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Abstract. In this paper we propose an exception logic – formalizing reasoning
about exceptions.We use this logic to defend two claims. First, we argue that de-
fault logic – formalizing reasoning about default assumptions – is an extension
of exception logic. A deconstruction argument shows that reasoning about excep-
tions is one of the first principles of reasoning about default assumptions. Second,
we argue that two phases have to be distinguished in reasoning about exceptions,
and therefore also in reasoning about default assumptions.We identify two causes
of the distinction between two phases, the disjunction rule OR and right weaken-
ing RW. This sheds some new light on these ‘standard’ (according to the Kraus-
Lehmann-Magidor paradigm) properties of default inference.

1 Introduction

In this paper we analyze the conditional logic approach to default logic, the logic that
formalizes reasoning about default assumptions. Conditional logic is a popular frame-
work to formalize defeasible reasoning, see e.g. [Del88,GP92,GMP93,Bou94,Vel96].
The conditional sentence “if (the antecedent or condition) then by default (the con-
sequent or conclusion)” is represented in this framework by the formula , where
‘ ’ is some kind of implication of conditional logic. We consider default logics which
are extensions of exception logics – formalizing reasoning about exceptions. A typi-
cal reasoning structure is ‘ is an exception, and if then is an exception,’ which
can loosely be read as ‘by default , and if then by default ,’ or as ‘normally
, and if then normally .’ We argue that two phases are necessary to formalize

reasoning about exceptions, and therefore also to formalize reasoning about default as-
sumptions.1 In the first phase exceptional circumstances are as important as the normal
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1 In fact, these two phases can easily be discriminated in most default logics. For example, in
Reiter’s default logic [Rei80] there is a distinction between phase-1 default rules and phase-
2 extensions, in conditional entailment [GP92] there is a distinction between phase-1 default
rules with abnormalities and phase-2 conditionally entailed conclusions, and in Veltman’s
logic [Vel96] there is a distinction between phase-1 normally defaults and phase-2 presumably
defaults.



circumstances, whereas in the second phase distinctions between exceptional circum-
stances are ignored. The distinction between the two phases can be illustrated by the
followingmetaphor. Phase-1 reasoning is what you dowhen you are told that is an ex-
ception (i.e. that normally ), and phase-2 reasoning is what you do when you assume
that the uncertain facts are unexceptional (i.e. that the actual world is the most normal
world). These two are completely separated. You can know what is normally the case,
without acting accordingly. For example, in qualitative decision theory (planning) de-
fault reasoning is combined with reasoning about utilities and a rational agent reasons
about exceptional circumstances when such exceptional circumstances have very large
risks. The following two examples illustrate two problems that occur if the two phases
are not discriminated.

Example 1 (Disjunction rule). Consider a conditional logic of exceptions, inwhich
can be read as ‘if is the case, then is an exception.’ The formula can loosely
be read as ‘if is the case then by default ’ in a credulous default logic (in a sense that
is made precise later in this paper). Assume that the conditional logic validates at least
substitution of logical equivalents and the following two inference patterns Monotony
MON and the Disjunction rule OR (that enables reasoning by cases),

MON OR

and assume as premises and .2 The problem of this set is that we can derive
the counterintuitive , as illustrated below.

OR
MON

The conditional is considered to be counterintuitive, because it is not
grounded in the premises. If and (the antecedent of the first premise) are true
then is trivially true, and if and (the antecedent of the second premise) are
true then is trivially false. With other words, if then the first premise cannot
be falsified and the second premise cannot be verified. Hence, the two premises do not
ground the conclusion that for arbitrary we have that is an exception.

Example 2 (Right weakening). Assume that the conditional logic validates at least sub-
stitutionof logical equivalents, MON and the following two inference patternsRightWeak-
ening RW and the Conjunction rule AND,

RW AND

2 Following [KLM90] we believe that giving a certain interpretation to propositional atoms in
benchmark examples (like in this case and ) does not make these examples more readable,
but only causes a lot of confusion. However, if the reader insists on an interpretation, then she
can read as ‘buying apples’ and as ‘buying pears.’



and as premises and . The following derivation shows that the
counterintuitive can be derived.

AND

MON

RW

The conditional is considered to be counterintuitive, because it is not grounded in
the premises. If its antecedent is true, then the first premise is verified and the second
one is falsified. The derivation can be blocked by replacing MON by the following ver-
sion ofRestricted Monotony RMON, in which is a modal connective and is loosely
read as ‘ is consistent.’

RMON

The derivation is blocked, because cannot be derived from
by RMON. Unfortunately, the following derivation shows that the counterintuitive
can still be derived in another way.

AND

RW
MON/RMON

The problem in the Examples 1 and 2 above can be solved by a technique, which
might look odd at first sight, but which turns out to work well, namely to forbid ap-
plication of RMON after OR or RW has been applied. We call this the two-phase ap-
proach. Such a sequencing in derivations is rather unnatural and cumbersome from a
proof-theoreticpoint of view. Surprisingly, the two-phase approach can be obtained very
intuitively from a semantic point of view, by combining two usages of a preference or-
dering in a preference-based semantics. For the two usages we define two different types
of conditionals, which we call phase-1 and phase-2 conditionals. Phase-1 conditionals
are formalized by strong preferences and evaluated by what we call Ordering, a pro-
cess in which the whole ordering is used to evaluate a formula. Phase-2 conditionals are
formalized by weak preferences and evaluated by what we call Minimizing, in which
the ordering is used to select the minimal elements that satisfy a formula. The minimiz-
ing approach is commonly taken in preferential semantics for non-monotonic logics, see
for example [Sho88,KLM90,Bou94]. In semantic terms the two-phase approach simply
means that first a preference ordering has to be constructed by orderingworlds, and sub-
sequently the constructed ordering can be used for minimization.

2 Deconstruction

In this paper we use a deconstruction argument to argue that reasoning about exceptions
is a first principle of reasoning about default assumptions. The crucial consequence is



that reasoning about default assumptions like reasoning about exceptions contains two
phases. A deconstruction argument assumes that to construct an inference relation it is
useful to first decompose the logical entailment relation in small building blocks (the
destruction) [NCvdLvdT93]. In our deconstruction argument we argue that

1. reasoning about default assumptions consists of the three levels exception handling,
conflict detection and conflict resolution,

2. reasoning about exceptions gives rise to factual defeasibility, in the sense that an
exception logic only formalizes factual defeasibility, and

3. a logic of reasoning about exceptions can be extended with conflict defeasibility and
overridden defeasibility to constitute a fully-fledged default logic.3

The argument is represented in Figure 1 below. In Section 3 we discuss the destruction
step of the deconstruction argument. In Section 4 we introduce an exception logic that
formalizes factual defeasibility. We argue that two phases have to be discriminated in
the exception logic. In Section 5 we discuss the third step, the construction step of the
deconstruction argument.

overridden defeasibility

3conflict detection

exception handling
exceptions

factual defeasibility

conflict defeasibility1

conflict resolution

2

Fig. 1. Deconstruction

3 Three levels of defeasibility

In this section we argue that reasoning about default assumptions consists of the three
levels exception handling, conflict detection and conflict resolution. We illustrate the
three levels of defeasible reasoning in the conditional logic framework, and we argue
that each level has to deal with a different type of defeasibility. The major issue in the
conditional logic framework is the derivation of conditionals from other conditionals.
Defeasibility is represented by restrictions on the propertyMonotony (or Strengthening
of the Antecedent), represented either by the inference pattern MON or by the formula
Mon: , regardless whether the logic is monotonic or non-
monotonic. In fact, the level-1 logic proposed in this paper is monotonic and the level-2
3 Usually, level-2 conflict detectionmakes a conflict inconsistent and level-3 conflict resolution
uses a mechanism to restore consistency. For example, conditional entailment [GP92] uses ab-
normalities at level-1, identifies conflicts at level-2 by making assumptions about the minimal
worlds, and resolves conflicts at level-3 by introducing priorities (to deal with specificity). Most
default logics attempt to solve all three levels at once,which makes the logics quite complicated
and difficult to analyze. In particular, it is difficult to classify default logics, because they can
differ at each level. For example, Veltman’s normally-presumably logic [Vel96] has the same
first two phases as conditional entailment, but differs in phase-3 where a different construction
is used to formalize specificity. Reiter’s default logic, on the other hand, uses a different way
of dealing with exceptions at level-1 (explicit exceptions), as is illustrated later in this paper.



logic is non-monotonic,whereas neither of them hasMon as a theorem. In the following
three examples we show three reasons why unrestricted monotony cannot be accepted
by default logics. The first example illustrates that MON has to be restricted, because it
is incompatible with conflict resolutionmechanisms like specificity. Specificity is often
considered to be the most interesting of the conflict resolution principles, because it is
founded in probability theory. Moreover, the main reason for the popularity of the con-
ditional logic framework for defeasible reasoning is that conditional logic has a kind of
‘built in’ specificity, in the sense that MON is in general not valid.

Example 3 (Specificity). Assume a conditionaldefeasible logic that validates at least sub-
stitution of logical equivalents, the inference patterns OR, RW and AND and the Strong
No-Conflict axiom SNC.

SNC

From the ‘birds fly’ default the ‘penguins fly’ default should not be
derivable, because ‘penguins do not fly’ . We cannot accept MON, because

and are inconsistent with SNC. However, from the ‘birds
fly’ default the ‘red birds fly’ default should be derivable and from
the ‘birds have wings’ default the ‘penguins have wings’ default
should be derivable, although ‘penguins are exceptional birds’ . Hence, we have
to weaken MON to the following inference pattern Restricted Monotony RMONSpec with a
condition Spec that represents the specificity condition, but that allows for the latter two
derivations.

RMONSpec
Spec

The two desired derivations of Example 3 are known as the irrelevance problem
(red birds fly) and the inheritance problem (penguins have wings) of the conditional
logic framework. Well-known solutions of the irrelevance problem are Delgrande’s ir-
relevance principle [Del88] and mechanisms equivalent to System Z [Pea90] like ra-
tional closure, the minimum specificity principle of possibilistic logic and Boutilier’s
‘only knowing’ construction [Bou94]. Solutions of the inheritance problem are the max-
imum entropy approach [GP92,GMP93] and Veltman’s update semantics [Vel96]. We
call these problems level-3 problems, because they are related to conflict resolutionmech-
anisms like specificity.

Level-3 problems are not the only reason we cannot accept MON. From now on we
accept MON to show two level-2 problems of MON. Note that the specificity condition

Spec of RMONSpec is a kind of conflict resolutionmechanism, because the two expressions
and derivable by MON conflict with axiom SNC. Hence, by

accepting MON (at level 2!) we accept that represents an unresolved
(inconsistent) conflict. The following example illustrates the second reason why MON
cannot be accepted.

Example 4 (No-Conflict). Assume the inference patterns MON, OR, RW, AND, the axiom
SNC, and as premises the defaults and , where stands for any tautol-
ogy. The intuitively consistent defaults can be strengthened to respectively the defaults



and , which conflict with SNC. As a solution, SNC can
be replaced by the followingWeak No-Conflict axiomWNC.

WNC

However, nowconsider the intuitivelyconsistent ‘quakers are pacifists’ default and
the ‘republicans are not pacifists’ default (known as the Nixon diamond). The
defaults can be strengthened to and , which conflict withWNC.

Example 4 shows that MON cannot be accepted (and thus has to be restricted) be-
cause of no-conflict axioms. However, the level-2 problems related to no-conflict ax-
ioms are again not the most fundamental problem of monotony. Example 5 shows that
even in cases without specificity or no-conflict problems there are reasons not to accept
MON in a defeasible logic.

Example 5 (Exceptions). Reconsider Example 1 and 2 in which we assumed the infer-
ence patterns MON, OR, RW, and AND.We do not accept any no-conflict axiom likeSNC
orWNC. Nevertheless, we showed that we can still derive counterintuitive conclusions,
namely from the two defaults and , and from the two
defaults and .

We call the derivations of and level-1 problems. The level-2 prob-
lems only occur in sceptical inference relations. We therefore in the following refer to
sceptical and credulous defaults instead of level-2 and level-1 defaults.

The three different types of problems discussed in this section give rise to three dif-
ferent reasons to restrict the inference pattern monotony. That is, they give rise to three
different types of defeasibility. We call these types respectively factual defeasibility (for
level-1), conflict defeasibility (for level-2) and overridden defeasibility (for level-3), see
Figure 1. Factual defeasibility is caused by facts, because exceptions are facts. The other
types of defeasibility are caused by other conditionals, because there is a conflict. The
distinctionbetween conflict defeasibility and overridden defeasibility is that in the latter
case the conflict between two conditionals has been resolved. In such a case, we say that
the weakest conditional is overridden.

4 Exceptions

In this section we show how reasoning about exceptions can be formalized by factual
defeasibility in an exception logic. Consider the following typical example of reasoning
about exceptions. Normally you leave your home at 9:00. If you do not leave your home
at 9:00 (the exception), then normally you are ill. If you do not leave your home at 9:00
and you are not ill, then .... This kind of reasoning structures has been ignored in default
logic literature, and most default logics do not deal satisfactorily with it. 4

4 This is a consequenceof the fact that they focus on the normal cases neglecting the exceptional
cases. For example, consider the defaults , and . The popular
System Z [Pea90] derives . If only the worst states are possible,
then is preferred because if then only one rule is falsified (rank 1) and if then two rules
are falsified (rank 2). However, this violation-counting is highly counterintuitive, because the
violation of thefirst default may bemore exceptional than the violation of the latter two defaults.



Credulous (i.e. level-1) defaults are formalized in the normal modal logic S4. As is
well-known, the normal modal system S4 contains the two axioms T: and 4:

, and is characterized by reflexive transitive orderings (partial pre-orderings).
We define phase-1 defaults as strong preferences (new) and phase-2 defaults as weak
preferences [Bou94]. We do not use the popular ‘choice functions’ or ‘sphere semantics’
for our conditionals, because they only give a bipartitioning in normal and exceptional
elements, whereas we need varying degrees of exceptionality.5 Intuitively, the formula

can be read as ‘it is not more exceptional (at least as normal) that .’

Definition 6. Credulous phase-1 and phase-2 defaults ‘if then by default ,’ written
as and respectively, are defined in S4 as follows.

def

def

Intuitively, a phase-1 default expresses a strict preference of all over
.6 However, a preference of all worlds to every world would be

much too strong, because two independent defaults and would not have
a model containing and worlds. The following proposition shows
that this preference is represented by the negative condition that no is preferred
to a .7 The phase-2 default is true iff is true in an equivalence class of most
preferred worlds of the model, or it eventually becomes true in an infinite descending
chain of worlds [Bou94].

Proposition 7. Let be a Kripke model. We have iff for
all such that , , and , it
is true that , and there is such a world . We have iff there
is a world with and such that for all worlds
with and , it is true that .

Proof. Follows directly from the definition of and in Definition 6.

The following proposition gives several properties of the phase-1 and phase-2 de-
faults. In this paper we are interested in RMon, OR and RW.8

5 Similar observations are made by Veltman [Vel96] to solve the inheritance problem.
6 The following definition shows how phase-1 defaults can be extendedwith explicit exceptions.
Credulousphase-1 defaultswith explicit exceptions ‘if then by default unless ’ are defined
by def .A typical example of suchdefaults
are Reiter’s default rules [Rei80], given by , where is the so-called justification. Due
to space limitations, we cannot make a more detailed comparison.

7 In this paper we do not consider facts, we only consider the derivation of conditionals from
conditionals. If we also consider facts, then we have to define the conditional in a bimodal logic
by def where the two modal operators are
related by . Due to space limitations, we cannot discuss this kind of complications
in this paper.

8 Another interesting property is default chaining. From ‘birds have wings’ and ‘things
with wings fly’ we can derive by Trans and by Rmon.



Proposition 8. The logic S4 has the following theorems.

RMon
RAnd
COR
Trans
OR
RW

The logic S4 does not have the following theorems.

OR
RW
NC
Mon
And )
NC

Proof. The (non)theorems can be verified by proving(un)satisfiabilityin the preference-
based semantics.

We now study the relation between the phase-1 and phase-2 defaults. First, Propo-
sition 8 illustrates that they are duals of each other when we consider the properties
monotony versus the disjunction rule and right weakening. The following proposition
shows that phase-1 defaults are strictly stronger than phase-2 defaults, which is useful
in the two-phase approach (which is explained later in this section).

Proposition 9. The logic S4 has the following theorem.

Rel

Proof. The theorem can be verified by proving derivability in S4. It is equivalent to the
formula .

The following proposition gives another relation between phase-1 and phase-2 de-
faults. It shows that a phase-1 default is equivalent to a set of phase-2 defaults, when we
impose a constraint on the models.

Proposition 10. Let be a Kripke model such that does not contain
duplicate worlds, i.e. for all worlds such that , there is a propo-
sitional such that and .9 We have iff for all
such that and , we have .

Proof. Follows directly from RMon and Rel . Every world is characterized by
a unique propositional sentence. Let denote this sentence that characterizes world .
9 From a philosophical point of view, this means that the logical language is expressive enough
to distinguish all worlds.



Proof by contraposition. If , then there is no such that ,
or there are such that , and

. The first case is trivial, so consider the latter case. Choose .
The world is one of the preferred worlds, because there are no duplicate worlds.
(If duplicate worlds are allowed, then there could be a world which is a duplicate
of , and which is strictly preferred to and .) We have and therefore

.

The latter result is rather surprising for the following reason. One would expect that
the ordering defaults have at least the properties of the minimizing defaults, because the
former are defined by a set of the latter. In particular, at first sight it seems that the or-
dering defaults have the disjunction rule and right weakening. A careful analysis of the
definitions reveals that the argument is wrong due to the subtle consistency check part
ofRMon.10

We now proceed to explain the two-phase approach to defeasible reasoning. The two
phases in a defeasible logic correspond to the two types of defaults and . Seman-
tically, the first phase corresponds to ordering ( ) and the second phase to minimizing
( ). From a proof theoretic point of view, the first phase corresponds to applying valid
inferences of like RMON, RAND etc, and the second phase corresponds to applying
valid inferences of like OR and RW. The two-phase reasoning is illustrated by the
following two examples. They illustrate two causes of the distinction between the two
phases: the disjunction rule and right weakening.

The first example illustrates that the two-phase approach solves the problem in Ex-
ample 1. It also illustrates that the non-validity of OR in the first phase can be used to
analyze dominance arguments. A common sense dominance argument (1) divides pos-
sible outcomes into two or more exhaustive, exclusive cases, (2) points out that in each
of these alternatives it is better to perform some action thannot to perform it, and (3) con-
cludes that this action is best unconditionally. Thomason and Horty [TH96] observe that,
although such arguments are often used, and are convincingwhen they are used, they are
invalid. In the second phase OR is accepted, because it is read as ‘by default given
and by default given , then by default without examining .’

Example 11 (Disjunction rule, continued). Let be the S4 the-
ory of Example 1. The solution of the problem in the two-phase default logic is that the
application of RMON is blocked after OR has been applied. We have and

, and . The derivable expresses
that is true in the most normal world. It cannot be used to derive the counterintuitive

, because does not have monotony. In fact, the model represented below
shows that we can have the opposite . This figure should be read as
follows. Every circle is a nonempty set of worlds, satisfying the propositionswritten in
the circle. The arrows represent strict accessibility. The transitive closure is left implicit.
10 For example, the default seems equivalent to the set .
Phase-2 defaults have weakening, thus the set implies . The
latter set is equivalent to the default . Hence, it seems that the phase-1 default

implies the phase-1 default . However, the implication of to the
set is not valid due to the consistency check part of RMon.



normal situation ordered exceptional situations

The following example shows that the problem in Example 2 is also solved.

Example 12 (Weakening, continued). Let be a S4 the-
ory, where does not entail . Reconsider the counterintuitive derivations in Exam-
ple 2. The solution of the problem in the two-phase default logic is that the application of
RMON is blocked after RW has been applied.We have ,
and , and . The crucial observation is that

is not entailed by , as represented by the blocked derivations below. A dashed
line represents a blocked derivation step.

RAND

(RW

RMON

REL

RAND

REL

RW

(RMON

RAND

(RMON

REL

RW

First of all, is not entailed by via , because is not entailed
by . Secondly, is not entailed by via either, because does not have
monotony at all. Thirdly, it is not entailed by via , because
is not entailed by due to the restriction in RMON. A typical model of is
represented below.

normal situation
exceptional situations

There is an important lesson of the exception logic. The inference patterns OR and
RW are standard properties of the Kraus-Lehmann-Magidor paradigm [KLM90]. How-
ever, the last two examples show that they are not as unproblematic as they seem at first
sight, because the properties conflict with monotony. This is the underlying reason why
straightforwardextensions ofminimizing logics like System Z [Pea90] are tooweak (i.e.
have an inheritance problem).



5 Conflict detection and resolution

For space reasons in this section we only sketch how the exception logic can be extended
to a default logic, i.e. how no-conflict axioms and conflict resolution mechanisms can
be added. Sceptical (i.e. level-2) defaults are defined in the modal preference logic (the
sceptical phase-2 default is from [Lam91,Bou94]). The sceptical phase-2 default
is true in amodel if is true in all most preferred worlds (and eventually become true in
every infinitedescending chain of worlds), and the sceptical phase-1 default is a
combination of the credulous phase-1 default and the sceptical phase-2 default (trivially
validating the theorem relating the two phases Rel ).

Definition 13. Sceptical phase-1 and phase-2 defaults ‘if then by default ,’ written
as and respectively, are defined in S4 as follows.

def

def

We define a preference ordering on models which prefers models which are maxi-
mally connected with respect to the partial pre-ordering . Given the preference order-
ing on models, we can define a notion of preferential entailment, see [Sho88,KLM90].
The preferred models of the ordering are the only models which are used for minimiza-
tion. They are the maximal ignorant models with respect to the credulous obligations,
i.e. the definition is based on the maximum entropy principle [GMP93].

Definition 14. Let and be two S4 models.
is preferred to for mapping , written as , iff (1) is a one-to-one

mapping of the worlds of to the worlds of such that the worlds satisfy the same
propositions, and (2) if for then . We write

iff and . A world preferentially satisfies
, written as , iff and there is not a model and a mapping
such that and ( is a preferred model of ). preferentially
entails , written as , iff for all and , if then .

The logic of and is not a level-3 default logic, because the ‘penguin’ theory
is inconsistent (as can easily be shown). The inconsis-

tency of shows that specificity is not yet incorporated in the two-phase approach. A
simple solution to incorporate specificity is to build a conflict resolution mechanism on
top of the two-phase logic. For example, we can introduce a prioritization on the phase-
1 defaults [GP92]. However, we agree with [Vel96] that questions of priority should be
decided at the level of semantics. For example, the fact that can be overridden
by is enforced by what these rules mean. It is not something to be stipu-
lated over and above the semantics – as most theories would have it – but something to
be explained by it. One way to incorporate specificity is to reformulate Veltman’s ‘dy-
namic’ defaults [Vel96] in our ‘static’ framework. This can be accomplished by replac-
ing the single preference ordering by a set of preference orderings called a frame, and
by defining when defaults are applicable (which explains why a rule is sometimes over-
ruled by other rules).



6 Conclusions

In this paper different usages of preference orderings for defeasible conditional logics
are discussed. The different usages, so-called minimizing and ordering, are represented
by differentmodal operators. It is shown that for the adequate representation of some ex-
amples a combination of these operators is needed. Each operator validates different in-
ference rules. Hence, the combination of different modal operators imposes restrictions
on the proof theory of the logic. The restriction discussed in this paper is that a proof rule
can be blocked in a derivation due to the fact that another proof rule has already been
used earlier in the derivation. We call this the two-phase approach in the proof theory.

The logics discussed in this paper are closely related to the dynamic interpretation
of defaults in the preference-based default logic of Veltman [Vel96]. Veltman also uses
ordering and minimizing defaults, but he uses a different syntax (for example, he does
not define conditionalminimizing defaults). [normally ] presumably means
that after ordering all worlds by preferring to , is true in the preferred worlds.
A detailed comparison is subject of further research.
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