidable.

Proof: We give a linear translation from formulas in propositional ITL to formulas in a temporal logic that is known to be decidable. This is the quantified propositional temporal logic (QPTL) described and analyzed in Wolper [50] and Wolper et al. [51]. Formulas are built from propositional variables P, Q, \ldots and the constructs

$$
\neg w \quad w_{1} \wedge w_{2} \quad \bigcirc w \quad \text { 回w} \quad \exists P . w
$$

where w, w_{1} and w_{2} are themselves QPTL formulas. The interpretation of variables and formulas is identical to that of local ITL with quantification. The particular QPTL used by us restricts intervals to be finite and is known as weak QPTL (WQPTL). Weak QPTL can express such constructs as $w, w_{1} U_{w_{2}}$, and empty. For a given variable P and local ITL formula w, we now give a translation $g(P, w)$ which is true of an interval $s_{0} \ldots s_{n}$ in weak QPTL iff the variable P is true for the first time in some state s_{i} and w is true over the initial interval $s_{0} \ldots s_{i}$. Thus, $g(P, w)$ is semantically like the ITL formula

$$
\Phi([\text { halt } P] \wedge w)
$$

Here is the definition of g :

$$
\begin{array}{ll}
g(P, Q) & =(\triangleright P) \wedge Q \\
g(P, \neg w) & =[\neg g(P, w) \wedge \triangleright P] \\
g\left(P,\left[w_{1} \wedge w_{2}\right]\right)= & {\left[g\left(P, w_{1}\right) \wedge g\left(P, w_{2}\right)\right]} \\
g(P, \circ w) & =[\neg P \wedge O g(P, w)] \\
g\left(P,\left[w_{1} ; w_{2}\right]\right)= & \left.\exists R \cdot\left[g\left(R, w_{1}\right) \wedge(\mid \neg P] U\left[R \wedge g\left(P, w_{2}\right)\right]\right)\right], \\
& \quad \text { where } R \text { does not occur free in either } w_{1} \text { or } w_{2} . \\
g(P, \exists Q . w) & =\exists Q \cdot g(P, w)
\end{array}
$$

A formula w in local ITL has the same semantics as g(empty, w) in weak QPTL:

$$
s_{0} \ldots s_{n} \text { mITL } w \text { iff } s_{0} \ldots s_{n} \text { WQPTL } g(e m p t y, w)
$$

Wolper [50] and Wolper et al. [51] show that the theory of QPTL over infinite intervals is decidable but nonelementary; this result easily extends to weak QPTL. The complexity is elementary in the aiternation of \neg and \exists.

Remark: The translation can be extended to handle local ITL over infinite intervals.

Lower bound for satisfiability

The decision procedure just given is essentially the best that can be done since D. Kozen (private communication) has proved the following theorem:

Theorem (Kozen): Satisfiability for propositional local ITL is nonelementary.
Proof: Stockmeyer [44] shows that the problem of deciding the emptiness of an arbitrary regular expression over the alphabet $\{0,1\}$ and with operators,$+ \cdot$ and is nonelementary. Given a regular expression e, we construct an ITL formula $h(e)$ which is satisfiable iff the language generated by e is nonempty. The definition of h given by induction on the syntactic structure of e :

$$
\begin{aligned}
& h(0)=(\neg P \wedge \text { empty }) \\
& h(1)=(P \wedge \text { empty }) \\
& h\left(e_{1}+e_{2}\right)=\left[h\left(e_{1}\right) \vee h\left(e_{2}\right)\right] \\
& h(\neg e)=\neg h(e) \\
& h\left(e_{1} \cdot e_{2}\right)=\left[h\left(e_{1}\right) ; \text { skip; } h\left(e_{2}\right)\right]
\end{aligned}
$$

For example, the translation of the regular expression (01) $+\neg 1$ is

$$
[(\neg P \wedge \text { empty }) ; \text { skip } ;(P \wedge \text { empty })] \vee \neg(P \wedge \text { empty })
$$

Note that the length of $h(e)$ is linear in that of e.
A formal proof relating nonemptiness of a regular expression e and satisfiability of the IIL formula $h(e)$ would use a straightforward induction of the syntactic structure of e.

CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC
Remark: We can ahow nonelementary complexity even with the operator empty instead of akip. We use a modified translation h^{\prime} defined as follows:

$$
\begin{aligned}
& h^{\prime}(0)=\operatorname{group}(P, Q) \\
& h^{\prime}(1)=\operatorname{group}(\neg P, Q) \\
& h^{\prime}\left(e_{:}+e_{2}\right)=\left[h^{\prime}\left(e_{1}\right) \vee h^{\prime}\left(e_{2}\right)\right] \\
& h^{\prime}(\neg e)=\neg h^{\prime}(e) \\
& h^{\prime}\left(e_{1} e_{2}\right)=\left[h^{\prime}\left(e_{1}\right) ; \text { skip; } h^{\prime}\left(e_{2}\right)\right]
\end{aligned}
$$

Again, the language $L(e)$ generated by e is nonempty iff $h^{\prime}(e)$ is satisfiable.

Chapter 3

FIRST-ORDER INTERVAL TEMPORAL LOGIC

§3.1 The Basic Formalism

We now give the syntax and semantics of first-order ITL. This subsequently serves as our hardware description language.

Syntax of expressions

Expressions and formulas are built inductively-as follows:

- Individual variables: U, V, \ldots
- Functions: $f\left(e_{1}, \ldots, e_{k}\right)$, where $k \geq 0$ and e_{1}, \ldots, e_{k} are expressions. In practice, we use functions such as + and v (bit-or). Constants like 0 and 1 are treated as zero-place functions.

Syntax of formulas

- Predicates: $p\left(e_{1}, \ldots, e_{k}\right)$, where $k \geq 0$ and e_{1}, \ldots, e_{k} are expressions. Predicates include \leq and other basic relations.
- Equality: $e_{1}=e_{2}$, where e_{1} and e_{2} are expressions.
- Logical connectives: $\neg w$ and $w_{1} \wedge w_{2}$, where w, w_{1} and w_{2} are formulas.
- Existential quantification: $\exists V . w$, where V is a variable and w is a formula.

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

- Next: $O \boldsymbol{w}$, where \boldsymbol{w} is a formula.
- Semicolon: $w_{1} ; w_{2}$, where w_{1} and w_{2} are formulas.

Models

A model consists of a set of states $\Sigma=\{s, t, \ldots\}$ and domain D together with an interpretation M mapping each variable V and interval $s_{0} \ldots s_{\boldsymbol{n}}$ to some value $\mathcal{M}_{s_{0} \ldots \Omega_{n}} \llbracket V \rrbracket$ in D. Furthermore, each function and predicate symbol is given some meaning. As in propositional ITL, for quantification to properly work, there must be some interval for every possible behavior of variables. Each k-place function symbol f has an interpretation $M \llbracket f \rrbracket$ which is a function mapping k elements in D to a single value:

$$
\mathcal{M} \llbracket f \rrbracket \in\left(D^{k} \rightarrow D\right)
$$

Interpretations of predicate symbols are similar but map to truth values:

$$
M \llbracket p \rrbracket \in\left(D^{k} \rightarrow\{\text { true, false }\}\right)
$$

The semantics given here keep the interpretations of function and predicate symbols independent of intervals and thus time-invariant. The semantics can however be extended to allow for functions and predicates that take into account the dynamic behavior of parameters.

Interpretation of expressions and formulas

We now extend the interpretation M to arbitrary expressions and formulas:

- $M_{c_{0} \ldots o_{n}} \llbracket f\left(e_{1}, \ldots, e_{k}\right) \rrbracket=M \llbracket f \rrbracket\left(M_{\rho_{0} \ldots a_{n}} \llbracket e_{1} \rrbracket, \ldots, M_{s_{0} \ldots o_{n}} \llbracket e_{k} \rrbracket\right)$,

The interpretation of the function symbol f is applied to the interpretations of e_{1}, \ldots, e_{k}.

- $M_{0_{0} \ldots e_{n}}\left[p\left(e_{1}, \ldots, e_{k}\right)\right]=M\{p]\left(M_{c_{0} \ldots o_{n}}\left[e_{1}\right], \ldots, M_{\left.00 \ldots o_{n}\left\|e_{k}\right\|\right)}\right.$
- $M_{\rho_{0} \ldots e_{n}}\left[e_{1}=e_{2}\right\rceil=$ true iff $\quad M_{\rho_{0} \ldots *_{n}}\left\lfloor e_{1} \rrbracket=M_{s_{0} \ldots e_{n} \llbracket e_{2} \rrbracket}\right.$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

- $M_{\text {of....on }}\left[w_{1} \wedge w_{2}\right]=$ true iff $M_{\text {oo....n }}\left[w_{1}\right]=M_{\text {oo....as }}\left[w_{2}\right]=$ true
 where $s_{0}^{\prime} \ldots s_{n}^{\prime}=\left(s_{0} \ldots s_{n}\right)[V / \alpha]$ and the function $\alpha(i, j)$ maps pairs $0 \leq i \leq j \leq$ n to values in the data domain D.
- $\mathcal{M}_{\rho_{0} \ldots s_{n}} \llbracket \cap w \rrbracket=$ true iff $n \geq 1$ and $M_{\rho_{1} \ldots o_{n}} \llbracket w \rrbracket=$ true
 for some $\boldsymbol{i}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

Satisfiability and validity of formulas are as in the propositional case. All the other related temporal operators mentioned earlier are expressible as before. If the data domain D includea at least two values, the iterative construct w^{*} can also be expressed.

Arithmetic domain

We will assume that the data domain D contains natural numbers as well as nested finite lists. Both 0 and 1 serve as numbers and bits, with 0 standing for low voltage and 1 standing for high voltage. The data domain does not contain any intermediate voltages or "undefined" values. We permit finite sets and represent them by lists. The following are sample valuea:

$$
0, \quad 3, \quad\langle 0\rangle, \quad\{1,2\}, \quad(\rangle, \quad(6,3,(), 9\rangle, \quad\langle 4,\{3,2\}\rangle
$$

We adapt the convention that an n-element list L has subscripts ranging from 0 on the left to $n-1$ on the right:

$$
L=\langle L[0], \ldots, L[n-1]\rangle, \quad \text { where } n=|L|
$$

It is assumed that M contains standard interpretations of function and predicate symbols such as + , \leq and \vee (bit-or). We also include conditional expreasions and conventional operators for constructing, combining, subscripting and determining the length of finite lists and sets.

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

The unary predicate $\operatorname{nat}(U)$ is true if U 's value is a natural number (i.e., nonnegative integer).

$$
M_{s_{0} \ldots s_{n}} \llbracket n a t(U) \rrbracket=\text { true } \quad i f f \quad M_{s_{0} \ldots, s_{n}} \llbracket U \rrbracket \in\{0,1,2, \ldots\}
$$

Sometimes we use the predicate time instead of nat when the associated parameter is used as a time. The two predicates are however semantically equivalent. The predicate bit checks if a value is either 0 or 1 and the predicate positive checks for positive integers (that is, integers ≥ 1).

Temporal domain

A variable V is static in an interval $s_{0} \ldots s_{\boldsymbol{n}}$ if V has a single interpretation over all subintervals:

$$
M_{s_{0} \ldots \bullet_{n}} \llbracket V \rrbracket=M_{e_{i} \ldots a_{j}} \llbracket V \|, \quad \text { for all } 0 \leq i \leq j \leq n
$$

Just as nat and bit look at the type of a value, the predicate static checks that its parameter is static in an interval. We give static the following interpretation:

$$
M_{\mathbf{o}_{0} \ldots o_{n}} \| \text { static }(V) \rrbracket=\text { true }
$$

iff for some $d \in D$, for all $0 \leq i \leq j \leq n, M_{e_{i} \ldots, j} \llbracket V \rrbracket=d$,

Within an interval $s_{0} \ldots s_{n}$, a signal has a unique value for all subintervals starting with a given state. Thus, signals are local in the sense of LITL. The predicate signal (V) is true iff the variable V behaves as a signal. We define signal as follows:

$$
\operatorname{signal}(V) \equiv_{\text {def }} \quad \square \exists U \cdot[\operatorname{static}(U) \wedge \mathbb{\square}(V=U)]
$$

The predicate Bit checks that its parameter is always bit-valued:

$$
\operatorname{Bit}(V) \equiv_{\mathrm{dof}} \quad \square b i t(V)
$$

Naming conventions for variables

For convenience, we will associate sorts with variables:

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

- Interval variablea: A, N, X, \ldots

These can vary in value from interval to interval and are aleo known as non-local or path variables.

- Signal variables: A, N, X, \ldots

Signal variables can also be referred to as local or state variables.

- Static variables: a, n, x, \ldots

Static variables can also be called global or frame variables. All static variables are signals.

In general, variables such as A, B and c range over all elements of the data domain D. On the other hand, J, K and n range over natural numbers. The variables X, Y and z always equal one of the bit values 0 and 1 . If desired, the naming style suggested here can also be used in propositional ITL.

As in conventional first-order logic, sort information can always be made explicit. For example, a formula $\forall b$. w containing a static variable b is equivalent to the formula

$$
\forall V \cdot\left[\operatorname{static}(V) \supset w_{b}^{V}\right]
$$

where the formula w_{b}^{V} results from replacing all free occurrences of b in w by the sort-free variable V.

§3.2 Some First-Order Temporal Concepts

Within the framework of first-order temporal logic, we can explore a variety of qualitative and quantitative timing issues. The constructs given below are useful for describing and reasoning about circuits.

Temporal assignment

The formula $A \rightarrow B$ is true for an interval if the signal A 's initial value equals B 's final value:

$$
A \rightarrow B \quad \equiv_{\operatorname{def}} \quad \forall c .[\operatorname{beg}(A=c) \supset f i n(B=c)]
$$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

We call this temporal assignment. Unlike in conventional programming languagea, it is perfectly acceptable to have an arbitrary expression on the receiving end of the arrow. Furthermore, temporal assignment only affects variables explicitly mentioned; the values of other variables do not necessarily remain fixed. Incidentally, because the variables A and c are signals, the subformula $\operatorname{beg}(A=c)$ used in the definition could be replaced by $A=c$.

Examples:

Concept

Z gets the initial value of $\rightarrow Y$ I doubles
$M+N$ doesn't change A and B swap values

Formula

$$
(\neg Y) \rightarrow Z
$$

$$
2 I \rightarrow I
$$

$$
(M+N) \rightarrow(M+N)
$$

$$
(A \rightarrow B) \wedge(B \rightarrow A)
$$

As noted above, temporal assignment specifies nothing about the behavior of those variables that are not referenced. Thus, the formulas

$$
[(I+2) \rightarrow \eta]
$$

and

$$
[(I+2) \rightarrow I] \wedge[J \rightarrow J]
$$

are not equivalent.

Properties:

$$
\cdots \quad a \rightarrow a
$$

A static variable's initial and final values agree.
F $[(A \rightarrow B) ;(B \rightarrow C)] \supset(A \rightarrow C)$
If B gete $A^{\prime} s$ value and then C gets B^{\prime}, the net remult is that C gets A 's initial value.

- empty $\supset\left(A \rightarrow{ }^{\prime}\right)$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

In an empty interval, the first and last states are identical. Therefore, a variable's initial and final values agree.

$$
F(A \rightarrow B) \supset[f(A) \rightarrow f(B)]
$$

If A is assigned to B, then any time-invariant function application $f(A)$ is passed to $f(B)$.

$$
\vDash[(\neg Z \rightarrow Z) ;(\neg Z \rightarrow Z)] \supset(Z \rightarrow Z)
$$

If a bit signal is twice complemented, it ends up with its original value.

Temporal equality
Two signals A and B are temporally equal in an interval if they have the same values in all states. This is written $A \approx B$ and differs from constructs for initial and terminal equality, which only examine signals' values at the extremes of the interval:

$$
A \approx B \equiv \equiv_{\operatorname{def}} \quad \square(A=B)
$$

Because A and B are signals, the formula $A \approx B$ can also be expressed using the linear-time temporal operator \mathbb{G} :

$$
\vDash A \approx B \equiv \square(A=B)
$$

Examples:

Concept
The signal A is 0 throughout the interval
The bit-and of X and Y everywhere equals 0 X agrees everywhere with the complement of Y

Formula
$A \approx 0$
$(X \wedge Y) \approx 0$
$X \approx-Y$

Property:

$$
\vDash\left[\langle A, B\rangle \approx\left\langle A^{\prime}, B^{\prime}\right\rangle\right] \equiv\left(A \approx A^{\prime} \wedge B \approx B^{\prime}\right)
$$

The pair $\langle A, B\rangle$ temporally equale $\left\langle A^{\prime}, B^{\prime}\right\rangle$ exactly if the sional A temporally equale A^{\prime} and B temporally equals B^{\prime}.

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

Temporal stability

A signal A is stable if it has a fixed value. The notation used is atb A and can be expressed as shown below:

$$
s t b A \equiv \operatorname{def} \quad \exists b .(A \approx b)
$$

It follows from this that every static variable is stable.

Properties:

$$
f \quad \operatorname{stb} X \equiv[X \approx 0 \vee X \approx 1]
$$

A bit signal X is stable iff it is always 0 or always 1 .

$$
\text { f stb }\langle A, B\rangle \equiv[s t b A \wedge \text { stb } B]
$$

A pair is stable exactly if the two individual signals are.

Iteration

The propositional constructs w^{*} and while w_{1} do w_{2} can be expressed as in propositional ITL with quantification. We can also augment the first-order logic with iteration of the form w^{e} where w is a formula and e is an arithmetic expression. We first define the construct cycle ${ }^{\boldsymbol{e}} \boldsymbol{w}$ which iterates w the number of times apecified by e:

$$
\text { cycle }^{e} w \quad \mathbf{E}_{\text {dof }} \quad \exists I .[\operatorname{beg}(I=e) \wedge \text { while }(I \neq 0) \operatorname{do}(w \wedge[I-1 \rightarrow I)]
$$

where the quantified variable I doee not occur free in e or w. We initially net I to e and then decrement I by 1 over each iteration. The semantics of cycle are arech that the individual iterations of w take at least one unit of time since I cannot decreace in an empty interval. Thus the formulas

$$
\text { cycle‘ } \frac{1}{}
$$

and

$$
\text { cycle" }(w) \text {-empty })
$$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

are semantically equivalent.
In order for the formula w^{e} to permit possibly empty steps, we define it as follows:

$$
\boldsymbol{w}^{e} \equiv \mathrm{dof} \quad \text { cycle }^{e} w \vee \exists i, j \cdot\left(i+j<e \wedge\left[\left(c^{e} c l e^{i} w\right) ;(w \wedge \text { empty }) ;\left(\text { cycle }^{j} w\right)\right]\right)
$$

where the static variables i and j do not occur free in w or e. By introducing extra quantified variables that always equal w and e, we can modify this definition to be linear in the size of w and e.

Examples:

Concept
Z is complemented n times $\quad(\neg Z \rightarrow Z)^{n}$
N doubles some number of times
I keeps halving itself
While construct

Formula
$(2 N \rightarrow N)^{*}$
$(I \rightarrow 2 I)^{*}$
while $(I<n) d o(I+1 \rightarrow I)$

Properties:

$$
F(f(A) \rightarrow A)^{3} \supset\left[f^{3}(A) \rightarrow A\right]
$$

After a series of three applications of f, A ends up with the initial value of $f^{3}(A)$, where $f^{3}(A)=f(f(f(A)))$.

$$
k \quad\left([I+1 \rightarrow I]^{m}\right)^{n} \supset([I+m n \mid \rightarrow I)
$$

This property illustrates how to nest iteration.

Measuring the length of an interval

We will view the formula

$$
\text { len }=\mathrm{e}
$$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

an an abbreviation for the itarative conatruct

skipa

This is true exactly of intervals with length e. The construct len $\geq e$ expands to

$$
\exists i \geq e .(\text { len }=i)
$$

We can similarly use formulas such as len <e.
Alternatively, we can introduce len as an interpreted 0 -place temporal function whose value for any interval $s_{0} \ldots s_{n}$ equals the length n :

$$
M_{\iota_{0} \ldots \varepsilon_{n}} \llbracket l e n \rrbracket=n
$$

Examples:

Concept

The signal A is stable and the interval has $\geq m+n$ units In some subinterval of length $\geq m, X$ is stable I doubles in $\leq I$ steps

Formula

$\operatorname{stb} A \wedge(l e n \geq m+n)$
$-([$ len $\geq m] \wedge$ stb $X)$ $(2 I \rightarrow I) \wedge($ len $\leq I)$

Properties:

$$
F \quad \text { empty } \equiv(l e n=0)
$$

The predicate empty is true exactly if the interval has length $\mathbf{0}$.

$$
k \quad \text { skip } \equiv(l e n=1)
$$

The predicate skip is true if the interval has length exactly 1 . Since time is discrete, this is the minimum nonsero width.

$$
f(l e n=m+n) \equiv[(\text { len }=m) ;(\text { len }=n)]
$$

An interval of length $m+n$ can be subdivided into two adjacent intervals of lengths m and n. The converse is also true.

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

Expreasiona based on next

We extend the operator next to handle expressions. The construct $\mathrm{O} e$ for an interval $s_{0} \ldots s_{n}$ equals the value of the expression e in the subinterval $s_{1} \ldots s_{n}$:

$$
M_{s_{0} \ldots s_{n}} \| O \subset \rrbracket=M_{s_{1} \ldots s_{n}} \llbracket e \rrbracket
$$

If the length of the interval is 0 , the resulting value is left unspecified. The following natural extension of next facilitates looking at values some specified number of units in the future:

$$
\mathcal{M}_{s_{0} \ldots s_{n}} \llbracket O^{e_{2}} e_{2} \rrbracket=M_{s_{i} \ldots s_{n}} \llbracket e_{2} \rrbracket, \quad \text { where } i=M_{c_{0} \ldots o_{n}} \llbracket e_{1} \rrbracket
$$

This definition results in the following properties:

$$
\begin{aligned}
& k O^{0} e=e \\
& k O^{1} e=0 e
\end{aligned}
$$

We can analogously permit formulas of the form $O^{e} w$, where w is itself a formula and e is an expression.

We now show how to eliminate these constructs. The formula $\mathrm{O}^{〔} w$ abbreviates

$$
\exists i .([i=e] \wedge[(l e n=i) ; w]),
$$

where i does not occur free in w or e. A formula of the form $A=0^{e_{1}} e_{2}$ becomes

$$
\exists b .\left[\left(O^{e_{1}}\left[b=e_{2}\right]\right) \wedge(A=b)\right]
$$

where b does not occur free in e_{1} or e_{2}.

Initial and terminal stability

The predicate istb $^{m} A$ is true for an interval $s_{0} \ldots s_{\boldsymbol{n}}$ if the signal A is stable in the initial states $s_{0} \ldots s_{m}$. The next definition has this meaning:

$$
i s t b^{m} A \equiv \operatorname{def} \quad \Phi(s t b A \wedge l e n=m)
$$

Note that the formula is false on an interval of length less than m. By analogy, $\operatorname{tsta}^{m} A$ is true if A ends up stable for at least m units of time:

$$
\operatorname{tatt}^{m} A \equiv \operatorname{def} \quad \oplus(s t b A \wedge \text { len }=m)
$$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

Property:

$$
k \quad i s t b^{m+n} A \supset i s t t^{m} A
$$

The time factor can be reduced.

Blocking

It is useful to specify that as long as a signal A remains stable, so doea another signal B. We say that A blocks B and write this as A blk B. The predicate blk can be expressed using the temporal formula

$$
A \text { blk } B \equiv_{\text {def }} \quad \mathbb{\square}(s t b A \supset s t b B)
$$

Examples:

Concept
While A remains stable, so do B and C
As long as the pair $\langle A, B\rangle$ is stable, so is C

Formels
A buk ($B, C)$
$\langle A, B\rangle$ blk C

Properties:

$$
\vDash[A \text { blk } B \wedge \text { atb } A] \supset \text { stb } B
$$

If A blocks B and A is stable, then so is B.
F $[$ A blk $B \wedge B$ blk $C] \supset A$ blk C
Blocking is transitive.
f A blk $\langle B, C\rangle=[A$ blk $B \wedge A$ blk $C]$
The aignal A blocks the pair (A, B) exactly if A blocks both B and C. This and the next property generalise to linte of arbitrary length.

- (A, B) buk $C \equiv[A$ but $C \vee B$ buk $C]$

The pair (A, B) blocks C if A blocks C or B blockes C.

- A blk $B \supset($ stb $A \leadsto A$ blk $B)$

If A blocks B, then after A is stable it continues to block B.
The predicate $A b l k B$ can be extended to allow for quantitative timing. When describing the behavior of digital circuits, it is often useful to state that in any initial interval where A remains stable up to within the last m units of time, B is stable throughout:

$$
A b l k^{m} B \equiv_{\text {def }} \quad \mathbb{\square}[(s t b A ; l e n \leq m) \supset \text { stb } B]
$$

This modification has utility in situations where B is known to be slow in responding to changes in A.

Properties:

$$
F \quad A b l k B \equiv A b l k^{0} B
$$

The original notation is equivalent to the quantitative one with blocking factor 0 .

$$
\vDash\left[A b l k^{m} B \wedge B b l k^{n} C\right] \supset A b l k^{m+n} C
$$

Transitivity accumulates blocking factors. Other properties of the predicate blk can also be extended to include quantitative timing.

$$
\pm A b l c^{1} A \supset s t b A
$$

If a signal A won't change until after it does then A is stable. This is a form of induction over time. The converse is also true.

Rising and falling signale

A rising bit signal can be described by the predicate $\uparrow X$:

$$
\uparrow X \quad \equiv_{\mathrm{dof}} \quad[(X \approx 0) ; \text { skip; }(X \approx 1)]
$$

This says that X is 0 for a while and then jumps to 1 . The gap of quantum length represented by the test skip is necessary here since a signal cannot be 0 and 1 at the same instant. Falling signals are analogously described by the construct $\downarrow X$:

$$
\downarrow X \quad \equiv \text { der } \quad[(X \approx 1) ; \text { skip; }(X \approx 0)]
$$

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

Examples:

Concept	Formula
X is stable and Y goes up	stb $X \wedge \dagger Y$
The bit-or of X and Y falls	$\downarrow(X \vee Y)$
In every subinterval where X rises, Y falls	$\square(\dagger X \supset \downarrow Y)$
X goes up and then back down	$\dagger X ; \downarrow X$
X twice goes up and down	$(\dagger X ; \downarrow X)^{2}$

Properties:

$$
\vDash(\uparrow X \wedge \uparrow Y) \supset[\uparrow(X \wedge Y) \wedge \uparrow(X \vee Y)]
$$

If two bit signals rise, so do their bit-and and bit-or.

$$
\vDash \downarrow X \equiv \uparrow(\neg X)
$$

A bit signal falls exactly if its complement rises.

$$
\vDash[\dagger X \wedge \operatorname{beg}(Y=0) \wedge(X \text { blk } Y)] \supset \uparrow(X \vee Y)
$$

If X rises and in addition Y initially equals 0 and depends on X, then the bit-or of X and Y also rises.

These operators can be extended to include quantitative information specifying minimum periods of stability before and after the transitions. For example, timing details can be added to the operator \dagger :

$$
\dagger^{m, n} X \equiv \equiv_{\text {dof }}[(X \approx 0 \wedge \text { len } \geq m) ; \text { skip; }(X \approx 1 \wedge \text { len } \geq n)]
$$

This can also be expressed as shown below:

$$
\mapsto \dagger^{m, n} X=\left(\uparrow X \wedge \text { istb }^{m} X \wedge t a t b^{n} X\right)
$$

Thus, the extended form of \dagger can be reduced to the original one with separate details concerning initial and terminal stability.

CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

A negative pulse with quantitative information can be described as shown below:

$$
\begin{aligned}
& \downarrow \dagger^{l, m, n} X \equiv \\
& \quad[(X \approx 1 \wedge \text { len } \geq l) ; \text { skip; } \\
& \quad(X \approx 0 \wedge \text { len } \geq m) ; \text { skip } ;(X \approx 1 \wedge \text { len } \geq n)]
\end{aligned}
$$

Positive pulses of the form $\dagger \downarrow^{l, m, n} X$ are similarly defined. These constructs can be further modified to provide for noninstantaneous rise and fall times.

Smoothness

A bit signal X is smooth if it is either stable or has a single transition. The following definition illustrates one way to express smoothness:

$$
\operatorname{sm} X \quad \equiv \operatorname{dof} \quad(s t b X \vee \upharpoonleft X \vee \downarrow X)
$$

The next property gives two equivalent ways to say that a bit signal raises or falla:

$$
\vDash(\uparrow X \vee \downarrow X) \equiv(\operatorname{sm} X \wedge[\neg X \rightarrow X])
$$

Since digital devices often require clock inputs to be smooth, it is sometimes important to ensure that a signal has this property. The predicate sm can be extended to include quantitative timing details similar to those given for the predicates \dagger and \downarrow :

$$
s m^{m, n} X \equiv \equiv_{\mathrm{def}} \quad\left(s m X \wedge i s t b^{m} X \wedge t s t b^{n} X\right)
$$

The notion of smoothness generalizes to arbitrary signals. A scalar-valued signal A is smooth if it is either stable or has a single transition:

$$
\operatorname{sm} A \equiv \equiv_{\operatorname{def}} \quad[s t b A \vee(s t b A ; \text { skip; stb } A)]
$$

A list L is inductively defined to be smooth if all its components are amooth:

$$
\operatorname{sm} L \equiv \operatorname{def} \quad \forall 0 \leq i<|L| \cdot(\operatorname{sm} L[i])
$$

The individual components of L need not all change at the same instant.

Chapter 4

DELAYS AND COMBINATIONAL ELEMENTS

Delay is a fundamental phenomenon in dynamic systems and an examination of it touches upon basic issues ranging from feedback and parallelism to implementation and internal device states. In addition, a key design decision in building any hardware simulator centers around the treatment of delay. For example, Breuer and Friedman [10] and Blunden et al. [8] present a number of models of propagation. For these and other reasons, it is worth taking a detailed look at various forms of signal propagation.

§4.1 Unit Delay

One of the simplest and most important types of delay elements can be modeled as having the following structure:

Here A is the input signal and B is the associated output. The following statement uses intervals to characterize the desired behavior:

In every subinterval of length exactly one unit, the initial value of the imput A equals the final value of the output B.

The next predicate del formalises this:

$$
A \operatorname{del} B \quad \square[(l e n=1) \supset(A \rightarrow B)]
$$

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENTS

Propertica:

$$
\vDash(A \operatorname{del} B) \equiv(\text { skip } \wedge[A \rightarrow B])^{*}
$$

Unit delay can also by viewed as the successive iteration of atomic assignments. This suggests how to implement unit delay by means of looping.

$$
(A \operatorname{del} B) \equiv \operatorname{keep}(A=O B)
$$

The concept of unit delay can be expressed in semicolon-free linear-time temporal logic.

$$
=(A \operatorname{del} A) \equiv \text { stb } A
$$

If a signal is feed back to itself, it is atable. The converse is also true.

§4.2 Transport Delay

It is natural to extend the predicate del to cover delays over \boldsymbol{m}-unit intervals:

$$
A \operatorname{del}^{m} B \equiv \equiv_{\text {def }} \quad \square(\text { len }=m \supset[A \rightarrow B])
$$

Breuer and Friedman [10] refer to this as transport delay.

Properties:

$$
k\left(A \operatorname{del}^{0} B\right) \equiv(A \approx B)
$$

Zero delay is equivalent to temporal equality.

$$
m A \operatorname{del}^{0} A
$$

A signal has zero delay to itself.

$$
F\left(A \operatorname{del}^{m} B \wedge B \operatorname{del}^{n} C\right) \supset A \operatorname{del}^{m+n} C
$$

Delay is cumulative.

$$
F\langle A, B\rangle \operatorname{del}^{m}\left(A^{\prime}, B^{\prime}\right) \equiv\left(A \operatorname{de} l^{m} A^{\prime} \wedge B \operatorname{del}^{m} B^{\prime}\right)
$$

Delay between pairs is equivalent to component-wise delay. This generalises to lists of arbitrary length.

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENT8

§4.3 Functional Delay

Often, one signal receives a delayed function of another. The following examples illustrate this and are based on the predicate del although the other delay models later presented can also be used.

Examples:

Concept
X keeps on being complemented B either accepts A or itself, depending on X N keeps on doubling
A receives a delayed $f(A, B)$ I keeps decrementing by 1

Formula

$$
(\neg X) \operatorname{del} X
$$

$[i f(X=1)$ then A else $B]$ del B $2 N$ del N
$f(A, B) \operatorname{del} A$
$I \operatorname{del}(I+1)$

Here is the description of a system that runs the variable I from 0 to n and simultaneously sums I into J :

$$
\operatorname{beg}(I=0 \wedge J=0) \wedge[(I+1) \operatorname{del} \Pi] \wedge[(J+I) \operatorname{del} J] \wedge \operatorname{halt}(I=n)
$$

Properties:

- $\left[f(A) \operatorname{del}^{m} B \wedge g(B) \operatorname{del}^{n} C\right] \supset g(f(A)) \operatorname{del}^{m+n} C$

Functional composition applies.
$F(-X) \operatorname{del}^{m} Y \equiv X \operatorname{del}^{m}(\neg Y)$
Bit inversion can occur either on the input or output.

$$
F\left[(\neg X) \operatorname{del}^{m} Y \wedge(\neg Y) \operatorname{del}^{n} Z\right] \supset X \operatorname{del}^{m+n} Z
$$

Two inverters cancel.

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENTS

54.4 Delay Based on Shift Register

An ($m+1$)-bit vector R acting as a shift register can be specified as follows:

$$
R[0] \operatorname{del} R[1] \wedge \cdots \wedge R[m-1] \operatorname{del} R[m]
$$

Over each unit of time, the contents of R shift right by one element. That is, the value of $R[0]$ is passed to $R[1]$ and so forth. This description is more formally expressed by means of quantification:

$$
\forall i \in[0, m-1] .(R[i] \operatorname{del} R[i+1])
$$

The next formula has the same meaning but is more concise:

$$
R[0 \text { to } m-1] \text { del } R[1 \text { to } m],
$$

where the vector $R[0$ to $m-1]$ by definition equals $\langle R[0], \ldots, R[m-1]\rangle$.
The following property shows how to achieve an m-unit delay by means of such a shift register:

$$
\begin{equation*}
=R[0 \text { to } m-1] \text { del } R[1 \text { to } m] \supset R[0] \text { del }^{m} R[m] \tag{*}
\end{equation*}
$$

This suggests an implementation of A del ${ }^{m} B$ of the form A shdel ${ }_{R}^{m} B$:

$$
A \text { shdel } l_{R}^{m} B \quad \equiv \text { dof } \quad(A \approx R[0] \wedge R[m] \approx B \wedge R[0 \text { tom }-1] \text { del } R[1 \text { to } m])
$$

Here, the value of A is fed into $R[0]$ and B receives the value $R[m]$. The correctness of this implementation is given by the following property:

$$
\cdots A \text { shdel } l_{R}^{m} B \supset A \text { del }^{m} B
$$

We can localize R in the formula A shdel $m_{R}^{m} B$ by defining a variant A shdel ${ }^{m} B$ that existentially quantifies over R :

$$
A \text { shdel } l^{m} B \quad \equiv \text { dof } \quad \exists R .\left[\left(R: \text { signal }^{m+1}\right) \wedge\left(A \text { ahdele } l_{R}^{m} B\right)\right]
$$

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENTS

Here the construct
R : signal ${ }^{m+1}$
constrains R to being a vector of $m+1$ signals. This notation will be described in more detail in the next chapter. Note that R is assumed to exist without necessarily being externally visible to an observer. The quantifier's effect on scoping is similar to that of a begin-block in a conventional block-structured programming language. We call A shdel ${ }^{m} B$ an external specification of the implementation. In fact, this is logically equivalent to the basic delay predicate A del $l^{m} B$ as the next property states:

$$
\text { F A shdel }{ }^{m} B \equiv A \text { del }^{m} B
$$

Basically, the proof that shdel implies del follows from the property (*) given above. The converse requires demonstrating that some R exists. Perhaps the easiest way to do this is by direct construction. At each instant of time, the values of the $m+1$ elements of R can be those of the next $m+1$ values of B in appropriate order:

$$
R[i] \approx O^{m-i} B, \quad \text { for } 0 \leq i \leq m
$$

The output value $R[m]$ always equals the expression $O^{0} B$, which is defined to be B^{\prime} s current value. Similarly, $R[0]$ always equals $O^{m} B$, that is, the value B will have m units later. This technique works even if the interval has length less than m.

§4.5 Variable Transport Delay

A batch of delay elements may have varying characteristics although each individual device is rather fixed in its timing behavior. The predicate A vardel ${ }^{m, n} B$ specifies that A 's value is propagated to B by transport delay with some uncertain factor between m and n :

$$
A \text { vardel }^{m, n} B \quad \equiv_{\mathrm{def}} \quad \exists i \in[m, n] \cdot\left(A \text { del } l^{\prime} B\right)
$$

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENTS

§4.6 Delay with Sampling

Digital circuits often require that inputs remain stable and be sampled for some minimum amount of time in order to ensure proper device operation. The delay model A sadel B has this characteristic:

$$
\text { A sadel }{ }^{m} B \equiv \operatorname{def} \quad \square[(s t b A \wedge l e n \geq m) \supset f i n(A=B)]
$$

Here the input A must be stable at least m units of time for the output B to equal A. Behavior during changes in A is left unspecified. The properties below illustrate two other ways of expressing sadel. We present them to demonstrate other possible styles:

$$
\begin{aligned}
& F A \text { sadel }^{m} B \equiv \square\left(t t a t b^{m} A \supset \operatorname{fin}(A=B)\right) \\
& F A \text { sadel }^{m} B \equiv\left[\operatorname{tatb}^{m} A->\operatorname{leg}(A=B)\right]
\end{aligned}
$$

Properties:

$$
F A \text { del }^{m} B \supset A \text { sadel }^{m} B
$$

Basic delay implements sampling-time delay.

$$
\vDash A \text { sadel }{ }^{m} B \equiv\left(t a t b^{m} A \rightarrow[\text { beg }(A=B) \wedge A \text { blk } B \mid)\right.
$$

Once the device stabilises, the input A blocks the output B.
The predicate sadel can be extended to associate some factor with the blocking of B by $A:$

$$
A \text { sadel }{ }^{m, n} B \quad \overline{Z E}_{\text {dof }} \quad\left(t_{s t b^{m}} A \rightarrow\left[b e g(A=B) \wedge A b l k^{n} B\right]\right)
$$

In a sense, m is the maximum delay and n in the minimum delay.

54.7 An Equivalent Delay Model with an Internal State

A related delay model Astdel ${ }^{m, n} B$ in baed on a bit flas X that is set to 1 after the input A has been held stable m unita. Whenever X in 1 , the input A equale the

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENTS

output B and blocks X, which in turn blocks B by the factor n :

$$
\begin{aligned}
& \text { A stdel } l_{X}^{m, n} B \quad \equiv_{\text {dof }} \\
& \qquad \square([a t b A \wedge \operatorname{len} \geq m] \supset f i n(X=1)) \\
& \quad \wedge \square\left(b e g(X=1) \supset\left[\operatorname{beg}(A=B) \wedge A b l k X \wedge X b l k^{n} B\right]\right)
\end{aligned}
$$

In the manner described earlier, we internalize X by existentially quantifying over it:

$$
\text { A stdel }{ }^{m, n} B \equiv \exists X .\left(A \text { stdel } \boldsymbol{X}^{m, n} B\right)
$$

This external form is in fact logically equivalent to A sadel ${ }^{m, n} B$:

$$
F A \text { stdel }{ }^{m, n} B \equiv A \text { sadel }^{m, n} B
$$

The following construction for X can be used:

$$
X \approx\left(i f\left[\operatorname{beg}(A=B) \wedge A b l k^{n} B\right] \text { then } 1 \text { else } 0\right)
$$

The right hand expression is not a signal but is converted to one as outlined in the next chapter.

There are a variety of specifications that use different internal signals such as X and yet are externally equivalent.

§4.8 Delay with Separate Propagation Times for 0 and 1

Sometimes it is important to distinguish between the propagation times for 0 and 1. The following variant of sadel does this by having separate timing values for the two cases. The delay's input and output are both bit signals.

$$
\begin{aligned}
& X \text { sadel01 }{ }^{m, n} Y \equiv \text { def } \\
& \quad \square([X \approx 0 \wedge \text { len } \geq m] \supset \operatorname{fin}(X=Y))
\end{aligned}
$$

$$
\wedge \square([X \approx 1 \wedge \text { len } \geq n] \supset f i n(X=Y))
$$

Property:

$$
\cdots X \text { sadel01 }{ }^{m, n} Y \supset X \text { sadel }\left.\right|^{\max (m, n)} Y
$$

The separate propagation times can be reduced to those for the more general form of sampling-time delay by using the larger of the two parameters.

CHAPTER 4—DELAYS AND COMBINATIONAL ELEMENTS

§4.9 Smooth Delay Elements

It is possible to specify that between times when the delay element is steady, if the input changes amoothly, then so does the output. We call such a device a smooth delay element. This type of delay has utility in systems that must propagate clock signals without distortion. Here is a predicate based on the earlier specification stdel:

$$
\begin{aligned}
& \text { Asmdel } l_{X}^{m, n} B \quad \equiv \operatorname{def} \\
& \quad A \text { stdel } \boldsymbol{X}_{X}^{m, n} B \\
& \quad \wedge \llbracket([\operatorname{beg}(X=1) \wedge \operatorname{fin}(X=1) \wedge \operatorname{sm} A] \supset \sin B)
\end{aligned}
$$

The external form quantifies over \boldsymbol{X} :

$$
A \text { smdel } l^{m, n} B \quad \equiv{ }_{\text {dof }} \quad \exists X .\left(A \text { smdel } l_{X}^{m, n} B\right)
$$

§4.10 Delay with Tolerance to Noise

Sometimes it is important to consider the affects of transient noise during signal changes. A signal A is almost smooth with factor l if A is continuously stable all but at most l contiguous units of time:

$$
\text { stb } A_{i}(l e n \leq l) ; \text { atb } A
$$

The delay model toldel is similar to amdel but has an additional timing coefficient l for showing how almost amooth input changes reault in smooth output transitions:

$$
\begin{aligned}
& \text { A toldel } l_{X}^{m, n, l} B=\text { dof } \\
& \qquad A \text { stdel } l_{X}^{m, n} B \\
& \\
& \quad \wedge \square[(\text { beg }(X=1) \wedge \text { fin }(X=1) \wedge[\text { stb } A ;(\text { len } \leq l) ; \text { stb } A]) \supset \operatorname{sm} B]
\end{aligned}
$$

From thi we can obtain the external form

$$
\text { A toldel } l^{m, n, t} B
$$

The predicate amdel is a special case of toldel with a noise tolerance of 1 time unit:

$$
\text { m A smdel }{ }^{m, n} B \equiv A \text { toldel } l^{m, n, 1} B
$$

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMEENTS

34.11 Gates with Input and Output Delays

One might specify an and-gate with both input and output delays as follows:
$\left(X, X^{\prime}\right)$ saand $d^{m, n} Y \equiv$ dof $\quad \exists Z, Z^{\prime} \cdot\left[X\right.$ sadel $^{m} Z \wedge X^{\prime}$ sadel $^{m} Z^{\prime} \wedge\left(Z \wedge Z^{\prime}\right)$ sadel $\left.{ }^{n} Y\right]$
Here a delay exists from the input X to an internal signal Z and another delay exists from X^{\prime} to Z^{\prime}. The bit-and of Z and Z^{\prime} is propagated to Y. The input delays are given by m and the output delay by n. If we choose to ignore input delays, the model reduces to a single occurrence of sadel:

$$
F\left(X, X^{\prime}\right) \operatorname{sand}^{0, n} \equiv\left(X \wedge X^{\prime}\right) \text { sadel }{ }^{n} Y
$$

If the internal propagation is modeled by tranaport delay, things are even simpler. Here is an and-gate specified i_{1} this manner:

$$
\left(X, X^{\prime}\right) \operatorname{tand}^{m, n} Y \equiv \equiv_{\text {def }} \exists Z, Z^{\prime} \cdot\left[X \operatorname{del}^{m} Z \wedge X^{\prime} \operatorname{del}^{m} Z^{\prime} \wedge\left(Z \wedge Z^{\prime}\right) \operatorname{del}^{n} Y\right]
$$

The predicate tand simplifies even if the internal input delay m is not sero:
$F\left(X, X^{\prime}\right) \operatorname{tand}^{m, n} Y \equiv\left(X \wedge X^{\prime}\right) d e l^{m+n} Y$

\$4.12 High-Impedance

Digital devices sometimes use the phenomenon of high-impedance as a decentralised means for sharing a common output among several sources. Each source has its own enabling signal which, when on, causes data to pase to the output. When the enable signal is off, the connection "disconnects" or "floats." Pass transistors in MOS semiconductor technology and tri-state drivers in TTL exhibit this kind of behavior. See Gachwind and McCluskey [17] or Mead and Conway [32] for details.

The predicate A pase $x B$ specifies the connection of the signals A and B when the bit signal X in 1 :

$$
A \text { pases }_{X} B=\equiv_{\text {dof }} \boxtimes[(X=1) \supset(A=B)]
$$

CHAPTER 4-DELAYS AND COMBINATIONAL ELEMENTS

Thus the pair of devices

$$
\left(A^{\text {pass }} x B\right) \wedge\left(A^{\prime} \text { pass }_{\neg}{ }_{x} B\right)
$$

will pass the signal A to B when X is 1 and will pass the signal A^{\prime} to B when X is 0 . The following formula has the same semantics:

$$
\text { (if } \left.[X=1] \text { then } A \text { else } A^{\prime}\right) \approx B
$$

The predicate pass shows that the key feature of high impedance can be modeled in ITL without the introduction of extra bit values.

Properties:
$1 \Rightarrow$ A pass $_{x} B \equiv B$ pass $_{x} A$
A pass transistor is commutative.

- [A pases x $B(X \approx 1)] \supset(A \approx B)$

During intervals when the pass transistor is enabled, the input and output are equal.
$-\left[A\right.$ pass $_{x} B \wedge B$ pass $\left._{Y} C\right] \supset A$ pass $_{(X \wedge Y)} C$
Pass transitor behavior is transitive.

Chapter 5

ADDITIONAL NOTATION

This chapter introduces some useful notation that we need before looking at more complicated devices.

§5.1 Reverse Subscripting

Because some of the devices we present deal with numbers and their representation as bit vectors, it is convenient to occasionally adapt an alternative subscripting order. Subscripts on a vector $V=\left\langle v_{0}, \ldots, v_{m}\right\rangle$ normally range from 0 on the left to n on the right. The construct $V[i]$ follows this style. However, in order to simplify reasoning about the correspondence between a bit vector and its numerical equivalent, a slightly different convention is sometimes used. The alternative notar tion $V\{i\}$ indexes V from the right with the right-most element having subecript 0 . For example:

$$
\begin{gathered}
\langle 1,0,5) \\
\dagger
\end{gathered}\left\{\begin{array}{l}
\} \\
\end{array}=5, \quad\langle 1,0,5)\{(1\}=0, \quad\langle 1,0,5)\{2\}=1\right.
$$

For a vector V and $i \geq j$, the expression $V\{i$ io $j\}$ forms a new vector out of the elementa indexed from i down to j. If $i<j$, the empty vector is returned. For example,

$$
\langle 0,0,4,2) \not(3 \sim 1\}=\langle 0,0,4\rangle, \quad(0,1\rangle \not(0\llcorner 0\}=\langle 1\rangle, \quad\langle 3,1,0,1)\{1\llcorner 2\}=\langle \rangle
$$

CHAPTER 5-ADDITIONAL NOTATION

\$5.2 Conversion from Bit Vectors to Integers

The function nval converts a bit vector to its unsigned numerical value. For example,

$$
\operatorname{nval}((0,1,1))=3, \quad \operatorname{nval}((1,1,0,0\rangle)=12
$$

The following definition of nval can be used:

$$
n v a l(\vec{X})=\text { def } \sum_{0 \leq i<|\vec{X}|}\left(2^{i} \cdot \vec{X} f i f\right)
$$

§5.3 Tuples and Field Names

We also permit composite values with field names. For example, the pair

$$
\langle X: 3, Y: 4\rangle
$$

has one clement accessed by the field X and another by accessed by Y. A given field name cannot be used twice in a tuple. For an given expression e, the value in field X can be referenced to as
e.X.

Thus, if a variable A equals the tuple above, the value of $A . X+A . Y$ is 7. Arbitrary nesting of such references is permitted.

Sometimes it is desired to let the particular field selected be variable. In that case we use field names such as ' X and ' Y which can be used like numerical subscripts. For example, the expressions $A[' X]$ and $A . X$ are equivalent. Thus, if the variable b equals either ' X or ' Y, the expression $A[b]$ equals either $A . X$ or A.Y. Note that the expression $A . b$ is not equivalent to $A[b]$ but rather $A[' b]$. Rather than extend the data domain, We view each field name as representing a distinct numerical constant. Thus, ' X might stand for 23 . We view a construct such as ' $\{A, B\}$ as an abbreviation for the set $\left\{{ }^{\prime} A, ' B\right\}$.

§5.4 Types for Lists and Tuples

Given two predicates p and q, we form the predicate $p \times q$ which is true for any pair whose first element satisfies p and whose second element aatiefies q. For

CHAPTER 5-ADDITIONAL NOTATION

example, the formula

$$
(\text { nat } \times \text { bit })((3,1\rangle)
$$

is true. In general, we write such a test as

$$
(3,1):(\text { nat } \times \text { bit })
$$

This can be considered an abbreviation for the formula

$$
|(3,1)|=2 \wedge \operatorname{nat}(\langle 3,1\rangle[0]) \wedge \operatorname{bit}(\langle 3,1\rangle[1])
$$

The operator \times extends to n-element tuples:

$$
p_{1} \times \cdots \times p_{n},
$$

where p_{1}, \ldots, p_{n} are unary predicates. In addition, the construct p^{n} is equivalent to n repetitions of p. For instance, the test

$$
a: n a t^{3}
$$

is true if a is a triple of natural numbers.
The predicate struct $\left(X_{1}: p_{1}, \ldots, X_{n}: p_{n}\right)$ checks for tuples whose elements have field names X_{1}, \ldots, X_{n} and satisfy the respective types p_{1}, \ldots, p_{n}. For example, the predicate

$$
\text { struct }\left(X: n a t, Y: b i t^{2}\right)
$$

is true for tuples such as

$$
\langle X: 3, Y:\langle 1,0\rangle\rangle .
$$

§5.5 Temporal Conversion

Sometimes a formal parameter of a predicate or function has a sort that is slightly incompatible with that of the corresponding actual parameter. For example, in the formula

$$
A \operatorname{del}^{N} B
$$

CHAPTER 5-ADDITIONAL NOTATION

the signal variable N is in a place requiring a static delay factor. We handle this by temporally converting the occurrence of N to a static variable. Thus, the formula just given is considered a syntactic abbreviation for

$$
\exists i .\left[(i=N) \wedge\left(A \operatorname{del}^{i} B\right)\right] .
$$

In essence, the initial value of N is used as the delay factor. This convention corresponds to the technique of call-by-value parameter passing in standard programming languages. The formula

$$
A \approx B
$$

expands to

$$
\exists C .[\circlearrowleft(C=B) \wedge(A \approx C)]
$$

The occurrence of the interval variable B is replaced by a signal C that agrees with B in all terminal subintervals.

Chapter 6

ADDERS

In many computations involving arithmetic operations, it is advantageous to directly reason about numbers. We will now concentrate on addition. To express that the numerical variable I always equals the sum of J and K, we write the temporal formula

$$
I \approx(J+K)
$$

If there is, say, a unit delay, this might be given as the formula

$$
(J+K) \operatorname{del} I
$$

Even though actual computers possess only finite capacity, it is quite natural to assume an unbounded range of values. When finite precision must be accounted for, modular arithmetic can be used. For example, if it is known that I, J and K all range between 0 and $2^{n}-1$, then we can represent addition in the manner shown below:

$$
I \approx\left[(J+K) \bmod 2^{n}\right]
$$

Such descriptive techniques are sufficient for many purposes. However, in apecifications of actual digital circuits we must often descend to the level where numbers are implemented by bit vectors. For instance, given that In1, In2 and Out are all n-bit vectors, the following formula apecifies that Out always equals the n-bit sum of In1 and In2:

$$
n v a l(O u t) \approx\left([n v a l(\operatorname{In} 1)+\operatorname{nval}(\operatorname{In} 2)] \bmod 2^{n}\right)
$$

CHAPTER 6—ADDERS

Bit signals for carry-in and carry-out can be included in the manner below:

$$
n v a l((C o\rangle \| O u t) \approx[n v a l(\ln 1)+n v a l(\operatorname{In} 2)+C i]
$$

The list operator \| appends the lists (Co) and Out together. Since the carry-in Ci is a single bit (i.e., 0 or 1), it can be used directly in arithmetic expressions without reference to nval.

§6.1 Basic Adder

Let us now consider an adder specification which includes some timing information regarding propagation delay. The diagram below gives the device's various fields:

In this and further diagrams, we generally use a aingle arrow (\rightarrow) to indicate a bit input or output and a double arrow (\Rightarrow) to indicate a vector signal. The variables at the bottom of the diagram are static and usually de"ermise the device's aise or timing coefficients. Here, prd stands for the adder's propagation delay and lat stands for the adder's latency or blocking factor. The temporal apecification makea this more precise.

Formal apecification of addition circuit

The predicate BasicAdder formally characterises the circuit's deaired atructure and behavior. The device's various inputa, outpute and timing coefficients are represented as fields of the single parameter A. For example, the expreasion A.Ci equale the carry input. The predicate's definition makes reference to other predicatee given

CHAPTER 6-ADDERS

later.

$$
\begin{gathered}
\text { BasicAdder(A) }{ }_{\text {BasicA }} \\
\text { BadderStructure(A) } \\
\wedge \text { Add }(A)
\end{gathered}
$$

The predicate BasicAdderStructure presents A's fields. The predicate Add gives the control sequencing required to perform an addition. The operator \square indicates that Add must be true in all subintervals.

Definition of BasicAdderStructure:

The definition below of BasicAdderStructure contains information on the physical structure of the adder. Fields starting in upper case represent signals while lower-case ones are static. Constructs such as "\%Inputs" are comments included to classify the various circuit fields. For example, $A . I n 1$ is an input bit vector. The input bit vectors In1 and In2 are of length n as is the output vector Out which yields the sum. The input bit Ci determines the carry input and Co receives the carry output. The values lat and prd are the latency and propagation times.

$$
\text { BasicAdderStructure(A) } \equiv_{\text {dof }}
$$

A: struct[
(In1, In2): Bitn, ${ }^{n} \quad$ \%Inpute
Ci: Bit
Out: Bit ${ }^{n}$, \quad OOutputs
Co: Bit
n: nat, (prd, lat): time \%Parametera
]
For brevity, the prefix "A." is omitted when a field is referenced below.

Definition of Add:

After the inputa In1, In2 and $C i$ are held atable long enough, the combined numerical value of the outputa Out and Co equals the inputa' numerical sum. In

CHAPTER 6-ADDERS

addition, there is a certain amount of latency. Recall that the function nval converta a bit sequence to the corresponding numerical value.

$$
\begin{aligned}
& \operatorname{Add}(A) \quad \sum_{\text {def }} \\
& \qquad \begin{aligned}
&(\operatorname{stb}(\operatorname{In} 1, \operatorname{In} 2, C i\rangle \wedge \text { len } \geq p r d) \\
& \rightarrow[n v a l(\langle C o\rangle \| O u t)=(n v a l(\operatorname{In} 1)+n v a l(\operatorname{In} 2)+C i) \\
&\left.\wedge(\operatorname{In} 1, I n 2, C i\rangle b l k^{\text {lat }}\langle C o, O u t\rangle\right]
\end{aligned}
\end{aligned}
$$

It is possible to modify the predicate BasicAdder to handle other combinational logic elements with similar timing characteristics.

Combining two adders

Two such adders can be used to build a bigger one by appending the corresponding vector inputs and outputs and using the carry-out of one adder as the carry-in of the other. The following property formally expresses this:

- [BasicAdder $(A) \wedge$ BasicAdder $(B) \wedge(A . C i \approx B . C o)] \supset$ BasicAdder (C) where the tuple C has exactly the following fields and connections to A and B :

C.In1	\approx	A. $\operatorname{In} 1\left\|\mid 1 \ln ^{\text {In } 1}\right.$	
C.In2	\approx	A.In2 \|	B.In2
C.Ci	\approx	$B . C$	
C. Out	\approx	A. Out \|	B.Out
C.Co	\approx	A.Co.	
C.n	$=$	A. $n+B . n$	
C.lat	$=$	$\min ($ A.lat, B.lat)	
C.ppd	$=$	A.prd + B.prd	

Here \boldsymbol{A} contains the mont significant bits and \boldsymbol{B} contains the least significant ones. The operator || appende two lints together.

CHAPTER 6-ADDERS

§6.2 Adder with Internal Status Bit

An adder of length n can be defined to include an internal status bit in the manner of the delay model atdel. Here is the device structure:

n, prd, lat
The specification given below is externally equivalent to BasicAdder.

Definition of StatuaAdder:

StatuaAdder(A) $\equiv_{\text {dof }}$
StatuaAdderStructure(A)
\wedge ■ Add(A)
\wedge ■Steady(A)

Definition of StatuaAdderStructure:

StatusAdderStructure(A) 三dof	
A: struct[
(In1, In2): Bit ${ }^{\text {n }}$, Ci $:$ Bit	\%Inputs
Out: Bit ${ }^{\text {n }}$, Co: Bit	\%Ontpute
States: Bit	\%Internal
n: nat, (lat, prd): time	\%Parametera

]

CHAPTER 6-ADDERS
Definition of Add:

After the inputs remain atable long enough, their sum is propagated to the outputs and the status bit equals 1.

$$
\begin{aligned}
& \operatorname{Add}(A) \equiv \equiv_{\text {def }} \\
& \text { (stb(In1,In2, Ci>^len } \geq p r d) \\
& \supset \operatorname{fin}([\text { Status }=1] \\
& \wedge[n v a l((C o) \| O u t)=n v a l(\operatorname{In} 1)+n v a l(\operatorname{In} 2)+C i])
\end{aligned}
$$

Definition of Steady:

Whenever the signal Status is 1 , there is a certain amount of blocking from the inputs to it and the outputs.

```
Steady \((A) \quad \equiv\) def
    beg \((\) Status \(=1\) )
        \(\supset \cdot\left\{\langle\operatorname{In} 1, \operatorname{In} 2, C i\rangle\right.\) blk Status \(\wedge\langle\operatorname{In} 1, \operatorname{In} 2, C i\rangle\) blk \(\left.{ }^{\text {lat }}\left\langle O_{u t}, C o\right\rangle\right]\)
```

§6.3 Adder with More Detailed Timing Information

Further timing detaila can be accomodated se we now demonstrate. Suppose each input has its own propagation time. This can be specified as followa:

Definition of DetailedAdder:

DetailedAdder(A) =daf
DetailedAdderStructure(A)
\wedge ■ Add(A)

Definition of DetailedAdderStructure:

In this adder, there is a separate parameter for each input's propagation time.

$$
\begin{array}{lll}
\text { DetailedAdderStructure }(A) & \equiv \text { dof } & \\
\text { A: struct }[& & \\
& (\operatorname{In} 1, \operatorname{In} 2): B i t^{n}, C i: B i t & \text { \%Inputs } \\
& \text { Out: Bit }{ }^{n}, C o: B i t & \text { \%Outputs } \\
n: \text { nat, } & \text { \%Parameters } \\
& p r d:(\operatorname{In} 1, \operatorname{In} 2, C i): \text { time, } & \\
\text { lat: time } &
\end{array}
$$

We use the construct
prd: $(\operatorname{In} 1, \operatorname{In} 2, C i):$ time
to indicate that prd has three subfields accessible as prd.In1, prd.In2 and prd.Ci.

Definition of Add:

Here each input has its own time for stabilizing.

$$
\begin{aligned}
& \operatorname{Add}(A) \quad \equiv_{\text {dof }}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left[n \operatorname{al}((C o\rangle \| O u t)=\left(n v a l(\operatorname{In} 1)+n v a l(\operatorname{In2})+C_{i}\right)\right. \\
& \left.\wedge\langle\ln 1, \operatorname{In} 2, C i\rangle b l k^{\text {lat }}\langle C o, O u t\rangle\right]
\end{aligned}
$$

The sampling requirements can also be given in a less redundant form:

$$
\left.\forall \text { field } \in '\{\operatorname{In} 1, \operatorname{In} 2, C i\} .\left(\text { tat6 }{ }^{\text {prd }} \mid \text { field }\right] ~ A[\text { field }]\right)
$$

Recall that $\operatorname{}\{\ln 1, \operatorname{In} 2, C i\}$ represents the set

$$
\{' \ln 1, ' \ln 2, ' C i\} .
$$

CHAPTER 6—ADDERS
56.4 Adder with Carry Look-Ahead Outputs

Long adders usually have extra control signals to speed up the propagation of carry bits. One technique is called carry look-ahead (see [17]) and produces sum and carry outputs as well as two bit signals Gen and Prop. The structure is as follows:

n, prd, lat
The bit signal Gen is 1 iff the result of adding $\operatorname{In} 1$ and $\operatorname{In} 2$ will generate 1 as carry no matter what the carry input $C i$ is. The bit signal Prop is 1 iff the carry input $C i$ will be propagated unchanged to the carry output Co. Because both Gen and Prop can be computed without the carry input, they need not wait for carry rippling.

Definition of CarryLookAheadAdder:

CarryLookAheadAdder(A) \#izef
CLAAdderStructure(A).
$\wedge \square \operatorname{Add}(A$, output), for output \in '\{Out, Co, Gen, Prop\}
The last line is equivalent to.
$\square \operatorname{Add}\left(A, ' O_{u t}\right) \wedge \square \operatorname{Add}(A, ' C o) \wedge \square \operatorname{Add}(A, ' G e n) \wedge \square \operatorname{Add}(A, '$ Prop $)$

Definition of CLAMAdderStructure:

$$
\begin{aligned}
& \text { CLAAdderStructure(A) }=\text { daf } \\
& \text { A: struct [} \\
& \begin{array}{ll}
\text { (In1, In2): Bit", Ci: Bit } & \text { \%Inputs } \\
\text { Out: Bit }{ }^{n},(\text { Co, Gen, Prop): Bit } & \text { \%Outputs } \\
\text { n: nat, } & \text { \%Parameters } \\
\text { prd: (Out, Co, Gen, Prop): time, } & \\
\text { lat: (Out, Co, Gen, Prop): time } & \\
\text {] }
\end{array}
\end{aligned}
$$

The specification givea various propagation and latency times by making prd and lat each have a subfield for every output.

The function inputs shows the inputs used by each output:

output	inputs(A, output)
Out	$\langle(i, \operatorname{In} 1, \operatorname{In} 2\rangle$
Co	$\langle(C i, \operatorname{In} 1, \operatorname{In} 2\rangle$
Gen	$(\operatorname{In} 1, \operatorname{In} 2\rangle$
Prop	$(\operatorname{In} 1, \operatorname{In} 2)$

As noted earlier, the generate and propagate signala can be computed without reference to the carry input.

Defineition of Add:

For any selected output, after the appropriate input fielda remain stable long enough, the device satiafies the predicate result and the output depends on its associated inputi.

$$
\begin{aligned}
& \operatorname{Add}(A, \text { output }) \quad \text { Esdof } \\
& \text { (otb inputs }(A, \text { output) } \wedge \text { len } \geq \operatorname{prd}[\text { output }]) \\
& \rightarrow \text { [result }(A, \text { output) } \wedge \text { inputs }(A, \text { output) buli } A \text { [output]] }
\end{aligned}
$$

where $i=$ lat[output] and the prodicate result has the following definition:

CHAPTER Q-ADDERS

output	result $(A$, output $)$
Out	nval $($ Out $)=(n v a l(\operatorname{In} 1)+n v a l(\operatorname{In} 2)+C i) \bmod 2^{n}$
$C o$	$C o=\operatorname{carry}(n, n v a l(\operatorname{In} 1), n v a l(\operatorname{In} 2), C i)$
$G e n$	$G e n=\operatorname{carrygen}(n, n v a l(\operatorname{In} 1), n v a l(\operatorname{In} 2))$
Prop	Prop $=\operatorname{carryprop}(n, n v a l(\operatorname{In} 1), n v a l(\operatorname{In} 2))$

The functions carry, carrygen and carryprop compute appropriate values:

$$
\operatorname{carry}(n, j, k, c i)==_{\text {def }}(j+k+c i) \div 2^{n}
$$

$$
\begin{aligned}
\operatorname{carrygen}(n, j, k) & =\operatorname{dof} \text { if }(\forall c i \in\{0,1\} \cdot \operatorname{carry}(n, j, k, c i)=1) \text { then } 1 \text { else } 0 \\
\operatorname{carryprop}(n, j, k) & =\text { dof } \text { if }(\forall c i \in\{0,1\} . \operatorname{carry}(n, j, k, c i)=c i) \text { then } 1 \text { else } 0
\end{aligned}
$$

Both carrygen and carryprop can be simplified:

$$
\begin{gathered}
\operatorname{carrygen}(n, j, k)=\text { if }\left(j+k \geq 2^{n}\right) \text { then } 1 \text { else } 0 \\
\text { carryprop }(n, j, k)=\text { if }\left(j+k=2^{n}-1\right) \text { then } 1 \text { else } 0
\end{gathered}
$$

Thus, a carry is generated exactly when the sum of the two numbers j and k exceeds the capacity of n bits. Similarly, the incoming carry is propagated if the sum of j and k is the "borderline" value $2^{n}-1$. In practice, a carry look-ahead adder may output Gen and Prop in complemented form as the signals Gen and Prop.

If we ignore propagation delay, the adder has the following behavior:
\forall output \in '\{Out, Co, Gen, Prop\}. [■ result(A, output)]

Chapter 7

LATCHES

A latch is a simple memory element for storing and maintaining a single bit of data. The two inputs S and R determine what value is stored with S standing for Set and R standing for Reset. When the latch is steady, the outputs Q and \bar{Q} are complements. Note that the bar in " \bar{Q} " is part of the name and not an operator. Such elements are among the simplest storage devices that can be constructed out of TTL gates and provide a basis for building counters and other sequential components.

§7.1 Simple Latch

Here is one possible latch specification:

$$
\begin{aligned}
&(S, R) \text { latch }^{m, n}(Q, \bar{Q}) \equiv \operatorname{def} \\
& \square[(S\approx 0 \wedge R \approx 1 \wedge \text { len } \geq m) \\
&\rightarrow(\text { beg }[Q=0 \wedge \bar{Q}=1] \wedge S \text { blk }(Q, \bar{Q})]] \\
& \wedge \square[(S\approx 1 \wedge R \approx 0 \wedge \text { len } \geq m) \\
&\rightarrow(\text { beg }[Q=1 \wedge \bar{Q}=0] \wedge R \text { blkn }(Q, \bar{Q}))]
\end{aligned}
$$

For acample, the specification states that after S is 1 and R is 0 for at least m unite of time, Q equals $1, \bar{Q}$ equals 0 and R blocks both with factor n. That in, the outputs are stable as long as R remains "inactive" at 0 , independent of S 's behavior.

CHAPTER 7-LATCHES

Such a latch can be constructed out of two nor-gates that feed back to one another:

$$
\begin{gathered}
-\left[\neg(R \vee \bar{Q}) \text { sadel }^{m, n} Q \wedge \neg(S \vee Q) \text { sadel }^{m, n} \bar{Q} \wedge n \geq 1\right] \\
\supset\left[(S, R) \operatorname{latch}^{2 m, n}(Q, \bar{Q})\right]
\end{gathered}
$$

For example, to set Q to 1 and \bar{Q} to 0 , we keep R at 0 and S at 1 . After m units of time, \bar{Q} equals 0 and after $2 m$ units of time, Q equals 1 . At this point both Q and \bar{Q} are stable as long as R remains equal to 0 . The gates' blocking factor n must be nonzero in order to achieve a feedback loop that maintains the values of Q and \bar{Q}.
§7.2 Conventional SR-Latch
The latch specification now given has separate parts for entering and maintaining a value in the device. The following sort of table is often given to describe operation for various input values:

S	R	Q	\bar{Q}
1	0	1	0
0	1	0	1
0	0	unchanged	
1	1	unspecified	

For example, assuming unit delay, the behavior of Q can be expressed by the formula

$$
\square[s k i p \supset([b e g(S=\neg R) \supset(S \rightarrow Q)] \wedge[b e g(S=0 \wedge R=0) \supset \text { stb } Q])]
$$

The following predicate SRLatch goes into more details on timing.

Definition of SRLatchStructure:
The latch includes the internal bit flag Status:

SRLatchStructure (L)	$\equiv_{\text {der }}$
L: struct $[$	
$(S, R):$ Bit	\%Inputs
$(Q, \bar{Q}):$ Bit	\%Outputa
Status: Bit	\%Internal
(prd, lat): time	\%Parameters
]	

CHAPTER 7-LATCHES

We use Status to indicate when the device is steady.

Definition of SRLatch:

The latch can be set to 1 , cleared to 0 , disabled or kept steady.

$$
\operatorname{SRLatch}(L) \equiv_{\mathrm{def}}
$$

SRLatchStructure (L)
\wedge © $\operatorname{Store}(L, i), \quad$ for $i \in\{0,1\}$
\wedge - Disable (L)
\wedge ■ Steady (L)
The formula

$$
\square \operatorname{Store}(L, i), \quad \text { for } i \in\{0,1\}
$$

is equivalent to

$$
\square \operatorname{Store}(L, 0) \wedge \square \operatorname{Store}(L, 1)
$$

Definition of Store:
This definition uses the static variable i to determine the value to be stored:

$$
\begin{aligned}
& \text { Store }(L, i) \\
& \qquad \begin{aligned}
{[(S \approx i)} & \wedge(R \approx \neg i) \wedge(\text { len } \geq p r d)] \\
& \supset \text { fin }[(\text { Status }=1) \wedge(Q=i)]
\end{aligned}
\end{aligned}
$$

Alternatively we can omit i by using a formula such as

$$
[s t b(S, R) \wedge \operatorname{beg}(S=\neg R) \wedge(\text { len } \geq p r d)] \supset \operatorname{fin}[(\text { Status }=1) \wedge(Q=S)]
$$

This works because S and R must be complements when setting or resetting and S matches the value stored in \boldsymbol{Q}.

Definition of Disable:

If the device is initially steady and the two inputs S and R smoothly become 0 for a period of sufficient length, the device remains steady and the outputs are

CHAPTER 7-LATCHES

stable.

$$
\begin{aligned}
& \text { Disable }(L) \quad \equiv_{\mathrm{dof}} \\
& \qquad \quad\left[\text { beg }(\text { Status }=1) \wedge \mathrm{sm}^{0, p r d}\langle S, R) \wedge \text { fin }(S=0 \wedge R=0)\right] \\
& \quad \supset[\operatorname{fin}(\text { Status }=1) \wedge \operatorname{stb}\langle Q, \bar{Q}\rangle]
\end{aligned}
$$

Definition of Steady:
When the flag Status equals 1 , the outputs Q and \bar{Q} are complements. In addition, the fag and outputs depend on the two inputs S and R.

$$
\begin{aligned}
& \text { Steady }(L) \quad \equiv_{\text {def }} \\
& \qquad \begin{array}{l}
\text { beg }(\text { Status }=1) \\
\\
\quad \supset\left[\text { beg }(\bar{Q}=-Q) \wedge\langle S, R\rangle \text { blk Status } \wedge\langle S, R\rangle b l k^{\text {lat }}\langle Q, \bar{Q}\rangle\right]
\end{array}
\end{aligned}
$$

Constructing an SR-latch

The next property shows how the first latch described implements a conventional SR-latch:

$$
\vDash\left[(S, R) \operatorname{latch}^{m, n}(Q, \bar{Q})\right] \supset \operatorname{SRLatch}(L)
$$

where the tuple L has exactly the following fields and connections:
$L . S \approx S$
$L . R \approx R$
L. $Q \approx Q$
L. $Q \approx=\bar{Q}=m$
L.prd $=m$
L.lat $=n$
and L.Status is constructed as follows:
L.Status \approx
if $\left(\exists i \in\{0,1\} \cdot\left[Q=i \wedge \bar{Q}=-i \wedge\langle S, R\rangle[i]=0 \wedge(\langle S, R\rangle[i]) b l k^{n}\langle Q, \bar{Q}\rangle\right]\right)$ then 1 else 0 At all times, L.Status is set to 1 if Q and \bar{Q} have complementary values and are blocked by S if $Q=0$ and by R if $Q=1$. The quantified variable i is used to determine the values of Q and \bar{Q}.

CHAPTER 7-LATCHES

§7.3 Smooth SR-Latch

The predicate Store in the specification SRLatch can be modified to include additional details regarding smooth transitions. As before, Store shows how to enter 0 or 1 into the latch. In addition, if the status bit is initially 1 and the inputs S and R are smooth, the outputs are also smooth. Notice that there is no requirement that Q and \bar{Q} change at exactly the same time.

$$
\begin{aligned}
& \operatorname{Store}(L, i) \quad \equiv_{\text {def }} \\
& \qquad \begin{aligned}
& {\left[t s t b^{\text {prd }}\langle S, R\rangle \wedge \text { fin }((S=i) \wedge(R=-i)]\right] } \\
& \supset[\text { fin }(\text { Status }=1 \wedge Q=i) \\
&\wedge([\operatorname{sm}\langle S, R\rangle \wedge b e g(\text { Status }=1)] \supset \operatorname{sm}\langle Q, \bar{Q}\rangle)]
\end{aligned}
\end{aligned}
$$

§7.4 D-Latch

A simple D-latch has one input pin to selectively enable the latch to accept data and another to indicate the actual value to be stored. The operation corresponds roughly to the following table, where E and D are the enable and data inputs, and Q and \bar{Q} are the outputs:

E	D	Q	\bar{Q}
1	0	0	1
1	1	1	0
0	-	unchanged	

When E is held active at $1, D$'s value is propagated through the device as through a delay element. When E is 0 , the device maintains whatever value is stored, independent of D. The formula below uses unit-delay to describe this:

$$
\text { (if }[E=1] \text { then }\langle D, \neg D\rangle \text { else }\langle Q, \bar{Q}\rangle) \text { del }\langle Q, \bar{Q}\rangle
$$

If we just look at the behavior of Q, this reduces to

$$
\text { (if }[E=1] \text { then } D \text { else } Q \text {) del } Q
$$

The D-latch is also referred to as a transparent latch because when E is enabled, the input data passes through to the output.

CHAPTER 7-LATCHES

Definition of DLatch:
As with the SR-latch, the specification has predicates for examining, modifying and disabling the device:

$$
\begin{aligned}
& \text { DLatch }(L) \equiv_{\mathrm{def}} \\
& \quad \text { DLatchStructure }(L) \\
& \wedge \boxtimes \operatorname{Store}(L) \\
& \wedge \boxtimes \operatorname{Disable}(L) \\
& \wedge \boxtimes \operatorname{Steady}(L)
\end{aligned}
$$

$$
\text { DLatchStructure }(L) \equiv_{\text {dor }}
$$

L: struct [

$$
(E, D): \text { Bit } \quad \text { \%Inputs }
$$

$$
(Q, \bar{Q}): \text { Bit } \quad \text { \%Outputs }
$$

$$
\text { Status: Bit } \quad \text { \%Internal }
$$

$$
\text { (prd, lat): time } \quad \text { \%Parameters }
$$

]

Definition of Store:
When the latch is enabled, the data signal D 's value propagates to the output Q.

$$
\begin{aligned}
& \operatorname{Store}(L) \equiv_{\text {dof }} \\
& \qquad[(E \approx 1) \wedge \operatorname{stb} D \wedge(\text { len } \geq p r d)] \supset \text { fin }[(\text { Status }=1) \wedge(Q=D)]
\end{aligned}
$$

Definition of Disable:
If the enable signal drops to 0 and the data remains stable, the latch becomes disabled and retains the value it was set to.

$$
\begin{aligned}
& \text { Disable }(L) \\
& \quad \begin{aligned}
\equiv_{\text {dof }}^{0, p r d} E & \wedge \operatorname{stb} D \wedge \text { beg }(\text { Status }=1)] \\
& \supset[\text { fin }(\text { Status }=1) \wedge \operatorname{stb}(Q, \bar{Q})]
\end{aligned}
\end{aligned}
$$

CHAPTER 7-LATCHES

Definition of Steady:

Whenever the signal Status equals 1 , the outputs Q and \bar{Q} are complements of each other. If E is disabled, it blocks the status flag and outputs. When E is enabled, the flag and outputs are blocked by E and the incoming data signal D.

$$
\begin{aligned}
& \text { Steady }(L) \quad \equiv_{\mathrm{def}} \\
& \qquad \begin{aligned}
& \operatorname{beg}(\text { Status }=1) \\
& \supset\left[\operatorname{beg}(\bar{Q}=\neg Q) \wedge V \text { blk Status } \wedge V \text { blk }^{\text {lat }}\langle Q, \bar{Q}\rangle\right]
\end{aligned}
\end{aligned}
$$

where V is a function of the enable signal's initial value:

E	V
0	$\langle E\rangle$
1	$\langle E, D\rangle$

Building a D-latch

A D-latch can be implemented by connecting a suitable combinational interface to the inputs of an SR-latch. The interface has inputs E and D and outputs S and R with stable-state behavior given by the following table:

E	D	S	R
1	0	0	1
1	1	1	0
0	-	0	0

When the interface is enabled with E at 1 , the data signal D controls S and R for clearing or setting. If E is 0 , both S and R are deactivated. The interface has the following description:

Definition of DLInterface:

DLInterface $(A) \quad \equiv_{\text {def }}$
DLInterfaceStructure(A)
\wedge © Store (A)
\wedge - Disable (A)
\wedge © Steady (A)

CHAPTER 7-LATCHES

Definition of DLInterfaceStructure:

$$
\begin{array}{ll}
\text { DLInterfaceStructure }(A) & \equiv_{\text {dof }} \\
\text { A: struct }[& \\
(E, D): \text { Bit } & \text { \%Inputs } \\
(S, R): \text { Bit } & \text { \%Outputs } \\
\text { Status: Bit } & \text { \%Internal } \\
\text { (prd, lat): time } & \text { \%Parameters } \\
] &
\end{array}
$$

Definition of Store:
When the device is enabled, the outputs eventually reflect D and its complement. This is done so that any connected SR-latch will be actively set to D 's value.

$$
\begin{aligned}
\text { Store }(A) & \equiv_{\text {dof }} \\
\qquad E \approx 1 & \wedge \text { stb } D \wedge(\text { len } \geq p r d)] \\
& \supset \cdot \operatorname{fin}[(\text { Status }=1) \wedge(S=D) \wedge(R=-D)]
\end{aligned}
$$

Definition of Disable:
When the interface is disabled, both outputs smoothly change to 0 so that any connected SR-latch retains its value.

$$
\begin{aligned}
\operatorname{Disable}(A) & \equiv \equiv_{\text {dof }} \\
{\left[\downarrow^{0, p r d} E\right.} & \wedge \text { stb } D \wedge \text { beg }(\text { Status }=1)] \\
& \supset[f i n(S t a t u s=1 \wedge S=0 \wedge R=0) \wedge \operatorname{sm}(S, R)]
\end{aligned}
$$

Definition of Steady:

When the device is steady, the status bit and outputs are blocked by the appropriate inputs:

$$
\begin{aligned}
& \text { Steady }(A) \quad \text { Idef } \\
& \quad \text { beg }(\text { Status }=1) \supset\left(V \text { blk Status } \wedge V \text { blk }^{\text {lat }}(S, R\rangle\right)
\end{aligned}
$$

CHAPTER 7-LATCHES

where V is based on the initial value of E :

E	V
0	$\langle E\rangle$
1	$\langle E, D\rangle$

Combining the interface with SR-latch

The following predicate shows how to connect the interface's outputs to the inputs of an SR-latch:

$$
\begin{aligned}
& \text { DLatchImplementation }(A, L) \equiv \equiv_{\text {dof }} \\
& \qquad \begin{array}{l}
\text { DLInterface }(A) \wedge S R L a t c h(L) \\
\wedge(A . S \approx L . S) \wedge(A . R \approx L . R)
\end{array}
\end{aligned}
$$

The next property states that this implementation results in a D-latch:

$$
\text { F DLatchImplementation }(A, L) \supset \operatorname{DLatch}(M)
$$

where

M.E	$\approx A . E$
$M . D$	$\approx A . D$
$M . Q$	$\approx L . Q$
$M . \bar{Q}$	$\approx L . \bar{Q}$
M.Status	\approx A.Status ^L.Status
M.lat	$=$ A.lat + L.lat
M.prd	$=$ A.prd + L.prd

The interface itself can be built from combinational gates based on the steadystate formula

$$
S=(E \wedge D) \wedge R=(E \wedge \neg D) .
$$

We omit the detail.

CHAPTER 7-LATCHES

Introducing a hold time

In practice, a D-latch's data input need not be held stable during the entire period when the D -latch is disabled and the enable signal drops. This can be formalized by adding a hold-time parameter hld and redefining Disable to incorporate it:

$$
\begin{aligned}
& \operatorname{Disable}(L) \equiv{ }_{\text {def }} \\
& \qquad \begin{aligned}
{\left[\downarrow^{0, p r d} E\right.} & \left.\wedge E b l k^{h l d} D \wedge b e g(\text { Status }=1)\right] \\
& \supset[f \text { fin }(\text { Status }=1) \wedge \operatorname{stb}(Q, \bar{Q}\rangle]
\end{aligned}
\end{aligned}
$$

Chapter 8

FLIP-FLOPS

§8.1 Simple D-Flip-Flop

The simple D-flip-flop described here has as inputs a clock and a data signal. The overall structure is given by the following diagram:

(c1, c2, c3, hld, lat): time

If we ignore the clock input $C k$ and assume unit delay, the flip-flop behavior can be deacribed by the formula

$$
[D \operatorname{del} Q] \wedge[(-D) \operatorname{del} \bar{\theta}]
$$

The predicate SimplaDFlip Flop given below takee a more detailed look at clocking and propagation.

CHAPTER 8-FLIP-FLOPS

Definition of SimpleDFlipFlop:

SimpleDFlipFlop(F) $\equiv_{\text {def }}$
SimpleDFFStructure(F)
\wedge ロ $\operatorname{Store}(F, i), \quad$ for $i \in\{0,1\}$

Definition of SimpleDFFStructure:

SimpleDFFStructure (F)	$\equiv_{\text {def }}$
$F:$ struct $[$	
$(C k, D):$ Bit	\%lnputs
$(Q, \bar{Q}):$ Bit	\%Outputs
$(c 1, c 2, c 3$, hld, lat): time	\%Parameters

Definition of Store:
The predicate Store shows how to store a value in the flip-fiop:

$$
\begin{aligned}
& \operatorname{Store}(F, i) \quad \equiv_{\text {def }} \\
& \qquad \begin{aligned}
& {\left[\dagger \downarrow^{c 1, e 2, c 3} C k \wedge C k b l k \wedge d\right.} \\
&\wedge \operatorname{beg}(D=i)] \\
&\left.\rightarrow \operatorname{beg}(Q=i \wedge \bar{Q}=\neg i) \wedge C k b l k^{\operatorname{lat}}(Q, \bar{Q})\right]
\end{aligned}
\end{aligned}
$$

The flip-flop specification can be generalized into a multi-bit register by representing the input data and the output as vectors of the appropriate length. If atill more detail is desired, such a register can be viewed as a collection of ono-bit flip-flope, each with ite own status bit. Incidentally, it in eany to connect, say, the output of one device to the cleck input of another. Here is an exampla:

SimpleFlipFlop $(F) \wedge$ SimpleFlip Flop($G) \wedge(F . Q \approx G . C k)$

CHAPTER 8-FLIP-FLOPS

38.2 A Flip-Flop with More Timing Information

The predicate DFlipFlop presented below includen additional timing detaila. When the clock aignal rises, the current value of the data line is atored in the device. Falling clock edges leave the stored value unchanged. This description also takes a more precise look at the process of setting up the input data prior to triggering. When the internal flag Status equals 1 , as long as the clock is stable, the output bit \boldsymbol{Q} remains stable and is also available in complemented form as $\overline{\boldsymbol{Q}}$.

Definition of DFlipFlop:
Here is the main predicate:

$$
\left.\begin{array}{l}
\text { DFlipFlop }(F) \quad \equiv_{\text {dof }} \\
\\
\text { DFlipFlopStructure(} F \text {) } \\
\\
\wedge \text { ■ Store }(F) \\
\\
\wedge \square \operatorname{Nontrig(F)} \\
\end{array}\right) \square \operatorname{Steady}(F)
$$

Definition of DFlipFlopStructure:

$$
\begin{gathered}
\text { DFlipFlopStructure }(F) \equiv \mathrm{dof} \\
\text { F: struct }[
\end{gathered}
$$

$(C k, D):$ Bit	\%Inputs
$(Q, \bar{Q}):$ Bit	\%Outputs
Status: Bit	\%Internal
(stp, prd, hld, lat): time	\%Parameters

1

Definition of Store:

The predicate Store shows how the clock triggers the fip-flop to accept a new value. The data must not change nntil after the clock goes high. Before the actual

CHAPTER 8-FLIP-FLOPS
triggering, the clock and data are set up by being initially atable for at loant atp units of time. The actual clocking is given by the predicate Trigger.

$$
\begin{aligned}
& \text { Store }(F){ }^{\text {def }} \\
& \quad(s t b\langle C k, D\rangle \wedge[\text { len } \geq s t p]) \rightarrow \operatorname{Trigger}(F)
\end{aligned}
$$

If desired, we can have separate set-up times for the clock and data inputs. For example, the value stp. Ck can give the time required to set up the clock. The following formula demonstrates one way to do this:

$$
\left(t s t b^{a t p . C k} C k \wedge t_{s t b^{a t p} \cdot D}^{D}\right) \mapsto \text { Trigger }(F)
$$

Incidentally, an externally equivalent D-flip-flop specification can be given that includes an additional internal field SetupStatus equaling 1 whenever the inputs have been set up.

Definition of Trigger:
After the clock rises and triggers the device, the data input D must remain stable for at least the hold time specified by the parameter hld. If this condition in fulfilled, the device ends up steady with Status equaling 1 and Q receiving $D^{\prime} s$ initial value.

$$
\begin{aligned}
& \text { Trigger }\left(F^{\prime}\right) \text { ㅋind } \\
& \qquad\left(\dagger^{0, p r d} C k \wedge C k b k^{\text {hid }} D\right) \supset[\operatorname{fin}(\text { Statue }=1) \wedge(D \rightarrow Q)]
\end{aligned}
$$

Definition of Nontrig:
If the clock has a falling or non-triggering edge and the device is initially ateady thea the device remaine ateady and outputs are stable.

$$
\begin{aligned}
& \text { Nontrig(F) }=\text { dor } \\
& \qquad \begin{aligned}
{\left[f^{Q, p r d} C \|\right.} & \wedge \operatorname{beg}(\text { Statue }=1)] \\
& \supset[\text { fin }(\text { Statwe }=1) \wedge \operatorname{atb}(9,4]
\end{aligned}
\end{aligned}
$$

CHAPTER 8-FLIP-FLOPS
Definition of Steady:
Whenever the status bit equals 1 , it and the outputs remain stable as long as the clock does, independent of the behavior of the data input. The outputs are complements.

$$
\begin{aligned}
& \text { Steady }(F) \equiv_{\text {dof }} \\
& \quad \text { beg }(\text { Status }=1) \\
& \supset\left[\text { beg }(\bar{Q}=-Q) \wedge C k \text { blk Status } \wedge C k b l k^{\text {kat }}\langle Q, \bar{Q}\rangle\right]
\end{aligned}
$$

If desired, the latency factor can be a function of the initial value of the clock or even the currently stored value.

Comparison of the predicates SimpleDFlipFlop and DFlipFlop
The next property shows how to reduce the predicate DFlipFlop to the predicate SimpleDFlipFlop presented earlier:

$$
-\operatorname{DFlipFlop}(F) \supset \text { SimpleDFlipflop }(G)
$$

where G is constructed from F as follows:
$G[$ field $] \approx F[$ field $], \quad$ for field $\in '\{C k, D, Q, \bar{Q}\}$
$G . c 1=F . s t p$
$G . c 2=F . p r d$
$G . e 3=$
$G[$ field $] \approx F[$ field $], \quad$ for field $\in '\{C k, D, Q, \bar{Q}\}$
G.c1 $=$ F.stp
G.c2 $=$ F.prd
G.c3 $=$ F.prd
G.hld $=$ F.hld.
G.lat $=$ F.lat

Simplifying the predicate Store in DFlipFlop
By merging the processes for setting up and triggering the flip-flop, we can eliminate the predicate Trigger and define Store as follows:

$$
\left(\dagger^{a t p, p r d} C k \wedge C k b l k^{h d d} D\right) \supset[\operatorname{fin}(S t a t u s=1) \wedge(D \rightarrow Q) \mid
$$

Here the clock input is set up at least stp units of time. Because the clock blocks the data input D, D is also set up.

CHAPTER 8-FLIP-FLOPS
58.3 Implementation of D-Flip-Flip

A D-flip-flop can be constructed out of two components in a manner similar to building a D-latch. The first component, known as the master latch, serves as an interface between the clock and data inputs on one hand and the second component, the slave latch, on the other. The slave provides the llip-flop's outputs. There are four key time periods in the overall flip-flop operation: clock is 0 , clock rises from 0 to 1 , clock is 1 , and clock drops from 1 to 0 :

- When the clock is 0 , the master latch disables the slave, which maintains whatever value was previously stored. At this time, the clock and data inputs can be set up for clocking in a new bit.
- Upon the clock transition from 0 to 1 , the master latch itself stores the incoming data signal and actively propagates it to the slave. The slave in turn adjusts the outputs to reflect the new data.
- As long as the clock remains at 1 , the master continues to transmit the stored value to the slave.
- When the clock drops from 1 to 0 , the master disables the slave, leaving the stored value undisturbed. At this point, the cycle of clocking can be repeated.

Specification of the master latch

The master latch has the following structure:

(atp, h/d, prd, lat): time

CHAPTER 8-FLIP-FLOPS

The timing parameters have the same form as in the flip-flop description since the master device has the clock and data signals as inputs.

$$
\begin{gathered}
\text { Master }(M) \quad \equiv_{\text {dof }} \\
\quad \text { MasterStructure }(M) \\
\wedge \square \operatorname{Store}(M) \\
\wedge \square \operatorname{Nontrig}(M) \\
\wedge \square \operatorname{Steady}(M)
\end{gathered}
$$

Definition of MasterStructure:

MasterStructure (M)	$\equiv_{\text {def }}$
$M:$ struct $[$	
$(C k, D):$ Bit	\%Inputs
$(S, R):$ Bit	\%Outputs
Status: Bit	\%Internal
(stp, hld, prd, lat): time	\%Parameters
$]$	

Definition of Store:
The data value present when the clock rises determines the S and R outputs.

$$
\begin{aligned}
& \operatorname{Store}(M) \equiv_{\text {def }} \\
& \quad(s t b\langle C k, D\rangle \wedge \text { ien } \geq s t p) \rightarrow \operatorname{Trigger}(M)
\end{aligned}
$$

where the predicate Trigger is defined as follows:

$$
\begin{array}{ll}
\text { Trigger }(M) & {=\mathrm{S}_{\text {def }}}^{\left(\dagger^{0, p r d} C k\right.} \\
& \left.\wedge C k b l{ }^{h l d} D\right) \\
& \supset[f i n(\text { Statwe }=1) \wedge(D \rightarrow S) \wedge(\neg D \rightarrow R)]
\end{array}
$$

CHAPTER 8-FLIP-FLOPS

Definition of Nontrig:

If the master latch is initially steady, then after the clock drops, both S and R become smoothly disabled at 0 .

$$
\begin{aligned}
& \text { Nontrig }(M) \\
& \qquad \begin{aligned}
{\left[1^{0, p r d} C k\right.} & \wedge \operatorname{beg}(\text { Status }=1)] \\
& \supset[f i n([S=0] \wedge[R=0] \wedge[\text { Status }=1]) \wedge \operatorname{sm}(S, R\rangle]
\end{aligned}
\end{aligned}
$$

Definition of Steady:

When the master latch is steady, the status flag and the outputs are blocked by the clock.

$$
\begin{aligned}
& \text { Steady }(M) \equiv_{\text {def }} \\
& \quad \operatorname{beg}(\text { Status }=1) \supset\left[C k \text { blk Status } \wedge C k b l k^{l a t}\langle S, R\rangle\right]
\end{aligned}
$$

Combining the latches

The next predicate shows how the master and slave latches are combined to implement a D-fip-flop. We use an SR-latch as the slave.

$$
\begin{aligned}
& \text { DFFImplementation }(M, L) \quad \equiv_{\mathrm{dof}} \\
& \qquad \begin{array}{l}
\operatorname{Master}(M) \wedge S R L a t c h(L) \\
\wedge(M . S \approx L . S) \wedge(M . R \approx L . R)
\end{array}
\end{aligned}
$$

The mapping from the latches to the flip-flop takes the following form:

- DFFImplementation(M, L) $\supset \operatorname{DFlipFlop(F)}$
where the tuple F is constructed as follows:

$F . C k$
$F . D$

$$
\begin{array}{ll}
\text { F.S } & \approx \text { L.S } \\
\text { F.R } & \approx \text { L.R } \\
\text { F.Status } & \approx \text { (M.Status ^ L.Statue) } \\
\text { F.atp } & =\text { M.stp } \\
\text { F.prd } & =\text { L.prd }+ \text { M.prd } \\
\text { F.hld } & =\text { M.hld } \\
\text { F.lat } & =\text { L.lat }+ \text { M.lat }
\end{array}
$$

§8.4 D-Flip-Flops with Asynchronous Initialization Signals

Integrated circuits such as the TTL 7474 chip [48] contain D-flip-flops with extra inputs for initialisation. Since these pins are used more or less independently of the clock, they are called asynchronous. The device considered here has a single asynchronous input Clr:

Definition of AaynchDFlip Flop:

The specification has predicates for operating the clock and clear aignala:

$$
\text { AsynchDFlipFlop(F) \# }{ }_{\text {dof }}
$$

AeynchDFFStructure(F^{\prime})
\wedge © UseClock(F)
\wedge © UseClear (F)
\wedge © Steady (F)

CHAPTER 8-FLIP-FLOPS

Definition of AsynchDFFStructure:

AsynchDFFStructure(F) $\equiv \equiv_{\text {def }}$	
$F:$ struct $[$	
$(C k, D, C l r):$ Bit	\%Inputs
$(Q, Q): B i t$	\%Outputa
Status: Bit	\%Internal
	(stp, prd, hld, lat): time
$]$	

Definition of UseClock:
During periods when the input Clr equals 0 , the device acts according to the earlier specification DFlipFlop:

$$
\begin{aligned}
U s e C l o c k(F) & \equiv_{\text {def }} \\
(C l r & \approx 0) \supset D F l i p F l o p(G)
\end{aligned}
$$

where G contains exactly the following fields of F :

$$
C k, D, Q, \bar{Q}, \text { Status, stp, prd, hld, lat }
$$

Definition of UseClear:
When the clock is stable, the input Clr can be used to initialise the fip-flop:

$$
\begin{aligned}
\text { UseClear }(F) & \text { ㅍof } \\
\text { stb } C k & \supset[\operatorname{Clear}(F) \wedge \operatorname{Disable}(F)]
\end{aligned}
$$

Definition of Clear:
If the input Cl equals 1 long enough, the output Q in seroed and the device becomes steady:

$$
\begin{aligned}
& \operatorname{Clear}(F)=\operatorname{dof} \\
& \quad(\operatorname{Cir} \approx 1 \wedge \text { len } \geq \operatorname{prd}) \supset \operatorname{fin}[(\text { Statue }=1) \wedge(Q=0)]
\end{aligned}
$$

CHAPTER 8-TLIP-JLOPS
Definition of Disable:
When the device in ateady and the input Clr dropes to 0 , the device remains ateady:

$$
\begin{aligned}
& \operatorname{Disable}(F)=\text { def } \\
& \qquad\left[\downarrow^{0, p r d} C l r \wedge \operatorname{beg}(S t a t w e=1)\right] \supset \operatorname{fin}[(S t a t u s=1) \wedge \operatorname{atb}(Q, \bar{Q})]
\end{aligned}
$$

Definition of Steady:
When the flip-llop in steady, the inputs Ck and Clr together block the signala Status, Q and \mathbf{Q} :

$$
\begin{aligned}
& \text { Steady }(F) \text { =idef } \\
& \quad \operatorname{beg}(\text { Status }=1) \supset[\operatorname{beg}(Q=-Q) \wedge\langle C k, C l r\rangle \text { blk }\langle\text { Status, } Q, Q)]
\end{aligned}
$$

Chapter 9

MORE DIGITAL DEVICES

We now consider techniques for describing and reasoning about multiplexers, random-access memories, counters and shift registers.

§9.1 Multiplexer

A multiplexer has a number of addressible inputs and can selectively output any one of them. The device considered below can be optionally disabled, in which case it outputs a sero. The general structure is as follow:

n: nat,
(prd, lat): time

The device operates roughly according the table below:

operation	E	Out
seloct	1	$\operatorname{In}[$ loc $]$
diable	0	0

CHAPTER 9-MORE DIGITAL DEVICBS

where loc = nual(Addr). If we ipnore propagation delay, the multiplecxer behnven according to the formula.

$$
\text { Out } \approx(\text { if }[E=1] \text { then In [nval }(A d d r)] \text { else } 0)
$$

During periods when the device is enabled with $E=1$, the formula reduces to

$$
O_{u t} \approx \operatorname{In}[n v a l(A d d r)]
$$

Definition of Multiplexer:
The multiplexer's main predicate is as follows:

$$
\begin{aligned}
& \text { Multiplexer }(X) \equiv \text { def } \\
& \\
& \text { MultiplexerStructure }(X) \\
& \wedge \text { \& Select }(X, l o c), \text { for loc } \in[0, n-1] \\
& \\
& \wedge \square \operatorname{Disable}(X)
\end{aligned}
$$

Definition of MultiplexerStructure:
The device has an n-bit vector Addr for selecting one of 2^{n} possible incoming bits of the vector In.

MultiplezerStructure(X) $\equiv_{\text {def }}$	
X: struct[
Addr: $B i t^{n}, I_{n}: B i t^{\left(2^{n}\right)}, E: B i t$	\%Inpute
Out: Bit	\%Outputs
n: nat, (prd, lat): time	\%Parameters

Definition of Select:

If the enable signal E is held at 1 and the address line and ita asociated ingat ase stable, the ciitput ende up equal to the inprat line indicated by the atatie variable

CHAPTER 9-MORE DIGITAL DEVICES

loc.

$$
\begin{aligned}
& \text { Select(} X, \text { loc) } \#_{\text {dex }} \\
& ([E \approx 1] \wedge \operatorname{stb} \operatorname{In}[\text { loc }] \wedge[\text { nval }(A d d r) \approx \text { loc }] \wedge \text { len } \geq \text { prd }) \\
& \rightarrow\left[\text { beg }(\text { Out }=\operatorname{In}[\text { loc }]) \wedge\langle E, \text { Addr, } \operatorname{In}[\text { loc }]\rangle \text { blikt }{ }^{\text {lat }} \text { Out }\right]
\end{aligned}
$$

Definition of Disable:

Holding the signal E at 0 clears the output.

$$
\begin{aligned}
& \operatorname{Diaable}(X) \quad \equiv_{\text {def }} \\
& \quad(E \approx 0 \wedge \text { len } \geq \operatorname{prd}) \rightarrow\left[b_{e g}(0 u t=0) \wedge E \text { but lat } O u t\right]
\end{aligned}
$$

Alternative apecifications

Like the adder discuseed earlier, the predicate Multiplexer can be equivalently upecified with an internal atatue bit and predicate Steady.

The timing parameters could be made more detailed so that, for example, the parameter select.prd would give the propagation time when using the predicate Select.

s9.2 Memory

The memory described here has the following form

There in a series of celle, each acoociated with atatue and output bita. At ang thme, at most oae call can be wolocted and modiked. Duriag thin pariod the remaining

CHAPTER Q-MORE DIGITAL DEVIORS

callo are bot untouched. Whan the anable argal in insetive at 0 , no cell can be altered.

If we amume unit delay, the memory behave as follow:

$$
[i f(E=1) \text { then alter(Out, nval(Addr), Data) else Out] del Out }
$$

where the function alter(Out, i, a) equals a vector whose i-th element equals a and whose remsining elements equal those in Out. The behavior can also be expressed using iteration and an in-place variant of alter:

$$
(\text { ahip } \wedge[i f(E=1) \text { then } A l t e r(O u t, \text { nval }(A d d r), D) \text { else }(a t b \text { Out })])^{*}
$$

where Alter (Out, i, a) sete the i-th element of Out to a and leaves the others unchanged:

$$
\operatorname{Alter}\left(O_{u t}, i, a\right) \quad \text { Endef } \quad\left[\operatorname{alter}\left(O_{u t}, i, a\right) \rightarrow O_{u t} t\right]
$$

In practice, a memory has a multiplexar connected to the outputs so that at any time at moat a single cell can be read. This technique permits one cell to be written while another is being retrieved. We do not include such multiplexers here.

Dafinition of Memory:

```
Memory (M) =indor
    MemoryStructure(M)
    \(\wedge \forall\) loc \(\in\left[0,2^{n}-1\right]\).
        © Erable( \(M, 1 o c\) )
    \(\wedge\) Write \((M, 10 c)\)
```



```
    ^ \(\operatorname{Stced}\) ( \(M\), loc, mode),
        for mode \(\in\) '\{diechled, selected, not_seloetad\}
```


CHAPTER \&-MORE DIGITAL DEVICES

Dafinition of MemoryStrueturs:

```
MemoryStructure ( \(M\) ) \(\mathrm{ED}_{\mathrm{daf}}\)
M: atruet[
                    Addr: Bit \({ }^{n}\), Data: Bit, E: Bit \%Inputs
                            Out: Bit \({ }^{\left({ }^{(2 n}\right)} \quad\) \%Outputs
Status: Bit \({ }^{\left({ }^{(0)}\right)}\)
n: nat, (prd, stp, lat): time
                                \%Internal
                                \%Parameters
```

J

Definition of Enable:

When the memory becomes enabled with E rising from 0 to 1 and a cell doen not have the address selected by Addr, the cell's output remaine stable.

$$
\begin{aligned}
& \text { Enable }(M, \text { loc }) \\
& \qquad \begin{aligned}
& \equiv \text { dof } \\
\left(\dagger_{\text {otp, wrd }} E\right. & \wedge \text { stb Addr } \wedge \text { beg }[\text { nval }(\text { Addr }) \neq \text { loc } \wedge \text { Statuo }[\text { loc }]=1]) \\
& \supset \text { fin }[(S t a t u s[l o c]=1) \wedge \text { stb } O u t[\text { loc }]]
\end{aligned}
\end{aligned}
$$

Definition of Write:

When the device in enabled, the cell addremed by Addr can be written with the value of the date input.

$$
\begin{aligned}
& \text { Write(M, loc) Eimer } \\
& (\operatorname{len} \geq \operatorname{prd} \wedge[E \approx 1] \wedge \text { atb Data } \wedge \operatorname{moal}(A d d r) \approx \operatorname{loc}) \\
& \supset \operatorname{fin}[(\text { Status }[\text { loc }]=1) \wedge(\text { Out }[\text { loc }]=\text { Deta })]
\end{aligned}
$$

Definition of Disable:

Dieabling the memory does not aftect a steady cell's outpet. If the cell in currently addreseed, both Addr and Data muat remain atable until after E dropa.

CHAPTER Q-MORE DIGITAL DEVICES

Otherwise ouly Addr need hold. The predicate check, defined below, ensuree that the particular location is in the indicated mode.

$$
\begin{aligned}
& \text { Disable(M, loc, mode })=\equiv_{\text {dof }} \\
& \qquad \begin{aligned}
\left(t^{0, p r d} E\right. & \wedge \text { stb } U \wedge \text { beg }[\text { check }(M, \text { loc, mode }) \wedge(\text { Status }[\text { loc }]=1)]) \\
& \supset[\text { fin }(\text { Status }[\text { loc }]=1) \wedge \text { stb } O u t[\text { loc }]]
\end{aligned}
\end{aligned}
$$

where \boldsymbol{U} is as follow:

mode	U
selected	(Addr, Data $)$
not_selected	(Addr)

Definition of Steady:

$$
\begin{aligned}
& \text { Steady }(M, \text { loc, mode }) \equiv_{\text {dof }} \\
& \qquad \text { beg }[(\text { Status }[l o c]=1) \wedge \text { check }(M, \text { loc, mode })] \\
& \supset\left(V \text { blk Status }[\text { loc }] \wedge V \text { blk lat } O_{u t}[\text { loc }]\right)
\end{aligned}
$$

where the table below gives V as a function of the indicated mode:

mode	V
disabled	$(E\rangle$
selected	$\langle E$, Addr, Data \rangle
not_selected	$\langle E$, Addr)

If a cell is steady, ite output is blocked by the signal E and other appropriate inputs based on whether the device is enabled and whether the cell in the one selected. If the entire memory is disebled, only E blocka the cells. If the memory is enabled and the particular cell is the one selected, the cell's output is blocked by the inputs E, Addr and Data. If however the cell is currently not selected, it is blocked only by E and Addr. This is summarised in the table shown after the definition of Steady. The predicate check, defined below, makes certain that the particular memory location is indeed in the chosen mode of operation.

Definition of check:
The prodicate check verifice that the given location in in the specified mode of eperation:

mode	eheel (M, loc, mall $)$
dicobled celceted not_colketed	$\begin{aligned} & (E=1) \wedge[\bmod (A d d r)=\operatorname{loc}] \\ & (E=1) \wedge[\operatorname{mval}(A d r) \neq l o c] \end{aligned}$

s9.3 Counters

We can model a simple counter by means of addition and unit-delay:

$$
(I+1) \text { del } I
$$

The next formule shows a way to handle initialisation:

$$
\left[i f\left(C_{r}=1\right) \text { then } 0 \text { else }(I+1)\right] d \text { del } I
$$

If it in only necemany that the counter in initinlly equal to 0 , the formula below sumineas

$$
\operatorname{beg}(I=0) \wedge[(I+1) \operatorname{del} \eta
$$

The following example takes finite precision into account:

$$
\left[(I+1) \bmod 2^{n}\right] \text { del } I
$$

Clocked counter

A clocked counter eteren a number that can by incremented by 1 modulo some baee when the device in triagered. Here is the phynical structure:

The binary counter combdered have hom an robit cutput veoter and cyoles through the ammers 0 to $8^{n}-1$. Not all couatres are bimary. For arample, a docede counter
 nove cungratol.

CHAPTER 9-MORE DIGITAL DEVIORS

Definition of Counter:

The predicaten Clear and Increment apecify how to clear and increment the counter's output.

$$
\begin{aligned}
& \text { Counter }(C) \quad \equiv_{\text {dof }} \\
& \quad \text { CounterStructure }(C) \\
& \wedge \text { ■ Clear }(C) \\
& \wedge \text { ■ Increment }(C) \\
& \wedge \text { ■Steady }(C)
\end{aligned}
$$

Definition of CounterStructure:

The device's structure is given below. The internal bit signal Status indicates when the device is in a steady state.

CounterStructure($C)$	\equiv dof
C: struct $[$	
(Ck, Clr): Bit	\%Inputs
Out: Bitn	\%Outputs
Status: Bit	\%Intarnal
n: nat, (c1, c2, c3): time	\%Parameters
$]$	

Definition of Clear:

When the clock has a positive pulse and the input Clr equals 1 , the device is cleared and ands up steady with Status equaling 1:

$$
\operatorname{Cicar}(C)=\mathrm{Elof}
$$

$$
\begin{aligned}
{\left[\uparrow \downarrow^{e 1, e 2, e s} C k\right.} & \wedge \text { beg }(C l r=1) \wedge C k \text { blk Cir] } \\
& \supset \operatorname{fin}[\operatorname{mol}(O \text { unt })=0 \wedge \text { Statue }=1]
\end{aligned}
$$

Dafinsition of Increment:

If the device in initially steady and the clock is pulsed and Clr equals 0 , then the output vector's numerical value is incremented by 1 modulo 2^{n}. The device ends up steady.

$$
\begin{aligned}
& \text { Increment }(C)=\equiv_{\text {dof }} \\
& \qquad \begin{array}{l}
{\left[\uparrow \downarrow^{c 1, e 2, e 3} C k \wedge b e g(\text { Status }=1 \wedge C l r=0) \wedge C k b l k C l r\right]} \\
\\
\supset\left([\text { nval }(O u t)+1] \bmod 2^{n} \rightarrow n v a l(O u t) \wedge \text { fin }[\text { Status }=1]\right)
\end{array}
\end{aligned}
$$

Definition of Steady:
When the bit signal Status equals 1, the clock input blocks both Status and Ort. The blocking factor lat is associated with Out.

$$
\text { Steady }(C) \equiv_{\text {dof }}
$$

$$
\operatorname{beg}(S t a t u s=1) \supset\left[C k b l k \text { Status } \wedge C k b l k^{\text {lat }} O u t\right]
$$

§9.4 Shift Register

A shift register stores a bit vector that can be selectively initialised, shifted or left untouched. Some shift registers are bidirectional or can shift more than one place in a single operation. Others recirculate the bits or have special provisions for signed arithmetic. The output of a shift register may reflect the entire state or only part of it.

The TTL device discussed here stores n bits that, when triggered, can be cleared, loaded with some data, ahifted right by one place or maintained unchanged. The general form is given below. We omit the timing parameters from the diagram.

OEAPTER Q-MORE DIGITAL DEVICIES

The regiater hae a capacity of n bite that are output by the vector Q. The leant aignificant bit $Q[n-1]$ is aloo output in complemented form by Zlab. When clocking takes place, the fields Cir, Sh and Ld determine which operation occurn. The following table describes the general behavior upon clocking:

operation	$C l r$	$S h$	$L d$	Q	
clear	1	-	-	$\langle 0\rangle^{n}$	
shift	0	1	-	$\langle S e\rangle \\| Q[0$ ton -2$]$	
load	0	0	1	D	
nop	0	0	0	Q	

The expreasion (0$)^{n}$ stands for a list of $n 0$'s. Depending on the operation, only certain inputs are needed. For example, when $C l r$ is $0, S h$ is 1 and and a shift is to take place, the device ignores the inputs $L d$ and D.

Definition of ShiftRegister:

As with the counter described earlier, the shift register specification has predicates for clocking and ateadinese.

$$
\begin{aligned}
& \text { ShiftRegister }(H) \equiv_{\text {dof }} \\
& \text { ShiftRegStructure(} H \text {) } \\
& \wedge \text { Trigger(} H, o p \text {), for op } \in \text { '\{clear, shift, load, nop\} } \\
& \wedge \text { (} \mathrm{Nontrig}(H) \\
& \wedge \text { ㄷ Steady(H) }
\end{aligned}
$$

CHAPTER Q-MORE DIGITAL DEVICBS

Dafinition of ShiftRegStructure:

$$
\begin{array}{ll}
\text { ShijtRegStrueture }(H) & \\
\text { H: struct }[& \\
(C K, C l r, S h, L d, S e): B i t, D: B i t^{n} & \text { \%Inputs } \\
\text { Q: Bitn, Qlab: Bit } & \text { \%Outputs } \\
\text { Status: Bit } & \text { \%Internal } \\
n: \text { positive, } & \text { \%Parameters }
\end{array}
$$

(lat, prd): time,
stp: (Ck, Clr, Sh, Ld, Se, D, Q): time,
hld: (Clr, Sh, Ld, Se, D, Q): time
1
The register's length n muat be at least 1 .

Definition of Stecdy:

When the status bit equals 1 , the output Qlsb equals the complement of $Q^{\prime} s$ least significant bit $Q[n-1]$.

$$
\begin{aligned}
& \text { Steady }(\boldsymbol{H}) \text { Edof } \\
& \text { beg(Statye }=1 \text {) } \\
& \supset[\operatorname{beg}(Q] \sqrt{6}=-Q[n-1]) \\
& \left.\wedge C k \text { blk Status } \wedge C k \text { blk }{ }^{\text {lat }}(Q, \text { Qlab })\right]
\end{aligned}
$$

Definition of Trigger:

The value of op determines the particular operation to be undertaken. For example, the field name 'lood is used as a parameter to Trigger for performing a loed operation.

$$
\begin{aligned}
& \text { Trigger }(H, o p)=\text { dof } \\
& \qquad \operatorname{Set} U_{p}(H, o p) \rightarrow \text { Compute }(H, o p)
\end{aligned}
$$

Definition of SotUp:

The predicate $\operatorname{Set} U_{p}$ enaures that the appropriate input signale have the proper values and are atable long enough prior to the actual operation. The prodicates check and inpset used here are defined later.

$$
\begin{aligned}
& \operatorname{Set} U p(H, o p) \quad E_{\text {def }} \\
& \operatorname{fin}\{\operatorname{check}(H, o p)]
\end{aligned}
$$

$\wedge \forall$ field $\in\left[\right.$ inpset $(o p) \cup\left\{\left\{^{\prime} C k\right\}\right] .\left(\right.$ tetb ${ }^{\text {stp }(f i e l d]} H[$ field $\left.]\right)$

Definition of Compute:

The text of Compute overviewn the clocking involved in performing an operar tion. The predicates Hold deacribes how inputs must be held as the clock rises. The function result indicates the new value of the output Q.

$$
\begin{aligned}
& \text { Compute }(H, o p) \quad={ }_{\text {dof }} \\
& \qquad \begin{aligned}
{\left[\dagger^{0, p r d}\right.} & C k \\
& \wedge H o l d(H, o p)] \\
& \supset(\text { fin }[\text { Status }=1] \wedge[\operatorname{result}(H, o p) \rightarrow Q])
\end{aligned}
\end{aligned}
$$

After clocking, the status bit ends up equal to 1 and the output vector Q receives the selected function of the inputs.

Definition of check:
The predicate check gives the values of the control bits Clr, Sh and Ld necemary for the desired operation.

$o p$	$\operatorname{check}(B, o p)$
clear	$C l r=1$
chift	$(C l r=0) \wedge(S h=1)$
load	$(C l r=0) \wedge(S h=0) \wedge(L d=1)$
nop	$(C l r=0) \wedge(S h=0) \wedge(L d=0)$

Definition of inpeet:

The function inpset apecifies the set of inputa needod in performing the particular operation. For example, during shitting, the $L d$ control sigal in ignoced and is therefore not linted.

CHAPTER 0-MORE DIGITAL DEVICES

op	impeet((p)
clear	'(Cir)
shijt	' Clir, Sh, St, Q $\}$
load	' $\left\{C l l r, ~_{\text {che }}, L d, D\right\}$
nop	' Clr, Sh, Ld, Q \}

Definition of Hold:

Each operation's required input signals must be held stable beyond the clock transition for the time given in the corresponding subfield of h / d.

$$
\operatorname{Hold}(H, o p) \quad E_{\mathrm{def}}
$$

\forall field $\in \operatorname{inpset}(o p)$. (Ck blk ${ }^{h l d}[$ iceld $\boldsymbol{H}[$ field $])$

Definition of result:

For each of the three clocked operations, the function result specifies the output Q's new value.

$o p$	result $(H, o p)$	
clear	$\langle 0\rangle^{n}$	
shift	$\langle S e\rangle \\| Q(0$ ton -2$]$	
lood	D	
nop	Q	

Definition of Nontrig:

If the counter is steady, a falling clock edge preserves the status bit and leavea the outputs Q and $\bar{Q} / 5$ stable.

$$
\begin{aligned}
& \text { Nontrig(} H \text {) } \mathrm{Edof}_{\text {d }} \\
& \left.\left[\downarrow^{0, p r d} C k \wedge \operatorname{beg}(\text { Status }=1)\right] \supset[\text { inn(Status }=1) \wedge s t b(Q, \text { © } 150)\right]
\end{aligned}
$$

Variant apecifications

A more detailed description can be given with separate timing information for the operations clear, shift, load and nop. In addition, the times for rising and falling clock edges need not be the same.

CHAPTER Q-MORE DIGITAL DEVICRS

Altarnatively, we can combine the control inputa into a signal called O_{p} and ignore the details of clocking. The signal $O p$ ranges over the valuce 'eleer, 'shifit, 'load and 'nop. The next formula describes the correoponding behavior asing vit delay and a case coantruct:

$$
\left(\begin{array}{l}
\text { case } O p \text { of } \\
\text { clear: }(0)^{n} \\
\text { shift: }\langle\text { Se }\rangle \| Q[0 \text { ton }-2] \\
\text { load: } D \\
\text { nop: } Q
\end{array}\right) \text { del } Q
$$

The case expression uses as its value the entry selected by Op. For example, when $O p$ equals 'load, the case expression equals D. The expression $\langle 0)^{n}$ equala an n element list of 0 's.

Combining shift registers

Two shift registers can be connected to form a larger one. The following property reflects this with the shift register H containing the most significant bits and I containing the least significant bits:

$$
\begin{aligned}
& \text { [ShiftRegister }(H) \wedge \text { ShiftRegister }(I) \\
& \wedge(H . C k \approx I . C k) \wedge(H . C l r \approx I . C l r) \wedge(H . S h \approx I . S h) \\
& \wedge(H . L d \approx I . L d) \wedge(H . Q[n-1] \approx I . S e) \wedge(H . l a t \geq I . h d . S e)] \\
& \supset \text { ShiftRegister(J) }
\end{aligned}
$$

where

$J[$ field $]$	$\approx H[$ field $], \quad$ for field $\in '\{C t, C t r, S h, L d\}$	
$J . D$	$\approx H . D \\| I . D$	
$J . S e$	$\approx H . S e$	
$J . Q$	$\approx H . Q \\| I . Q$	
$J . S t e t u e$	$\approx H . S t a t u e \cap$ I.Statue	
$J . n$	$=H . n+I . n$	

CHAPTER 0 -MORE DIGITAL DEVICES

$$
\begin{aligned}
& \text { J.prd }=\max \text { (H.prd, I.prd) } \\
& \text { J.stp[field] }=\max (H . \operatorname{stp}[\text { field }] \text {, I.stp(field }]) \text {, for field } \in '\{C k, C i r, S h, L d, D\} \\
& \text { J.stp.Se }=\text { H.stp.Se } \\
& \text { J.stp.Q }=\max (H . a t p . Q, I . s t p . Q, \text { I.stp.Se) } \\
& J . h d[\text { field }]=\max (H . h l d[\text { field }], \text { I.hdd[field }]) \text {, for field } \in '\{C l r, S h, L d, D\} \\
& \text { J.hld.Se = H.hld.Se } \\
& \text { J.hld.Q }=\max (\text { H.hld.Q, I.hld.Q, I.hld.Se) } \\
& \text { J.lat }=\min \text { (H.lat, I.lat) }
\end{aligned}
$$

An abbreviated form of this property can be expressed for combining two unit-delay shift registers.

Chapter 10

MULTIPLICATION CIRCUIT

The hardware multiplier considered here is motivated by one discussed in Wagner's work on hardware verification [48]. The desired device behavior is first described followed by a look at implementation techniques. The multiplier has the following general structure:

The circuit accepts two values and after a given number of clock cyeles yielda their product. The values are represented as unsigned n-bit vectors InI and In2 while the output Out is a $2 n$-bit vector In addition, there are two input bita $C \%$ and $L d$ for controlling operation. The signal $C k$ serves as the clock input and $L d$ initiatee the loading of the vectors to be multiplied. The field count tells how many clock cycles are required. The values c1, c2 and c3 are timing coefficients used in the behavioral description.

\$10.1 Specification of Multiplier

The multipliar is first specified by means of the predicate Multiplier(M). We then develop an itarative, timing-independent multiplication algorithm that com-

CHAPTER 10-MULTIPLICATION CLRCUIT

puten a product by a saries of succeacive additions. Later, the predicate Implementation(\boldsymbol{H}) characterises a device that computee sums and in fact has the alsorithm's atepe embedded within it. A logical implication is then given, showing how Implementation(H) realisen Multiplier(M).

Definition of Multiplier:
Here is the main predicate:

$$
\text { Multiplier }(M) \equiv_{\text {dof }}
$$

MultStructure(M)

$$
\wedge \text { © Calculate(M) }
$$

Definition of MultStructure:

The multiplier has the following structure:

$$
\begin{aligned}
& \text { MultStructure(} M \text {) } \text { def } \\
& \text { M: struct[} \\
& \text { (Ck,Ld): Bit, } \quad \text { \%Inputs } \\
& \text { (In1, In2): Bit }{ }^{n} \\
& \text { Out: Bit }{ }^{2 n} \quad \text { \%Outputs } \\
& \text { (n, count): nat, \%Parameters } \\
& \text { c1, c2, c3: time }
\end{aligned}
$$

]

Definition of Calculate:

If the inputs behave as specified by the predicate Control, the output Out ends up with the product of the initial values of In1 and In2.

$$
\begin{aligned}
& \text { Calculate }(M) \equiv \text { daf } \\
& \text { Control }(M) \supset \\
& {[\operatorname{nval}(\operatorname{In} 1) \cdot \operatorname{nval}(\operatorname{In} 2)] \rightarrow \operatorname{nval}(\text { Ont })}
\end{aligned}
$$

CHAPIER 10-MMULTIPLICATION CIRCUIT

Definition of Cc: \therefore
The predicate Control describes the required sequencing of the inputs so that a multiplication takes place. The computation first loads the circuit and then keeps the load line inactive while the clock is cycled.

$$
\operatorname{Control}(M) \quad \equiv_{\mathrm{dof}} \quad \operatorname{Load}(M) ;([L d \approx 0] \wedge \operatorname{Cycling}(M))
$$

Definition of Load:
Loading is done as indicated by the predicate Load. The clock is cycled as given by the predicate SingleCycle. The control signal $L d$ starts with the value 1 and together with the other inputs In1 and In2 remains initially stable as long as the cluck input Ck doen.

$$
\operatorname{Lood}(M) \equiv \equiv_{\mathrm{dof}}
$$

Single Cycle $(M) \wedge \operatorname{beg}(L d=1) \wedge C k b l k(L d, \ln 1, \operatorname{In} 2)$

Definition of SingleCycle:
An individual clock cycle consists of a negative pulse:

$$
\text { Single Cycle(M) } \equiv_{\text {def }} \quad \downarrow^{〔 1, e 8, e s} C k
$$

The clock signal falls from 1 to 0 and then rises back to 1 . The three times given indicate the minimum widthe of the levele during which the clock in stable.

Definition of Cycling:
The overall cycling of the clock is a follows:

$$
\text { Cycling }(M)=\text { def } \quad(\text { Single Cycle }(M))^{\text {eeunt }}
$$

A total of count individual cycles must be performed one after the other, where each is a negative pulse eatinfying the predicate SingleCycle.

CHAPTER 10-MULTIPLICATION CIRCUIT

Variants of the apecifleation

The predicate Multiplier doee not represent the only way to describe the multiplier circuit. Alternative approaches based on internal variables can be shown to be formally equivalent to the one given here. A useful extension to this description specifies that once the output is computed, it remains stable as long as the control inputs do. If deaired, additional quantitative timing details can readily be included.

§10.2 Development of Multiplication Algorithm

The apecification predicate Multiplier intentionally makes no reference to any particular techaique for multiplying. Since the process of multiplication does not generally depend on any specific circuit timing, it is natural to separate algorithmic issues from other implementation details. We now use ITL as a basis for deriving a suitable circuit-independent algorithm for determining the product and in the next section as a means for describing hardware that realises this method. The synthesis procesa can be viewed as a proof in reverse, starting with the goal and ending with the necesaary asumptions to achieve it.

The aim here is to obtain an algorithro describing some way for doing the multiplication. The variables $n, \operatorname{In} 1, \operatorname{In} 2$ and $O u t$ are represented as fields of a variable A. The predicate Goal below specifies the desired result:

$$
\begin{aligned}
& \operatorname{God}(A) \quad=\overline{E s}_{\text {dof }} \\
& \quad[\operatorname{nval}(\operatorname{In} 1) \cdot \operatorname{nval}(\operatorname{In} 2)] \rightarrow \operatorname{nval}(\text { Out })
\end{aligned}
$$

The ontpat Out should end up with the product of the date inputs $\operatorname{In} 1$ and $\operatorname{In} 2$. The prematation given here reduces the problem of multiplying the two n-bit vectors to that of uing repeated additions to determine successively larger partial producta. The algorithm consints of initialisation followed by n succesaive iterations. After i iterations of the loop, for $i \leq n$, the initial product of $\operatorname{In} 1$ and the least significant i bite of In2, that in,

$$
\operatorname{nval}(\operatorname{In} 1) \cdot \operatorname{nval}(\operatorname{In} 2 f i-1 \text { to } 0\})
$$

in conpreted and avilable in the upper $n+i$ bits of Out. Recall that the sabecriptine brackets f indar a vector from the right. Although neither Ind mor Ind in guaranteed

CHAPTER 10-MULTIPLICATION CRRCUIT

to remain stable, their initial valuen must be used throughout the calculation. The lower $n-i$ bite of Out hold the unexamined bite of $\operatorname{In} 2$ (i.e., In2\{n-1toif). In addition, an extra n-bit variable Temp is introduced in order to remember the original value of $\ln 1$. The following figure informally depicts the situation after i steps:

After n steps, O ut equals the desired $2 \boldsymbol{n}$-bit multiplication result.
The predicate Assert below precisely specifies this behavior over i iterations for $i \leq n$.

$$
\begin{aligned}
& \text { Assert }(A, i)=\operatorname{def} \\
& \quad[\operatorname{nval}(\operatorname{In} 1) \cdot \operatorname{nval}(\operatorname{In} 2 f i-1 \text { to } 0 f)] \rightarrow \operatorname{nval}(\operatorname{Out}\{2 n-1 \text { to } n-i f) \\
& \quad A \operatorname{In} 2 \nmid n-1 \text { to } i\} \rightarrow O u t f n-i-1 \text { to } 0 f \\
& \quad \wedge \operatorname{In} 1 \rightarrow \text { Temp }
\end{aligned}
$$

After n steps, the product must be computed. For $i=n$, Assert indeed observes this requirement:

$$
\begin{equation*}
m \operatorname{Assert}(A, n) \supset \operatorname{Goal}(A) \tag{*}
\end{equation*}
$$

Expremed in the logic, the algorithm takes the following form:

$$
\operatorname{Init}(A) ;(\operatorname{Step}(A))^{n}
$$

In the next two sections, the predicates Init and Step are given in detail. Both Init and Step are derived so an to maintain Assert after looping i times for any $i \leq n$:

$$
\begin{equation*}
\left[i \leq n \wedge \operatorname{Init}(\Lambda)_{i}(\operatorname{Step}(A))^{i}\right] \supset \text { Acsert }(\Lambda, i) \tag{*+4}
\end{equation*}
$$

CBAPIMA 10-MMLIELIOATION OBBCUIT
 The iormulas ($\mathbf{(})$ and (+0) together easure that n itteratione of the bop calealate the product:

$$
\operatorname{Init}(A) ;(S \operatorname{tap}(A))^{n} \supset \operatorname{Goal}(A)
$$

Deriving the predicate Init
The initialization requirement can be obtained by making sure Init satisfies Assert for $i=0$:

$$
\operatorname{Imit}(A) \supset \operatorname{Assert}(A, 0)
$$

Simplification of Assert yields the constraint

$$
\begin{aligned}
\operatorname{Init}(A) & \supset \\
0 & \rightarrow \operatorname{nval}(\text { Out }\{2 n-1 \text { to } n\}) \\
& \wedge \operatorname{In} 2 \rightarrow \text { Out } n-1 \text { to } 0\} \\
& \wedge \operatorname{InI} \rightarrow \text { Tump }
\end{aligned}
$$

This can be achieved by the definition

$$
\begin{aligned}
\operatorname{Init}(A) & =\operatorname{daf} \\
\langle 0)^{n} & \rightarrow \text { Out }\{2 n-1 \leftarrow n\} \\
& \wedge \operatorname{In} 2 \rightarrow \operatorname{Out}\{n-1 \leftarrow 0\} \\
& \wedge \operatorname{In} i \rightarrow \text { Temp }
\end{aligned}
$$

where $(0)^{n}$ equale an n-etement lint of $0^{\prime} s$.

Dariviag the procicate Step
The iteration atop chould be conatructed so that atter i itheratioen for any $i<n_{n}$. Step cas indectively widen the meope of the martion to $i+1$ heremeater:

$$
[i<n \wedge A \operatorname{cocet}(A, i) ; \operatorname{stap}(A)]>A \operatorname{cosen}(A, i+1)
$$

108

CHAPTER 10-MULTIPLICATION CIRCUTT

Each step achieves this by selectively adding Temp's n bits to Out, depending on Out's least bit, Out $\{0\}$. Only the top n bits of Out are actual inputs for the sum. The top $n+1$ bits store the result. The remaining $n-1$ bits of Out are simply shifted right. For Temp the requirement reduces to the formula

$$
\begin{aligned}
\operatorname{Step}(A) & \supset \\
\operatorname{Temp} & \rightarrow \text { Temp }
\end{aligned}
$$

This guarantees that Temp continues to remember the initial value of In1.
The constraint for Out is
$\operatorname{Step}(A) \supset$

$$
\begin{aligned}
& {[\operatorname{nval}(\text { Out }\{2 n-1 \text { to } n f)+O u t f(0\} \cdot n v a l(\text { Temp })]} \\
& \quad \rightarrow n v a l(O u t\{2 n-1 \text { to } n-1 f)
\end{aligned}
$$

$$
\wedge \text { Out }\{n-1 \text { to } 1\} \rightarrow O u t[n-2 \text { to } 0\}
$$

Thus the overall incremental step can be realized by the definition

$$
\begin{aligned}
& \operatorname{Step}(A) \quad \equiv \operatorname{def} \\
& \qquad \begin{aligned}
& {[\operatorname{nval}(O u t\{2 n-1 \text { to } n f)+O u t\{0\} \cdot n v a l(\text { Temp })]} \\
& \rightarrow n v a l(O u t\{2 n-1 \text { ton }-1\}) \\
& \wedge \text { Out }\{n-1 \text { to } 1\} \rightarrow O u t\{n-2 \text { to } 0\} \\
& \wedge \text { Temp } \rightarrow \text { Temp }
\end{aligned}
\end{aligned}
$$

§10.3 Description of Implementation

The circuit specified below performs the iterative algorithm just given. The definition includes relevant timing information and is broken down into parts describing the implementation's physical structure and behavior. The primary predicate Implementation overviews operation. The device's fields are shown by ImpStructure. The predicate LoadPhase specifics device operation for initially loading the inputs. Once this is achieved, the predicate MultPhase indicates how to perform the individual multiplication steps.

$$
\text { Implementation }(H) \quad \text { dof }
$$

ImpStructure (H)

$$
\wedge \text { ■(LoadPhase(H) ^ MultPhase(H)) }
$$

CHAPTER 10-MULTIPLICATION CIRCUIT

Definition of ImpStructure:

The structure of the implementation differs from that of the original specification by the addition of the internal states Temp and Status and by the omission of a count field giving the required number of clock cycles for computing a product. The vector Temp maintains the value of In1. The bit signal Status equals 1 when the device is in a steady state. The specification given below shows how to set Status to 1 and keep it at this value.

ImpStructure(H) $\equiv_{\text {def }}$	
H: struct[
(Ck, Ld) : Bit,	\%Inputs
(In1, In2): Bit ${ }^{\text {n }}$	
Out: Bit ${ }^{2 n}$	\%Outputs
Temp: Bit ${ }^{\text {n }}$,	\%Internal
Status: Bit	
n : nat,	\%Parameters
c1, c2, c3: time	
1	

An external form of the complete specification would in effect existentially quantify over the fields Temp and Status.

Definition of LoadPhase:

The body of LoadPhase specifies how to load the inputs as described in the algorithm:

$$
\begin{aligned}
\text { LoadPhase }(H) & \equiv_{\text {dof }} \\
\operatorname{Load}(H) & \supset[\operatorname{Init}(H) \wedge \operatorname{fin}(\text { Status }=1)]
\end{aligned}
$$

The pradicate Lood gives the required loading sequence for the circuit inputa. The predicate Inst refers to the algorithm's initialisation predicate. Once loading in complote, the field Status is set to 1 , indicating that the device is ready to proceed with the multiplication. The definition of Load is identical to that of ite nameanke

CHAPTER 10-MULTIPLICATION CIRCUIT

in Multiplier:

$$
\operatorname{Load}(H) \equiv_{\text {dof }}
$$

$$
\text { Single Cycle }(H) \wedge \text { beg }(L d=1) \wedge C k b l k\langle L d, \operatorname{In} 1, \operatorname{In} 2\rangle
$$

Individual clock cycles are also defined as in Multiplier:

$$
\text { Single Cycle }(H) \equiv_{\text {def }} \quad \downarrow \dagger^{c 1, c 2, c 3} C k
$$

Definition of MultPhase:

When the load signal is inactive at 0 and the device is steady (i.e., Status $=1$), the circuit can be clocked to perform a single iteration. The algorithm's predicate Step takes place over two clock cycles. Afterwards, the device is again steady with Status equaling 1.

$$
\begin{aligned}
& \text { MultPhase }(H) \quad \equiv_{\mathrm{dof}} \\
& \qquad \begin{aligned}
{[L d \approx 0} & \left.\wedge(\text { SingleCycle }(H))^{2} \wedge \text { beg }(\text { Status }=1)\right] \\
& \supset[\text { Step }(H) \wedge \text { fin }(\text { Status }=1)]
\end{aligned}
\end{aligned}
$$

Implementation theorem

The correspondence between the implementation Implementation and the original multiplier device specification Multiplier is now given by the theorem

$$
\neq \text { Implementation }(H) \supset \text { Multiplier }(M)
$$

where the mapping from H 's fields to M^{\prime} 's is

$$
\begin{aligned}
M[\text { field }] & \approx H[\text { field }], \quad \text { for field } \in^{\prime}\{\operatorname{In} 1, \operatorname{In} 2, \text { Out }\} \\
M . n & =H \cdot n \\
M . \text { count } & =2 H \cdot n
\end{aligned}
$$

CHAPTER 10-MULTIPLICATION CIRCUIT

$$
M[\text { field }]=H[\text { field }], \quad \text { for field } \in '\{c 1, c 2, c 3\}
$$

The value of M.count corresponds to the $2 n$ clock cyclea needed for doing the iterative computation.

The behavioral description Implementation can itself be realized by some evea lower-level specification containing further details about the timing and using astill more concrete algorithm. For example, the iterative steps are decomposible into separate adds and shifts. If deaired, the development ultimately examines such things as propagation through gates.

Chapter 11

THE AM2901 BIT SLICE

The Am2901 bit slice is a member of a popular family of integrated circuits developed by Advanced Micro Devices, Inc. for building processors and controllers. The next page contains a block diagram of the device. An individual Am2901 chip consists of four-bit slices of an arithmetic logic unit, memory, bus interface and other elements. These internal devices are connected together so as to provide various ways for computing and storing values. The next page contains a block diagram. A group of m Am2901 chips can be connected to form circuits of bit length 4 m . We give a functional description of the Am2901 based on information contained in the Am2900 series' data book [1]. The teraporal description is almost operational enough to be used as input to a suitable simulator. The reader desiring a detailed introduction to the Am2900 circuit family and ite applications should consult the Am2900 data book [1], Mick and Brick [34] or Siewiorek et al. [43].

CHAPTER 11-THE AM2901 BIT SLICE

THE Anteot 4-UT muchopnocreson suce
Copyright © 1981 Advanced Micro Devices, Inc.
Reproduced with permission of copyright owner.
All rights reserved.

Definition of BitSliceStructure:

Here are the various signals and parameters used in our description of a generalised n-bit bit slice:

$$
\begin{aligned}
& \text { BitSliceStructure(} N \text {) } \equiv_{\text {def }} \\
& N: \text { atruct[} \\
& \text { Source: sig(sourceset), } \quad \text { TInputs } \\
& \text { Func: sig(funcset), } \\
& \text { Dest: sig(destset), } \\
& \text { D: Bit }{ }^{n} \text {, } \\
& \text { (AAddr, BAddr): sig([0to 15]), } \\
& \text { (QLsb, QMsb): Bit, } \\
& \text { (RamLsb, RamMsb): Bit, } \\
& \text { (CarryIn, } \overline{O E} \text {): Bit, } \\
& Y: B i t^{n}, \quad \text { \%Outputs } \\
& \text { (CarryOut, Gen, Prop): Bit, } \\
& \text { (FZero, FMsb): Bit, } \\
& \text { Ram: }\left(B_{i t}{ }^{n}\right)^{18} \text {, } \quad \text { FInternal } \\
& \text { (} Q, F, R, S \text {): } B i t^{n} \\
& n \text { : positive \%Parameters }
\end{aligned}
$$

In the description of the bit slice, we represent the control input Source as a signal ranging over the elements of the set sourceset:

$$
\text { sourceset } \quad={ }_{\text {dof }} \quad '\{A Q, A B, Z Q, Z B, Z A, D A, D Q, D Z\}
$$

The inputs Func and Dest range over similar sets:

$$
\begin{aligned}
& \text { funcset }==_{\text {def }} \quad \text { \{add, suor, suba, or, and, notrs, exor, eznor\} } \\
& \text { destset }={ }_{\text {def }} \quad \text { \{greg, nop, rama, ramf, ramqd, ramd, ramqu, ramu \}}
\end{aligned}
$$

The mnemonics are those used in the Am2901's data book description. A lowerlevel apecification of the circuit can represent these fielda ae bit vectors. Similarly,
the approach taken here has the addreas fielde AAddr and BAddr range over the integers $0, \ldots, 15$; a more detailed description can instead use bit vectora of length 4.

Please note: Throughout this description we refer to as vector V 's most significant bit as $V[0]$. The least significant bit is $V \mid n-1]$, where $n=|V|$. This is the opposite of the style used in the Am2901 data book but is consistent with the general convention taken elsewhere in this thesis.

Definition of BitSlice:

The slice's behavior can be broken down into separate parts for the randomaccess memory, Q-register, arithmetic unit and bus interface:

$$
\begin{aligned}
& \text { BitSlice }(N) \equiv \text { dof } \\
& \text { BitSliceStructure(} N \text {) } \\
& \wedge \text { RamPart }(N) \\
& \wedge \text { QRegPart }(N) \\
& \wedge \text { AluPart }(N) \\
& \wedge \text { BuaPart }(N)
\end{aligned}
$$

§11.1 Behavior of Random-Access Memory

The memory section has individual predicates for modifying the memory, the memory's end-bits RamLsb and RamMsb and the two output latches A and B.

$$
\begin{aligned}
& \text { RamPart(N) \#dof } \\
& \text { SetRam(Ram, Dest, BAddr, F, RamLsb, RamMab, n) } \\
& \wedge \text { SetRamLsbMsb(RamLsb, RamMsb, Dest, F, } n \text {) } \\
& \wedge \operatorname{SetAB(A,B,Ram,~AAddr}, \text { BAddr) }
\end{aligned}
$$

CRAPTER 11-THE AM2901 BIT SLICE

Definition of SetRam:

In the deacription of the memory, we uee the predicate rdel to refer to the unit-delay predicate del but with the operande reversed:

$$
U \text { rdel } V \Xi_{\text {daf }} V \text { del } U
$$

Here is the predicate SetRam itself:

$$
\text { SetRam(Ram, Dest, BAddr, F, RamLsb, RamMsb, } n) \quad \equiv_{\text {def }}
$$

$$
\left(\begin{array}{cc}
\text { case Dest of } \\
\text { qreg: } & \text { Ram }
\end{array}\right.
$$

nop: Ram
rama: alter(Ram, BAddr, F)
Ram rdel ramf: alter(Ram, BAddr, F)
ramqd: alter(Ram, BAddr, \langle RamM $b\rangle\rangle \| F[0$ ton - 2])
ramd: alter(Ram, BAddr, (RamMsb) || $F(0$ ton n 2 2])
ramqu: alter(Ram, BAddr, F[1 ton - 1] \| (RamLsb))
ramz: $\operatorname{alter(Ram,BAddr,F[1\text {ton}-1]\| \langle RamLsb))})$
Moat of the operations alter the element of Ram selected by the input BAddr.

Definition of SetRamLsbMsb:

The predicate SetRamLabMsb takes into account the high-impedance aspects (see section §4.12) of both end-bits RamLsb and RamMsb:

> SetRamLsbMsb(RamLsb;RamMsb, Dest, F, n) ミdof
$\left(\begin{array}{l}\text { case Dest of } \\ \text { qreg: true } \\ \text { nop: true } \\ \text { rama: true } \\ \text { ramf: true } \\ \text { ramgd: RamLab }=F[n-1] \\ \text { ramd: RamLsb }=F[n-1] \\ \text { ramqu: RamMsb }=F[0] \\ \text { ramu: RamMsb }=F[0]\end{array}\right)$

CHAPTER 11-THE AM2901 BIT SLICE
Definition of SetAB:
The latch A ahways equale the memory word addressed by AAddr. A similar relation holds between B and BAddr.

$$
\begin{aligned}
& \operatorname{Set} A B(A, B, \operatorname{Ram}, A A d d r, B A d d r) \quad \equiv_{\mathrm{dof}} \\
& \quad(A \approx \operatorname{Ram}[A A d d r]) \wedge(B \approx \operatorname{Ram}[B A d d r])
\end{aligned}
$$

§11.2 Behavior of Q-Register

The description of the Q-register has a predicate $\operatorname{Set} Q$ for Q and another predicate QLsbMsb for using the end-bits QLsb and QMsb.

$$
\begin{aligned}
& Q R e g P a r t(N) \quad \equiv_{\mathrm{def}} \\
& \quad \operatorname{Set} Q\left(Q, D_{\text {est }} F, Q L s b, Q M s b, n\right) \\
& \wedge \operatorname{Set} Q L s b M s b(Q L s b, Q M s b, D e s t, Q, n)
\end{aligned}
$$

Definition of SetQ:

$$
\begin{aligned}
& \operatorname{Set} Q\left(Q, D_{\text {est }}, F, Q L s b, Q M s b, n\right) \quad \equiv_{\text {def }} \\
& Q \text { rdel }\left(\begin{array}{l}
\text { case Dest of } \\
\text { greg: } F \\
\text { nop: } Q \\
\text { rama: } Q \\
\text { ramf: } Q \\
\text { ramqd: }\langle Q M s b\rangle \| Q[0\llcorner n-2] \\
\text { ramd: } Q \\
\text { ramqu: } Q[1 \text { ヶn }-1] \|\langle Q L s b\rangle) \\
\text { rame: } Q
\end{array}\right)
\end{aligned}
$$

Dafination of SetQLsbMab:

Both end-bita QLab and QMsb can float in a state of high impedance (see section §4.12). This is taken care of in the following predicate:

SetQLsbMsb(QLsb, QMsb, Dest, Q, n)	$E_{\text {dof }}$.
$\left(\begin{array}{l}\text { case Dest of } \\ \text { qreg: } \\ \text { nop: } \\ \text { true } \\ \text { rame: } \\ \text { racue } \\ \text { ramf: } \\ \text { ramqd: } Q L s b=Q[n-1] \\ \text { ramd: } Q L s b=Q[n-1] \\ \text { ramqu: } Q M s b=Q[0] \\ \text { rame: } Q M s b=Q[0]\end{array}\right)$	

§11.3 Behavior of Arithmetic Logic Unit

The arithmetic logic unit's apecification has predicates associsted with the many signals originating in this part of the slice.

$$
\begin{aligned}
& \text { AluPart(} N \text {) } \equiv_{\text {def }} \\
& \operatorname{SetRS}(R, S, \text { Source, } A, B, D, Q, n) \\
& \wedge \operatorname{Set} F\left(F, F_{u n c}, R, S, \operatorname{CarryIn}, n\right) \\
& \wedge \text { SetCarryOut(CarryOut, Func, R, S, CarryIn, n) } \\
& \wedge \text { SetOverflow(Overflow, Func, R, S, CarryIn, n) } \\
& \text { ^ SetGen(Gen, Func, } R, S, n \text {) } \\
& \wedge \text { SetProp(Prop, Func, } R, S, n \text {) } \\
& \wedge \text { SetFZeroFMsb(FZero, FMsb, } F, n \text {) }
\end{aligned}
$$

Definition of SetRS:

$\operatorname{SetRS}(R, S$, Source, $A, B, D, Q, n) \quad E_{\text {def }}$

$$
\langle R, S\rangle \approx\left(\begin{array}{l}
\text { case Dest of } \\
A Q:\langle A, Q\rangle \\
A B:\langle A, B\rangle \\
Z Q:\langle\text { zero, } Q\rangle \\
Z B:\langle z e r o, B\rangle \\
Z A:\langle z e r o, A\rangle \\
D A:\langle D, A\rangle \\
D Q:\langle D, Q\rangle \\
D Z:\langle D, \text { zero }\rangle
\end{array}\right)
$$

where zero $=\langle 0\rangle^{n}$, that is, a sequence consisting of n repetitions of 0 .

Definition of SetF:

The following predicate shows arithmetic behavior for bit-vectors representing unsigned numbers:

$$
\begin{aligned}
& \operatorname{Set} F\left(F, F u n c, R, S, C_{a r r y I n}, n\right) \quad \equiv_{\operatorname{def}}
\end{aligned}
$$

Here the operator \oplus represents exclusive-or. The Boolean operations such as $R \wedge S$ are appliod bitwise to the vectors. The table can be augmented with information about arithmetic operations uaing one's and two'b-complement representationa.

CHAPTER 11-THE AM2901 BIT SLICE

Definition of SetCarryOut:
In the cacc-expression given below, hyphens indicate unspecified entries and are not partial values; a more detailed description could fill them in. The function carry determines the resulting carry output and is defined in section $\$ 6.4$ in the discussion of carry look-ahead adders.

SetCarryOut (Car	Out, Func, $\left.R, S, C_{a r r y} I_{n}, n\right) \equiv_{\text {def }}$
	$\left(\begin{array}{rl} \text { case Func of } \\ \text { add: } & \operatorname{carry}(n, n v a l(R), n v a l(S), \text { CarryIn }) \\ \text { subr: } & \operatorname{carry}(n, \operatorname{nval}(\neg R), n v a l(S), \text { CarryIn }) \\ \text { subs: } & \operatorname{carry}(n, n v a l(R), n v a l(\neg S), \text { CarryIn }) \end{array}\right.$
CarryOut \approx	or: - and: - notra: - exor: - exnor:-

Definition of SetOverfiow:
In determining the overflow bit's value, the two's-complement interpretations of the incoming bit vectors R and S are used. The function $t c v a l(\vec{X})$ takes a bit vector \vec{X} and computes ite numerical value based on representation by two's complement:

$$
\begin{aligned}
& \operatorname{tcval}(\vec{X})=z_{\text {dof }} \text { if } \vec{X}[0]=0 \text { then nval }(\vec{X}) \text { else }-\left[2^{|\vec{X}|}-\operatorname{nval}(\vec{X}) \mid\right. \\
& \text { SetOverflow(Overflow, Func, R, S, CarryIn, n) } \equiv_{\text {def }}
\end{aligned}
$$

Here the function overflow equaln 1 iff two's-complement overflow in occuring and is defined as follow:

$$
\text { overfiow }(n, i, j, c i)={ }_{\text {dof }} \quad \text { if }-2^{n-1} \leq(i+j+c i) \leq 2^{n-1}-1 \text { then } 0 \text { else } 1
$$

Both parameters i and j can range over negative and nonnegative integers.

Definition of Set Gen and SetProp:

The predicates SetGen and SetProp describe the bit slice's carry-lookahead signals. The functions carrygen and carryprop are defined in section §6.4.

$$
\begin{aligned}
& \operatorname{Set} \overline{G e n} \text { (Gen, Func, } R, S, n) \quad \equiv_{\text {dof }} \\
& \overline{\operatorname{Gen}} \approx\left(\begin{array}{l}
\text { case Func of } \\
\text { add: -carrygen }(n, \operatorname{nval}(R), n v a l(S)) . \\
\text { subr: }-\operatorname{carrygen}(n, n v a l(\neg R), n v a l(S)) \\
\text { subs: - } \operatorname{carrygen}(n, n v a l(R), n v a l(\neg S)) \\
\text { or: }- \\
\text { and: }- \\
\text { notrs: }- \\
\text { exor: }- \\
\text { exnor: }-
\end{array}\right) \\
& \text { SetProp(Prop, Func, } R, S, n) \equiv_{\text {dof }} \\
& \overline{\operatorname{Prop}} \approx\left(\begin{array}{l}
\text { case Func of } \\
\text { add: -carryprop }(n, n v a i f i(R), n v a l(S)) \\
\text { sebr: -carryprop }(n, n v a l(\neg R), n \operatorname{val}(S)) \\
\text { subs: -carryprop }(n, \operatorname{nval}(R), \operatorname{nval}(\neg S)) \\
\text { or: }- \\
\text { and: - } \\
\text { notrs: - } \\
\text { exor: - } \\
\text { eenor: - }
\end{array}\right)
\end{aligned}
$$

Definition of SetFZeroFMob:

The values of the bit signale FZero and FMcb are derived from F :

$\left(F\right.$ Rero \approx if $\left.\mid F=\langle 0)^{n}\right]$ then 1 else 0$) \wedge(F M a b \approx F(0 \mid)$

CHAPTER 11-THE AM2901 BIT SLICE

\$11.4 Behavior of Bus Interface

$$
\begin{aligned}
& B u s P a r t(N) \equiv_{\mathrm{dof}} \\
& \operatorname{Set} Y(Y, \operatorname{Dest}, F, A, \bar{O})
\end{aligned}
$$

Definition of SetY:
When the signal $O E$ equals 0 , the bus interface Y is enabled and receives a value according to the case formula. When the bus interface is disabled with $\overline{O E}$ equaling $1, Y$'s behavior is left unspecified, thus modeling the effects of high impedance.

$$
\begin{aligned}
& \operatorname{Set} Y(Y, \operatorname{Dest}, F, A, O E) \text { der } \\
& \\
& \Theta\left[(O E=0) \supset\left(Y=\left(\begin{array}{cc}
\text { case Dest of } \\
\text { qreg: } & F \\
\text { nop: } & F \\
\text { rama: } & A \\
\text { ramf: }: F \\
\text { ramqd: } F \\
\text { ramd: } F \\
\text { ramqu: } F \\
\text { ramu: } F
\end{array}\right)\right)\right]
\end{aligned}
$$

§11.5 Composition of Two Bit Slices

The predicate Combine TwoBitSlices describes how to combine two bit-slices in parallel to form a larger one. The bit slice M contains the more significant bite and L contains the less significant ones.

$$
\begin{aligned}
& \text { CombineTwoBitSlices }(M, L) \equiv \equiv_{\text {dof }} \\
& \text { BitSlice }(M) \wedge \text { BitSlice }(L) \\
& \wedge M[\text { field }] \approx L[\text { field }], \\
& \quad \text { for field } \in '\{\text { Source, Func, Dest, AAddr, BAddr, OE }\} \\
& \wedge(M . \text { RamLsb } \approx L . \text { RamMs }) \wedge(M . Q L s b \approx L . Q M s b) \\
& \wedge(M . \text { CarryIn } \approx L . \text { CarryOut })
\end{aligned}
$$

CHAPTER 11-THE AM2901 BIT SLICE

The next property expresses how the implementation's various signale are mapped to the overall bit slice:

```
* CombineTwoBitSlices(M,L) Ј BitSlice(N)
```

where the tuple N is constructed as follows:

$$
\begin{aligned}
& N[\text { field }] \approx M[\text { field }], \\
& \text { for field } \in \text { ' }\{\text { Source, Func, Dest, AAddr, BAddr, } \overline{O E}\} \\
& N[\text { field }] \approx M[\text { field }] \text {, for field } \in \text { '\{QMsb, RamMsb, CarryOut, FMsb\} } \\
& N[\text { field }] \approx L[\text { field }] \text {, for field } \in \text { '\{QLsb, RamLsb, CarryIn\} } \\
& N[\text { field }] \approx M[\text { field }] \| L[\text { field }], \\
& \text { for field } \in{ }^{\prime}\{D, Y, Q, F, R, S\} \\
& N . \operatorname{Ram}[i] \approx M . \operatorname{Ram}[i] \| L . \operatorname{Ram}[i], \quad \text { for } 0 \leq i \leq 15 \\
& \text { N.Gen } \approx\left[\begin{array}{l}
\text {. } \overline{G e n} \\
\wedge
\end{array}(\text { M.Prop } \vee L . \overline{G e n})\right] \\
& \text { N.Prop } \approx \text { (M.Prop } \vee \text { L.Prop) } \\
& \text { N.FZero } \approx \text { (M.FZero ^L.FZero) } \\
& \text { N.n } \quad=\quad \text { M.n }+ \text { L.n }
\end{aligned}
$$

§11.6 Timing Details

The predicate BitSlice presented here contains little quantitative information about timing. For example, the bit slice's clock input is not mentioned. One way to include timing details is by giving behavioral descriptions at a level similar to those discussed in previous chapters. For example, the arithmetic unit can be specified in a manner similer to that used in the predicates BasicAdder, DetailedAdder and CarryLookAheadAdder. A predicate such as ShiflRegister can be modified to capture the behavior of the Q-register.

Chapter 12

DISCUSSION

§12.1 Related Work

We now mention some related research on the semantics of hardware. Gordon's work $[15,16]$ on register-transfer systems uses a denotational semantics with partial values to provide a concise means for reasoning about clocking, feedback, instruction-set implementation and bus communication. Talantsev [47] as well as Betancourt and McCluskey [7] examine qualitative signal transition concepta corresponding to $\dagger X$ and $\downarrow X$. Wagner [49] also uses such constructs as $\dagger X$ in a semi-automated proof development system for reasoning about signal transitions and register transfer behavior. Malachi and Owicki [28] utilize a temporal logic to model self-timed digital systems by giving a set of axionas. Bochmann [9] uses a linear-time temporal logic to describe and verify properties of an arbiter, a device for regulating access to shared resources. The presentation reveals some tricky aspects in reasoning about such components.

Leinwand and Lamdan [26] present a type of Boolean algebra for modeling signal transitions. Applications include systems with feedback and critical timing constrainta. Patterson [36] examines the verification of firmware from the standpoint of sequential programming. Meinen [33] discusses a semantics of register tranafer behavior. McWilliams [27] develope computational techniques for determining timing constraints in hardware. Eveking (13) uses predicate calculus with explicit time variables to explore verification in the hardware specification language Conlan.

CHAPTER 12-DISCUSSION

A number of people have ueed temporal logics to describe computer communicstion protocols $[18,25,40]$. Bernstein and Harter [6$]$ augment linear-time temporal logic with a construct for expressing that one event is followed by another within some specified time range. This facilitates the treatment of various quantitative timing issues. Recently Schwartz et al. [41] have introduced a temporal logic for reasoning about intervals. They distinguish intervals from propositions.

The research mentioned above has made large strides in developing a semantics of digital systems. However, for our purposes much of this work either has difficulties in treating quantitative timing, lacks rigor, is unintuitive or does not easily generalise. This seems unavoidable due to the magnitude of the problem area. We note that the computational models used in works' on temporal logic generally interleave the executions of different processes. In the treatment of digital circuits, thin approach seems inappropriate. We have chosen instead to model true paralleliam. The semantics of the connective logical-and (\wedge) appear to directly correspond to thin.

It might seem that temporal logic is simply a subset of dynamic logic $[19,37]$. Howeyer, once interval-dependent constructs are added, this is no longer the case. Operators such as semicolon and yields are not directly expressible in dynamic logic. Furthermore, the deacriptive atyles used in dynamic logic and temporal logic differ rather greatly. Dynamic logic and process logica $[11,20,38]$ stress the interaction between programs and propositions. ITL is expressive enough to conveniently and directly specify a variety of programs containing such constructa as asaigmenta, while-loops and proceduren. Our current view is that the addition of program variables would be redundant.

Lamport [25] feels that temporal logic is a valuable tool but advocates against the ane of the operator next by claiming that this introduces unnecessary granularity into the reasoning process. We do not agree and believe that explicit acceas to diserete state trancitions is invaluable when dealing with such concepte as iteration and foedback. Purthermore, temporal logic appears to be fexible enough to facilitate projecting out eritical points in a computation so as to ignore intermediate atates. Thus, apecifications and theorems that semume a certain degree of atomicity can be

CHAPTER 12—DISCUSSION

generalised. If temporal logic in iteelf ueed as a programming language, constructe such as del that are based on O occupy a snug and secure place in the overall formalism.

§12.2 Future Research Directions

There are many aspects of interval temporal logic that require more investigation. We now point out a few.

Proof theory

All the valid properties presented in this thesis have been justified on the basis of ITL's semantics. Work ahould be done on suitably axiomatising various parts of the logic and automating some of the proof process. For example, if bit signals are represented as truth values, simple versions of temporal constructs such as stability (stb) and unit delay (del) can be expressed and reasoned about using existing propositional linear-time temporal logics [14] and their axiomatisations and decision procedures. Using a program written by Frank Yellin, we have already automatically established properties such as the following:

$$
\begin{aligned}
& \vDash[\uparrow X \wedge \uparrow Y] \supset \uparrow(X \wedge Y) \\
& \vDash(X \text { del } X) \equiv \text { stb } X
\end{aligned}
$$

Some variants of temporal logic

There are a variety of operators and concepts that can be added to temporal logic. We discuss some here.

Ignoring intervals

Many of the concepte presented here can generally be expressed in linear-time temporal logic [31] with O, \square, \bigcirc and U. In section §2.4 we gave a linear tranalation from local proponitional ITL to linear-time temporal logic with quantification.

CHAPTER 12-DISCUSSION

However, the clarity and modularity provided by semicolon and other interval dependent constructs is often lost. A more detailed understanding of the various tradeoffs involved and the proper roles of different temporal logics should be developed.

Infinite intervala

In the semantics already given, all intervals are restricted to being finite. It can however be advantageous to consider infinite intervals arising out of nonterminating computations. As we mentioned in section $\mathbf{9 2 . 4}$, the inclusion of such intervals does not alter the complexity of satisfiability.

Traces

The trace of a signal A in an interval $s_{0} \ldots s_{n}$ can be defined as the sequence of values that A assumes:

$$
\operatorname{trace}(A)=\left\langle\left(O^{i} A\right): 0 \leq i \leq \operatorname{len}\right),
$$

that is,

$$
\operatorname{trace}(A)=\left(O^{0} A, O^{1} A, \ldots, O^{\text {len }} A\right)
$$

In an interval of length n, the trace of a variable has length $n+1$.
The following property shows how to expreas unit delay by comparing the traces of the input and output:

F $(A \operatorname{del} B) \equiv[\operatorname{trace}(A)[0$ to len -1$]=\operatorname{trace}(B)[1$ tolen $]]$
It would be interesting to compare the use of traces with other styles of specification.

Projection

Sometimen it is deairable to examine the behavior of a device at certain points in time and ignore all intermodiate statea. This can be done using the idea of temporal projection. The formula $w_{1} I w_{2}$ in an interval forms a subinterval comanting of

CHAPTER 12-DISCUSSION

those states where w_{1} is true and then determines the value of w_{2} in this subinterval:

$$
M_{s_{0} \ldots o_{n}} \llbracket w_{1} \Pi w_{2} \rrbracket=M_{t_{0} \ldots t_{m}} \llbracket w_{2} \rrbracket,
$$

where $t_{0} \ldots t_{m}$ is the sequence of the states in $s_{0} \ldots s_{n}$ that satisfy w_{1} :

$$
M_{t_{i}} \llbracket w_{1} \rrbracket=\text { true }, \quad \text { for } 0 \leq i \leq m
$$

Note that $t_{0} \ldots t_{m}$ need not be a contiguous subsequence of $s_{0} \ldots s_{n}$. If no states can be found, the projection is vacuously true. In the semantics given here, the formula w_{1} examines states, not intervals. For example, the formula

$$
(X=1) \Pi \text { stb } A
$$

is true if A has a constant value throughout the states where X 'equals 1. Variables like X act as markers for measuring time and facilitate different levels of atomicity. If two parts of a system are active at different times or are running at different rates, markers can be constructed to project away the asynchrony. Other styles of projection are also possible. For example, a "synchronous" form of projection might require the marker to be true in the initial and final states of an interval.

In section $\S 2.3$ we showed how to express the iterative construct w^{*} by means of a marker P :

$$
\boldsymbol{w}^{*} \equiv \text { dof } \quad \exists P \cdot(\text { beg } P \wedge \boxtimes[\text { beg } P \supset(\text { empty } \vee \circlearrowleft[w \wedge O \text { halt beg } P])])
$$

This provides a general means for identifying the end points of the iteration steps and extracting them using projection. It is even desirable to have variants of the iteration constructs for making markers explicit. For example, the extended whileloop

$$
\text { while }_{P} Q \text { do } R
$$

indicates that P marks off individual steps. Other constructs such as next and trace can have marker-oriented variants.

We feel that low-level clocking and propagation details in digital circuits can be more efiectively decoupled from high-level functional behavior through the introduction of markers and projection. The Am2901 bit slice discussed in chapter 11 might be a good test of this hypothesis.

CHAPTER 12-DISCUSSION

Additional modifications
Further powaible extensions include interval temporal logics based on branching or probabilistic models of time. Operators for reversing or expanding an interval may also turn out to be useful.

Temporal types and higher-order temporal objects

A theory of temporal types needs to be developed. This should provide various ways of constructing and comparing types. For example, the predicate p^{*} is true for vectors of arbitrary, possibly null length whose elements all satiafy p. Thus, the type bit* is true for all bit-vectors. The type sig(bit*) is true for any bit vector signal with a possibly varying length. The temporal type Bit* requires that the signal's length be fixed over time:

$$
p A: B i t^{*} \equiv\left[A: \operatorname{sig}\left(b i t^{*}\right) \wedge s t b|A|\right]
$$

We hope to permit parameterised types such an aig $(a \times t)$, where and t are type-valued variables. Operatora for such things as unioning or recursively defining types also need to be developed. Perhaps the techniques needed here can be made general enough so that any unary predicate can be viewed as a type.

It would be intereating to have a semantics of higher-order temporal objects such as time-dependent functionals. Perhaps a suitable variant of proposition ITL can facilitate some sort of Gödelisation by representing all values an temporal formulaa. Alternatively, an encoding like that used by Scott $[\mathbf{2 2 , 4 5]}$ in developing a model of the typeless lambda calculus might work. However, we wiah to strongly resist the introduction of partial values. One concesaion we make in this direction is to not require that every function have a fixed point.

Temporal logic as a programming language

Tomporal logic can be used directly as a programming language. For example, the formula

$$
\operatorname{beg}(I=0) \wedge[(I+1) \operatorname{del} \Pi \wedge \operatorname{hatt}(I=5)
$$

CHAPTER 12-DISCUSSION

can be viewed operationally as initialising I to 0 , and then inerementing I by 1 over each computation step until I equals 5 . At that instant, the computation halta. This style of temporal programming is similar to the language Lucid [2,4] developed by Ashcroft and Wadge. Note that the formula given above has the same semantica has the following:

$$
\operatorname{beg}(I=0) \wedge \text { while }(I \neq 5) d o(\text { skip } \wedge[I+1 \rightarrow I])
$$

This illustrates how by using ITL we can compare different ways of expressing the same computation.

In general, if w_{1} and w_{2} are temporal formulas, the combined form $w_{1} \wedge w_{2}$ operationally specifies that w_{1} and w_{2} be run in parallel. Note that w_{1} and w_{2} are implicitly synchronised to start and finish at the same time. Similarly, the formula $w_{1} ; w_{2}$ involves running w_{1} and then w_{2}. For example, the formula

$$
([0 \rightarrow I] \wedge[0 \rightarrow J]) ; \text { while }(I \neq n) \operatorname{do}([I+1 \rightarrow I] \wedge[J+I \rightarrow J])
$$

clears I and J and then repeatedly increments I and simultaneously sums I into J. Asynchronous operations can also be handled. For instance, the formula

$$
(\operatorname{stb} I \wedge \operatorname{halt}[X=1]) ;[(I+1) \operatorname{del} \eta
$$

leaves I stable until the flag X equals 1 and then keeps increasing I by 1.
Manna and Moaskowaki $[29,30]$ describe how to reason about programming concepts in ITL and also present a prototype programming language called Tempura that is based on the ideas just given. Along with the programming languages Lucid and Prolog [24], Tempura has the property of having a semantics based on logic. Much work remains ahead in exploring this temporal approach to language design and developing practical tachniques for apecifying, axecuting, tranaforming, synthesising and verifying Tempura programs. We strongly feel that there is a large potential for the crose-fertilisation of idean axising from simultancously waing temporal logic as a hardware specification tool and as a bavin for generah-purpose programming languagen. It aloo appears worthwhile to axamine interproters and

CHAPTER 12-DISCUSSION

other syatems that transmit and manipulate commande and programs. Perhape the state sequences of temporal logic can also be used as a convenient basis for logics of, say, formal languages, typesetting and music. More generally, temporal logic may provide a semantica of both time and apace.

Hardware

The largest device considered in this thesis is the Am2901 bit slice; there is clearly no reason to stop at that. Future work will explore microprocessors, pipelines, buses and protocols, DMA, firmware and instruction sets, as well as the combined semantics of hardware and software. The treatment of specific areas such as fault-analysis also seems worthwhile. It would be interesting to see how suitable ITL is as a tool for teaching the basic operation of digital circuits covered in such textbooks as Gschwind and McCluskey [17] and Hill and Peterson [21]. The feasibility of hardware-oriented simulation languages based on subsets of ITL should certainly be investigated. For example, propositional ITL can be used for bit-valued signals.

§12.3 Conclusion

Standard temporal logics and other such notations are not designed to concisely handle the kinds of quantitative timing properties, signal transitions and structural information occurring in the examplea considered. Temporal intervals provide a unifying means for presenting a wide range of digital devices and concepta. Interval temporal logic can be used for both specifying and reasoning about circuits and their properties. The same formalism that handles devices with clock signale, set-up constrainte and hold times can also deal with high-level algorithms. The omisaion of partial values does not appear to restrict the generality of specifications; even high-impedance can be treated.

The future neems bright. Let us therefore conclude this theaia with the conjecture that temporal logica will be around for a long interval to come.

Bibliography

1. Advanced Micro Devices, Inc. Bipolar Microprocessor Logic and Interface Data Book. Sunnyvale, California, 1981.
2. E. A. Ashcroft and W. W. Wadge. "Lucid: A formal system for writing and proving programs." SLAM Journal of Computing 5, 3 (September 1976), 336-354.
3. E. A. Ashcroft and W. W. Wadge. ${ }^{n}$ Lucid, a nomprocedural language with iteration." Communications of the ACM 20, 7 (July 1977), 519-526.
4. E. A. Ashcroft and W. W. Wadge. Lucid, the Data Flow Programming Language. To be published.
5. M. R. Barbacci. "Instruction Set Proceasor Specificationa (ISPS): The notation and its applications." IEEE Transactions on Computers C-3O, 1 (January 1981), 24-40.
6. A. Bernstein and P. Harter. "Proving real-time properties of programs with temporal logic." Proceedings of the Eighth Symposium on Operating Systema Principles, Pacific Grove, California, December, 1981.
7. R. Betancourt and E. J. McCluskey. Analysis of sequential circuits using clocked fip-Ilopa. Technical Report 82, Digital Syatems Laboratory, Stanford University, August, 1975.
8. D. F. Blunden, A. H. Boyce, and G. Taylor. "Logic simulation, parts I and II." The Marconi Review 10, 206 (1977), 157-171 and 236-254.
9. G. V. Bochmann. "Hardware specification with temporal logic: An example." IEEE Traneactions on Computers C-91, 3 (March 1082), 223-231.
10. M. A. Brever and A. D. Friedman. Diagnosis and Reliable Design of Digital Syatems. Computer Science Prem, Inc., Woodland Hills, California, 1976.
11. A. Chandra, J. Halpern, A. Meyer, and R. Parikh. Equations between regular terms and an application to process logic. Proceedings of the 13-th Annual ACM Symposium on Theory of Computing, Milwaukee, Wisconsin, May, 1981, pages 384-390.
12. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York, 1972.
13. H. Eveking. The application of Conlan assertions to the correct description of hardware. Proceedings of the IFIP TC-10 Fifth International Conference on Computer Hardware Description Languages and their Applications, Kaiserslautern, West Germany, September, 1981, pages 37-50.
14. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. Seventh Annual ACM Symposium on Principles of Programming Languages, Las Vegas, Nevada, January, 1980, pages 163-173.
15. M. Gordon. Register tranafer ayatems and their behavior. Proceedings of the IFIP TC-10 Fith International Conference on Computer Hardware Description Languages and their Applications, Kaiserslautern, West Germany, September, 1981, pages 23-36.
16. M. Gordon. A model of register tranafer systems with applications to microcode and VLSI correctneas. Department of Computer Science, University of Edinburgh, 1981.
17. H. W. Gechwind and E. J. MeCluckey. Design of Digital Computers. SpringerVerlag, New York, 1975.
18. B. T. Hailpern and S. Owicki. Verifying network protocols uning temporal logic. Technical Report 192, Computer Systems Laboratory, Stanford University, June, 1980.
19. D. Harel. Firat-Order Dynemic Legic. Springer-Verlag, Berlin, 1979. Number 88 in the reries Lecture Notes in Computer Science.
20. D. Berel, D. Kosen, and R. Parikh. "Procen logic: Erprosivenean, decidability,
completeness." Journal of Computer and System Sciences, 25, 2 (October 1982), 144-170.
21. F. J. Hill and G. R. Peterson. Introduction to Switching Theory and Logical Design. John Wiley and Sons, New York, 1981.
22. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison Wesley, Reading, Mass., 1979.
23. G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen and Co., Ltd., London, 1968.
24. R. Kowalski. Logic for Problem Solving. Elsevier North Hollapd, Inc., New York, 1979.
25. L. Lamport. "Specifying concurrent program modules." ACM Transactions on Programming Languages and Syatems 5, 2 (April 1983), 190-222.
26. S. Leinwand and T. Lamdan. Algebraic analysis of nondeterministic behavior. Proceedings of the 17-th Design Automation Conference, Minneapolis, June, 1980, pages 483-493.
27. T. M. McWilliams. Verification of timing constraints on large digital systems. Proceedings of the 17 -th Design Automation Conference, Minneapolis, June, 1980, pages 139-147.
28. Y. Malachi and S. S. Owicki. Temporal specifications of self-timed syatems. In H.T. Kung, B. Sproul, and G. Steele, editors, VLSI Systems and Computations, pages 203-212, Computer Science Press, Inc., Rockville, Maryland, 1981.
29. 2. Manna and B. Mosskowaki. Reasoning in interval temporal logic. To appear in Proceedinge of ACM/NSF/ONR Workshop on Logics of Programs, June, 1983.
1. Z. Manaa and B. Monskowaki. Temporal logic an a programming languge. In preparation.
2. Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal framework. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem in Computer Science, pages 215-273, Academic Press, New York, 1981.
3. C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley Publishing Company, Reading, Massachusetts, 1980.
4. P. Meinen. Formal semantic description of register transfer language elements and mechanized simulator construction. Proceedings of the 4-th International Symposium on Computer Hardware Description Languages, Palo Alto, California, October, 1979, pages 69-74.
5. J. Mick and J. Brick. Bit-Slice Microprocessor Design. McGraw Hill, New York, 1980.
6. A. C. Parker and J. J. Wallace. "SLIDE: An I/O hardware description language." IEEE Transactions on Computers C-90, 6 (June 1981), 423-439.
7. D. A. Patterson. "Strum: Structured microprogram development system for correct firmware." IEEE Transactions on Computers C-25, 10 (October 1976), 974- 985.
8. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. 17-th Annual IEEE Symposium on Foundations of Computer Science, Houston, Texas, October, 1976, pages 109-121.
9. V. R. Pratt. Process Logic. Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, January, 1979, pages 93-100.
10. N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag, New York, 1971.
11. R. L. Schwarts and P. M. Melliar-Smith. Temporal logic apecification of distributed syatems. Proceedings of the Second International Conference on Distributed Computing Syatems, Paris, France, April, 1981, pages 446-454.
12. R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. An interval logic for higher-level temporal reasoning: Laggage definition and examplea. Technical

Report CSL-138, Computer Science Laboratory, SRI International, February, 1983.
42. D. Scott. "Data types as lattices." SLAM Journal of Computing 5, 3 (September 1976), 522-587.
43. D. P. Siewiorek, C. G. Bell and A. Newell. Computer Structures: Principles and Examples. McGraw-Hill Book Company, New York, 1982.
44. L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. PhD Thesis, MIT, July, 1974. Available as Project MAC Technical Report 133.
45. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge, Masachusetts, 1977.
46. S. Y. H. Su, C. Huang, and P. Y. K. Fu. A new multi-level hardware design language (LALSD II) and translator. Proceedings of the IFIP TC-10 Fifth International Conference on Computer Hardware Description Languages and their Applications, Kaiserslautern, West Germany, September, 1981, pages 155-169.
47. A. D. Talantsev. "On the analysis and synthesis of certain electrical circuits by means of special logical operators." Automation and Remote Control 20, 7 (July 1959), 874-883.
48. Texas Instruments, Inc. The TTL Data Book for Design Enginec:: Second edition, Dallas, Texas, 1976.
49. T. Wagner. Hardware Verification. PhD Thesis, Department of Computer Science, Stanford University, 1977.
50. P. L. Wolper. Specification and Synthesis of Communicating Processes Using an Extended Temporal Logic. PhD Thesis, Department of Computer Science, Stanford University, 1982.
51. P. L. Wolper, M. Y. Vardi, A. P. Sistla. Reasoning about infinite computation paths. In preparation.

