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Abstract

Predicate logic is a powerful and general descriptive formalism with a long

history of development. However, since the logic's underlying semantics have no

notion of time, statements such as "I increases by 2" and "The bit signal X

rises from 0 to 1" can not be directly expressed. We present a formalism called

interia temporal logic (ITL) that augments standard predicate logic with time-

dependent operators. ITL is like discrete linear-time temporal logic but includes

time intervals. The behavior of programs and hardware devices can often be

decomposed into successively smaller intervals of activity. State transitions can

be characterized by properties relating the initial and final values of variables over

intervals. Furthermore, these time periods provide a convenient framework for

introducing quantitative timing details.

After giving some motivation for reasoning about hardware, we present the

propositional and first-order syntax and semantics of ITL. We demonstrate ITL's

utility for uniformly describing the structure and dynamics of a wide variety of

timing-dependent digital circuits. Devices discussed include delay elements, adders,

latches, fip-lOps, counters, random-access memories, a clocked multiplication cir-

cuit and the Am29O1 bit slite. ITL also provides a means for expressing properties

Of such .peclcatios. Throughout the dissertation, we examine such concepts an

device equivalence and internal states. Propositional ITL is shown to be undecidable

although useful subsets are of relatively reasonable computational complexity.

Thuwk wee supported in part by tW National Science Folsdiiomsader a Grads-

. Pelleweip, Greants MCS79-09495 end MOS81-11586, by DARPA taider Comact

NOOW9-88-C-OS5O, and Ill Use United State. Air Forces Office of Scientiftc Research

,mdev Ovuit APOSR--0014.
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CHAPTER 1

INTRODUCTION

§1.1 Motivation

Computer systems continue to grow in complexity and the distinctions between

hardware and software keep on blurring. Out of this has come an increasing

awareness of the need for behavioral models suited for specifying and reasoning

about both digital devices and programs. Contemporary hardware description

languages (for example [5,35,461) are not sufficient because of various conceptual

limitations:

* Most such tools are intended much more for simulation than for math-

Vematically sound reasoning about digital systems.

J Difficulties arise in developing circuit specifications that out of necessity

must refer to different levels of behavioral abstraction.

e Existing formal tools for such languages are in general too restrictive to

deal with the inherent parallelism of circuits.

Consider now some of the advantages of using predicate logic (12] as a tool for

specification and reasoning:

e Every formula and expression in predicate logic has a simple semantic
interpretation.

o. Concepts such as recursion can be characterised and explored.

- - i



CHAPTER 1-INTRODUCTION

* Subsets of predicate logic can be used for programming (e.g., Prolog

124J).

e Theorems about formulas and expressions can themselves be stated and

proved within the framework of predicate logic.

o Reasoning in predicate logic can often be reduced to propositional logic.

Propositional logic also provides a means for reasoning about bits in

digital circuits.

o Decades of research lie behind the overall predicate logic formalism.

i One problem with predicate logic is that it has no built-in notion of time and

therefore cannot directly express such dynamic tasks as

"I increases by 2"

"The values of A and B are ezchanged"

or

"The bit signal X rises from 0 to 1."

Here are some ways to handle this limitation:

o We can simply try to ignore time. For example, the statement "I increases

by 2" can be represented by the formula

1=1+ 2.

Similarly, the statement "The values of A and B are ezchanged" can be

expressed as

(A=B) A (B==A).

Unfortunately, this technique doesn't work since neither of these formulas

has the intended meaning.

e Each variable can be represented as a function of time. Thus, we might

express the statement "I increases by 2" as the formula

(t)- 1(to) + 2,

2



CHAPTER 1-1NTRODUCTION

where to designates the initial time and t1 is the final time. In an analogous

mannar, we can express the statement "The values of A and B are exchanged"

as

[A(t,) - B(to)! A [1(tf) A(to)].

Because of the extra time variables such as to, this approach rapidly be-

comes tedious and lacks both clarity and modularity. For example, it is not

straightforward to alter the above formulas to concisely express the state-

ments "I increases by 2 and then by 3" and "The values of A and B are

exchanged n times in succession."

. Variables can be represented as lists or histories of values. Thus, the state-

I ment "I increases by 2" corresponds to the formula

la-t(I) first(I) + 2

where jirst(I) equals I's first element and last(]) equals I's last element.

This technique is very much like the previous one and suffers from similar

problems.

The logic presented in this paper overcomes these problems and unifies in a

single notation digital circuit behavior that is generally described by means of the

following techniques:

* Register transfer operations

* Flowgraphs and transition tables

* Tables of functions

* Timing diagrams

* Schematics and block diagrams

Using the formalism, we can describe and reason about qualitative and quantita-

tive properties of signal stability, delay and other fundamental aspects of circuit

operation.

We present an extension of liear-time temporal logic (31,391 called ittterve

temporal logic (ITL). The behavior of programs and hardware devices can often be

3
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CHAPTER I-INTRODUCTION

decomposed into successively smaller periods or intervals of activity. These intervals

provide a convenient framework for introducing quantitative timing details. State

transitions can be characthrized by properties relating the initial and final values

of variables over intervals of time. The principle feature of ITL is that every

formula refers to some implicit interval of time. The dissertation will later examine

the logic's formal syntax and semantics in great depth. Below are a few English-

language statements and corresponding formulas in ITL. These examples are meant

to give an feel for what ITL looks like.

e I increases by 2:

i 1+2-+1

e The values of A and B are ezchanged

(A-+ B) A (B-.A)

I 1 increases by 2 and then by 3:

(I + 2 --* I); (I + 3 --. I)

o The values of A and B are exchanged n times in succession:

([A -+ B A [B --01 AI)"

o The bit signal X rises from 0 to 1:

(X sit 0);,skp; (X Ps 1)

As in conventional logic, we can express properties without the need for a

separate "sertion language." For example, the formula

S[(I+- );(I + i -- I) (I+2- I)

states that if the variable I twice increaes by I in an interval, then the overall

result is that I increases by 2.

4
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CHAPTfl 1-INTRODUCTION

ITLS applicability is not limited to the goals of computer-asisted vedfca

tion and synthesis of circuits. This type of notation, with appropriate "syntactic

sugai can provide a fudametal and rigorous basis for communicating reasoning

or teaching about the behavior of digital devices, computer programs and other

discrete systems. We apply it to describing and comparing devices ranging from

delay elements up to a clocked multiplication circuit and the Am2901 ALU bit slice

developed by Advanced Micro Devices, Inc. Interval temporal logic also provides

a basic framework for exploring the computational complexity of reasoning about

time. Simulation-based languages can perhaps use such a formalism as a vehicle

for describing the intended semantics of delays and other features. In fact, we feel

' that ITL provides a sufficient basis for directly describing a wide range of devices

and programs. For our purposes, the distinctions made in dynamic logic (19,37]

and process logics [11,20,38] between programs and propositions seem unnecessary.

Manna and Mosskowski [29,30] show how ITL can itself serve as the basis for a

programming language.

1.2 Contributions of Thesis

Here is a summary of the key ideas developed in this thesis:

* The propositional and first-order syntax and semantics of interval tem-

poral logic are presented.

* We give complexity results regarding satisfiability of formulas in proposi-

tional ITL.

* We demonstrate the utility of ITL for uniformly describing and reason-

ing about the structure and dynamics of a wide variety of timing-

dependent digital circuits. Devices discussed include delay elements,

adders, latches, flip-flops, counters, random-access memories, a clocked

multiplication circuit and the Am2901 bit slice.

e The overall approach used indicates that multi-valued logics and partial

values are such as are not necessary in the treatment of .timn-

dependent hardware.

5
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CHAPTER 1-NTRODUCTION

§1.3 Organization of Thesis

Chapter 2 introduces the propositional form of interval temporal logic. The

logic's basic syntax and semantics are given. In addition, ITL serves to express a

number of general temporal concepts and properties. The chapter concludes with

some results on the theoretical complexity of propositional ITL.

In chapter 3, we present first-order ITL. A variety of useful predicates are

introduced to capture dynamic notions such as assignment and signal transitions.

The next few chapters show how to formalize specifications and properties of

a number of digital devices. Chapter 4 describes and compares a number of delay

models that arise in digital systems. In chapter 5 we introduce some extra notation

for dealing with subscripting, conversion and tuples. Chapter 6 looks at adders,

chapter 7 discusses latches and chapter 8 examines flipflops. Chapter 9 contains

descriptions and properties of multiplexers, random-access memories, counters and

shift registers.

Chapter 10 discusses a clocked multiplication circuit and shows one way to

derive a suitable multiplication algorithm in ITL. In chapter 11, we use ITL to

describe and reason about the functional behavior of the Am2901 bit slice, a large-

scale integrated circuit. The dissertation concludes with chapter 12 containing a

discussion of some related work and future research directions.

1t
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PROPOSITIONAL INTERVAL TEMPORAL LOGIC

We first present propositional ITL; this later provides a basis for first-order

I' ITL.

12.1 The Basic Formalism

syntax

Propositional ITL basically consists of propositional logic with the addition of

modal constructs to reason about intervals of time.

Formulas are built inductively out of the following:

* A nonempty set of propositional variables:

P,Q,...

• Logical connectives:

-w and W1 A w, where w, w, and ws are formulas.

0 Next:

0 w (read 'nest w"), where w is a formula.

. Semicolon:

L w ;w2 (read "w semicoLon w2" or "w, flowed by vs"),

where wl and 2 are formulas.

7
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CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Here are sme sample formulas:

P

O(P A -R?)

Q;(P A R?)

-QA O[P;-'o(Q;R)J

Notice that a constructs, including 0 and semicolon, can be arbitrarily nested.

j Modela

Our logic can be viewed as linear-time temporal logic with the addition of the

"chop" operator of process logic [11,20]. The truth of variables depends not on

e states but on intervals. A model is a pair (E, M4) consisting of a set of states E

Is, t'... I together with an interpretation M4 mapping each propositional variable P

and nonempty interval so... a,. E Z+ to a some truth value MI..JPJ. Iu what

follows, we assume E is fixed.

The length of an interval so... s.1 is ni. An interval consisting of a single state

has length 0. It is possible to permit infinite intervals althoughi for simplicity we

will omit them here. An interval can also be thought of as the sequence of states of

a computation. In the language of Chandra et &1. [111, our logic is "non-local" with

intervals corresponding to "paths."

Here is a sample model:

0 States:

E = {,t,u}

o Assignments:
Variables Where M is true

P 81 t)tus, UP UP 8U

Q tt tst,tst*s

R

8



CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Interpretation of formulas

We now extend the meaning function .M to arbitrary formulas:

* .M.o...,.-,~nu = true if M..... [w] =false

The formula -w is true in an interval so... s. iff w is false.

. M...... Jw 1 ^ W21 = true iff .oo...,jOwiI = true and M.....JIw 2 = true

The conjunction W1 A tW2 is true in so ... s. iff w, and W2 are both true.

M Ma....jO 0  = true iff n -a1 and [w] =...ju4 = true

The formula 0 w is true in an interval 8o... a iff w is true in the subinterval

a,... a,. If the original interval has length 0, then 0 w is false.

JW .W2 = true iff .MI...,,Iw II = true and ... ,,W 21 = true,

for some i, 0 < i < n.

Given an interval so... a,, the formula W1; W2 is true if there is at least one way

to divide the interval ;nto two adjacent subintervals so... si and si... an such that

the formula w, is true in the first one, 8s... si, and the formula 1W2 is true in the

second, Si... n.

Ezamples:

We now given the interpretations of some formulas with respect to the par-

ticular model discussed earlier:

• Mt.IP A QI = true since .MtJPI = true and N,.IQ - true.

* Mt.uIQ; PI = true since M t.Q = true and M..J JP - true.

S.MtI( P A Q)I = fale since ,IP A QI = true.

•f * M,.I[O(P A -R) = true since X. P A -RI - true.

A formula w is 8atilaied by a pair (M, 8o... an) iff

Mae..... i [O - true

II
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CHAPTER 5-PROPOSITIONAL DnTIRVAL TEMPORAL L00IC

Thinin dnote asfollows.:

We sometimes make M implicit and write

Nf all pairn or M and so..., satisfy w then win valid, writtenI-w

12.2 Expressing Temporal Concepts in Propositional ITL

W. ilustrate propositional MT's descriptive power by giving a variety of useful

temporal concrpts. The connective. and A clearly suffice to express other basic

logical operators such as v and:

* W11 V is3 - logical-or:

aWi V Wig Wt '(-'Wui A -2

* WD wIf - implication:

WU1 D W2 Mdef 'W V W2

* 191 - to2 - equivalence:

W91 MD W2 do (Wel D W2) A (W2g DWI

* if w, Mewn w2g else wsa - conditional formula.-

if 1 WUenw 2 .el.WW3  !d~f D to,)A (-191 W 3)

* trw. - truth:

tru Md.1 P V 'P

* fae- falsitir:

10
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CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

Some propertim of nest and semicalo

Throughout this thesis, numerous sample formulas are given in order to convey

the utility of ITL for expressing temporal and digital concepts. The reader need

not look at every single formula. Here are some representative properties of the

operators next and semicolon. All follow from the semantic model just covered.

- (P;Q);R P;(Q;R)

Semicolon is associative. Therefore a formula such as P; Q; R is unambiguous.

I- [(P v Q);R] as [(P;R) v (Q;R)J

The left of semicolon distributes with logical-or. An analogous property applies to

the right of semicolon.

I- [P;(Q A R)] D [(P;Q) A (P;R)]

A logical-and can be removed from semicolon's right. The left of semicolon has a

similar property.

S(OP);Q -O(P;Q)

The operator 0 commutes with the left of semicolon.

We now introduce a variety of other useful temporal concepts that are express-

ible by means of the constructs just defined.

Examining subintervals

For a formula w and an interval so... s., the construct w u is true if w is true

in at least one subinterval a... sa contained within so... 8, and possibly the entire

interval so... s. itself. Note that the "a" in * simply stands for "any" and is not

a variable.

M.......J* ul f tee if M.....,I l = true, for some 0 < i < j ! n

Similarly, the formula I w is true if the formula w itself is true i all subintervals

of 80 ... S.: -.

1~..19 Al tru if M [...w, ] - m.e. for all 0 :5 i 5 ,9 <n
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These constructs can be expressed as follows:

W "def (true; w; true)

Because semicolon is associative, the definition of 0 is unambiguous. Together,

* and ER fulfill all the axioms of the modal system S4 f23J, with * interpreted as

possibly and [ as necessarily.

Properties:

1. 9PD P

If the proposition P is true in all subintervals then it is true in the primary interval.

I IS (P A Q) - [13P A M Q]

The logical-and of two propositions P and Q is true in every subinterval if and only

if both propositions are true everywhere.

I- P - **P

A proposition P is somewhere true exactly if there is some subinterval in which P

is somewhere true.

0.- [EPA Q *(P A Q)

If P is true in all subintervals and Q is true in some subinterval then both are

simultaneously true in at least one subinterval.

Initial and terminal subintervals

For a given interval 8o... 8, the operators * and M are similar to * and Ml

but only look at initial subintervals of the form 8o... 81 for i 5 n. We can express

t *w and M w as shown below:

w Er (w; true)

MW Md. -Wa

12
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CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

For example, the formula W(P A Q) is true on an interval if P and Q are both true

in all initial subintervals. The connectives * and tD refer to terminal subintervals

of the form si... s. and are expressed as follows:

W1 Mdet (true;uw)

W ' =-det '~-W

Both pairs of operators satisfy the axioms of S4. The operators 0 and ID correspond

directly to C' and 0 in linear- time temporal logic 131].

Properties:

0. (ESP= COMP) A (IEP= MrP)

The proposition P is true in all subintervals exactly if P is true in all initial

subintervals of all terminal subintervals. In fact, the operators (II and [D c ommute.

0 [1( Q) A (P; R)] D (Q; R)

If P implies Q in all initial subintervals and P is followed by R, then Q is followed

by R.

* The operator <S commutes with the left of semicolon.

The yields operator

It is often desirable to say that within an interval 80... 8., whenever some

formula to1 is true in any initial subinterval 80... si, then another formula w2g in

true in the corresponding terminal interval 8j.. .5s. for any i, 0 :9 i 5 n. We say4~ that ioi yields w02 and denote this by the formula wt -1% W2:

*Mg..W 11 -;0 W2 1 J trUeIf iffw M..aI I = true implies M... wgI = true, for all 0 _- i -5

The yields operator can be viewed as ensuring that no counterexample of the form
wl; -w2 existi in the interval:

(10 12~ u) -d~r -(W0I; -W02)

This is similar to interpreting the implication w,1 D W2 as the formula -jIs A'2)

13
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Exam ples:

Concept Formula

After P, both Qand Rare true P 1>(Q A R)

After P, Qyields R P -.>(Q ->R)

P alwayi; yields Q S(P > Q)
After Pand Q, Ris false (P A Q >(R

Pro perties:

The formula P; Q yields R exactly if after P is true, Q yields R. This is analogous

to the propositional tautology

*r [(P A Q) DR)JP DP (Q DR)]

1false ,oP

After false, anything can happen. Since false never occurs, this is a vacuous

assertion.

When combined with other temporal operators, yield exhibits a number of

interesting properties based on the underlying behavior of semicolon. Here are

some examples:

The proposition P is true in all terminal subintervals exactly if P is true after any4 initial subinterval satisfying true.

I- (P ") MQ) =(0 P Q)
After P, Q is true in all terminal sub intervals iff the result of P being true in some

initial subinterval yields Q.

After any initial subinterval where P is true, the formula MD Q results iff in all initial

subintervals, P yields Q.

14
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Temporal length

The construct empty checks whether an interval has length 0:

,......[empth = true iff n= 0

Similarly, the construct skip checks whether the interval's length is exactly 1:

.o.....kip] - true if n = 1

These operators are expressible as shown below:

empty det -' 0 true

skip Edef  0 empty

Combinations of the operators skip and semicolon can be used to test for intervals

of some fixed length. For example, the formula

skip; skip; skip

is true exactly for intervals of length 3. Alternatively, the connective next sumffices:

0 0 0 empty

Examples:

Concept Formula

After two units of time, P holds skip; skip; P

P is true in some unit subinterval *(skip A P)

Properties:

in empty

Eventually time runs out because intervals are finite.

15
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CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

I- (skip; P) MO0P

The operators akip and semicolon can be used instead of nezt.

im (empty;P) =_ P

The construct empty disappears on the left of semicolon. An analogous theorem

applies to the right of semicolon as well.

Initial and final states

The construct beg to tests if the formula wv is true in an interval's starting state:

M.....begw =- .

The connective beg can be expressed as follows:

begi w -def 0(empty A W)

This checks that w holds for an initial subinterval of length 0, i.e., the interval's

first state. By analogy, the final state can be examined by the operator fin to:

finw --de 4>(empty A W)

This checks that to holds for a terminal subinterval of length 0, i.e., the interval's

final state. The construct beg corresponds directly to the construct f in the proems

logic of Harel et a. [20). Similarly, fin corresponds to the pr.ess logic's construct

last.

Ezamples:

Concept Formula

f P is initially true, it ends true beg P 3 fin P

P and Q end true fit(P A Q)

"I il l ~ l+l '+'+l "i ,+= i t" . ... ,,6,
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~.beg P -beg(-P)

P is true in the frst stateiff -P is not.

~.fin(P vQ) m[fin P vfin Q]

The logical-or of P and Q ends up true exactly if either P end. true or Qends true.

The operators halt and keep

Various other useful operators can be expressed in propositional ITL. For

example, the construct halt wo is true for intervals that terminate the first time the

formula w is true:

halt wo Mdf lW(WM emptY)

Thus halt wo can be thought of as forcing an interval to wait until wo occurs.

The construct keep wo is true if the formula wo is true in all nonempty terminal

intervals:

keepw to de C9([eMPtYj :) W)

§2.3 Propositional ITL with Quantification

It is very useful to extend propositional ITL to permit existential and universal

J quantification over variables. In order for quantification to properly work, we require

j that E, the model's set of states, be varied enoughl so that any possible combined

behavior of variables is represented by some interval. More precisely, let P be a

4 ~ propositional variable, so... a,. be an interval and a(i, j) be a function mapping
ordered pairs 0 :5 i :9 j :5 n to truth values. We require some interval s... 8' existI such that 81.. agrees with the corresponding subinterval 8,. .. 8i on assignments
to all variables with the exception that each subinterval ... .sj' gives P the value

J = Ma....,II, for Q 7P and0:5i:Sj !5n

- a(0,), forO:Si:5j--q

17
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CHAPTER 2-PROPOSITIONAL INTERVAL TEMPORAL LOGIC

We denote the interval so... u. as

(so... ,)[PlaI

The construct

3P.w

represents existential quantification and has the semantics

1,o...3P. wj = true iff for some a, =(, ..., w true,

where '... s' = (so... .)[P/aj.

Universal quantification is expressed as the dual of existeniial quantification:

VP- -df -3P.-w

Property:

t. (-empty) D 3P. [beg P A fin('P)]

In a nonempty interval, a variable can be constructed that starts true and ends

false.

The until operator

Linear-time temporal logic has the until operator wi Ui " which is true in an

interval if the formula u2 is eventually true and wI is true until then:

M......[witi w2l - true if

M,..., w2I for some 0 S i < n and JM.t..,javiI for all 0 j < i

We can express until as follows:

W I U W2 9d.t 3 P. [begP A (bg P D [W2 V (w1 A O beg P)])]

where P does not occur free in wl or w2. In essence, P is initially true and

inductively remaias so until w2 in true.

18
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Iteration

An interval can be broken up into an arbitrary number of successive subinter-

vals, each satisfying some formula wi. We can use, for example, the construct w3 as

an abbre-riation for

W; o; 

In general, we abbreviate repetition by induction:

W0 Edef empty

I i+1 "Mdef W; W

Thus, for the case of i = 0, an interval so... s. satisfies the operator exactly if

the interval's length is 0. We can extend propositional ITL to include the Kleene

closure of semicolon:

Mao...,SI - true iff Ma,... ,. Iwii = true, for some i 0.

Iteration can be expressed by quantifying over a variable P that is true at the

end-points of the steps:

W* Md., 3P.(begP A [i[begP : (empty v * [W A 0 halt(begP)1)j)

where P does not occur free in w. Other constructs such as while-loops can also be

expressed within ITL:

4 while P doQ =Qd.f [(begIP] A Q)* A fin(-P)]

Properties:

0m P* = (P A -empt)*

During iteration, each step can be assumed to have length Z 1.

I- false* empty

An interval in which false is iterated must be empty.

19
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J2.4 Some Complexity Results

We prove that satisfiability for arbitrary formulas in propositional ITL is un-

decidable but demonstrate the decidability of a useful subset.

Undecidability of propositional ITL

Theorem (Halpern and Moszkowski): Satisfiability for propositional ITL is un-

decidable.

Proof: Our proof is very similar to the one presented by Chandra et al. [111.

for showing the undecidability of satisfiability for a propositional process logic.

We strengthen their result since we do not require programs in order to obtain

undecidability.

Given two context-free grammars G, and G2 , we can construct an propositional

ITL formula that is satisfiable iff the intersection of the languages generated by G,

and G2 is nonempty. Since this intersection problem is undecidable [221, it follows

that satisfiability for propositional ITL is also.

Without lose of generality, we assume that G1 and G2 contain no e-productions,

use 0 and 1 as the only terminal symbols and are in Greibach normal form (that is,

the right-hand side of each production starts with a terminal symbol).

For a given an interval so... 8. and an interpretation A, we form the trace

o......(P) of a variable P by observing P's behavior over the states so,..., s,,. We

define a as follows:

0.P if M.*P = false
1i if M.IPI = true

478 ...8.(P)-'= 0..(P)... ro.(P)

Suppose that G is a context-free grammar consisting of a list w of m production

sets w,... , w, , one for each nonterminal symbol Aj:

irl : A1  " i "11 I 2 I" "I lll

I ': A2 ".W 21 X 221.i" W2,l.I

i ~~~wn Am ".1 wl[Irs".2 W~l4 20- .-
- -. ..



Lot L{G, Ai) be the language generated by G with A4 as the start symbol. We

give a translation f(G,Ai) into ITL such that an interval so ... a.~ satisfies f(G, Aj)

iff P's trace in so.. a.' is in GA)

*@.. ~ i fG, i f ar,....(P) EL(G,Ai). H*I For each of the production sets r,, the associated translation f(r,) is the ITL formula

Lf(Wi) V f(N)V ... V

Each production string rii V1 V2 ., I has the translation

f (VI V2 ... Vm) f (V1); skip; f(V2); skip;... skip; f(V141i)

where
f(0) =(-'P A eMpty)

f(l) =(P A empty)

j(A4) - A4, for each nonterminal symbol A4

Recall that the variable P. determines whether a state maps to 0 or 1. In order to

avoid conflicts, we require that P not occur in the grammar. The overall translation

f(G, A ) is 
. A (

It is now easy to show (*) by induction on the size of the interval so ... s.'. We

need the grammar to be in Greibach normal form in order for the inductive step to

go through. See Chandra et al. [111 for details.

Given two context-free grammars G I and G2 with disjoint sets of nonterminals

and respective start symbols S, and S2 , the ITL, formula

f(G 1 ,S1 ) A 1(02,82)

is satisfiable iff the intersection of the languages L(G1) and L(G2) is nonempty.

Because this emptiness problem is undecidable [221, it follows that satisfisbility in

propositional ITL is As.

21
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Corollary: Validity for propositional MT is undecidable.

Remark: Undecidability can be shown to hold even if we are restricted to just

using empty instead of skip. To do this, we use propositional variables P and Q. We

introduce an operator group(P, Q) which is true in intervals satisfying the formula

(S beg Q); skip; (iS beg[P A -Q]); skip; (01 beg Q)

Such intervals are in effect delimited on both sides by states with Q true and contain

internal states with P A -Q true. Hence, Q acts as a delimiter around a group of

states where P is true. The following is a sample 5-state interval so... 84 satisfying

group(P, Q): *0 81 82 83 84

QPPQQ

A A

Q -Q

Similarly, group(-P, Q) denotes a delimited group of states with -P true in the

interior. If we take empty as a primitive operator, the operator group can be

expressed without the use of nezt:

group(P, Q) -df [grp(P, Q) A -(grp(P, Q); grp(P, Q))]

where "rp(P, Q) has the definition

grp(P,Q) --de [begQ A finQ A 3(bCg(P A-Q) v Q) A * begP]

Recall that beg and fin are defined using empty and semicolon:

beg W d.f 0(empty A u)

A nUP Edef *(empty A Wt)

The modified translation ' is like f with the following exceptions:

f'(IV2,... V") - f,(Vi); fl'(V); ...; f'(Vn)

'(O) - goup(-P, Q)
'(1) - rop(P, Q)

22
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Decidability of a subset of ITL

In local ITL (LITL), we restrict each variable P to be true of an interval so ... a.

iff P is true of the first state 8o:

.... 'MI N [.1P]

Theorem (Halpern and Moszkowski): Propositional local ITL with quantification

is decidable.

Proof: We give a linear translation from formulas in propositional ITL to formulas

in a temporal logic that is known to be decidable. This is the quantifled propositional

temporal logic (QPTL) described and analyzed in Wolper [50] and Wolper et al. [511.

Formulas are built from propositional variables P, Q, ... and the constructs

j .VW A 2W Ow al w 3P.w

where w, wl and w2 are themselves QPTL formulas. The interpretation of variables

and formulas is identical to that of local 1TL with quantification. The particulir

QPTL used by us restricts intervals to be finite and is known as weak QYTL

(WQPTL). Weak QPTL can express such constructs as l w, UJl w2, and empty.

For a given variable P and local ITL formula w, we now give a translation g(P, w)

which is true of an interval so... s, in weak QPTL iff the variable P is true for

the first time in some state sa and w is true over the initial interval so... 8j. Thus,

g(P, w) is semantically like the ITL formula

Here is the definition of g: 0(hl IAW

9(P, Q) = (*P) A Q

gf(P, -w) -[1-i(P, ) A * P)

g(P, (Wi A W21) - [(P, WI) A g(P, W2)]

L (P, 0 W) - [-P A o g(PW)]

g(P, [ui;usg)) - 3R. [g(R, wI) A ([-P U[R A g(P, ))],

where R does not occur free in either w, or w2.

g(P, 3Q. ,w) = Q. g(P, to)

23
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A formula wu in local ITL has the same semantics as g(empty, w) in weak QPTL:

80... Si I0LITL to iff 80... IS IOWQPTL g(empty, to)

Wolper [50 and Wolper et a[. [51] show that the theory of QPTL over infinite

intervals is decidable but nonelementary; this result easily extends to weak QPTL.

The complexity is elementary in the alternation of - and 3. m

Remark: The translation can be extended to handle local ITL over infinite inter-

vals. *

Lower bound for satiaflability

The decision procedure just given is essentially the best that can be done since

D. Kosen (private communication) has proved the following theorem:

Theorem (Kozen): Satisfiability for propositional local ITL is nonelementary.

Proof: Stockmeyer [441 shows that the problem of deciding the emptiness of an

arbitrary regular expression over the alphabet {0, 1} and with operators +, • and

is nonelementary. Given a regular expression e, we construct an ITL formula h(e)

which is satisfiable iff the language generated by e is nonempty. The definition of

h given by induction on the syntactic structure of e:

h(O) = (-P A empty)

h(1) = (P A empty)

h(eI + e2) = [h(e1) v h(e)]

h(-'e) =- -h(e)

h(e,. e2 ) = [h(el); skip; h(C2 ))

For example, the translation of the regular expression (01) + -1 is

[(-P A empty); skip; (P A empty)] v '(P A empty)

L Note that the length of h(e) is linear in that of e.

A formal proof relating nonemptiness of a regular expression e and satisfiability

of the ITL formula h(e) would use a straightforward induction of the syntactic

structure of e. I
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Remark: We can show nonelementary complexity even with the opsrator empty

instead of skip. We use a modified translation h' defined as follows:

h'(o) = group(P, Q)

h'(1) = group(-P. Q)

h'(e-& + C2) = [h'(ei) v h'(e2 )]

h'(ele2) = [h'(ei); skip; hl'(e 2)

Again, the language L(e) generated by e is nonempty if h'(e) is satisfiable. I

L5



CHAPTER 3

FIRST-ORDER INTERVAL TEMPORAL LOGIC

§3.1 The Basic Formalism

We now give the syntax and semantics of first-order ITL. This subsequently

serves as our hardware description language.

Syntax of expressions

Expressions and formulas are built inductively-as follows:

e Individual variables: UV,...

* Functions: fei. *k~), where k ;! 0 and 61 . ek are expressions. In practice,

we use functions such as + and v (bit-or). Constants like 0 and I are treated as

zero-place functions.

Syntax of formulas

e Predicates: p(e I, .,e,,), where k : 0 and el, . ..,el, are expressions. Predicates

include :9 and other basic relations.

$* Equality: 61=e2, where el and e2 are expressions.

* Logical connectives: "wu and Wii A W02, where w, wii and w02 are formulas.

* Existential quantification: 3V. w, where V is a variable and wo is a formula.
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" Next: 0 w, where w is a formula.

" Semicolon: wI; W2, where wl and w2 are formulas.

Models

A model consists of a set of states E = {s, t, ... } and domain D together with

an interpretation .M mapping each variable V and interval so... 8,, to some value

. 0...j.8 Vjj in D. Furthermore, each function and predicate symbol is given some

meaning. As in propositional ITL, for quantification to properly work, there must

be some interval for every possible behavior of variables. Each k-place function

symbol f has an interpretation M iff which is a function mapping k elements in D

to a single value:
Mif E (D k -+ D)

Interpretations of predicate symbols are similar but map to truth values:

M JPJ E (Dk -* {true,false))

The semantics given here keep the interpretations of function and predicate symbols

independent of intervals and thus time-invariant. The semantics can however be

extended to allow for functions and predicates that take into account the dynamic

behavior of parameters.

Interpretation of expressions and formulas

We now extend the interpretation MI to arbitrary expressions and formulas:

* ....... ,,I(e,,...,ek)I = )'I/f(......JetI,.. .,.o...RlekI),

The interpretation of the function symbol f is applied to the interpretations of

etL.. - -ek.

* M• ....,.ilpe,,.. .,&,)l = mIp(M,......le,...,M,.....IeI)

e Ms....,.lei= 2 = trUe if M......ieu , = M,.....je2

* M.....,uI -v true if M....,. i! - false

27
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*~~W .M..*IiA W2 - tM iff Ma.....a.Ii1i n'Ma ... 8%IW21 = tte

* M.......13V. wI = true if for some a, .1w = true,

where 4o... = (so... ,.)[V/a] and the function a(i,j) maps pairs 0 : i < !

n to values in the data domain D.

* e..... IO wa = true if n > 1 and j,,....wIJI = true

* ,M......jw;w2 = true iff Ma....,,[oI = true and ... IW2I = true,

for some i, 0 5 i 5 n.

Satisfiability and validity of formulas are as in the propositional case. All the

other related temporal operators mentioned earlier are expressible as before. If the

data domain D includes at least two values, the iterative construct w* can also be

expressed.

Arithmetic domain

We will assume that the data domain D contains natural numbers as well as

nested finite lists. Both 0 and 1 serve a numbers and bits, with 0 standing for low

voltage and 1 standing for high voltage. The data domain does not contain any

intermediate voltages or "undefined" values. We permit finite sets and represent

them by lists. The following are sample values:

0, 3p (0)l {1,2jj, # (0,3,0,j9), (4p{3,21)

We adapt the convention that an n-element list L has subscripts ranging from 0 on

the left to n - I on the right:

L = (L[O,...,L[n -1), where n = ILl

It is assumed that M contains standard interpretations of function and predi-

cate symbols such as +, < and v (bit-or). We also include conditional expressions

and conventional operators for constructing, combining, subscripting and determin-

ing the length of finite lists and sets.

28
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The unary predicate nat(U) is true if U's value is a natural number (i.e.,

nonnegative integer).

.M.....jnat(U)I = true iff . .... JI E {0, 1, 2...)

Sometimes we use the predicate time instead of nat when the associated parameter

is used as a time. The two predicates are however semantically equivalent. The

predicate bit checks if a value is either 0 or 1 and the predicate positive checks for

positive integers (that is, integers > 1).

Temporal domain

A variable V is static in an interval so... sn if V has a single interpretation

over all subintervals:

.Ao...,IVI = a.,....IJVI, for all 0 _ i < j

Just as nat and bit look at the type of a value, the predicate static checks that its

parameter is static in an interval. We give static the following interpretation:

•Mo..... static(V)l = true

iff for some d E D, for all 0 5 i < j !5 n, IV]... =V d,

Within an interval so... an, a signal has a unique value for all subintervals

starting with a given state. Thus, signals are local in the sense of LITL. The

predicate signal(V) is true if the variable V behaves as a signal. We define signal

as follows:

*signal(V) def M 3U. [Static(U) A n(V = U)]

The predicate Bit checks that its parameter is always bit-valued:

Bit(V) -de S bit(V)

Naming conventions for variables

For convenience, we will associate sorts with variables:

29
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* Interval variables: A, ,,,...

Theme can vary in value from interval to interval and are also known a. non-local

or path variables.

* Signal variables: A, N,X,...

Signal variables can also be referred to as local or state variables.

* Static variables: a, n, z,...

Static variables can also be called global or frame variables. All static variables

are signals.

In general, variables such as A, B and c range over all elements of the data

domain D. On the other hand, J, K and n range over natural numbers. The

variables X, Y and z always equal one of the bit values 0 and 1. If desired, the

naming style suggested here can also be used in propositional ITL.

As in conventional first-order logic, sort information can always be made ex-

plicit. For example, a formula Vb. w containing a static variable b is equivalent to

the formula

VV. [static(V) z a4'J

where the formula w' results from replacing all free occurrences of b in w by the

sort-free variable V.

§3.2 Some First-Order Temporal Concepts

$ ~Within the framework of first-order temporal logic, we can explore a variety

of qualitative and quantitative timing issues. The constructs given below are useful

Temporal assignment

The formula A -+ B is true for an interval if the signal A's initial value equals

B's final value:

A - B d wf Yc. [beg(A - c) D fin(B -c)
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We call this temporal assignment. Unlike in conventional programming languages,

it in perfectly acceptable to have an arbitrary expression on the receiving end of

the arrow. Furthermore, temporal ansignment only affects variables explicitly men-

tioned; the values of other variables do not necessarily remain fixed. Incidentally,

because the variables A and c are signals, the subformula beg(A = c) used in the

definition could be replaced by A = c.

Examples:

Concept Formula

Z gets the initial value of -Y (-Y) --* Z

I doubles 21-..I

M+ N doesn't change (M + N) -* (M + N)

A and B swap values (A - B) A (B -+ A)

As noted above, temporal assignment specifies nothing about the behavior of

those variables that are not referenced. Thus, the formulas

[(I +2 ) --* 11

and

((1 +2)- 11 A [J- 1

are not equivalent.

Properties:

A static variable's initial and final values agree.

[ (A -- B); (B -- C)] D (A -+ C)

If B gets A's value and then C gets B's, the net reult is that C gets A's initial

L value.

empt (A-+ )

31



CHAPTER 3-FIRST-ORDER INTERVAL TEMPORAL LOGIC

In an empty interval, the first and last states are identical. Therefore, a variable's

initial and final values agree.

A. A--. B) D [f(A)--.f(B)]

If A is assigned to B, then any time-invariant function application f(A) is passed

to f(B).

If a bit signal is twice complemented, it ends up with its original value.

Temporal equality

Two signals A and B are temporally equal in an interval if they have the same

values in all states. This is written A - B and differs from constructs for initial

and terminal equality, which only examine signals' values at the extremes of the

interval:

A % B -def S(A = B)

Because A and B are signals, the formula A m B can also be expressed using the

linear-time temporal operator W:

A. At B a (A- =B)

EzaMplea:

Conicept Formukd
The signal A is 0 throughout the interval Aoe O

The bit-and of X and Y everywhere equals 0 (X A Y) S 0

X agrees everywhere with the complement of Y X P -Y

Property:

[ (A, B) =w(A!, B)] - (A %w A B me B')

* The pair (A, B) temporally equals (A', B) exactly if the signal A temporally eqab

A! and B temporally equal. B.
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Temporal stability

A signal A is stable if it has a fixed value. The notation used is stb A and can

be expressed as shown below:

stb A 'def 3b. (A r b)

It follows from this that every static variable is stable.

Properties:

in atbX - [X O v Xs1]

A bit signal X is stable iff it is always 0 or always 1.

I. *tb(A,B) M [atbA A stb B]

A pair is stable exactly if the two individual signals are.

Iteration

The propositional constructs w* and while w, do w2 can be expressed as in

propositional ITL with quantification. We can also augment the first-order logic

with iteration of the form w* where w is a formula and e is an arithmetic expression.

We first define the construct cycLe w which iterates w the number of times specified

by e:

cykclw -. g 31.[beg(I-) A W l (I #0) do (W A 1--- I)]

where the quantified variable I does not occur free in e or w. We initially set I to e

and then decrement I by 1 over each iteration. The semantics of cycle are such that
the individual iterations of w take at least one unit of time since I cannot decreae
in an empty interval. Thus the formulas

cycle, W

and

cypc W.. A - ,...Pty)
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are semantically equivalent.

In order for the formula w' to permit possibly empty steps, we define it as

follows:

W -dcr cycle' w v 3 i, j.(i + j < e A [(cYCleiw); (W A empty); (cycle w)])

where the static variables i and j do not occur free in w or e. By introducing extra

quantified variables that always equal w and e, we can modify this definition to be

linear in the size of w and e.

Examplea:

Concept Formula

Z is complemented n times (-Z --* Z)"

N doubles some number of times (2N --+ N)*

I keeps halving itself (I --+ 21)*

While construct while (I < n) do(1+1 -( I)

Properties:

(f(A) _+ A) 3 : [f 3(A) _A]

After a series of three applications of-f, A ends up with the initial value of f3(A),

4 where I 3 (A) = f(f(f(A))).

(F + l  I )  D ([I + mnl-

This property illustrates how to nest iteration.

Measuring the length of an interval

We will view the formula

len = e
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an an abbreviation for the iterative construct

skips

This is true exactly of intervals with length e. The construct Len _ e expands to

3z ; e. (Len = i)

We can similarly use formulas such as len < e.

Alternatively, we can introduce ten as an interpreted 0-place temporal function

whose value for any interval so... s, equals the length n:

Examples:
I

Concept Formula

The signal A is stable and the interval has 2 m + n units stbA A (len m+n)

In some subinterval of length 2t m, X is stable (f[Len _ mJ A stb X)

I doubles in 5 1 steps (21- ) A (ten 5 1)

Properties:

I- empty = (len = 0)

The predicate empty is true exactly if the interval has length 0.

The predicate skip is true if the interval has length exactly 1. Since time is discrete,$this is the minimum nonsero width.

I- ( -en =m+n) = [(ten-m);(ten=n)]

An interval of length m+n can be subdivided into two adjacent intervals of lengths

m and s. The converse is also true.
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Expressions based on next

We extend the operator nezt to handle expressions. The construct 0 e for an

interval so... a, equals the value of the expression e in the subinterval sl... a,:

M..o..,0 e =lei

If the length of the interval is 0, the resulting value is left unspecified. The following

natural extension of next facilitates looking at values some specified number of units

in the future:

.M. ... o" e = .,.....R[eI, where i fell....eil

This definition results in the following properties:

0 O1 e e
I I, 0le --- Oe

We can analogously permit formulas of the form 0' w, where w is itself a formula

and e is an expression.

We now show how to eliminate these constructs. The formula 0 w abbreviates

3. (fi == el A [(ten = i); w]),

where i does not occur free in w or e. A formula of the form A 0 "' e2 becomes

3b. [(0 "[b - e2 )) A (A = b)]

I where b does not occur free in el or e2 .

Initial and terminal stability

The predicate istb' A is true for an interval 8o... s. if the signal A is stable in

the initial states so... 8,.. The next definition has this meaning:

istb"'A df O(stbA A 1e =f-rM)

Note that the formula is fabe on an interval of length less than m. By analogy,

tstb' A is true if A ends up stable for at least m units of time:

tstb' A mf *(stbA A IS =rM)i "8
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Property:

i. istb'm+ A :) istb" A

The time factor can be reduced.

Blocking

It is useful to specify that as long as a signal A remains stable, so does another

signal B. We say that A blocks B and write this as A blk B. The predicate blk can

be expressed using the temporal formula

A1bJkB -df O(stbA stb R)

Ezamples:

Cowcept Formioa

While A remains stable, so do B and C A blk (B,C)

An long as the pair (A, B) is stable, so is C (A, B) bk C

Properties:

o. (A bk A b A] D tb B

If A blocks B and A is stable, then so ia B.

in [A bU B A B blk 1 ' A blk C

Blocking is transitive.

i. Abk(B,C) w [Ab kB A AblkC1

The signal A blocks the pair (A, B) exactly if A blocks both B and C. This and the
next property generalise to listo of arbitrary length.

i (A,B) A C - [Abk C v B k C1

The pair (A, B) blocks C iff A blocks C or B blocks C.
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i. A blk B : (stb A ,,. A blk B)

If A blocks B, then after A is stable it continues to block B.

The predicate A blk B can be extended to allow for quantitative timing. When

describing the behavior of digital circuits, it is often useful to state that in any

initial interval where A remains stable up to within the last m units of time, B is

stable throughout:

A bbik B 2def E[U(stb A; len < m) D stb B]

This modification has utility in situations where B is known to be slow in responding

to changes in A.

Properties:

I- A b B - A blk B

The original notation is equivalent to the quantitative one with blocking factor 0.

i. [A bik'm B A Bblk" C] A bLk +' C

Transitivity accumulates blocking factors. Other properties of the predicate bik can

also be extended to include quantitative timing.

i A blk'A : stb A

If a signal A won't change until after it does then A is stable. This is a form of

induction over time. The converse is also true.

Rising and falling signals

A rising bit signal can be described by the predicate tX:

TX '= dot [(X -1 0); Skip; (X R 1)]

This says that X is 0 for a while and then jumps to 1. The gap of quantum length

represented by the test skip is necessary here since a signal cannot be 0 and 1 at

the same instant. Falling signals are analogously described by the.construct X:

X X def [(X 1); skip; (X 0)]
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Ezornples:

Concept Formula

X is stable and Y goes up StbX A TY

The bit-or of X and Y fall. I v Y)

In every subinterval where X rises, Y falls I(TX :) IY)

X goes up and then back down TX; I.X

X twice goes up and down (TX; IX)'

Properties:

n(tX A tY) D [(X AY) At(X VY)]

If two bit signals rise, so do their bit-and and bit-or.

Ix =-X T(-'X)

A bit signal falls exactly if its complement rises.

I- [TX A beg(Y=O0) A (X61k Y)] :) 1(X v Y)

If X rises and in addition Y initially equals 0 and depends on X, then the bit-or of

X and Y also rises.

These operators can be extended to include quantitative information specifying

minimumr periods of stability before and after the transitions. For example, timing4 details can be added to the operator t:

trnx Mde [(X $z$ A ten -2:n); Skip; (X %W1 A ten tn)]

I This can also be expressed as shown below:

I- t"'X W (tX A istbmX A tatb"X)

Thus, the extended form of t can be reduced to the original one with separate

details concerning initial and terminal stability.
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A negative pulse with quantitative information can be described as shown

below:

[(X MI A len > 1); skip;

(X S o A Ie,2 m); skip; (X ' A ten > n)]

Positive pulses of the form T11,m,"X are similarly defined. These constructs can be

further modified to provide for noninstantaneous rise and fall times.

Smoothness

A bit signal X is smooth if it is either stable or has a single transition. The

following definition illustrates one way to express smoothness:

SmX -de' (StbX v TX v IX)

The next property gives two equivalent ways to say that a bit signal raises or falls:

(TX v IX) ME (SM X A [-X -+.X])

Since digital devices often require clock inputs to be smooth, it is sometimes

important to ensure that a signal has this property. The predicate am can be ex-

tended to include quantitative timing details similar to those given for the predicates

? and t:
an:,m '

X -d.f (SinX A iStbmX A tstb"X)

The notion of smoothness generalizes to arbitrary signals. A scalar-valued

signal A is smooth if it is either stable or has a single transition:

am A =d-W [tb A v (atb A; skip; stb A)]

A list L is inductively defined to be smooth if all its components are smooth:

s L Mdef Y0 <ILl. (sm Li)

The individual components of L need not all change at the same instant.
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DELAYS AND COMBINATIONAL ELEMENTS

Delay is a fundamental phenomenon in dynamic systems and an examination

of it touches upon basic issues ranging from feedback and parallelism to implemen-

tation and internal device states. In addition, a key design decision in building any

hardware simulator centers around the treatment of delay. For example, Breuer and

Friedman [10] and Blunden et al. [81 present a number of models of propagation.

For these and other reasons, it is worth taking a detailed look at various forms of

signal propagation.

§4.1 Unit Delay

One of the simplest and most important types of delay elements can be modeled

as having the following structure:

Here A is the input signal and B is the associated output. The following

statement uses intervals to characterize the desired behavior:

In every subinterval of length exactly one unit, the initial value o

the input A eqa the final value of the output B.

The next predicate del formalism this:

A del B d~f (D[(len 1) D (A B)]

.. .. .- ......... "..
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Properties:

(A del B) m (skip A [A --o B)*

Unit delay can also by viewed as the successive iteration of atomic assignments.

This suggests how to implement unit delay by means of looping.

I- (A del B) M keep(A = O B)

The concept of unit delay can be expressed in semicolon-free linear-time temporal

logic.

I- (A del A) = stb A

If asignal is feed back to itself, it is stable. The converse is also true.

J4.2 Transport Delay

It is natural to extend the predicate del to cover delays over m-unit intervals:

A delt B -d.f *(len = m [A- B])

Breuer and Friedman [101 refer to this as transport delay.

Properties:

n o(AdelB)(A B)

Zero delay is equivalent to temporal equality.

I- A del° A

A signal has sero delay to itself.

(A del" B A B del" C) D A del"" C

Delay is cumulative.

, (,B) del (A', B) - (A del" A' A B del"' B)

Delay between pair. is equivalent to component-wise delay. This goneralise. to lists

of arbitrary length.
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* 14.3 Functional Delay

Often, one signal receives a delayed function of another. The following ex-

amples illustrate this and are hused on the predicate del although the other delay

models later presented can also be used.

Examples:

Concept Formula

X keeps on being complemented (-X) del X .

B either accepts A or itself, depending on X [if (X = 1) then A else B] del B

N keeps on doubling 2N del N

A receives a delayed f(A, B) f(A, B) del A

I keeps decrementing by 1 1 del (1 + 1)

Here is the description of a system that runs the variable I from 0 to n1 and

simultaneously sums I into J:

beg(I=O0 A J=O A [(I +1) del I] A [(J +1) del J] A halt(I un)

Propertie.:

I- [1(A) del' B A g(B) del" C] :) g(f(A)) del"" C

Functional composition applies.

im (-'X) del'"Y w Xdel'"(-Y)

Bit inversion can occur either on the input or output.

[(-X) &Im" Y A (-mY) del" Z] D X del"'+" Z

Two inverters cancel.
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§4.4 Delay Based on Shift Register

An (m + 1)-bit vector R acting as a shift register can be specified as follows:

R[O] del R[11 ... A Rim- 11 del R[m]

Over each unit of time, the contents of R shift right by one element. That is,

the value of RIO is passed to R[1J and so forth. This description is more formally

expressed by means of quantification:

Vi E [0, m - 1]. (R[iJ del R[i + 1])

The next formula has the same meaning but is more concise:

RIO tom - 1] del R[1 torm),

where the vector R[O torm- 1] by definition equals (R[O, ... ,Rm - 1).

The following property shows how to achieve an m-unit delay by means of such

a shift register:

- RIO torn - 1] del R[1 tom] D RIO del' R[m (,)

This suggests an implementation of A del m B of the form A shdel' B:

Ashdel'sB wd.f (A RIO].A R[m]PdB A R(Oto M -1] del R[lto MI])

Here, the value of A is fed into R[O] and B receives the value R[m]. The correctness

of this implementation is given by the following property:

P, A shdel' B D A del' B

L We can lbcalise R in the formula A shdel' B by defining a variant A Uu"M B

that existentially quantifies over R:

A A Wu"' B =d.t 3R.[(R: .,g L" +'+) A (A ,hd.1 B)]
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Here the construct

R: signal'+'

constrains R to being a vector of m + 1 signals. This notation will be described in

more detail in the next chapter. Note that R is assumed to exist without necessarily

being externally visible to an observer. The quantifier's effect on scoping is similar

to that of a begin-block in a conventional block-structured programming language.

We call A shdelm B an external specification of the implementation. In fact, this

is logically equivalent to the basic delay predicate A delm B as the next property

states:

j in A shdel' B - Adel' B

Basically, the proof that shdel implies del follows from the property (*) given

above. The converse requires demonstrating that some R exists. Perhaps the easiest

way to do this is by direct construction. At each instant of time, the values of the

m + 1 elements of R can be those of the next m + 1 values of B in appropriate order:

R[i] 0 A' - B  for 0 :5i :m

The output value Rim] always equals the expression 00 B, which is defined to be

B's current value. Similarly, R[0] always equals 0"' B, that is, the value B will

have m units later. This technique works even if the interval has length less than

4M.

§4.5 Variable Transport Delay

A batch of delay elements may have varying characteristics although each

individual device is rather fixed in its timing behavior. The predicate A ardel'""B

specifies that A's value is propagated to B by transport delay with some uncertain

factor between m and n:

A vard '" B --d.f 1 E (tm, nj. (Adel' B)
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§4.6 Delay with Sampling

Digital circuits often require that inputs remain stable and be sampled for some

minimum amount of time in order to ensure proper device operation. The delay

model A sadel B has this characteristic:

A 8adel'" B -d.f IM[((tb A A e L M) D fin(A = B)]

Here the input A must be stable at least m units of time for the output B to equal

A Behavior during changes in A is left unspecified. The properties below illustrate

two other ways of expressing sadel. We present them to demonstrate other possible

styles:

is .A ,ader" B - 9(tstbm A D fin(A = B))

I- A sadel"' B [tstb' A heg(A = B)]

Properties:

I-A del' B D A aadel"' B

Basic delay implements sampling-time delay.

i. A aadelt'B as (tstb' A .-. lbeg(A B) A A bk BI)

Once the device stabilizes, the input A blocks the output B.

The predicate eadel can be extended to associate some factor with the blocking

of B by .

A sadel"" B =d.r (tstb'A -[ fbeg(A - B) A A bUk" BJ)

In a sense, m is the maximum delay sad n in the minimum delay.

54.7 An Equivalent Delay Model with an Internal State
I

Arelated delay model Aatdel" B is bond ea a bit ag X that is set to I after

the input A ha been hld stable n unit. Wheever X is 1, the input A equal the

46
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output B and blocks X, which in turn blocks B by the factor ii:

A tde1l'" B E-der

M([atb A A Ioni m] D in(X=1)

A L1(beg(X = 1) D [beg(A = B) A A blk X A X blk" BI)

In the manner described earlier, we internalize X by existentially quantifying over

it:

A stdel,,n B =- X. (A stde1" B)

This external form is in fact logically equivalent to A aadel m " B:

~.A atdelrnlu B =-A aadel m"s B

The following construction for X can be used:

X $W(if! [beg(A = B) A A blk n B] then 1 else 0I)

The right hand expression is not a signal but is converted to one as outlined in the

next chapter.

There are a variety of specifications that use different internal signals such as

X and yet are externally equivalent.

§4.8 Delay with Separate Propagation Times for 0 and 1

Sometimes it is important to distinguish between the propagation times for 0

and 1. The following variant of sadel does this by having separate timing values

for the two cases. The delay'. input and output are both bit signals.

X sadel~lmR Y Mdef

Li((X %$O A ten ml D fin(X =Y))

A IM([X -Z A len n) :: fin(X =Y))

Property:

I- X sadeLlft n y2 X sadelmaxJ(rm,t) y

The separate propagation times cart be reduced to those for the more general form

of sampling-time delay by using the larger of the two parameters.
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14.9 Smooth Delay Elements

It is possible to specify that between times when the delay element is steady, if

the input changes smoothly, then so does the output. We call such a device a smooth

delay element. This type of delay has utility in systems that must propagate clock

signals without distortion. Here is a predicate based on the earlier specification

stdel:

A .mdel ' B --d.f

A stdelm'" B

A CI([beg(X = 1) A fin(X 1) A oamA] D m.m )

The external form quantifies over X:

A smdelm'P B dr X-. (A .mdeL"' B)

J4.10 Delay with Tolerance to Noise

Sometimes it is important to consider the affects of transient noise during signal

changes. A signal A is almost smooth with factor I if A is continuously stable all

but at most I contiguous units of time:

stb A, (len 1); etb A

The delay model toldel is similar to smdel but has an additional timing coefficient I

for showing how almost smooth input changes result in smooth output transitions:

A toltel '", ' B -d-f

A stdel'" B

A M [(beg(X - 1) A fin(X = 1) A [stbA; (Len : 1); stbA]) : amB]

From this we can obtain the external form

A tOldem, ' 'L B

The predicate sm l is a special ease of toldul with a noise tolerance of 1 time unit:

J. A sml" 's n B - A toidl"Ims' B
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14.11 Gates with Input and Output Delay

One might specify an and-gate with both input and output delays as follows:

(X,X')ooid"""%Y wdef 3Z, Z1.[XaelmZ AX'adel'g' A(Z AZ').oadel"Y]

Here a delay exists from the input X to an internal signal Z and another delay

exists from X' to ZV. The bit-and of Z and Z' is propagated to Y. The input

delays are given by m and the output delay by ni. If we choose to ignore input

delays, the model reduces to a single occurrence of eadel:

om (X, X') saaud0" M (X A X') suzdel" Y

If the internal propagation is modeled by transport delay, things are even

simpler. Here is an and-gate specified 11 this manner:

(X, X') tand"s"" Y mdet 3Z, Z'. [X del"' Z A X' &el"& Z' A (Z A Z') dels Y]

The predicate tand simplifies even if the internal input delay M in not zero:

I- (X, X') tandm," Y M (X A X') dgl'" Y

54.12 High-Impedance

Digital devices sometimes use the phenomenon of high-impedance as a decentral-

ised means for sharing a common output among several sources. Each source has

it mw enabling signal which, when on, causes data to pass to the output. When

the enable signal is off, the connection "disconnects* or "floats." Pass transistors

in MOB semiconductor technology and ti-state drivers in TTh exhibit this kind of

behavior. See Gschwind and McCluskey [171 or Mead and Conway [32] for details.

The predicate A piax B specifies the connection of the signas A and B when
the bit signal X is 1:

A pauXB =de M ((X .1) D(Am B3)1
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Thus the pair of devices

(A p68aXB) A (A! p"aaX B)

wilpass the signal Ato Bwhen X isIand willpausthe signal A'to BwhenX in

0. The following formula has the same semantics:

(if [X = 11 then A else A') seB

The predicate pass shows that the key feature of high impedance can be modeled

in ITL without the introduction of extra bit values.

Properties:

I- A paaaxB m- B passarA

e A pass transistor in commutative.

I- [A pasax B A (X Al1)] :: (A~dB)

During intervals when the paun transistor is enabled, the input and output are equal.

I.[A pasx B A B passyC] A peaS (X AY) C

Pass transitor behavior is transitive.

1.
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CHAPTER 5

ADDITIONAL NOTATION

This chapter introduces some useful notation that we need before looking at

more complicated devices.

J5.1 Reverse Subscripting

Because some of the devices we present deal with numbers and their repre-

sentation as bit vectors, it is convenient to occasionally adapt an alternative sub-

scripting order. Subscripts on a vector V = (vo, ... , u) normally range from 0 on

the left to n on the right. The construct V[ii follows this style. However, in order to

simplify reasoning about the correspondence between a bit vector and its numerical

equivalent, a slightly different convention is sometimes used. The alternative nota-

tion Vfis indexes V from the right with the right-most element having subscript 0.
For example:

(1,0, 01- 5, (1,0,5)t-O, (1,0,5)121-1
' tt t

For a vector V and i k j, the exprmion V to j forms a now vector out of

the elements indeid from i down to j. V i < j, the empty vector is returned. For

(0* 9 36 1j-(09, 4), (0,1)0j.(1), (3,1, 0,11boj. 0
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15.2 Conversion from Bit Vectors to Integers

The function nval converts a bit vector to its unsigned numerical value. For

example,

nval((O, 1, 1)) = 3, nval((1, 1,0, 0)) = 12

The following definition of nval can be used:

nval(k) =,( r (2' 41iI)

§5.3 Tuples and Field Names

We also permit composite values with field names. For example, the pair

(X: 3, Y: 4)

has one element accessed by the field X and another by accessed by Y. A given

field name cannot be used twice in a tuple. For an given expression e, the value in

field X can be referenced to as

eX.

Thus, if a variable A equals the tuple above, the value of A.X + A. Y is 7. Arbitrary

nesting of such references is permitted.

Sometimes it is desired to let the particular field selected be variable. In that

case we use field names such as 'X and 'Y which can be used like numerical

subscripts. For example, the expressions A[' X and A.X are equivalent. Thus,

if the variable b equals either 'X or 'Y, the expression A[b] equals either A.X or

A. Y. Note that the expression A. b is not equivalent to A[b] but rather A[' b. Rather

than extend the data domain, We view each field name as representing a distinct

numerical constant. Thus, 'X might stand for 23. We view a construct such as

'{A, B} as an abbreviation for the set {' A,'B}.

L §5.4 Types for Lists and Tuples

Given two predicates p and q, we form the predicate p x q which in true for

any pair whose first element satisfies p and whose second element satisfies q. For
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example, the formula

(nat x bit)((3, 1))

is true. In general, we write such a test as

(3,1): (nat x bit)

This can be considered an abbreviation for the formula

1(3, 1)1 = 2 A nat((3, 1)[0]) A bit((3, 1)[1])

The operator x extends to n-element tuples:

P X ... xp,

where Pi,..., p,, are unary predicates. In addition, the construct p" is equivalent

to n repetitions of p. For instance, the test

a: nat $

is true if a is a triple of natural numbers.

The predicate 8truct(Xt:p,... ,X.:p,1 ) checks for tuples whose elements have

field names X1 ,... ,X. and satisfy the respective types p1,...,p 1 . For example,

the predicate

strict(X: nat, Y: bit)

is true for tuple such as

' (X: 3,Y: (1,0)).

§5.5 Temporal Conversion

Sometimes a formal parameter of a predicate or function has a sort that is
slightly incompatible with that of the corresponding actual parameter. For example,

in the formula

A dLN B
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the signal variable N is in a place requiring a static delay factor. We handle this by

temporally converting the occurrence of N to a static variable. Thus, the formula

just given is considered a syntactik abbreviation for

3i. [(i = N) A (A del' B)].

In essence, the initial value of N is used as the delay factor. This convention cor-

responds to the technique of call-by-value parameter passing in standard program-

ming languages. The formula

A B

expands to

3C. (l (C - 8) A (A ;: C)]

The occurrence of the interval variable B is replaced by a signal C that agrees with

B in all terminal subintervals.

.44
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ADDERS

In many computations involving arithmetic operations, it is advantageous to

directly reason about numbers. We will now concentrate on addition. To express

that the numerical variable I always equals the sum of J and K, we write the

temporal formula

Imd (J +K)

I there is, *say, a unit delay, this might be given as the formula

(J + K) del I

Even though actual computers possess only finite capacity, it is quite natural to

assume an unbounded range of values. When finite precision must be accounted

for, modular arithmetic can be used. For example, if it is known that I, J and K

all range between Q and 2"- 1, then we can represent addition in the manner shown

below:

I a [(J + K) mod 2"]

Such descriptive techniques are sufficient for many purposes. However, in

specifications of actual digital circuits we must often descend to the level where

numbers are implemented by bit vectors. For instance, given that Ihl, 1n2 and

Out are all n-bit vectors, the following formula specifies that Ost always equals the
n-bit sum of IWI and IA

,wval(Out) OW[nvui(Iial) + iwal(hii2)J mod 2")
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CHAPTER 6-ADDERS

Bit signals for carry-in and carry-out can be included in the manner below:

nt'a((Co) 11 Out) ;w[ntva1(In1) + nvai(142) + Ci]

The list operator 11 appends the lists (Co) and Out together. Since the carry-in Ci

is a single bit (i.e., 0 or 1), it can be used directly in arithmetic expressions without

reference to nval.

§6.1 Basic Adder

Let us now consider an adder specification which includes some timing infor-

mation regarding propagation delay. The diagram below gives the device's various

fields:

Bit"=* =*Out: Bit"

142: Bit"=*

M Bit --*Go: BitCi: Bit-, '°:i

i: nat,

(Prd, lat): time

In this and further diagrams, we generally use a single arrow (--) to indicate a bit

input or output and a double arrow (ut) to indicate a vector silnal. The variables

at the bottom of the diagram are static and usually de Armia the device's sise

or timing coefficients. Here, prd stands for the adder's propgtion deleq and tat

stands for the adder's latency or blocking factor. The temporal specification makes

this more precise.

Formal specification of addition circuit

The predicate BaeicAdder formally characterise the circuit's desired structure

L and behavior. The device's various inputs, outputs and timing coefficients ue rep-

resented as fields of the single parameter A. For example, the expression A. Ci equals

the carry input. The predicate's definition makes reference to other predicates given
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later.

BasicAdder(A) *df

BasicAdderStvuctre(A)

A I Add(A)

The predicate BasicAdderStructure presents A's fields. The predicate Add gives the

control sequencing required to perform an addition. The operator M indicates that

Add must be true in all subintervals.

Definition of BasicAdderStructure:

The definition below of BosicAdderStructure contains information on the physi-

cal structure of the adder. Fields starting in upper case represent signals while

lower-case ones are static. Constructs such as "%Inputs" are comments included

to classify the various circuit fields. For example, A.Inl is an input bit vector. The

input bit vectors InI and In2 are of length n as is the output vector Out which

yields the sum. The input bit Ci determines the carry input and Co receives the

carry output. The values tat and prd are the latency and propagation times.

Ba icAdderStructurc(A) def

A. struct

(i1, n2): Bit", %Inputs

SCi:Bit

Out: Bit", %Outputs

Co: Bit

n: nat, (prd, tat): time %Parameters

For brevity, the prefix "A." is omitted when a field is referenced below.

Definition of Add:

After the inputs I4l, Wt2 and Ci are held stable long enough, the combinbd

numerical value of the outputs Out and Co equals the inputs' numerical sum. In
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addition, there is a certain amount of latency. Recall that the function nval converts

a bit sequence to the corresponding numerical value.

Ad4(A) Mdef

(atb(Inl, 142, Ci) A ten 2: prd)

-. (nvai(( Co) (1 Out) = (nvoi(Inl) + nwal(1n2) + Ci)

A (Il, 1n2, Ci) bik"' (Co, Out)]

It is possible to modify the predicate BasicAdder to handle other combinational

logic elements with similar timing characteristics.

Combining two adders

Two such adder. can be used to build a bigger, one by appending the cor-

responding vector inputs and outputs and using the carry-out of one adder as the

carry-in of the other. The following property formilly expresses this:

I-m [BaaicAdder(A) A BasicAdder(B) A (A. Ci %dB. Co)] :) BasicAdder(C)

where the tuple C has exactly the following fields and connections to A and B:

C.142 A.142 ~jB.142

C.c 01 B. Ci

C.Out wA. OutI11B.Ou~t

C. Co mdA. Co

C.n = A.n +B.n

C.1at = min(A.Lot, B.Lat)

£C.pod = A.prd +B.prd

Here A contains the most significant bits and B contains the leaut significant ones.

The operator IIappends two lists together.
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*16.2 Adder with Internal Status Bit

*An adder of length n can be defined to include an internal status bit in the

manner of the delay model tde. Here is the device structure:

Inl: Bit"=*

Out: Bit"

142: Bit*=* Status: Bit

Co: Bit
Ci:Bit

n, prd, at

The specification given below is externally equivalent to BaaicAdder.

Definition of StatuaAdder:

Sta uAdder(A) -dof

Statu.AdderStructure(A)

A M Add(A)

A G Stead/(A)

Definition of StatusAdderStructure:

StatuaAdderStructure(A) idor

A: etruct[

(Inl, Inr): Bit", Ci: Bit %Inputs

Out: Bit*, Co: Bit %Outputa

Status: Bit % l

n: nt, (tat, prd): time %Parmeters
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Definition, of Add:

After the inputs remain stable long enough, their sum is propagated to the

outputs and the status bit equals 1.

Add(A) Mdef

(atb(Inl, 142, Ci) A ten : prd)

D fin([Statua == 1]

A [nvtal((Co) 11 Out) nv~tal(I&1) + naa(142) + Ci])

Definition of Steady:

Whenever the signal Status is 1, there is a certain amount of blocking from the

inputs to it and the output.

Steady(A) d~f

beg(Status = 1)

* [(14, 142, Ci) bik Status A (I141, 142, Ci) bLk"' (Out, Co)I

§6.3 Adder with More Detailed Timing Information

Further timing details can be accomodated as we now demonstrate. Suppose

each input has its own propagation time. This can be specified as follows:

Definition of DetailedAdder:

DetaikedAddev(A) Mde

DetaiedAderStme~turs(A)

A M Add(A)
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Definition of DetailedAdderStructure:

In this adder, there in a separate parameter for each input's propagation time.

DetailedAddevStruct&?e(A) Mdef

A: etrutt

(mlI, 142): Bit", Ci: Bit %Inputs

Out: Bit", Co: Bit %Outputs

n: nat, %Parameters

prd: (Inl,1un2, Ci): time,

Lat: time

We use the construct

prd: (14l, It42, Ci): time

to indicate that prd ha. three subfields accessible as prd.Ivil, prd.Rt2 and prd.Ci.

Definition of Add:

Here each input has its own time for stabilizing.

Add(A) Wdef

(ttbprd""l 14l A tetbprdilft2 14i2 A titbI9'C0 ' Ci)

,-onvaL((Co) 11 Out) =(rnsal(Inl) + nteol(In2) + Ci)

A (141, Ri2, Ci) biks' (Co, Out))

The sampling requirement. can also be given in a les, redundant form:

Yfield E'{I41, In2, Ci). (tatbPrd!IuI'd A~riil)

Recall that ' (Jl, Ru2, Ci} represents the met

('J1 , W,' ai).
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16.4 Adder with Carry Look-Ahead Outputs

Long adders usually have extra control signals to speed up the propagation of

carry bits. One technique is called carry look-ahead (see [171) and produce Suam and

carry outputs as well as two bit signals Gen and Prop. The structure is as follow.:

I: Bit"=* Out: Bit"

Co: Bit
In2: Bitn"

Gen: Bit

Ci: Bit- -+Prop: Bit

n' prd, tat

The bit signal Gen is I iff the result of adding Inl and n2 will generate 1 as carry

no matter what the carry input Ci is. The bit signal Prop is 1 iff the carry input Ci

will be propagated unchanged to the carry output Co. Because both Gen and Prop

can be computed without the carry input, they need not wait for carry rippling.

Definition of CarryLookAheadAdder:

CarryLookAheadAdder(A) ==df

CLAAdderStrscture(A) "

A U Add(A, output), for output E '{Out, Co, Gen, Prop}

The last line is equivalent to

M Add(A,'Out) A [ Add(A,'Co) A M Add(A,' Cen) A M Add(A,'Prop)
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Deflaition of CLAAddevrtruetwe:

CLAAddevStruwtur(A) w-w

(InI, Ih2): Bit*, CM: Bit %Inputs

Out: Bit%, (Co, Gen, Prop): Bit %Outputs

n: not, %Parameter

prd: (Out, Co, Gen, Prop): time,

tat: (Out, Co, Gen, Prop): time

]I

The specification gives various propagation and latency times by making pvd and

lot each have a subfield for every output.

e The function inputs shows the inputs used by each output:

output inputO(A, output)
out (CIla)

C.O (a,In, 1 2)

Gen (InI, In2)

Prop (141, 1n2)

As noted earlier, the generate and propagate signals can be computed 'without

reference to the carry input.

Definition of Add:

For any selected output, after the appropriate input fields remain stable long

enough, the device satisfies the predicate result and the output depends on its

associated inputs.

Add(A, output) ="r

(stb 6st(A, 08"pt) A ten 2t pvd[outul

~[rSMW(Aj Output) A inputs(A, output) W11 Alostputj]

where i - fat[outputj and the predicate result has the following definition:

• 63
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output r.dt(A, output)

Out nial(Ott) - (nal(Ini) + nval(142) + Ci) mod 21"

CO Co = carry(n, .vwo(Inl), val(142), a')

Cn Cen carrjgei(, nvc(Inl), nval(12))

Prop Prop = c rvprop(n, nval(In1), nvat 2(In))

The functions carvp, carrygen and carryprop compute appropriate values:

earvp(n, j, k, ci) =de (i + A; + ci) + 2n

carrygen(v, j, k) =d.f if (Vci E {0, 1}. carry(n, j, k, ci) = 1) then eloe 0

c4?7pp(f, j, k) -d.f if (Vci E 10,I). cartp(n,j,k,ci) = ci) then 1 ele 0

Both carrJgen and carriprop can be simplified:

carrgen(n,j, k) = if (i + k L 2") then 1 else 0

cortiprop(n, j, k) = if(j "+ k = 2" - 1) then 1 else 0

Thus, a carry is generated exactly when the sum of the two numbers j and k exceeds

the capacity of n bits. Similarly, the incoming carry is propagated if the sum of j

and k is the "borderline" value 2" - 1. In practice, a carry look-ahead adder may

output Gen and Prop in complemented form as the signals Ven and Pr.

If we ignore propagation delay, the adder has the following behavior:

VoutPut E '{Out, Co, Gen, Prop). [W result(A, output)]
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CHAPTER 7

LATCHES

A latch is a simple memory element for storing and maintaining a single bit of

data. The two inputs S and R determine what value is stored with S standing for

Set and R standing for Reaet. When the latch is steady, the outputs Q and q are

complements. Note that the bar in "1" is part of the name and not an operator.

Such elements are among the simplest storage devices- that can be constructed

out of TTL gates and provide a basis for building counters and other sequential

components.

§7.1 Simple Latch

Here is one possible latch specification:

(S, R) latch'," (Q, --df

A[(S At ^R lenRfM )

--),(beg[Q =-0 A 1 =] A S blk" (Q,Th)]

A M[(S1ARt0 A en m)

,(bg[Q = 1 A --01 A R blk" (Q,))]

For eumple, the specification states that after S is I and R is 0 for at least

m nits of time, Q equal 1, I equal 0 and R blocks both with factor n. That

is, the outputs are stable as long as R remains "inactive" at 0, independent of S's

behavior.
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Such a latch can be constructed out of two nor-gates that feed back to one

another:

[-(R v -) sadelt "' Q A -(S v Q) sadelr " -
q A n > ij

D[(SR) ltc.h2, , (QQ]

For example, to set Q to 1 and Q to 0, we keep R at 0 and S at 1. After m units of

time, - equals 0 and after 2m units of time, Q equals 1. At this point both Q and

are stable as long as R remains equal to 0. The gates' blocking factor n must be

nonzero in order to achieve a feedback loop that maintains the values of Q and -.

§7.2 Conventional SR-Latch

The latch specification now given has separate parts for entering and main-

taning a value in the device. The following sort of table is often given to describe

operation for various input values:

S R Q
1 0 1 0

0 1 0 1
0 0 unchanged

1 1 unspecified

For example, assuming unit delay, the behavior of Q can be expressed by the formula

Me[skip : ([beg(S = -'R) D (S --- Q) A [beg(S = 0 A R = 0) .tbQj)]

The following predicate SRLatch goes into more details on timing.

Definition of SRLatchStructure:

The latch includes the internal bit flag Statue:

SRLatchStructure(L) -der

L: struct(

(S, R): Bit %Inputs

(Q, -): Bit %Outputs

Statwe: Bit %Internal

(prd, lat): time %Parametrs

]
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We use Statto to indicate when the device is steady.

Definition of SRLatch:

The latch can be set to 1, cleared to 0, disabled or kept steady.

SRLatch( L) -

SRLatchStructure(L)

A 1 Store(L, i), for i E {o, 1}

A Ml Disable(L)

AM[ Steady(L)

The formula

M] Store(L, i), for i E {0, 1}

is equivalent to

Ml Store(L, 0) A M] Store(L, 1)

Definition of Store:

This definition uses the static variable i to determine the value to be stored:

Store(L,i) df

[(S ;i) A (R ; -i) A (ten prd)]Sfin[(Status = 1) A (Q =

Alternatively we can omit i by using a formula such as

[atb(SR) A beg(S =-R) A (Len prd)] : fin[(Statu. = 1) A (Q S)]

This works because S and R must be complements when setting or resetting and S

matches the value stored in Q.

Definition of *Disable:

If the device is initially steady and the two inputs S and R smoothly become

0 for a period of sufficient length, the device remains steady and the outputs are
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stable.

Disable(L) =det

[beg(Status == 1) A amOPd(S, R) A fin(S -- 0 A R = 0)]

D [fin(Status = 1) A stb(Q, )]

Definition of Steady:

When the flag Status equals 1, the outputs Q and are complements. In

addition, the flag and outputs depend on the two inputs S and R.

Steady(L) -def

beg(Status = 1)

D [beg(q = -Q) A (S, R) blk Status A (S,1R) blk'st (Q, )]

Constructing an SR-latch

The next property shows how the first latch described implements a conven-

tional SR-latch:

I-- [(S, R) latch'," (Q, )] SRLatch(L)

where the tuple L has exactly the following fields and connections:

L.S s S

L.R R

L.Q Q

L.prd m m

L.lat = n

and L.Status is constructed as follows:
L.Status t

if (3i E (0, I}. [Q = i ^A --- A (S, R}[i] ---0 A ((S, R)[i]) blk" (Q, then I. els 0t,

At all times, L.Status is set to 1 if Q and "q have complementary values ad wre

blocked by S if Q =-- 0 and by R it Q --- 1. The quantified variable i is used to

determine the values of Q and "q.
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§7.3 Smooth SR-Latch

The predicate Store in the specification SRLatch can be modified to include

additional details regarding smooth transitions. As before, Store shows how to enter

0 or I into the latch. In addition, if the status bit is initially I and the inputs S and

R are smooth, the outputs are also smooth. Notice that there is no requirement

that Q and -q change at exactly the same time.

Store(L, i) =-def

[tstbprd(SR) A fin[(S = i) A (R = -i)]]

D [fin(Status == 1 A Q = i)

A ([,,(SR) A beg(Status = 1)] D sm(QQ))]

§7.4 D-Latch

gA simple D-latch has one input pin to selectively enable the latch to accept data

and another to indicate the actual value to be stored. The operation corresponds

roughly to the following table, where E and D are the enable and data inputs, and

Q and -q are the outputs:

E D Q
1 0 0 1

1 1 1 0

0 - unchanged

When E is held active at 1, D's value is propagated through the device as through

a delay element. When E is 0, the device maintains whatever value is stored,

independent of D. The formula below uses unit-delay to describe this:

(if [E = 11 then (D, -D) else (Q, j)) del (Q, -)

If we just look at the behavior of Q, this reduces to

(if [E = 11 then D else Q) del Q

The D-latch is also referred to as a transparent latch because when E is enabled,

the input data passes through to the output.
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Definition of DMatch:

As with the SR-latch, the specification has predicates for examining, modifying

and disabling the device:

DLatch(L) =-def

DLatchStructure(14

A M Store(L)

A 9B Disable(L)

A 19 Steadyj(L)

DMatchStructure(L) de

L: strisct I

(E, D): Bit %Inputs

(Q, q): Bit %Outputs

Status: Bit %Internal

(pvd, tat): time %Parameters

Definition of Store:

When the latch is enabled, the data signal D's value propagates to the output

Q.
Store(L) Md.f

[(E ot 1) A stb D A (len : prd)] :D fin[(Status = 1) A (Q = D)]

Definition of Disable:

If the enable signal drops to 0 and the data remains stable, the latch becomes

disabled and retains the value it was set to.

t Duaable(L) Md.f

[J1o#P'dE A etb D A beg(Status = 1)]

S[fin(Statu. = 1) A atb(Q, q)]
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Definition of Steadyl:

Whenever the signal Status equals 1, the outputs Q and ] are complements

of each other. If E is disabled, it blocks the status flag and outputs. When E is

enabled, the flag and outputs are blocked by E and the incoming data signal D.

Steady(L) =dcf

beg(Statua - 1)

S[beg(a = -Q) A V bik Status A V bk"'t (Q,-h]

where V is a function of the enable signal's initial value:

E V

0 (E)

1 (E,D)

Building a D-latch

A D-latch can be implemented by connecting a suitahle combinational interface

to the inputs of an SR-latch. The interface has inputs E and D and outputs S and

R with stable-state behavior given by the following table:

E D S R

1 0 0 1

1 1 1 0

0 - 0 0

When the interface is enabled with E at 1, the data signal D controls S and R

for clearing or setting. If E is 0, both S and R are deactivated. The interface has

the following description:

Definition of DLInterface:

DLInterface(A) Mder

DLInterfaceStructure(A)

A rU Store(A)

A 19 Diable(A)

A M Steady(A)
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Definition of DLInterfaceStructure:

DLInterfaceStructure(A) -dor

A: struct[

(E, D): Bit %Inputs

(S, R): Bit %Outputs

Status: Bit %Internal

(prd, lat): time %Parameters

Definition of Store:

When the device is enabled, the outputs eventually reflect D and its comple-

ment. This is done so that any connected SR-latch will be actively set to D's value.

Store(A) -dof

[E ; I A stb D A (len >_ prd)]

Sfin[(Status =1) A (S = D) A (R = -D)]

Definition of Disable:

When the interface is disabled, both outputs smoothly change to 0 so that any

connected SR-latch retains its value.

Diaable(A) -df

[1..,dE A otb D A beg(Statuo 1)]

D fin(Statu=1 A S=0 A R= 0) A sm(S,R)]

Definition of Steady:

When the device is steady, the status bit and outputs are blocked by the

appropriate inputs:

SteadY(A) Wd.f

beg(Stat -1 ) D (V bik Status A V bk'' (S, R))

72

~P~t



CHAPTER 7-LATCHES

where V is based on the initial value of E:

B V

I (E,D)

Combining the interface with SR-latch

The following predicate shows how to connect the interface's outputs to the

inputs of an SR-latch:

DMatchImplcmentation(A, L) -=der

DLlnterface(A) A SRatch(L)

A (A.S %dL.S) A (A.R s L.R)

The next property states that this implementation results in a D-latch:

M~atelmpkementation(A, L) M Datch(M)

where

4 M.E ~AS

M.D adA.D

M.Q ~L. Q

M.Status v A.StstUa A L.Statue

M.Iat = A.Iat +L.IatIM.prd = A.prd +L.prd

The interface itself can be built from combinational gates based on the steady-

1- stte fomulaS-(EAD) A R=(EA-D).

We omit the detail.
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Introducing a hold time

In practice, a D-latch's data input need not be held stable during the entire

period when the D-latch is disabled and the enable signal drops. This can be for-

malized by adding a hold-time parameter hid and redefining Disable to incorporate

it:

Disable(L) =def

[1 0
,prd E A E blk hid D A beg(Status =1))

D (fin(Status 1) A stb(Q,Q]
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CHAPTER 8

FLIP- FLOPS

J8.1 Simple D-Flip-Flop

The simple D-flip-flop described here has as inputs a clock and a data signal.

The overall structure is given by the following diagram:

Cl,: Bit-- +Q:Bit

D: Bit-o q: Bit

(el, c2,c3hl,L/a, ): time

if we ignore the clock input Ck and assume unit delay, the Hlip-flop behavior

can be described by the formula

[D del Q) A [(-'D) del ~

The predicate SimpleDPTp~lop gime below takes a more detailed look at clocking

* and propagation.
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CHAPTER 8-FLIP-FLOPS

Definition of SimpleDflipFlop:

SimpleDFlipFlop(F) =def

SimpleDFFStructure(f)

AEl Store(F, i), forsE {O, 1}

Definition of SimpleDFFStructure:

SimpleDFFStructure(f) =d.f

F: struct[

(Ck, D): Bit %Inputs

(Q,ThQ: Bit %outputs

(ci, c2, c3, hid, tat): time %Parameters

Definition of Store:

The predicate Store shows how to store a value in the flip-flop:

Store(F, i) Md~f

[t c1e2e3CkA CI' UP"~ D A beg(D = i)]

[b4eg(Q =i A =-i) A Ckb kt'(Q,Th

The flip-flop specification can be generalized into a multi-bit register by rep-

resenting the input data and the output as vectors of the appropriate length. Nt

still more detail is desired, such a register can be viewed as a collection of one-bit

flip-flops, each with its own status bit. Incidentally, it is easy to connect, say, the

output of one device to the clock input of another. Here in an wample:

S&MPle1lsPFUPP (F) A 8iflPL~iPFIVI(G A (A Q G. 0.0)

'a 78
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18.2 A Flip-Flop with More Timing Information

The predicate DFlipFlop presented below includes additional timing details.

When the clock signal rises, the current value of the data line is stored in the device.

Falling clock edges leave the stored value unchanged. This description also takes

a more precise look at the process of setting up the input data prior to triggering.

When the internal flag Status equals 1, as long as the clock is stable, the output bit

Q remains stable and is also available in complemented form as

Definition of DFlipFlop:

Here is the main predicate:

DFlipFlop(F) -dot

DFhpFlopStructure(F)

A 13 Store(F)

SA [l Nontrig(F)

A 19 Steady()

* j
4 " Definition of DFlipFlopStructure:

DFlipFlopStructure(F) Mdot

F: struct[

( k, D): Bit %Inputs

(Q, J7): Bit %Outputs

Statue: Bit %internal

(stp, prd, hid, tat): time %Parameters

Definition of Store:

The predicate Store shows how the clock trigger# the flip-flop to accept a now

value. The data must not change until after the clock goes high. Before the actual
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triggering, the clock and data are set up by being initially stable for at last etp
units of time. The actual clocking is given by the predicate 7Tgger.

| t,,e(F) MdO

(otb(CkD) A [fun 8 atpl) -Tigger(F)

If desired, we can have separate set-up times for the clock and data inputs. For

example, the value atp.Ck can give the time required to set up the clock. The

following formula demonstrates one way to do this:

(tstb" P* Ck A ttb ,, pD D) --- Trigger(F)

Incidentally, an externally equivalent D-filip-flop specification can be given that

includes an additional internal field SetupStatus equaling 1 whenever the inputs

have been set up.

Definition of Trigger:

After the clock rises and triggers the device, the data input D must remain

stable for at least the hold time specified by the parameter hid. If this condition

is fulfilled, the device ends up steady with Status equaling 1 and Q receiving D's

initial value.

7Wgger(F) d

(TO,"dCh A £7 bki" D) *(&Gt , 1) A (D-.Q)]

Definition of Nent rig:

If the clock has a falling or no-riggering edge and the devi is initilly steady

then the device remains steady and outputs are stable.

No.ig(P) se

(JOa A b:, if,(AGIO- 1)1
Ul("(SNONw -m ) A .tb(QsV)J

I.,,I . .i



CHAPTER 8-FLIP-FLOPS

Definition of Steady:

Whenever the status bit equals 1, it and the outputs remain stable as long as

the clock does, independent of the behavior of the data input. The outputs are

complements.

Steady(F) -dot

beg(Statu. = 1)

D [bCg(q = -Q) A Ck bik StatUe A Ck bLk"'t (Q, q)]

If desired, Lhe latency factor can be a function of the initial value of the clock or

even the currently stored value.

Comparison of the predicates SimpleDFlipFlop and DFlipFlop

The next property shows how to reduce the predicate DFlipFop to the predi-

cate SimpleDFlipFlop presented earlier:

DFLipFlop(F) D SimpleDFlipflop(G)

where G is constructed from F as follows:

C[field] F(fieLd], for field E'{Ck,D,Q, )

G.cl = F.Stp

G.c2 = F.prd

G.c3 = F.prd

G.Id = F.hLd

G.iat = F.lat

Simplifying the predicate Store in DFlipFlop

By merging the processes for setting up and triggering the fip-iflop, we can

eliminate the predicate Trigger and define Store as follows:

(T"""Ck A Ck blkad D) [fin(Status = 1) A (D -- Q)I

Here the clock input is set up at least atp units of time. Because the clock blocks

the data input D, D is also set up.

7Q

* - -*'~ L ~ rI
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§8.3 Implementation of D-Flip-Flip

A D-flip-flop can be constructed out of two components in a manner similar to

building a D-latch. The first component, known as the master latch, serves as an

interface between the clock and data inputs on one hand and the second component,

the slave latch, on the other. The slave provides the flip-flop's outputs. There are

four key time periods in the overall flip-flop operation: clock is 0, clock rises from

0 to 1, clock is 1, and clock drops from I to 0:

* When the clock is 0, the master latch disables the slave, which maintains whatever

value was previously stored. At this time, the clock and data inputs can be set

up for clocking in a new bit.

* Upon the clock transition from 0 to 1, the master latch itself stores the incoming

data signal and actively propagates it to the slave. The slave in turn adjusts the

outputs to reflect the new data.

" As long as the clock remains at 1, the master continues to transmit the stored

value to the slave.

" When the clock drops from 1 to 0, the master disables the slave, leaving the

stored value undisturbed. At this point, the cycle of clocking can be repeated.

Specification of the master latch

The master latch has the following structure:

Ck: Bit--# -+: Bit

D: Bit R: Bit

(.4,, kid, prd, lot): Nine

so

-, .,-- 2t
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The timing parameters have the same form as in the flip-ftop description since

the master device has the clock and data signals as inputs.

Matev(M) =dsf

MaterStructure(M)

A M~ Store(M)

A ED Nontrig(M)

A Mi Stead y(M)

Definition of MasterStructure:

MasterStructure(M) =-det

M: atrtict(

(Ck, D): Bit %Inputs

(S, R): Bit %Outputa

Status: Bit %Internal

(stp, hid, prd, tat): time %Parameters

Definition of Store:

The data value present 'when the clock rises determines the S and R outputs.

I Store(M) -=d.f

(stb(Ck, D) A ien 2! stp) - Trigger(M)

where the predicate Trigger is defined as follows:

Trig ger(M) Wd.t

(tolrd Ck A Ck bik~d D)

D fin(StatV8 mim1) A (D S~ ) A (1--D R)

A.1
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Definiition of Notrig:

If the master latch is initially steady, then after the clock drops, both S and

R become smoothly disabled at 0.

Nontrig(M) =-de

[jO.PrdCk A beg(Stattss = 1)]

[fin([S = 01 A [R = 0] A [Status =1]) A SM(S, R)]

Definition of Steady:

i When the master latch is steady, the status flag and the outputs are blocked

by the clock.

Steady(M) ~e

beg(Statu = 1) D [Ck bikStatU8 A Ck b~k*t (S, R)j

Combining the latches

The next predicate shows how the master and slave latches are combined to

implement a D-flip-flop. We use an SR-latch as the slave.

tMaster(M) A S~thL

A (M.S s L.S) A (M.R ft L.R)

The mapping from the latch.s to the flip-flop takes the following form:

I- DFFlmplementation(M, L) D DFlip~top(F)

where the tuple F is constructed as follows:

P. 0k M. Mk

A.D ow M.D

82.
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CHAPTER S.-FLP-FLOP8

F.8 L.8

P.R L.R

7.St atm m (M.StatUS A L,.Statu)

F.atp M.tp

F.prd - L.prd + M.prd

F.hld = M.hud

F.lat L.Iat + M.1at

§8.4 D-Flip-Flops with Asynchronous Initialization Signals

I ~Integated circuits such an the TTL 7474 chip [481 contain D-flip-flops with

extra inputs for initialization. Since these pins are used more or Im independently

of the clock, they are called as, nchronow. The device considered here has a single

asynchronous input 01r:

6"k: Bit-#
Oh-+: Bit :s

D: Bit-# Stat : Bit
? "+- :Bit

01T: Bit -Bi

atp, prd, Wai, kit

Definition of A4%nc1DFlipFlop:

The specifcation has predicates for operating the clock and clear signals:

Ane DFlipFlop(F) d.t

AynchDPFStruct.re(F)(^ AU U.Otock(F)
A U U8e4fOr(P)

A M StgedV(F)

83^ [] ,,--(
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Definition of As peahDFPStmeture:

I

AsjnchDFFStrueture(F) -df

F: struct[

(COk, D, Car): Bit %Inputs

(Q, Tq): Bit %Outputs

Statue: Bit %Internal

(stp, prd, hid, tat): time %Parameters

I

Definition of Uselock:

lDuring periods when the input Cir equals 0, the device acts according to the

earlier specification DFlipFlop:

UseClock(F) ---t

(Clv T o) DFUlpFlop(C)

where G contains exactly the following fields of F:

Ck, D, Q, _, Statue, setp, prd, hid, lat

Definition of UseCear:

When the clock is stable, the input Clr can be used to initialize the flip-flop:

Useelear(F) ==d.

stb Ck ) [Cl.,,,(F) A Disable(F)]

Definition of Clear:

if the input Or equals 1 long enough, the output Q in seroed and the device

becomes steAdT

Okaw(F) md

(MOW 1 A Is2 Prd) fi[(SttUm-l) A (Q-0)1

i i]., .... 84
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Defltton of Disable:

When the device is steady and the input Or drops to 0, the device remains

steady:

Disable(P) nw

[1jOprd Ck A &eg(St~tu =I1)] :) t1[(Stet# - 1) A Stb(Q,"Q)J

Definition of Steady:

When the flip-flop is steady, the inputs Ck and Or together block the signals

Stat,., Q and ~

Steamy() =do

bgg(Sttum1) [bD [6gq-Q) A (Oh, C~r) lk (StkS., Q,~)
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MORE DIGITAL DEVICES

We now consider techniques for describing and reasoning aLbout multiplexers,

random-access memories, counters and shift registers.

19.1 Multiplexer

A multiplexer has a number of addressible inputs and can selectively output

t any one of them. The device considered below can be optionally disabled, in which

case it output. a zero. The general structure is as follows:

Addr: Bit"=

1% (01: Bit--

Out: Bit

Ia[20 - j:*Bit--

A: Bit-

n: nost,

(prd, tat): time

The dee operates roughly according the table below:

operation E out

select 1 hiydej

disable 0 0

so
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whern toe nvals(Addv). If we Ignore propagation delay, the multiplexer behaves

according to the formula.

Out OW (if [B - 11 then In[,a(Addr)J else0)

During periods when the device is enabled with B = 1, the formula reduces to

Out In J[nvai(Addr)J

Definition of Multiplexer:

The multiplexer's main predicate in as follows-

Multiplezer(X) tm drt

MultiplezerStvuctuve(X)

4 A 15 Scect(X, boc), for toc E [0, n - 11

A M Disable(X)

Definition of MiadtipleerStruct.we:

The device has an n-bit vector Addr for selecting one of 2" possible incoming

bits of the vector In.'

MultiplexerStructure(X) mda

X: Struct[

Addr: Bit",.&f: Bit*20)9 B: Bit %Inputs

Out: Bit %outpute

ta: neat, (prd, tat): timee %parameters

Deflaition of Select:

If the enabl signal Ris held at Iland the address flne and its associated h*%%

re stable, the output ends up equal to the input Raue indicated by the tatic voiials
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Select(X, Wo)- Wa

([B Xd 11 A Stb Iwa[1.c A [,w.L(Addr) OWW A 161~Prd)

-,-o4beg(Out -ISILec) A (B, Addr, In[WIc) Ukls'~ OutJ

Defin~ition of Disable:

Holding the Signal B at 0 Cleam the output.

Diable(X) mdt

(B ft0 A les Zprd) ,.beg(Out=0) A B bik' Out

Alternative specificatioins

Like the adder discussed earlier, the predicate Multiplexer can be equtivalently

specified with an internal status bit and predicate Steaw.~

The timing parameters could be made more detailed so that, for example, the
parameter select.prd would give the propagation time when using the predicate

Select.

19.2 Memory

The memory described here has the following form

Addr:. Bit"0 Stas[0): Bit -4Out[Oj: Bit

Data: Bit-

SE;Bit-

r Stdw[2%: maB~t 0[%- ]

(pit, at 1t): time

Ther is a meies of cells, esch associated with status and output bits. At aW time,

at madtone ell am be selected and modifiedi. During thepariod the remahieg

so
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cells we left untouched. When the enable ignal Is hative at 0, no cell am be

altered.

If we amume unit delay, the memory behaves a follows:

(if (E - 1) then alter( Out, nwdl(Addr), Data) el e Out] del Out

where the function alter(Out, i, a) equals a vector whose i-th element equals a and

whose remaining elements equal those in Out. The behavior can also be expressed

using iteration and an in-place variant of alter:

(SUiP A [sY (E = 1) then Aiter(Out, ,.,t(Addr), D) e. (Stb ON)

where Alter(Out, i, a) sets the i-th element of Out to a and leaves the others

unchanged:

Alter(Ot, i, a) -d. [ater(Out,, a) -. Out]

In practice, a memory has a multiplexer connected to the outputs so that at

any time at most a single cell can be read. This technique permits one cell to be

written while another is being retrieved. We do not include such multiplexers here.

Defltwo ofMemory:

MemorlStvwctowe(M)

A VW EI o, 2- 11.

M Z wk(M, W,)

AUM Wfite(Mt 10.)

A D4abe(M,g Iee, MOd), fr MO& E , (,.e et, '{,,010 d)

A Steed,(M, I,., Iued),

fors e...E,.... ,, sele4.cted , ,ek&t.e.leet
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M: atvwct[

Addr: Bit",.Data: Bit, E: Bit %Inputs

Out: Bit(2 ) %outpute

ns: nat, (Prd, etp, tat): time %Parameters

Definition of Enable:

When the memory becomes enabled with B rising from 0 to 1 and a cell does

not have the address selected by Addr, the cell's output remain. stable.

Bntable(m, te) Mdf

(t"VPPPdB A stb Addr A beg[nwal(Addv) V& IOC A Stuzttw[loID 11)

~e flr4(Stat#S(lOCj - 1) A *tb OUt[locJ]

Defimitiom of Write:

When the device in enabled, the cell addressed by Addr can be written with

the value of the data input.

Wnit@(M, 10c) 111141

(ten k pvd A [E OW11 A stb Dad, A nval(Add) m let).

ZI fif1[(StatUe[feCj -0 1) A (Out(IW] - Deta)J

Deflretion of Duable:

Dbabing the memory does not affect a steady cell's outpt. If the cell is

curet2 addressed, both Addr and Dat must remain stable until after 5 dnee.

go

*Oat
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Otherwise only Add? need hold. The predicate check, defined below, ensurs that

the particular location in in the indicated mode.

Disable(M, toe, mode) wdr

(JO0PrdE A Stb U A beg[check(M, IOC, modeC) A (SWzUa[10C] 1 )1)

D[fivt(StotUa[bOC] = 1) A It& Ost[bOClj

where U is as follows:

mode U

selected (Addr, Data)

not-selected (Add?)

Definition of Steady:

Steadsr(M, boc, mode) mdo(

be#[(Stat[becJ = 1) A check(M, loc, mode)]

D (V bik StatU[LecJ A V blk't Out jbocJ)

where the table below gives V as a function of the indicated mode:

mode V

disabled (E)
selected (E, Addr, Data)

not-selected (E, Add?)

Nf a cell is steady, its output is blocked by the signal B and other appropriate inputs

based on whether the device is enabled and whether the cell is the one selected. If

the entire memory is disabled, only R blocks the cells. Nf the memory in enabled and

the particular cell in the one selected, the cell's output is blocked by the inputs R,

Addv and Data. If however the cell is currently nsot selected, it is blocked only by B

and Addr. This is summarised in the table shown ater the definition of Steady. The

predicate check, defined below, makes certain that the particular memory location

is indeed in the chosen mode of operation.

Deflidtion of check:

The predicate check veifes that the Sive location is in the specified mode of

91



a.Idkd (SM1) A IWI(Adds)- eJt
ROLJkctkd (B 1) A JiWa(Ad*) 'A Lcj

19.3 Counters

We can model a simple counter by moan of addition and unit-de[ay.

The nut forma show a way to haindleintasao:

(if((aW-1) Aa 0St (1+ 1)JdA1

N fIt is emil amemory that the counter is litialy equail to 0,te formua below

6*9(I-O ) A KIr+ 1) MI

The fonewmg aample take fintite precision into meouat.

[(I +1) mod r] M At

Clocked conter

A clocked counter stores a number that can by incremented. by 1 modulo .mvve

bee when the dvice in tiggired. &er in the physica structure:

Qr: Bit4 Stat: BMt Out: Bi".

n., CIO d .

nohe w bd w o ate s red hereb a s -hit output vaser ad eysum trough

th nmber. 0 to r"-1. N" ad sats an bhnay. For espls a do deedsanw

be 64-16 0""tmad qonub tb e mubew0to 9. Thembew Wm UD
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Definiton of Counte:

The predicates Clear and Intcrement specify how to clear and increment the

counter's output.

Counter(C) a=de

CounterStructure(C)

A 13 Clear(C)

A B Increentw(C)

A M Steead(C)

Definition of CounterStructure:

The device's structure is given below. The internal bit signal Status indicates

when the device in in a steady state.

Counte"Stt&ucture(C) Wdef

C: struct[

(Ck, Cir): Bit %Inputs

Out: Bit" %Outpute

Statue: Bit %internal

n: nat, (ci, cR, e3): time %Parameter.
]

Definition of Clear:

When the clock has a positive pulse and the input Cir equals 1, the device is

cleared and sodb up stead with Status equaling 1:

[ltj*,d^*k A b6gl(' - 1) A Ch bb "r

, flJ[Y(Ost)- 0 A S.I-1S

.JAL

i T °'I * II I I I-11 i I ,- I .3
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Definition of Incro"est:

If the device is iitially steady and the clockis puksedand Cr equals0, then

the output vector's numerical value is incremented by 1 modulo 2". The device

ends up steady.

InMCWe~n(C) ~~

[tj1,2c Ck A beg(Status =1 A Cir =0) A Ck bib Cat]

Q (nval(Ot) + 11 mod 2"-. nwal(OUt) A fin(Statu. 11)

Definition of Steady:

When the bit signal Status equals 1, the clock input blocks both Status and
Out. The blocking factor tat is associated 'with Out.

Steadsi(C) =d~f

beg( Status - 1) :D (Ck bi Status A £Th bUk' Out]

19.4 Shift Register

A shift register stores a bit vector that can be selectively initialized, shifted or

* left untouched. Some shift registers are bidirectional or can shift more than one

place in a single operation. Others recirculate the bits or have special provisions
for signed arithmetic. The output of a shift register may reflect the entire state or

only part of it.

The TTh device discussed here stores n bite that, when triggered, can be

cleared, loaded with some data, shifted right by one place or maintained unchanged.

The general form is given below. We omit the timing parameters from the diagram.

Mk Bit--

Cir: Bit-

8k: Bit-4i~ Bit

Ld: Bit- Stats: Bit

So 8: Bit- Bit"

D: Bit*=

M 94 7
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The register has a capacity d n bits that ae output by the vector Q. The

least significant bit Q[gt- 1] is also output in complemented form by IQUI. When

clocking takes place, the fields Cir, Sh and Ld determine which operation occurs.

The following table describes the general behavior upon clocking:

operation Car Sh U Q

Clea I - - (o)"
shift 0 1 - (Se) II Q[Oto-2]

load 0 0 1 D

nop 0 0 0 Q

j The expression (0)n stands for a list of n O's. Depending on the operation, only

certain inputs are needed. For example, when Cir is 0, Shi 1 and and a shift is to

take place, the device ignores the inputs Ld and D.

Definition of ShiftRegister:

As with the counter described earlier, the shift register specification has predi-

cates for clocking and steadiness.

ShiftReguter(H) Md.f

ShiufRegStrseture(H)

A I9 21gger(H, op), for op E '{clear, shift, load, sop}
I~~ G 1i Mntrif(H)

A 9 Steady(H)

95
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Definitioni of S&WterStructs"e:

SifRgStnature(H) MM.

H: struct(

(Ok, Ort, 3k, Ud, Se): Bit, D: Bit" %Inputs

Q: Bit", Q ns: Bit %outputs

Stats: Bit %Internal

n: Positive, %Parameters

(tat, prd): time,

*tp: (Oh, Or, 3k, U, Se, D, Q): time,

kid: (COr, 5k, Ld, Se, D, Q): time

The register's length n must be at least 1.

Definition of Steady:

When the status bit equals 1, the output !Vs; equals the complement of Q's

least significant bit Qjn - 11.

Steaidy(H) wdt

beg(Stat"i - 1)

A Ck tk Statu A Ck Uk"'(Q,I)

Definitions of ig get:

The value of op determines the particular operation to be undertaken. For

example, the field name I load is used as a parameter to Trigger for performing a

( load operation.

Set Up(H, op) -ao Compute(H, op)

96
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D.J ,tom of Sttpe:

The predicate SetUp ensures that the appropriate input signals hae the proper

values and ae stable long enough prior to the actual operation. The predicates

check and inpaet used here are defined later.

SetUp(H, op) d-..t

Mlicheck(H, op')]

A Vfield E [inpoct(op) u {I Ck)]. (tetbPII( 4 HjfieLd))

Definition of Compute:

The tex of Compute overviews the clocking involved in performing an opera-

tion. The predicate. Hold describes how inputs must be held as the clock rim. The

function result indicates the new value of the output Q.

Compute(H, op) wdr

[toippd Ck A Hold(H, op)]

: (filS.sO.M - 1 A rn, uLt(H, op) -. QI)

After clocking, the status bit ends up equal to I and the output vector Q receives

the selected function of the inputs.

Deftintion of check:

The predicate check give. the value. of the control bits Or, Sk and U neceAsary

for the desired operation.

op check(H, op)

ler Cr - I

shift (Cir() A (Sh-)

load (Cr 0) A (Sh ) A (U )

"Op (cf-) A (Sh ) A (U-o)

Definition of implet:

The function impaet specifies the set of inputs needed in performing the par-

ticular operation. For eample, during shifUng, the Ld control signal is ionred md

is therefore not listed.
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CHAPTER -MORI DIGITAL DEVICES

a, ssp,,t(.,)

shf Cr jolt)

lotad '{Clr, Sh, U, D)
01'{C, sh, U,Qj)

Deflsitio of Hold:

Each operation's required input signals must be hold stable beyond the clock

transition for the time given in the corresponding subfield of hid.

Hold(H, op) odd

Yfielil E inpaet(op). (Oh Uk~'il" H[fleldI)

Definition of result:

For each of the three clocked operations, the function reault specifies the output

Q'S new value.

op reelt(H, o,)

clear (0)"

shift (Se) II1(Oto n- 21
load D

nop Q

Defirition of N tontrig:

If the counter is steady, a falling clock edge preserves the status bit and laves

the outputs Q and W tAble.

Neatrig(H) Mde

(1O9P'd Ck A beg(Statii 1 )] D [fira(Status 1) A *tb(Q, ~i)

Vaiant specifications

A more detailed description can be given with separate timinl informatki for

the operations clear, shift, load and nop. In addition, the times for rising and

falling clock edges need not be the same.

1~. ~~________________ ___

f 1- : ; . ,_, ,: :. , ,,, .. :: ,..o/i;i . -



CHAPTER 9-MORZ DJGM1AL DEVICE

Malrnatively, we can combine the control input. Into a signal called Op ad

ignore the details of clocking. The uignal Op range over the values 'eker, 'slJI,

'load and 'iw". The next formula describes the corresponding behavior *ans unit

delay and a case construct:

ce Op of

clear: (O)0

shift: (Se)I IQ[O ton- 21 del Q

load: D

nop: Q

The case expression uses as its value the entry selected by Op. For example, when

Op equals 'load, the case expression equals D. The expression (0)" equails an n-

element list of O's.

Combining shift registers

Two shift registers can be connected to form a larger one. The following

property reflects this with the shift register H containing the most significant bits

ad I containing the least significant bits:

[ShiftRcgister(H) A ShiftRegister(I)

" (H. Ck PSI k) A (H.Cr SWICIr) A (H.Sh ;wLAh)

A (H.Ld I. Ld) A (H.Q~n -i11 Ps I.S) A (H-lat 2t LtdSe)]

DShiftRegister(J)

where

J1(Ikldl t H(field], for field E 'Ck, COr, SA, Ld}

J.S o H.D 1 L

£. JQ m H.Q 11LQ

J.St at, m H.St .tS A I.Sttus

A S En ~+ Ln
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-J-prd = maz(H.prd, Lprd)

r.tp~f1]m wm.ju..is atp ... raslpia11 for fleld 6 '(C&, lit SIUD)

J.etp.Se = H.&S

J.etp.Q - max(H.#tp.Q,Lstp.Q,I..tp.Se)

J-Idd[AetldI = max(H11d~fieldi, IhdIddl), for field E 'j Ofr, Si., U, D}

J-hiLSe - H.hLd.Se

J.hld.Q = max(H.hdd.QLhLd.Q,Ild.S#)

J.Iot = min(H.lat, I.tat)

An abbreviated form of this property can be expressed for combinin two unit-delay

shift registers.
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CHAPTER 10

MULTIPLICATION CIRCUIT

The hardware multiplier considered here in motivated by one discussed in

Wagner's work on hardware verification 1491. The desired device behavior is first

described followed by a look at implementation techniques. The multiplier has the

following general structure:

Jlr~: Bit"=

InOut Bitt-#

Ck: Bit-- u:Bt

V U: Bit4

(n, count): nat,

(ci, c2, c3): time

The circuit accepts two values and after a given number of clock cycles yields their

product. The value, awe represented as unsigned n-bit vectonrs l and han while

the output Out in a 2w-bit vector In -addition, there are two input bits Ok and U

for controlling operation. The signal Ck ser ve as the clock input and U. initiates

the loading of the vectors to be multiplied. The field count tells how many cdock

cycles are required. The values ci, c2 and c3 are timing coefficients used in the

behavioral description.

110.1 Speiffication of Multiplier

The multiplier in first specilled by means of the predicate Muft*Hlev(M). We

then devlop as iterative, timing-independent multiplication algorithm that coon-
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CHAPTER 10-MULTIPLICATION CIRCUIT

putse a product by aselries of succesive additions. Later, the predicate hmlmnignH)

characterizs a device that computes sums and in fact hm the algorthm's stop em-

bedded within it. A logical implication is then given, showing how implewwntagon(H)

realises Mtltiplier(M).

Definition of Multiplier:

Here is the main predicate:

Multipier(M) do

MultStructure(M)

A M Calculate(M)

Dejnition of MultStructure:

The multiplier has the following structure:

MVltStrUctVre(M) ruder

M: .truct[

(Ck, Ld): Bit, %Inputs

(mnl, 1I2): Bit-

Out: Bit2s %Outputs

(n, count): nat, %Prameters

el, c2, c3: timve

Defii tion of CalcJ ate:

If the inputs behave as specified by the predicate Control, the output Out ends

up with the product of the initial values of Jl and 142.

Culcate(M) .r

Cost rod(M)

[•al(In1) - nrd(1n2)J -- val(Out)
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CHAPTER 10-MULTIPLICATION CIRCUIT

Definition of Og. 4,.OV

The predicate Control describes the required sequencing of the input, so that

a mutipicaiontakes place. The computation first loads the circuit and then keeps

the load line inactive while the clock in cycled.

Control(M) drLoad(M); ((Ld s% 01 A CYCling(M))

Definition of Load:

Lodn n oea indicated by the predicate Load. The clock is cycled as

I ~ given by the predicate SingLeC Ope. The control signal Ld starts with the value 1
* and together with the other input. Inl and 14i2 remain. initially stable a. long as

the clock input Ck does.

e ~~~~~Load(M) dfAO i L l12

Single Cpcke(M) Abeg(U - 1) AC l LII 2

of Sniiualecoc el. consist, of a:ngatve pulse:

The clock signal falls from 1 to 0 and then riem back to 1. The three times given

indicate the minimumn widths of the levels during which the clock in stable.

Definition of Cycling:

The overall cycling of the clock is as follows:

.Oiclig(M) m" (Singke c#(M))'

- A total of count individual cycle. must be performed one after the other, whee

each in a negative pulse satisfying the predicate Sin Locle.
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CHAPTER 10-MULTIPLICATION CIRCUIT

Variants of the apecifleaton

The predicate MultipLer does not represent the only way to describe the mul-

tiplier circuit. Alternative approach.s based on internal variables can be shown to

be formally equivalent to the one given here. A useful extension to this description

specifies that once the output is computed, it remains stable as long as the control

inputs do. If desired, additional quantitative timing details can readily be included.

§10.2 Development of Multiplication Algorithm

The specifcation predicate MUsltiplier intentionally makes no reference to any

particular technique for multiplying. Since the process of multiplication does not

generally depend on any specific circuit timing, it is natural to separate agorithmic

issues from other implementation details. We now use ITL as a basis for deriving a

suitable circuit-independent algorithm for determining the product and in the next

section as a means for describing hardware that realises this method. The synthesis

process can be viewed as a proof in reverse, starting with the goal and ending with

the necessary assumptions to achieve it.

The aim here is to obtain an algorithm describing some way for doing the

multiplication. The variables n, Inl, In2 and Out are represented as fields of a

variable A. The predicate Goal below specifies the desired result:

Godl(A) sad

The output Out should end up with the product of the data inputs I, and 12. The

presentation given here reduces the problem of multiplying the two n-bit vectors to

that of sing repeated additions to determine successively larger partial products.

The algorithm consists of initialisation followed by n successive iterations. After,

iteraSkm of the loop, for i :S n, the initial product of Inl and the least significant

i bib fh ., that is,

nweJ(ni~a). nvaL(ha f -1I tool)

is enpUmted ad'available in the upper n+i bib of 0%4. Recall that the sbscripting

brakets W asn a vector from the right. Althoegh neither il norw 12 is guaranteed
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CHAPT= 10--MUTPLCAION CIRCUI

to remain stabke, their initial value mudt be used throughout the calculation. Tbhe

lower n - i bits of Out hold the unexamined bits of 1,t2 (i.e., Wnin - 1 toil). In

addition, an extra n-bit variable Temp is introduced in order to remember the

original value of InI. The following figure informally depicts the situation a&ter i

stp:partial product rest of 1n2

out: F nuel(Inl). - nua(142{ -it 1 ) 1421n -1 I w

n ibisit-fbt

After n steps, Out equals the desired 2n-bit multiplication result.

for i :5n.

Assert(A i) MdO

[nwal(Inl). - nal(Inlji - Ito 01)] -. nrzl(Outf2n -1I to n - )

A in f-ltI wI Outfn - i-to Of

A II --+ Temp

After n steps, the product must be computed. For i n, Assert indeed

observes this requirement.

is Assart(An) 3 (7oa (A) WC

Expressed in the logic, the algorithm takes the following form:

F ~Inst(A); (Ste pA))t

In the ant two sections, the predicaties mnit and Step are gien in detail. Both Inai

and Step wre derived so as to maintain Assert after looping i times for =nW i:5n:

[i :5 n A Iftit(A); (Step(A))dJ 3 Asaevt(A, %1 (00)
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shm G. tbf k a V md nt.& a pupw, m b fi Ws .,

The fomulas (s) -ad (sw) t*#Atw mut a kau i of tAm ,op coledt

the predut

h&UA), (S*(A))" ' 0.(A)

Deriving the prodiate lit

The initialisation requirement can be obtained by makinl sure Init satides

Aset for i =a 0:

* Iiait(A) DAsaert(A, 0)

S*upication of Aert yields the constraint

Init(A)

0 -+ wd(Outln - I to i)

A N2 OUt - to01

* A InIalTo"s

This can be achieved by the definition

hait(A) an"

(0)" -+ Ostf2n -ItonjI A - % o. -I to 0)

whene (0)" equal. au waelement, list of Wes.

Deri yvg the predte So

Theitatioutep shoud be conuded so after l hau for y ays < v%

Stop e Wam etlve widen the nope of the amenim to i +1 heom t

41 <ic8 A Ae~dtqAg i;9t&"(A)] Z AM?" Al+ 1)
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CHAPTER 10-MULTIPLICATION CIRCUIT

Each step achieves this by selectively adding Temp's n bits to Out, depending on

Out's least bit, Outf0). Only the top n bits of Out are actual inputs for the sum.

The top n + 1 bits store the result. The remaining n - 1 bits of Out are simply

shifted right. For Temp the requirement reduces to the formula

Step(A)

Temp --* Temp

This guarantees that Temp continues to remember the initial value of Inl.

The constraint for Out is
Step(A)

[nvn( Outi2n - 1 to n1) + OutN. wal(Temp)]

-- nva(Outi2n - 1 ton - 11)

A Outn-to11--j Outin-2to01

Thus the overall incremental step can be realized by the definition

* -- Step(A) -det

[nial(Out2n - I to ,,) + utJO, nval(Temp)]

--o nval(Outi2n - Iton - 11)

A Outfn- I tol -Outin- 2,to 0

A Temp -+ Temp

§10.3 Description of Implementation

The circuit specified below performs the iterative algorithm just given. The

definition includes relevant timing information and is broken down into parts describ-

ing the implementation's physical structure and behavior. The primary predicate

Implementation overviews operation. The device's fields are shown by ImpStructure.

The predicate LoadPhase specifics device operation for initially loading the inputs.

Once this is achieved, the predicate MultPhase indicates how to perform the in-

dividual multiplication steps.

Implementation(H) =fd.r
ImpStructure(H)

A M(LoadPhase(H) A MultPhase(H))
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CHAPTER 10-MULTIPLICATION CIRCUIT

Definition of Imp~tructure:

The structure of the implementation differs from that of the original specification

by the addition of the internal states Temp and Status and by the omission of a

count field giving the required number of clock cycles for computing a product. The

vector Temp maintains the value of Inl. The bit signal Status equals 1 when the

device is in a steady state. The specification given below shows how to set Status

to I and keep it at this value.

ImpStructure(H) -def

H: struct[

(Ck, Ld): Bit, %Inputs

(InI, n2): Bit"

Out: Bit2 " %Outputs

Temp: Bit", %Internal

Status: Bit

n: nat, %Parameters

cl, c2, c3: time

An external form of the complete specification would in effect existentially quantify

over the fields Temp and Stats.

Definition of Lo.4Phase:

The body of Loa4Phase specifies how to load the inputs as described in the

algorithm:

LoadPhase(H) Md.t

Load(H) D (Init(H) A fin(Statu = 1)]

The predicate Load gives the required loading sequence for the circuit inputs. The

predicate Init refers to the algorithm's initialisation predicate. Once loading is

complete, the field Stats is set to 1, indicating that the device is ready to proceed

with the multiplication. The definition of Load is identical to that of its namesake
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CHAPTER 10-MULTIPLICATION CIRCUIT

in Multiplier:

Load(H) 5d.f

Single Cycle(H) A beg(Ld = 1) A Ck blk (Ld, Inl, 1n2)

Individual clock cycles are also defined as in Multiplier:

Single Cycle(H) -d. j, itc1 c2,c Ck

Definition of MultPhase:

i When the load signal is inactive at 0 and the device is steady (i.e., Status=1),

the circuit can be clocked to perform a single iteration. The algorithm's predicate

Step takes place over two clock cycles. Afterwards, the device is again steady with

Status equaling 1.

MultPhase(H) -dar

[Ld F 0 A- (Single Cycle(H))2 A beg(Status = 1)]

, [Step(H) A fin(Status = 1)]

Implementation theorem

' The correspondence between the implementation Implementation and the original

multiplier device specification Multiplier is now given by the theorem

h crpoenetwentmplementationI(pn n t

where the mapping from H's fields to M's is

M . MMf eld s Hfield], for field E '(m1, 1n2, Out)

M.n = H.n

M.count - 2H.n
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CHAPTER 10-MULTIPLICATION CIRCUIT

M~flLd] == H[fieLd], for field 6 '(el, c2, c3)

The value of M.count corresponds to the 2n clock cycles needed for doing the

iterative computation.

The behavioral description Implementation can itself be realised by some evea

lower-level specification containing further details about the timing and using a still

more concrete algorithm. For example, the iterative steps are decomposible into

separate adds and shifts. If desired, the development ultimately examines such

things as propagation through gates.

I,

I
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CHAPTER 11

THE AM2901 BIT SLICE

The Am2901 bit slice is a member of a popular family of integrated circuits

developed by Advanced Micro Devices, Inc. for building processors and controllers.

The next page contains a block diagram of the device. An individual Am2901 chip

consists of four-bit slices of an arithmetic logic unit, memory, bus interface and

* other elements. These internal devices are connected together so as to provide

various ways for computing and storing values. The next page contains a block

diagram. A group of m Am2901 chips can be connected to form circuits of bit

length 4m. We give a functional description of the Am2901 based on information

contained in the Am2900 series' data book [1). The temporal description is almost

operational enough to be used as input to a suitable simulator. The reader desiring

a detailed introduction to the Am2900 circuit family and its applications should

consult the Am2900 data book [11, Mick and Brick [341 or Siewiorek et al. (431.

i
$1.
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CHAPTER 11-THE AM2901 BIT SLICE

Definition of BitSliceStructure:

Here are the various signals and parameters used in our description of a general-

ised n-bit bit slice:

BitSiceStructure(N) -def

N: .truct[

Source: aig(saourceaet), %Inputs

Func: sig(funcset),

Dest: sig(destset),

D: Bit",

(AAddr, BAddr): asig([O to 151),

(QLab, QMsb): Bit,

(RamLab, RamMsb): Bit,

(CarryIn, -M: Bit,

Y: Bit", %Outputs

(CarrOut, Gen, Prop): Bit,

(FZero, FMsb): Bit,

Ram: (Bit%)16 , %Internal

(Q,F,R,S): Bit"

n: positive %Parameters

In the description of the bit slice, we represent the control input Source am a signal

ranging over the elements of the set sorceeet:

8ourceset =d.r '{AQ, AB, ZQ, ZB, ZA, DA, DQ, DZ}

The inputs Func and Dest range over similar sets:

fvacset -def '(add, eo, subs, or, and, notrs, ezor, eznor}

destet m '(qreg, sop, ram, rmI, ramqd, ramd, ramqu, ramu}

* The mnemonics are those used in the Am29O1'a data book description. A lower-

level specification of the circuit can repremnt these fields as bit vectors. Similarly,
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CHAPTER 11-THE AM2901 BIT SLICE

the approach taken here has the address fields A~d& and RAddr range over the

integers 0, ... , 15; a more detailed description can instead use bit vectors of length

4.

Please note: Throughout this description we refer to a vector V's most significant

bit as V101. The least significant bit is Vjn - 1], where n = IVI. This is the op-

posite of the style used in the Am2901 data book but is consistent with the general

convention taken elsewhere in this thesis.

Definition of BitSlice:

The slice's behavior can be broken down into separate parts for the random-

access memory, Q-register, arithmetic unit and bus interface:

e I BitSlice(N) -dt

BitSLiceStiicture(N)

A RamPart(N)

A QRefPat(N)

A AluPart(N)

A BusPat(N)

111.1 Behavior of Random-Access Memory

The memory section has individual predicates for modifying the memory, the

memory's end-bits RamLeb and RanMsb and the two output latches A and B.

RamPat(N) dF

Setarm(Ram, Deat, BAdrd, F, RamLeb, RameMb, n)

L ^~ SetRiamLebMsb(RamLmb, RamMsb, Dest, F, )

A SetAB(A, B, Ram, AAddr, BAddr)
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j CHAPTER 11-THE AM2001 BIT SLICE

Defifition of SetRam:

In the description of the memory, we use the predicate rdel to refer to the

unit-delay predicate del but with the operands reversed:

UrdelV Nd. VdelU

Here is the predicate SetRam itself:

SetRam(Ram, Dest, BAddr, F, RamLb, RavMsb, n) MdeW

case Deat of

qreg: Ram

nop: Ram

I. rome: alter(Ram, BAddr, F)

Ram rdel ramin: ater(Ravn, BAddr, F)

ramqd: atter(Ram, BAddr, (RamMb) It F[O to n - 21)

ramd: alter(Ram, BAddr, (Ram.M,,b) II F[0 ton - 2])

ramqs: alter(Ram, BAddr, F[l ton - 1II (RambLs))

rams: alter(Ram, BAddr, F[i ton - 1) 11 (RamLsb))

Most of the operations alter the element of Ram selected by the input BAddr.

Definition of SetRamLsbMab:

The predicate SetRamLabMb takes into account the high-impedance aspects

(see section 14.12) of both end-bite RamLsb and RamMb:

SetRamLbMab(RamLb,RamM b, Dest, F,n) Mdef

cue Deat of

qreg: true

nop: true

rome: true

m ramf: true

ramqd: RamLsb = Fin - 11

ramd: RamLsb= -F[n - 11

ramqs: RamMeb = F(Oj

rams: RamMsb = F[0
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CHAPTER 11-THE AM2901 BIT SLICE

Deftnition of SetAB:

The latch A always equals the memory word addressed by AAddr. A siar

relation holds between B and BAddr.

SetAB(A, B, Ram, AAddr, BAddr) =dor

(A % Ram[AAddrj) A (B ; Ram [BAddr])

§11.2 Behavior of Q-Register

The description of the Q-register has a predicate SetQ for Q and another

predicate QLsbMab for using the end-bits QLab and QMsb.

QRegPart(N) Mdef

e
SetQ(Q, Dest, F, QLsb, QMab, n)

A SetQLsbMsb(QLab, QMsb, Dest, Q, n)

Definitibn of SetQ:

SetQ(Q, Dest, F, QLsb, QMab, n) M---der

case Deet of

greg: F

nop: Q

rama: Q

Qrdel ramf : Q

ravmqd: (QMb) II Q(O ton,- 21

raind: Q

ramqu: Q[1 ton - 1]I (QLab)

raiu: 9
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CHAPTER I1-THE AM201 BIT SLICE

Definition of SetQLsbMsb:

Both and-bits QLsb and QMsb can float in a state of high impedance (see

section J4.12). This is taken care of in the following predicate:

SetQLsbMb( QLeb, QMb, Dest, Q.n) =do.
case Deet of

greg: true

fop: true

rama: true

MI ramf: true

ramqd: QLab q[n- 11

rmd: QLsb = Q[Q -11

ram q: QMSb = Q[OI

rams: QMab = Q1O1

111.3 Behavior of Arithmetic Logic Unit

9The arithmetic logic unit's specification has predicates associated with the

many signals originating in this part of the slice.

AiuPart(N) md.f

SetRS(R, S, Source, A, B, D, Q, n)

A SetF(P, Fune, R, 5, Caryln, n)

A SetCarryOut(CarryOut, Pfsne, R, S, Carryln, n)

A SetOverflow(Overflow, Func, R, S, Carryln, n)

A Set-C-"neRs, F,,nc, R, S, n)

A SePFPine, R, S, it)

A SetFZeroFMsb(FZero, FMb, F, n)
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Definition of &t:

S tRS(R, S, Source,AB,D, Q, n) ido

ewe Deet o/

AQ: (A Q)

AB: (A,B)

ZQ: (zero, Q)

(R,S) ZB: (zero,B)

ZA: (zero, A)

DA: (D,A)

DQ: (D, Q)

DZ: (D, zero)

where zero = (0)", that is, a sequence consisting of n repetitions of 0.

Definition of SetF:

The following predicate shows arithmetic behavior for bit-vectors representing

unsigned numbers:

SetF(F, Func, R, S, Carryil, ni) def

case Fisic of

add: nwaL(F) = [nvat(R) + ntwa(S) + Carrylnj mod 2"

subr: nwai(F) = [ntval('R) + ntiai(S) + CarryIuJ mod 2"

vubs: nvaJ(F) = [nval(R) + w.al(-S) + CarrInJ mod 2n

m or: F = (R v S)

and: F=(RAS)Inotr: F = ([-R] A S)

tzor: F=(ROS)

esor: F = -(R e S)

Here the operator 0 represents exclusive-or. The Boolean operations such as R A S

are applied bitwue to the vectors. The table can be augmented with information

about arithmetic operations using one's and two's-complement representations.
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Definition Of 8.tC.vOAt:

In the caue-expression given below, hyphens indicate unspecified entries and

are not partial values; a more detailed description could fill them in. The function

carM determines the resulting carry output and is defined in section §6.4 in the

discussion of carry look-ahead adders.

SetCaffyOut(CarryOut, Func, R, 3, Carijn, n) --def

case Func o

add: carry(n, nval(R), nval(S), Carryln)

subr: carry(n, nval('R), nval(S), Carryln)

Carij~t~' r:subs: carry(w, rwal(R), ntial(-S), Camjln)
SCuTOut Md or:

and: -

notrs: -

exor: -

eznor: -

Definition of SetOverflow:

In determining the overflow bit's value, the two's-complement interpretations of

the incoming bit vectors R and S are used. The function tcva(k) takes a bit vector

I and computes its numerical value based on representation by two's complement:

tevaCkt() d,,, if ±[o = 0 then naal() else - [2121 - nval(R)

SetOvervfow(O'ieifo., Func, R, S, CarX.ln, n) ==d.f
case ,n of

add: overfow(, teval(R), tcval(S), Carryln)

subr: overfiow(n, tcvai(-R), tcvai(S), Carrijin)1~ subs: otverflow(n, tcvai(R), tcval(-'S), Carvnf n)Overilow OW or: -

and: -

notir: -

exer*: -

119

lie !. - " .3'- ....-



CHAPTER 11-THE AM2901 BIT SUJCK

Here the function overflow equals 1 iff two's-complement overdow is occuring and

in defined as follows: a

overfloi(n, i,j, ci) =dt if - 2 1 5(i + j+ci) -e.2 1 -ten0 elseI

Both parameters i and j can range over negative and nonnegative integers.

Definition of Set Gen and SetPr-;:

The predicates Set Gen and SetProp describe the bit slice's carry-lookahead

signals. The functions carrygen and carrijprop are defined in section §8.4.

SetVUe-i(Gen,~nc, R, S, n) =d.f
caase Ftsnc o

add: -carvijgen(n, nwai(R), nvad(S)).

subr: -'carvzjgen(n, nval(-R), ntial(S))

subs: -carrgen(n, nval(R), ntiai(-S))

G&en P,% or: -

and: -

notra:-

esor: -

exnov: -
SetProp(Prop, Fune, R,3, n) =-der

came 11'mnc of

add: -'cavvrvop(n, nwal(R), nval(S))

subr: -carryprop(n, wwal(-'R), irwal(S))

aisls: -carrpprop(n, rnvL(R), nweL( S))

ro-P Pd or: -

and: -

notro: -

exor: -

Definition of SgtFZ~voFA~b:

The valuo k it sitls anF~rv and ru derivedfrom F:

SetFZer*FJdWbXFS~veFM&6, F, n) mda

(FZ~re ~v(f F=-(0)*J tea19I1.. ) A (FMsb ~ FjOj)
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F 111.4 Behavior of Bus Interface

BusPart(N) =de

Set Y(Y, Dest, F, A,V

Definition of SetY:

When the signal OR equals 0, the bus interface Y is enabled and receives a value

according to the case formula. When the bus interface is disabled with -OK equaling

1, Y's behavior is left unspecified, thus modeling the effects of high impedance.I ~ ~Set Y(Y, Deat, F, A,M U d~f
case Deat of

qreg: F

nop: F

rama: A

lg(7 =O : (Y= ramf : FP )
ram qd: F

ramd: F

ramqu: F

ramas: F

§11.5 Composition of Two Bit Slices

The predicate Combine TwoBitSlices describes how to combine two bit-slice in

parallel to form a larger one. The bit slice M contains the more significant bit@ and

L contains the less significant ones.

Combine TuioBitSlices(M, L) Mdet

BiSliCe(M) A BitSlice(L)

A M[fieldJ ow L~field],

$ for field E '(Source, Fusnc, Deet, AAddr, BAddr ,

* A (M.RamLab sw L.RamMab) A (M.QLsb Fw L.QMab)

A (M. Carvyln ow L. CarryOut)
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CHAPTER 11-THE AM2901 BIT SLICE

The next property expresses how the implementation's various signals are

mapped to the overall bit slice:

in Combine TwoBitSlices(M, L) :) EitSlice(N)

where the tuple N is constructed as follows:

N~fieLdI z~ Mrfildl,

for field E '{Source, Func, DeaL, AAddr, BAddr, V~

N[field] z M[field], for field E '{QJVfb, RamMab, CaMryatt, FMsb}

NfieLdJ t~ LifieLd], for field E '{QLeb, RamLeb, Carrzjln}

Nffieldl M[field) 11 Lffield],

for field E '{D, Y,Q, F, RS}

N.Ramfij %t M.Ram~ij 11 L.Ram[ij, for 0:5 i -. 15

N.-Vn 9_ [M.Gen A (M.PrOP v L.Gen)l

N. r-op ~e(M.Prop v L.Propj)

N.FZero PW(M.FZero A L.FZero)

*N.n = M.n +L.n

§11.6 Timing Details

The predicate BitSlice -presented here contains little quantitative informationI about timing. For example, the bit slice's clock input is not mentioned. One way to
include timing details is by giving behavioral descriptions at a level similar to those

discussed in previous chapters. For example, the arithmetic unit can be specified

in a manner similar to that used in the predicates BasicAdder, DetailedAdder

and CavvyLeokAhesdUdder. A predicate such as ShiftRegiter can be modified to

capture the behavior of the Q-register.
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DISCUSSION

§12.1 Related Work

We now mention some related research on the semantics of hardware. Gordon's

work [15,16] on register-transfer systems uses a denotational semantics with par-

tial values to provide a concise means for reasoning about clocking, feedback,

instruction-set implementation and bus communication. Talantsev 147] as well as

Betancourt and McCluskey [7] examine qualitative signal transition concepts cor-

responding to TX and .X. Wagner (491 also uses such constructs as tX in a

semi-automated proof development system for reasoning about signal transitions

and register transfer behavior. Malachi and Owicki [28) utilize a temporal logic to

model self-timed digital systems by giving a set of axioms. Bochmann (9] uses a

linear-time temporal logic to describe and verify properties of an arbiter, a device

for regulating access to shared resources. The presentation reveals some tricky

aspects in reasoning about such components.

Leinwand and Lamdan [26] present a type of Boolean algebra for modeling

signal transitions. Applications include systems with feedback and critical timingIconstraints. Patterson (361 examines the verification of firmware from the standpoint

$ of sequential programming. Meinen [33) discusses a semantics of register transfer

behavior. McWilliams [27) develops computational techniques for determining tim-

ing constraints in hardware. Eveking (131 uses predicate calculus with explit time

variables to explore verification in the hardware specification laguage Coulnm.
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A number of people have used temporal logics to describe computer communics-

tion protocols [18,25,40). Bernstein and Harter 161 augment linear-time 'Amporal

logic with a construct for expressing that one event is followed by another within

some specified time range. This facilitates the treatment of various quantitative

timing issues. Recently Schwarts et al. [411 have introduced a temporal logic for

reasoning about intervals. They distinguish intervals from propositions.

The research mentioned above has made large strides in developing a seman-

tics of digital systems. However, for our purposes much of this work either has

difficulties in treating quantitative timing, lacks rigor, is unintuitive or does noti jeasily generalise. This seems unavoidable due to the magnitude of the problem

area. We note that the computational models used in works* on temporal logic

generally interleave the executions of different processes. In the treatment of digital

circuits, this approach seems inappropriate. We have chosen instead to model true

parallelism. The semantics of the connective logical-and ( A ) appear to directly

correspond to this.

It might seem that temporal logic is simply a subset of dynamic logic [19,371.

Howexer, once interval-dependent constructs are added, this is no longer the case.

Operators such as semicolon and yields are not directly expressible in dynamic logic.

Furthermore, the descriptive styles used in dynamic logic and temporal logic differ

rather greatly. Dynamic logic and process logics 111,20,381 stress the interaction

between programs and propositions. ITL is expressive enough to conveniently and

directly specify a variety of programs containing such constructs as assignments,

while-loops and procedures. Our current view is that the addition of, program

variables would be redundant.

Lamport (251 feels that temporal logic is a valuable tool but advocates against

the use of the operator next by claiming that this introduces unnecessary granularity

into the reasoning procem. We do not agree and believe that explicit acesm to die-

crete state transitions is invaluable when dealing with such concepts as iteration and

feedback. Furthermore, temporal logic appears to be Rexible enough to facilitate

projecting out critical points in a computation so as to ignore intemedsite state.

Thu, specilcatlons and theorems that assume a certain dqr of stomicity cam be
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generalized. I temporal logic is itself used as programming language, constructs

such as del that are based on 0 occupy a snug and secure place in the overall

formalism.

§12.2 Future Research Directions

There are many aspects of interval temporal logic that require more investiga-

tion. We now point out a few.

Proof theory

All the valid properties presented in this thesis have been justified on the

basis of ITL's semantics. Work should be done on suitably axiomatizing various

parts of the logic and automating some of the proof process. For example, if bit

signals are represented as truth values, simple versions of temporal constructs such

as stability (stb) and unit delay (del) can be expressed and reasoned about using

* existing propositional linear-time temporal logics 114] and their axiomatisations and

decision procedures. Using a program written by Frank Yellin, we have already

automatically established properties such as the following:

I- [tX A TY] D t(X A Y)

I- (X del X) - stbX

Some variants of temporal logic

There are a variety of operators and concepts that can be added to temporal

logic. We discuss some here.

ignoring intervals

Many of the concepts presented here can generally be expressed in linear-time

temporal logic [311 with ,O, and U. In section §2.4 we gave a linear trasla-

tion from local propositional ITL to linear-time temporal logic with quantilcaton.
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However, the clarity and modularity provided by semicolon and other interval-

dependent constructs is often lost. A more detailed understanding of the various

tradeoffs involved and the proper roles of different temporal logics should be devel-

oped.

Infinite intervals

In the semantics already given, all intervals are restricted to being finite. It can

however be advantageous to consider infinite intervals arising out of nonterminating

computations. As we mentioned in section 12.4, the inclusion of such intervals does

not alter the complexity of satisfiability.

Traces

The trace of a signal A in an interval so... s. can be defined as the sequence

of values that A assumes:

tvece(A) - ((0 'A): 0 :5 i :9 len),

that is,

trace(A)=(OOA, 0 0...,O A)

In an interval of length n, the trace of a variable has length n + 1.

The following property shows how to express unit delay by comparing the traces

of the input and output:

em(A del B) M [trace(A)[0 to ten - 11 = troce(B)[1 to Lenj]

It would be interesting to compare the use of traces with other styles of specification.

Projection

Sometimes it is desirable to examine the behavior of a device atcertain points in

time and ignore all intermediate states. This can be done using the idea of temporal

prqecfiotL The formula wt U tow in an interva forms a subinterval cmasltiug of
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those states where wl is true and then determines the value of w2 in this subinterval:

M fII - to...t.IIV2Ii

where to... t,,, is the sequence of the states in so... a. that satisfy w,:

MtAW -- true, for 0:5 i <m

Note that to... tm need not be a contiguous subsequence of so... a. If no states

can be found, the projection is vacuously true. In the semantics given here, the

formula wl examines states, not intervals. For example, the formula

(X = 1) 11 stbA

is true if A has a constant value throughout the states where X" equals 1. Variables

like X act as markers for measuring time and facilitate different levels of atomicity.

If two parts of a system are active at different times or are running at different

rates, markers can be constructed to project away the asynchrony. Other styles

of projection are also possible. For example, a "synchronous" form of projection

might require the marker to be true in the initial and final states of an interval.

In section §2.3 we showed how to express the iterative construct w* by means

of a marker P:

* W d* f 3P.(begP A Mi[begP D (eMpty v 4'[W 0 haltbegP])J)

This provides a general means for identifying the end points of the iteration steps
• and extracting them using projection. It is even desirable to have variant of the

iteration constructs for making markers explicit. For example, the extended while-

~loop

while p Q do R

indicates that P marks off individual steps. Other constructs such as next and trace

can have marker-oriented variants.

We feel that low-level clocking and propagation details in digital circuits can

be more effectively decoupled from high-level functional behavior through the in-

troduction of markers and projection. The Am2901 bit slice discussed in chapter

11 might be a good test of this hypothesis.
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Additiod ,modificatiotn

Further possible extensions include interval temporal logics based on branching

or probabilistic models of time. Operators for reversing or expanding an interval

may also turn out to be useful.

Temporal types and higher-order temporal objects

A theory of temporal types needs to be developed. This should provide various

ways of constructing and comparing types. For example, the predicate p* is true

for vectors of arbitrary, possibly null length whose elements all satisfy p. Thus, the

type bit* is true for all bit-vectors. The type aip(bit*) is true for any bit vector

signal with a possibly varying length. The temporal type Bit* requires that the

signal's length be fixed over time:

I.4 Bit* =[A. sg(bit*) A stbIAlI

We hope to permit parameterised types such as sig(sxt), where a and t are

type-valued variables. Operators for such things as unioning or recursively defining

types also need to be developed. Perhaps the techniques needed here can be made

general enough so that any unary predicate can be viewed as a type.

It would be interesting to have a semantics of higher-order temporal objects

such as time-dependent functionals. Perhaps a suitable variant of proposition ITL

can fscilitate some sort of G~ielisation by representing all values as temporal

formulas. Alternatively, an encoding like that used by Scott (42,46 in developing

a model of the typeless lambda calculus might work. However, we wish to strongly

resist the introduction of partial values. One concession we make in this direction

is to not require that every function have a fixed point.

Temporal lolc as a programming langua"

Temporal logic can be used directly a a propamuing language. For example,

the formula

b6g(I 0) A ((+1)4dl11 A Wa(15)
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can be viewed operationally as initializing I to 0, and then incrementing I by I over

each computation step until I equals 5. At that instant, the computation halts. This

style of temporal programming in similar to the language Lucid [2,4] developed by

Ashcroft and Wadge. Note that the formula given above has the same semantics

has the following:

beg(I 0) A Whie (13 5) do(skip A I1 + 1 1))

This illustrates how by using ITL we can compare different ways of expressing thei same computation.

In general, if w, and W2 are temporal formulas, the combined form Wt A 2

operationally specifies that aoi and w2 be run in parallel. Note that w, and w2 are

implicitly synchronised to start and finish at the same time. Similarly, the formula
WI; W involves running w, and then W2. For example, the formula

(1o -+, I A 1o -. Jj);Whie (1 ) do(I+ 1 - A [J + I--..J)

clears I and J and then repeatedly increments I and simultaneously sums I into J.

Asynchronous operations can also be handled. For instance, the formula

(.tb I A ht[X = 11); ((I + 1) del Ij

leaves I stable until the flag X equals 1 and then keeps increasing I by 1.

Manns and Moeskowski [29,30] describe how to reason about programming

concepts in ITL and also present a prototype programming language called Temltra
that is based on the ideas just given. AlongK with the programming languages

Lucid and Prolog [241, Tempura has the property of having a semantics based on

logic. Much work remains ahead in exploring this temporal approach to language

design ad developing practical techniques for specifying, executing, transformin&

synthesizing and verifying Tempura programs. We sUng feel that there i a

large potential for the cros-fertilisation of ideas arising from simultaneously using

temporal logic as a hardware specification tool and as a basis for general-purpose

programming languages. It also appears worthwhile to examine interpretes aad
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other systems that transmit and manipulate commands and programs. erhaps the

state sequences of temporal logic can also be used as a convenient basis for logics

of, say, formal languages, typesetting and music. More generally, temporal ogic'

may provide a semantics of both time and space.

Hardware

The largest device considered in this thesis is the Amn2901 bit slice; there

is clearly no reason to stop at that. Future work will explore microprocessors,

pipelines, buses and protocols, DMA, firmware and instruction sets, as well as theI combined semantics of hardware and software. The treatment of specific areas

such as fault-analysis also seems worthwhile. It would be interesting to see how

suitable ITL is as a tool for teaching the basic operation of digital circuits covered

in such textbooks as Gschwind and McCluskey [17] and Hill and Peterson (211. The

feasibility of hardware-oriented simulation languages based on subsets of ITL should

certainly be investigated. For example, propositional ITL can be used for bit-valued

signals.

512.3 Conclusion

Standard temporal logics and other such notations are not designed to concisely

handle the kinds of quantitative timing properties, signal transitions and structural

information occurring in the examples considered. Temporal intervals provide a

unifying means for presenting a wide range of digital devices and concepts. Interval

temporal logic can be used for both specifying and reasoning about circuits and

their properties. The same formalism that handles devices with clock signals, set-up

constraints and hold times can also deal with high-level algorithms. The omission

of partial values does not appear to restrict the generality of specifications; even

high-impedance can be treated.

L The future seems bright. Let us therefore conclude this thesm with the conjec-

ture that temporal logics will be around for a long interval to come.
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