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A B S T R A C T

Current trends in society and technology make the concept of interruption a central human computer interaction

problem. In this work, a novel soft computing implementation for an Interruption Classifier was designed, de-

veloped and evaluated that draws from a user model and real-time observations of the user's actions as s/he

works on computer-based tasks to determine ideal times to interact with the user. This research is timely as the

number of interruptions people experience daily has grown considerably over the last decade. Thus, systems are

needed to manage interruptions by reasoning about ideal timings of interactions.

This research shows: (1) the classifier incorporates a user model in its’ reasoning process. Most of the research

in this area has focused on task-based contextual information when designing systems that reason about in-

terruptions; (2) the classifier performed at 96% accuracy in experimental test scenarios and significantly out-

performed other comparable systems; (3) the classifier is implemented using an advanced machine learning

technology—an Adaptive Neural-Fuzzy Inference System—this is unique since all other systems use Bayesian

Networks or other machine learning tools; (4) the classifier does not require any direct user involvement—in

other systems, users must provide interruption annotations while reviewing video sessions so the system can

learn; and (5) a promising direction for reasoning about interruptions for free-form tasks–this is largely an

unsolved problem.

1. Introduction

Determining when to interrupt a user at appropriate times as s/he

performs computer-based tasks is an ongoing problem (Altmann et al.,
2014; Baethge et al., 2014; Iqbal and Bailey, 2010). From an algo-

rithmic perspective, it is difficult to determine the precise time to in-
terrupt a user. This is because there are several subproblems that need

to be solved to be confident that an interruption will be beneficial to the

user. Some subproblems include: i) determining the intent (or goal) of
the user as s/he is performing the task; ii) determining the task diffi-

culty (Gievska et al., 2005; Gievska and Sibert, 2004); iii) determining
the user's current cognitive load (Gievska et al., 2005; Iqbal and Bailey,

2006); iv) estimating the cost of the interruption and the resumption lag
time (Iqbal and Bailey, 2005); and v) incorporating personal user

characteristics, such as sensitivity to being interrupted, distractibility
level, etc. (Horvitz et al., 2003). A solution to these problems is needed

to make accurate decisions about the timing of interruptions.
Since interruption is a key human-computer interaction problem,

systems must be developed to manage interruptions in terms of rea-
soning about ideal timings of interruptions. In designing the classifier,

the following desirable characteristics were identified:

1. make accurate decisions when uncertainty is present;

2. be computationally efficient and able to make interruption decisions
in real time (however, the classifier learning does not need to be real

time);
3. employ a user model (e.g., preferences, familiar tasks, etc.) that is

used in the decision-making process;
4. draw on direct measurements from user activities;

5. learn from non-linear input data (i.e., assume input is not necessa-

rily linear);
6. provide a reasoning process that is easily interpretable by a human

(i.e., the classifier's decision-making process to interrupt or defer an
interruption must be easy to be examined and understood by a

human). This characteristic provides the opportunity for deeper
reasoning into why an interruption occurred as well as insight into

the form and content of an appropriate message for user interaction;
7. support supervised learning (capable of accepting input-output

patterns and learning these associations); and
8. learn quickly from a small number of training data sets.
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1.1. Outcomes and contributions

We created a machine learning classifier that performs as well as
user-determined interruption points. The rationale why user-de-

termined interruption timings are ideal is explained in the following
sections. Additional outcomes and contributions include:

1. The classifier incorporates a user model in its’ reasoning process.

Our classifier includes both user and task contextual in-
formation—other classifiers include task details only.

2. In the best models constructed, our classifier performs at an accu-
racy of 98% with historic event knowledge. This level of perfor-

mance exceeds comparable studies in this area of HCI (Finn and
Limerick, 2003; Lisetti and Nasoz, 2004; Picard, 2003; Pu et al.,

2006).1

3. The classifier was implemented using an advanced machine learning

technology (i.e., Adaptive Neuro-Fuzzy Inference System)—which is
a novel contribution.

4. This research expands our understanding on reasoning about ideal
interruption points for free-form tasks. Currently, this is largely an

unsolved problem.
5. The classifier was designed as a framework so it could be general-

ized to other tasks and problem domains.

The structure of this paper is: Section 2 presents a literature review of
interruption research and a survey of candidate machine learning al-

gorithms. Section 3 presents the design and methodology including the
classifier requirements, the Interruption Classifier, data capturing

techniques, and the details of the machine learning technologies used in
the implementation of the classifier. Section 4 presents the findings

(analysis and evaluation), Section 5 presents a discussion on the im-
plications of the empirical results for theories of interruption and im-

plications for deploying classifiers for detecting interruptible moments

in practice. Lastly, Section 6 presents the conclusions.

2. Literature review

The goal of this research is to identify the most appropriate classifier
for predicting the interruptible moment given the context and task of

the user. As previously discussed, the classifier created draws in-
formation from a user model and real-time data of the users’ actions.

Acknowledging that the literature in this area is very broad and diverse,
the review conducted specifically concentrated on the desirable char-

acteristics as outlined above. For example, criterions 1 and 5–8 reduce
the number of machine learning algorithms suitable for review.

2.1. Interruption

Interruptions happen for a multitude of reasons and there are four
known strategies for managing them: (a) immediate, (b) scheduled, (c)

negotiated, and (d) mediated (Guinn, 1999; McFarlane and Latorella,
2002). The immediate interruption strategy involves interrupting the

person immediately regardless of what they are doing in a way that
insists that the user immediately stop what they are currently working

on and respond to the interruption. The scheduled strategy involves
restricting the agents’ interruptions to a prearranged schedule. The

negotiated interruption strategy would have the agent announce their
need to interrupt and then support a negotiation with the person. This

approach gives the user full control over how to deal with the inter-
ruption—when or even at all. The fourth strategy, called mediated, in-

volves agents indirectly interrupting and requesting interaction through
a broker like a smartphone. The smartphone would then determine

when and how the agents would be allowed to interrupt the user. The
Interruption Classifier is designed as a broker with the intelligence to

reason about when to interrupt the user.
Most of the current research is focused on mediated and negotiated

strategies with research in the mediated strategy area growing con-
siderably (Altmann et al., 2014; Baethge et al., 2014; Iqbal and Bailey,

2010). Associated with mediated strategies are intelligent systems that
observe the user as s/he is performing tasks to decide when to interrupt

the user and how best to present the pertinent information. Despite the
progress that has been made in systems supporting mediated strategies,

negotiated strategies (user determined) are still the best overall solution
when considering factors such as cost of interruption, resumption lag,

and overall performance in carrying out multiple tasks (McFarlane and
Latorella, 2002). The proposed system corresponds to the ‘mediated’

strategy.
The following section presents these topics on interruptions: (a)

tasks and task boundaries; (b) cognitive load, cost of interruption and
resumption lag; and (c) models of interruption and an interruption

taxonomy.

2.1.1. Tasks and task boundaries

Task and interruption researchers are interested in acquiring con-

textual information surrounding the task so that the timing of the in-
terruption and the information presented will be minimally disruptive

and of the utmost benefit to the user at that time (Iqbal and
Bailey, 2007). Reasoning systems must incorporate task properties be-

cause these systems must be able to decide optimal times to interrupt.
This decision often hangs on the very task the user is engaged in at the

time (Iqbal and Bailey, 2007). In many situations if it is possible to defer
an interruption to a task boundary, the inconvenience to the user by

responding to the interruption is significantly reduced (Iqbal and

Bailey, 2007). In these situations the resumption lag is much less for the
user than if the interruption occurred during the task (Altmann et al.,

2014; Baethge et al., 2014). The concept of a task boundary will be
integrated into the classifier as one of the features that it implicitly

learns through user training data sets.

2.1.2. Automatic task boundary identification

Task boundary identification techniques are used to detect and

identify breakpoints during tasks to establish policies for interruption
software (Iqbal and Bailey, 2007). Researchers have focused on

building statistical models that dynamically extract characteristics of
the interaction to a specific type of breakpoint (i.e., coarse, medium,

fine) (Horvitz and Oliver, 2005; Iqbal and Bailey, 2007). The findings
indicate that these models can pick out task breakpoints with a rea-

sonable amount of accuracy for prescribed tasks (Iqbal and
Bailey, 2007). An example of a prescribed task is solving a jig-saw

puzzle. Each individual subtask is the act of dragging a piece to its
appropriate location in the jig-saw puzzle.

As it relates to interruption, these models could be used to augment
interruption management software to effectively determine better times

to interrupt the user by establishing defer-to-breakpoint policies
(Iqbal and Bailey, 2007). However, these studies have primarily focused

on prescribed tasks. It is significantly more difficult to detect break-
points within tasks that are highly variable in nature. For example, free-

form tasks are by far the most common type of computer-based task and
are still largely an unsolved problem for interruption researchers (Gluck

et al., 2007; Horvitz et al., 2004; Iqbal and Bailey, 2005; Iqbal and
Bailey, 2008). In the context of this research the definition of a free-form

task is one in which the tasks are highly variable and the interaction

including actions and timing between the user and the task cannot be
predicted.

Currently there are very few algorithms that pick ideal times to
interrupt a person working on free-form tasks (Please see: (Fogarty

et al., 2005; Iqbal and Bailey, 2008)). This is one area where this re-
search contributes by providing an innovative solution to this difficult

1 A discussion regarding levels of performance for machine learning classi-

fiers is further elaborated in Section 5.
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problem.

2.1.3. Cognitive load, cost of interruption and resumption lag

Cognitive load is an indicator of the degree of working memory

utilized when the user is performing a task (Hertzum and
Holmegaard, 2013).

The Cost of Interruption (COI) is a subjective measure of a user's wish
to remain undisturbed while working on a computer based task

(Hertzum and Holmegaard, 2013). We acknowledge that other defini-
tions of COI exist, however, in this research we use the previous defi-

nition. The COI may include various kinds of alerts disrupting a user in
different contexts (Horvitz et al., 2003, 2004). The COI has been used as

an assessment tool for several decades in decision analysis in various
fields (Horvitz et al., 2004).

Resumption Lag (RL) is defined as the time required to resume the
primary task after completing the interrupting task (Iqbal and

Bailey, 2005). RL can be measured as the time from closing the inter-
rupting task to the first keyboard or mouse action in the primary task in

direction of the task goal (Iqbal and Bailey, 2005).
There is a strong correlation between cognitive load and the COI

(Iqbal and Bailey, 2005). Thus, it is important to assess the cognitive
load on the user while s/he is performing a task to decide whether to

interrupt the user. Researchers have shown that if a user is interrupted
during a high cognitive load task by being forced to switch tasks, then

the COI can be very high (Iqbal and Bailey, 2005).

Consequently, an important design consideration for the
Interruption Classifier was that it considers the user's workload or

cognitive load when deciding whether to interrupt the user. A design
aspect of our classifier acknowledges that the COI can be reduced by

aligning the interruptible moment with subtask boundaries (Fogarty
et al., 2005; Iqbal and Bailey, 2008). Furthermore, it should be noted

that the identification of ideal interruption points for free-form tasks is
largely an unsolved problem (Altmann et al., 2014; Baethge et al.,

2014). Therefore, uncertainty is part of what this classifier needs to
consider (criterion #1).

2.2. Ideal interruption points

In this research, an ideal interruption point is defined as the time

when a user would normally choose to serve an interruption while
considering: (1) the user's cognitive load should be low (Gievska et al.,

2005; Iqbal and Bailey, 2006); (2) the user should be at a coarse task
breakpoint (e.g., about to switch from a spreadsheet to email); and (3)

the length of the interruption task should be short so that the user can
quickly return to the primary task without the loss of continuity in

performing the primary task.2 Criterions 1 and 2 are design char-
acteristics of our classifier; criterion 3 is supported by the experiments

we have prepared. Our motivation for designing a system that learns
from user determined timings stems from the literature that indicates

that users prefer full control over when to serve interruptions (Altmann

et al., 2014; Baethge et al., 2014; McFarlane and Latorella, 2002). The
primary purpose of this research is to design a system that serves inter-

ruptions at that same times that s/he would most prefer to be interrupted.
This research does not focus on designing a system that increases the

overall performance of the user. If a real-world interruption manage-
ment system is implemented using our classifier, it would suggest in-

terruptions at times that would be most in tune with his/her interrup-
tion preferences. This would enable the system to serve as an effective

mediator–one that would receive incoming interruption requests for the
user and decide, based on that user's characteristics, when is the most

appropriate time to interrupt him/her.

2.3. Models of interruption and an interruption taxonomy

Models of Interruption refer to the set of models researchers have
proposed to assist in representing the context from which an inter-

ruptible moment may be reasoned about. The Memory for Goals model
has been used by many different researchers to understand and model

interrupted task performance for nearly two decades (Altmann and
Trafton, 2002; Bower and Morrow, 1990). There have been a myriad of

studies mostly based on the Memory for Goals model that provide
support for why an interruption alert is useful and improves perfor-

mance (Altmann and Trafton, 2002; Bower and Morrow, 1990). The
Memory for Goals model helped the design of our experiment during

which participants choose their own times to serve interruptions after
an alert. Currently, each model is very specific to the types of tasks

intended to be performed by its users. Much of the research to date has
been centered on using attributes from the task domain (Altmann et al.,

2014; Iqbal and Horvitz, 2010). However, there are other aspects sur-
rounding the problem of determining when to interrupt a user

(Loukopoulos et al., 2009). These other aspects involve the user and
environment contexts. Models have been proposed to provide a more

encompassing perspective of interruption; however, currently, there is
no standard or unified model that has been accepted in the research

community. Currently, there are several interruption taxonomies

(Gievska and Sibert, 2005; McFarlane and Latorella, 2002). We focused
on the one proposed by Gievska & Sibert since it aligns well with the

goals of this research. This taxonomy includes three dimensions: (1)
User Context captures the salient features of the user's characteristics

and traits; (2) Environment Context represents attributes representing
the user's current working environment; (3) Task Context aims to

capture the significant properties of the computer based task (Fig. 1).
The purpose of this taxonomy is to serve as a framework to identify

attributes and relationships appropriate for conceptualizing factors that
influence the timing of interruption. Gievska & Sibert have designed

and implemented a system to automatically detect interruption points;
however, they have only designed systems that focused on Task Context

variables—User and Environment context variables were not included
(Gievska et al., 2005). “Subjective preferences were not considered as a

factor in the current implementation of the interruption mediator.
However, they should not be neglected when designing user interfaces

that give equal priority to user's satisfaction and comfort as to other
performance measures.” pg. 176, (Gievska et al., 2005). It follows then

that the direction of research is to embrace aspects from all three di-
mensions.

2.4. Machine learning algorithms

Before designing the Interruption Classifier, many machine learning

algorithms were reviewed (i.e., Bayesian networks, neural nets, statis-
tical classifiers, etc.). Many of these were discarded because they failed

to meet one or more of the desirable characteristics and they are limited
for modeling human behaviour. Certain machine learning techniques in

the area of Soft Computing have been applied to a number of user

modeling problems by learning from user behaviour and integrating
them as part of the user model (Frías-Martínez et al., 2004). Soft

computing is a family of methods that are based on fuzzy logic, neural
networks, and probabilistic reasoning tools (Jang et al., 1997). Fur-

thermore, soft computing algorithms have been shown to be very ef-
fective at deriving solutions to problems where other approaches have

2 Although there is no consensus in the research community on what con-

stitutes an interruption task that is short, for this research, it is defined as a task

that is 10s or less. This definition has support from the following references:

(Hodgetts & Jones, 2003, 2007; Solingen, Berghout, & Latum, 1998). Although

there are many different definitions to interruption, for this research, the defi-

nition used is provided at the beginning of Section 2. This means that we do not

take into account interruptions that are integrated in the task (e.g., help sys-

tems). All the interruptions are on issues/tasks outside of the primary task. As

discussed in Section 3, this experiment focuses on two unrelated tasks (a pri-

mary task and an interruption task) and they have been designed to be un-

related.
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failed (Jang et al., 1997). Table 1 summarizes the characteristics of

different soft computing techniques based on six criteria from Frias-
Martinez et al. (2004):

1. Computational complexity: ability for the results to be computed

within 1s in current computing environments (the decision to in-
terrupt now or defer interruption needs to be real-time);

2. Dynamic modeling: the ability to adapt (or change) based on the
user model on-the-fly;

3. Size of training data: the amount of data needed to produce a reli-
able user model;

4. Uncertainty: the ability of the techniques to handle uncertainty;
5. Noisy data: the ability to handle noisy data (i.e., how noisy training

data will affect the user model);
6. Interpretability: the ease with which a human can interpret the re-

sults of the knowledge captured.

Human interaction is a key component of any user modelling ap-

plication—like the Interruption Classifier—which implies that the data
available will be most likely imprecise, incomplete and heterogeneous

(Frías-Martínez et al., 2004). In this context Soft Computing, specifi-
cally Neuro-Fuzzy systems appear to be the appropriate paradigm to

handle the uncertainty in this problem. Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) offer these benefits:

1. domain expert's knowledge can be embodied in a Fuzzy Inference

System (FIS) by extracting and describing the knowledge using

linguistic variables and membership functions—an ANFIS can use

this FIS as an initial design for modeling the problem domain
(Negnevitsky, 2004);

2. Faster convergence than typical feedforward neural networks
(Garcıa and Mendez, 2007);

3. ANFIS requires a smaller size training set to converge when com-
pared to other machine learning tools (Gharaviri et al., 2008);

4. Smoothness is guaranteed by the fuzzy logic inference mechanism
(Negnevitsky, 2004);

5. Automatic fuzzy logic parametric tuning (Jang et al., 1997);
6. Easily inspectable and interpretable by humans (Frías-

Martínez et al., 2004);
7. One of the top choices for user modelling based on user modeling

researchers (Frías-Martínez et al., 2004).
8. Wide-level of acceptance from academics to industry specialists.

ANFIS have been used to solve a variety of academic research pro-

blems and applied industrial problems.

The selection and use of an ANFIS for this research appears to have
great promise since it satisfies all the desired characteristics; offers a

significant amount of flexibility because it fits the soft computing
paradigm; and has long-standing support from the user modeling

community as a viable tool for user modeling problems (Frías-Martínez
et al., 2004; Jang et al., 1997). As a result, an ANFIS was chosen as the

machine learning tool for the Interruption Classifier. In summary, the
goal of this research is to design a classifier that will perform as well as

user-determined interruption timings as outlined in Section 1.

Fig. 1. Interruption taxonomy (Gievska et al., 2005).

Table 1

Soft computing characteristics applied to user modeling (Adapted from: Frias-Martinez, et al., 2004).

Complexity Dynamic modeling Size of training data Uncertainty Noisy data Interpretability

Fuzzy inference systems ✓ ✓✓✓ — ✓✓✓ ✓✓✓ ✓✓✓

Neural networks ✓✓ ✓✓✓ ✗ ✓✓✓ ✓ ✗✗

Neuro-Fuzzy ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Legend: ✓✓✓: very suitable, ✓: suitable, ✗: unsuitable, ✗✗✗: very unsuitable, —: Not applicable.
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3. Methodology

This section presents the details of the methodology. It includes the
approach taken to identify appropriate computer-based tasks, machine

learning techniques, and the experiment and analysis techniques.
Additionally, the design of the Interruption Classifier is presented. The

following section describes various aspects of the methodology in-
cluding: experiment task design; pilot studies; Interruption Classifier;

experiment procedure; participants; methodology for designing,

training, testing and refining the Interruption Classifier; and analysis
techniques.

3.1. Experiment task design

The experiment design involved a primary task (Jumping game) and

an interruption task (intermittent Matching game). The primary task is
modeled after a video game by Nintendo called Fire and McFarlane's

interruption work (McFarlane and Latorella, 2002). The interruption
task is modeled after the matching tasks used in experiments of the

Stroop Effect (Tulga and Sheridan, 1980). The tasks are unrelated by
design to ensure that different cognitive resources are required to

complete each task. The experiment task design is largely based on
McFarlane and Latorella (2002).

3.1.1. The primary task

This task requires the user to move stretcher-bearers to catch other
game characters as they jump from a building. Fig. 2 depicts the game

in which the user must successfully bounce each falling character three
times in three different locations and into the awaiting ambulance. If a

character lands on the ground, then that character is not saved. The
game is simple when only one character at a time jumps out of the

building; however, when many game characters are jumping at a time,
the game becomes more difficult. A subtask is defined as the task for the

participant to manage an individual jumping character and to save
him/her. This is accomplished by moving the stretcher in the appro-

priate position to ensure the character is bounced several times and

then finally into the ambulance. The time between subtasks is sufficient
such that the participant is not required to provide constant attention.

This design is intended to provide participants the ability to successfully
serve an interruption task if needed.

The game runs continuously, so even if the participant serves an
interruption task, the game continues. The composition of the game

permits observation of participants’ behaviours to be directly mapped
onto discrete subtasks. The primary task offers the following beneficial

task characteristics:

• The participant's performance on successfully completing a subtask
can be classified as either true or false.

• Subtasks require participants to make time-sensitive decisions.

• Subtasks do not require persistent attention from participants.

• Participants need to be aware of the state of each jumper to be
successful in completing each subtask. Thus, there is an overhead

cost for resuming the primary task after serving an interruption task.

The primary task was designed to enable analysis of ideal and un-
desirable interruption points. The primary task was also designed to be

uncomplicated so that additional noise would be reduced as much as
possible:

• Each subtask takes 16.9 s from the start of the jump until it lands

safely in the ambulance. (The time from its initial jump to its third
(and last) bounce is 13.7 s and the time for its third bounce into the

ambulance is 3.2 s).3 Please note the starting time when a jumper
jumps is completely unpredictable by design.

• Subtasks are completely independent. An error on one subtask does
not impose errors on other subtasks.

• The primary task is easily learned in terms of the high-level goal to
save jumpers and in controlling the stretcher-bearers—there are

only two keyboard keys used for control.

3.1.2. The interruption task

A matching task was used as the interruption task. This task uses a
graphical matching task that is based on Stroop effect studies

(Jensen and Rohwer, 1966). This task requires the participant to make
matching decisions (by shape or colour) based on the rule presented on

the screen (Fig. 3) using these principles:

• Each problem in the matching task requires a definite but minimal
focus of attention (a distinct amount of cognitive workload is re-

quired to resolve the conflict thus serving as a valid interruption
task).

• The individual matching tasks are independent and the task cannot
be automated through overlearning or automated by repetitively

performing the task—from one matching problem to the next each
individual matching task may be viewed independently as a novel

problem (Tulga and Sheridan, 1980).

• The amount of time required to complete one matching task is re-

latively consistent. This consistency allowed participants to plan
their strategies to perform the primary and interruption tasks to the

best of their ability.

• Matching tasks were performed one at a time from a queue

(QueueSize: number of waiting interruption tasks)

• Interruptions of interruptions are not allowed (there were no in-
terruption notifications issued while the participant was working on

an interruption task).

• The same randomization scheme that was used to schedule the

subtasks of the primary task was also used to schedule the individual
interruption tasks.

The experiment was designed so that it is not possible to predict

when an interruption task will appear, nor is it possible to predict how
or when the user will interact with the interruption task. It follows then,

from the definition of a free-form task presented in Section 2, that this

Fig. 2. Primary task: stretcher-bearers bounce characters jumping out of a

building to the waiting ambulance.

3 These timings are a result of the design and implementation in relation to

how the game and matching tasks were programmed. Details regarding ideal

interruption points is presented in Section 5.
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task is also a free-form task. Furthermore, viewed at a more abstract
perspective, the combination of the primary and interruption tasks re-

presents a free-form task.4

3.2. Full experiment

This section presents an overview of the experiment including
treatments, objective and subjective measures, and data for the classi-

fier. In preparing for the full experiment, a pilot study was conducted
which represented all aspects of the whole experiment—from in-

troduction to debriefing. The pilot study provided an opportunity to set
the primary and interruption task complexity to the appropriate level;

identify issues so that the experiment would run consistently and the
results would be as reliable as possible; and to gain an understanding of

the strategies and tactics relating to each participant's negotiated in-
terruption style. Amongst the most interesting findings from the pilot

study were anecdotes from the participants revealing their strategies:
“The matching task was demanding because you struggle to keep

focus. I worked hard to keep focused during the matching task. It wasn't
frustrating—it was fun! The majority of the time I switched when the

jumpers were at the highest point, which would give me time to com-
plete the interruption.” (Pilot Study Participant #1). “My strategy was

to move the stretcher to the next bounce position, and then serve the
interruption immediately. This gave me plenty of time to do the in-

terruption during a full bounce cycle.” (Pilot Study Participant #3).

3.2.1. Treatments

Three treatment conditions were used in this research experiment.

1. Treatment #1: Primary Task only base case—no interruption tasks.

2. Treatment #2: Interruption Task only base case—no primary task.
3. Treatment #3: Negotiated treatment condition gave the participant

full control over when s/he served the interruption task. When an
interruption task was queued, the screen blinked for a moment on

top of the primary task. The participant was then able to serve the
interruption task at a time of his/her choice.

All the participants received the three treatments. To avoid poten-

tial confounds such as tiredness, each treatment was administered by
two sequential trials with a 30 s rest period in between. Furthermore, a

diagram-balanced Latin squares ordering was used for counter-

balancing. For example, consider the following sequence of treatments:

Practice Session Data Trial Sequence: 3 3 1 1 2 2 (total: ∼30min),

Experimental Session Data Trial Sequence: 3 3 1 1 2 2 (total:∼30min).

This section describes the measures collected in the experiment and

those used by the Interruption Classifier. For the experiment, the par-
ticipant's performance was the dependent variable and was determined

by the analysis of five objective measures and 17 subjective measures.
For the classifier, the same objective measures were used with an ad-

ditional set of measures for training and testing purposes.

3.2.2. Objective experiment measures

Table 2 depicts summative objective measures and data collection

properties. The objective measures are grouped into the following ca-
tegories: correctness (metrics 1 and 2), efficiency (metric 3), and

timeliness (metrics 4 and 5). The purpose of collecting these measures
was to be able to calculate the participant's performance with respect to

the base cases and the negotiated interruption strategy. These measures
were collected during trials with summative values computed at the

end. However, during the experiment formative updates of these
measures were computed. For example, the state of the number of

jumpers saved, the number of matches done wrong, etc. was computed
every millisecond within each trial (4 ½ min [270,000 ms]). Thus, there

are approximately 270,000 data points (i.e., cases) for each trial con-
taining all the contextual information for the classifier to reason about

interruption points.

3.2.3. Subjective experiment measures

Two questionnaires were administered to the participants. An

opening questionnaire captured the participant's characteristics (please
see Appendix B). These measures collectively represent the core of the

user model from which the classifier draws user-specific contextual
information:

(a) participant's age (0–90);
(b) participant's comfort level with computers (general computer fa-

miliarity) (1–5, 5= very familiar);
(c) familiarity with video games (1–5, 5= very familiar);

(d) tolerance to being interrupted (1–5, 5=don't mind interruptions);
(e) frustration level (1–5, 5= easily frustrated);

(f) distractibility level (1–5, 5= easily distracted);
(g) thinking style (1–5, 1= thinking type of person, 5= hands-on type

of person);
(h) multi-tasking ability (1–5, 5= very good at multi-tasking); and

(i) regaining focus after interruptions ability (1–5, 5= difficult to re-
gain focus).

These specific personal characteristics were measured because they

represent subjective aspects that directly or indirectly impact how a

Fig. 3. Interruption task: Match by colour or Match by shape—imposes a level of

cognitive load to resolve the conflict.

Table 2

Objective measures and collection properties.

Data collected Data capturing

technique

1 Number of jumpers saved on the game task Raw data count

2 Number of matches done wrong of those attempted Raw data count

3 Number of key presses per jumper saved on game

task

Raw data count

4 Average time in seconds from the scheduled onset

of each interruption task until it was completed or

the trial timed out.

Computed value from

raw data count

5 Average time in seconds from display of each

matching task until it was completed

Computed value from

raw data count

4 A video excerpt of this HCI experiment is found here: https://youtu.be/

05AQEZb8w_I
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person perceives and responds to interruptions. One objective in this
research involved exploring which of these personal characteristics

were predictive of the interruption points. This is elaborated in the
Discussion. The closing questionnaire was used to assess the subjective

measurements of the participant's opinions on various aspects of the
experiment (please see Appendix C).

3.2.4. Classifier measures—data for the classifier

Data were collected and used by the classifier to design a solution
for the mediated interruption strategy. Fig. 4 presents a scenario to

motivate the selection of data used by the classifier. The sequence
diagram shows a participant undergoing the negotiated interruption

strategy treatment:

(a) the times for interruption notifications (t1, and t6),

(b) the initial COI to serve the interruption (depicted in the time sec-
tions t2 to t3 and from t7 to t8).

(c) the resumption lag time (shown in the time sections t4 to t5 and
from t9 to t10).

The time from t1 to t3 and from t6 through t8 represent the entire

contextualization from initial notification of an interruption to the time
when the participant is fully engaged in the interruption task. However,

the most important timings are when the participant decided to switch
from the primary task to the interruption task. To train the classifier,

timings t2 and t7 are especially important since it is at these times that
the participant decided to serve the interruption. These timings, in

combination with user model and task details were important to train
the classifier.

The following data were used in designing the classifier to satisfy
the research goal of designing a system that performs as well as the

negotiated interruption strategy at detecting ideal interruption points.
The data are:

1. Wall clock time (milliseconds).

2. Real-time values of the objective measures as the participant per-
forms the primary and interruption tasks.

3. Time when the interruption notification was issued to participant.
4. Time when participant switched from the primary task to perform

the interruption task.
5. Number of jumping characters currently visible on the screen.

6. State of jumping characters (e.g., where in the cycle of bouncing up
or falling down).

7. Position of the stretcher in the primary task (i.e., one of three
possible positions).

8. Number of interruption tasks waiting to be served (QueueSize).
9. Current activity (primary task or interruption task).

10. Participant's user model information: comfort level working on
computers, tolerance to being interrupted, frustration level, dis-

tractibility level, multitasking ability, etc.

3.3. Interruption classifier

This section describes, at an abstract level, the Interruption
Classifier. The classifier needs the following information to determine

appropriate times to interrupt the user (U):

v: vector representing U’s real-time activities (extracted in real-time

from the software being used by U);
w: vector representing the static data for the user (user modeling

information such as personality traits, frustration level, tolerance to
interruptions, etc.);

x: vector representing task and environment specific information
(task complexity, contextual information, etc.);

Fig. 4. Sample interruption timing scenario—alternating cognitive states (S0⇔ S1) and task states (primary⇔ interruption tasks). At times t2 and t7 the participant

decided to engage in performing the interruption task.

Table 3

High-level description of the interruption classifier.

Interruption_classifier (
→ → ⎯→⎯ →
t v w x, , , , trained ANFIS, interruption_threshold_limit)

→
t : temporal contextual information
→
v : real-time user activity data // Input from the software User (U) is using
⎯→⎯
w : static user data // Input extracted externally from the software U is using
→
x : task and environment specific information

trained_ANFIS

interruption_threshold_limit ← range: [0,1] | 0=do not interrupt, 1= interrupt

Begin

interrupt ← 0 // default is defer an interruption

while (U is interacting with system) // run ANFIS with new inputs

ANFIS ←
→
t // temporal specific data

ANFIS ←→
v // real-time data

ANFIS ← ⎯→⎯
w // static user data

ANFIS ←→
x // task, environment

// compute interruptDecision: ← [0,1] | 0= do not interrupt, 1= interrupt

If (interruptDecision> interruption_threshold_limit) then interrupt U

end while

End
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The initial design of the classifier is based on a Fuzzy Inference System

where linguistic variables, membership functions and rules were iden-
tified that use information from the three contextual dimensions (user,

task, and environment). A high-level description of the classifier is
presented in Table 3.

3.4. Initial design of the interruption classifier

This section presents the initial design of the Interruption Classifier

using an Adaptive Neuro-Fuzzy Inference System. Workload levels for
the game task are based on the number of jumping characters currently

on the screen that need to be managed by the participant and the
QueueSize represents how many interruption tasks are waiting to be

served. Fig. 5 presents the surface view of initial model. Table 4 shows
the initial fuzzy rules in the model.

3.5. Participants

Twenty-eight volunteers were involved as participants in this

experiment (3 involved in the pilot study and 25 in the full experi-
ment).5 In the full experiment, there were 21 males and 4 females.

Participants had a median age of 21 (mean 26.5, min. 19, max. 49). All
participants were sampled from the general population of Sheridan

College. Participants were recruited by a set of posters posted at various
locations throughout the campus. The recruitment message did not

disclose the purpose of the experiment, but described the task as fun
and like a video game. The message indicated that each volunteer

would receive compensation for his/her time and that volunteering
would be a contribution to the advancement of science.

3.6. Analysis

Two types of analysis were performed on the collected data—-

quantitative and qualitative analysis. We report only on the quantita-
tive analysis as it is most closely tied to the design and evaluation of the

classifier. Three types of quantitative analysis were performed: (1) de-
termining the participant's performance using statistical tools; (2)

evaluating and refining the classifier using standard machine learning
evaluation tools; and (3) determining the accuracy of the classifier

using statistical tools:

1. Computing confusion matrices: Compare the classifier's accuracy at
predicting interruption points using the participant's timings as

ideal. Confusion matrices and the associated measures (Accuracy,
Precision and Sensitivity) are commonly used in the evaluation of

machine learning algorithms, please see: (Elkan, 2011; Forman and
Scholz, 2010; Hamilton, 2011; Kohavi and Provost, 1998; Lu et al.,

2004). Statistics for each participant for each classifier model was
collected on:

Fig. 5. Surface view of initial model depicting workload (x-axis) and QueueSize (y-axis) inputs with InterruptionDecision (z-axis) as the output variable (0=Do Not

Interrupt).

Table 4

Initial fuzzy rules for the design of the interruption classifier.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

5 This size of this experiment (in terms of the number of participants in-

volved) is comparable to other similar studies in HCI; please see: Iqbal, S., &

Bailey, B. (2006). Leveraging Characteristics of Task Structure to Predict the

Cost of Interruption. Paper presented at the CHI 2006, Montreal, Quebec, Ca-

nada. (n=12). Lisetti, C. L., & Nasoz, F. (2004). Using Noninvasive Wearable

Computers to Recognize Human Emotions from Physiological Signals. J. Appl.

Sig. Process., 11, 1672-1687. (n=14). Scheirer, J., Fernandez, R., Klein, J., &

Picard, R. W. (2002). Frustrating the user on purpose: a step toward building an

affective computer. Interacting with Computers, 14, 93-118. (n=24).
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True Positives (TP): (classifier correctly interrupted at the right
time);

True Negatives (TN): (classifier correctly selected “Do not inter-
rupt”);

False Negatives (FN): ("Didn't interrupt when it should have");
False Positives (FP): (“False Alarm”—classifier interrupted when it

shouldn't have);

=
+

+ + +

True Positives True Negatives

True Positives True Negatives False Negatives False Positives
Accuracy

( )

( )
;

=
+

True Positives

True Positives False Positives
Precision

( )
;

=
+

True Positives

True Positives False Negatives
Sensitivity

( )
.

1. Calculating standard descriptive statistics on the confusion matrix

data for the entire group including minimum, maximum, mean,
median, standard deviation, accuracy, precision, and sensitivity.

2. Interruption timing analysis using a bin framework: Let the parti-
cipant group, G, represent the group of all participants in the ex-

periment, so G={P1,P2,P3,…, Pn},where n is the number of par-
ticipants. For a given participant, P, a set of interruption timings is

represented as: {int1,int2,int3,…, intm|intj ∈ N, 1 ≤ j ≤ m}. Each
interruption timing, intj, is measured in milliseconds since the be-

ginning of an experimental trial for that participant. Thus, for the
entire group of participants (i.e., G), a two-dimensional array is

created: = … ≤ ≤timings int int int int where i n{ , , , , }, , 1P i i i i
m(1) (2) (3) ( )

i ,

and m represents the maximum number of interrupts in the ex-

periment. A balance between high and low timing granularity is
needed to facilitate a comparison between the Interruption

Classifier timings and random assignment. A bin is used to

represent a discrete section of time wherein one or more inter-
ruptions may occur. The bin analysis framework has been used in

similar studies (Dobrian et al., 2011; Rind et al., 2011). Fig. 6
depicts a hypothetical scenario of interruption timings from

random assignment, the Interruption Classifier, and the partici-
pant's interruption timings. A set of bins, B={B1,B2,B3,…,

Bk}, where k= |B| were constructed for this analysis. Note, k re-
presents the mechanism that balances high and low granularity of

interruption timing comparisons. Thus, for a given participant, Pi,

= = …B bins bin bin bin bin{ , , , , },i P
i i i

k
i

1
( )

2
( )

3
( ) ( )

i ≤ ≤where i n1 , and k is

the maximum number of bins in the experiment. For our analysis,
we used a bin size of 2 seconds, resulting in 135 bins over the 270 s

trial period. The random assignment scheme (top section of Fig. 6)
uses the total number of interruptions performed by the participant

and randomly distributes them amongst the bins. Table 5 was used
to record the random assignment timings, the classifier's timings,

and the participant's interruption timings. If the classifier's pre-
dictions and the participant's timings fall into the same bin (i.e.,

both are True) or the participant did not serve an interruption and
the classifier did not predict one (i.e., both are False), then this is

classified as true positives and true negatives respectively; all other
cases are classified as errors (an XNOR Boolean operation, denoted

by ⊕ ). Thus, the accuracy of the classifier's performance for a
given P and trial is computed as:

Fig. 6. Bin analysis framework to determine the performance of the interruption classifier. Bins are used to represent discrete equal-valued sections of time for the

duration of an experimental trial. Interrupts are represented as X's in the bins.

Table 5

Template of interruption timings used for analysis for the classifier's perfor-

mance compared to random and the participant's interruption timings.

Participant: Pi, Number of bins (k): 135, bin size: 2 s

bin1 bin2 bin3 … … … … bink

Random assignment T F F F T T T T

Interruption classifier F T T T F T F F

′P si interruption timings F T T T F T F F
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∑ ⊕= Classifier Participant

k

_ _i

k
timing bin timing bin1 i i

(1)

4. Findings (analysis and evaluation)

This section presents the findings (analysis and evaluation) of the

research conducted. The topics include full experiment findings and the
evaluation of the Interruption Classifier.

4.1. Summary of main findings

This section presents a summary of the main findings from design to
refinement of the classifier. The following model variations were cre-

ated and performed quite well. The main findings were:

• Different training data sets had the largest impact on the models
created. Several participant data sets produced models that met and

exceeded the performance criteria (6 out of 25). These models
performed well across the entire participant group (generalizable to

the sample population).

• Different time slices did not have a significant impact on the per-
formance of the models created. All the constructed time slices (i.e.,

1, 5, 10, 20, 25, 30, 50, and 100ms) produced models that met the
performance criteria. This may largely be due to the fact that these

time slices are within the human physical response time (Hancock
and Meshkati, 1988; Warm et al., 1996).

• The impact of historic event knowledge is significant. Knowing the
past, especially when it is 100ms or less in the past has a large

impact in reasoning and deciding whether to interact with the user
at a given point in time. All models created that used historic

knowledge performed extremely well: the number of cases correctly
classified was very high (> 99%); the TPs and TNs were very high

(> 96% and 99% respectively); the FNs and FPs were very low
(< 4% and<0.7% respectively); and the models were accurate

(> 98%) with little variation in the measures (1.305≤ σ≤ 5.793)).

• Incorporating characteristics from the user model had a positive

impact on the models created. The models that exceeded the per-
formance criteria were: Initial model augmented with tolerance to

being interrupted; Initial model augmented with frustration level; and
Initial model augmented with distractibility level.

4.2. Full experiment findings

Data from the participants’ trials were used in the analysis to de-
termine the participant's performance. Observations recorded during

this experiment were used to explore the timings of user-initiated in-
terruption points. Furthermore, during this experiment, observations

were recorded on the details of the context in which the people chose to
serve interruptions.

4.2.1. Number of jumpers saved on the game task

Table 6 presents the descriptive statistics.

A one-way ANOVA was performed to determine if there was

Table 6

Descriptive statistics of number of jumpers saved (n=25).

Mean Std. dev. Min. Max. Median Skewness Kurtosis

Baseline –

primary

task only

37.58 3.414 29 43 37.5 −0.90 0.32

Baseline –

interruption

task only

0 0 0 0 0 0 0

Negotiated 35.18 3.619 28 42 35 −0.29 −0.49

Table 7

One-way ANOVA: between treatment condition effects for baseline-primary

only and negotiated for number of jumpers saved.

Summary

Groups Count Sum Average Variance

Primary task only Jsaved 25 939.5 37.58 12.139

Negotiated Jsaved 25 879.5 35.18 13.643

ANOVA

Source of variation SS df MS F p-value F crit

Between groups 72 1 72 5.585 0.022 4.043

Within groups 618.78 48 12.891

Total 690.78 49

Table 8

Descriptive statistics of matches done right of those attempted.

Mean Std. dev. Min. Max. Median Skewness Kurtosis

Baseline –

primary

task only

0 0 0 0 0 0 0

Baseline –

interrup-

tion task

only

0.934 0.133 0.490 1 0.969 −0.96 1.49

Negotiated 0.914 0.129 0.490 0.99 0.959 −0.9 1.6

Table 9

One-way ANOVA: between treatment condition effects for baseline-game only

and negotiated for number of matches correctly completed.

Summary

Groups Count Sum Average Variance

Interruption task-

MRightOfDone

25 23.346 0.934 0.018

Negotiated-

MRightOfDone

25 22.855 0.914 0.017

ANOVA

Source of variation SS df MS F p-value F crit

Between groups 0.005 1 0.005 0.271 0.605 4.043

Within groups 0.856 48 0.018

Total 0.861 49

Table 10

Criteria for an acceptable model based on performance of the interruption

classifier.

Criteria

Attribute Requirement

% Cases correctly classified > 50%

% of interrupt now (True positive) cases > 50%

% of do not interrupt (True negative) cases > 50%

% of false negatives (Misses: didn't interrupt when it should have)

cases

< 50%

% of false positives (False alarms: interrupted when it shouldn't

have) cases

< 50%

Accuracy > 50%

Precision > 50%

Sensitivity > 50%
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difference in performance in the treatment conditions for the number of

jumpers saved by treatment condition (Baseline–Primary Task only and
Negotiated). Table 7 presents the results. There was a statistically sig-

nificant difference between the groups Baseline—Primary Only and
Negotiated performance at the 0.05 level, F(1, 48)= 5.585, p=0.022.

This means the additional activity to serve interruptions reduced the
participants’ performance in the primary task (i.e., being able to save

jumping characters).

4.2.2. Number of matches done right of those attempted

Table 8 presents the descriptive statistics (mean, standard deviation,

min., max., median, skewness and kurtosis).
A one-way ANOVA was performed to determine if there was dif-

ference in performance in the treatment conditions for the matches
done correctly of those attempted by treatment condition (Baseline –

Interruption task only and Negotiated). Table 9 presents the results.
There was no statistically significant difference at the 0.05 level, F(1,

48 )=0.271, p=0.605. This means the participants’ performance level
in the interruption task is independent of whether it is performed as the

sole task or whether it is as an interruption task within performing the
primary task.

4.3. Interruption classifier evaluation

This section presents the evaluation of the classifier. The criteria
that was used for classifying a model as acceptable based on its per-

formance is presented in Table 10. These criteria have been used in
similar studies in Human Computer Interaction (Please see: (Finn and

Limerick, 2003; Horvitz et al., 2004; Lisetti and Nasoz, 2004; Picard,
2003; Pu et al., 2006; Scheirer et al., 2002)).

4.3.1. Statistical analysis to test the classifier

This section presents the statistical analysis that was performed to

test the effectiveness of the classifier. Numerous confusion matrix
computations were performed including supporting statistical measures

and summative standard descriptive statistics. The confusion matrices
show the range of values (min, max, mean, median and standard de-

viation) across all 25 participants. Three of these computational results
are shown in Tables 11–13 based on models created from training data

sets from Participant #2, #21, and #22 respectively (the others are
omitted because they are quite similar).

After reviewing all the confusion matrix computations and sup-
porting statistical results, it was discovered that the following models

exceeded the performance criteria (all of the criterions shown in
Table 10): 6 models based on Participant #2, #4, #6, #17, #21, and

#22 training data sets; 3 models based on incorporating user char-
acteristics: Initial model augmented with tolerance to being interrupted;

Initial model augmented with frustration level; Initial model augmented
with distractibility level; and several models based on the initial model

Table 11

Confusion matrix results with supporting statistical measures and summative standard descriptive statistics for Participant #2 training data set for the initial model.

Cases correctly classified (%) True positive (%) True negative (%) False negatives (%) False positives (%) Accuracy (%) Precision (%) Sensitivity (%)

Min 39.843 79.134 24.676 1.643 0.378 80.086 94.116 79.134

Max 90.233 98.357 76.131 20.866 4.947 98.657 99.617 98.357

Mean 72.988 93.159 57.335 6.841 1.414 94.598 98.467 93.159

Median 76.893 94.041 59.914 5.959 1.129 95.369 98.825 94.041

Std dev 12.880 4.136 13.858 4.136 1.007 3.891 1.182 4.136

Table 12

Confusion matrix results with supporting statistical measures and summative standard descriptive statistics for Participant #21 training data set for the initial model.

Cases correctly classified (%) True positive (%) True negative (%) False negatives (%) False positives (%) Accuracy (%) Precision (%) Sensitivity (%)

Min 45.457 70.866 31.874 9.151 1.667 74.030 91.118 70.866

Max 89.940 90.849 79.045 29.134 6.908 93.443 98.092 90.849

Mean 74.837 83.400 60.785 16.600 3.344 87.684 96.093 83.400

Median 78.577 83.938 61.508 16.062 3.329 88.423 96.202 83.938

Std dev 11.581 4.903 12.652 4.903 1.144 4.232 1.510 4.903

Table 13

Confusion matrix results with supporting statistical measures and summative standard descriptive statistics for the Participant #22 training data set for the initial

model.

Cases correctly classified (%) True positive (%) True negative (%) False negatives (%) False positives (%) Accuracy (%) Precision (%) Sensitivity (%)

Min 46.419 81.037 27.957 3.671 0.799 86.004 95.911 81.037

Max 90.013 96.329 79.045 18.963 3.499 96.816 99.169 96.329

Mean 75.081 89.024 60.034 10.976 2.128 92.035 97.634 89.024

Median 79.031 88.781 61.391 11.219 1.992 92.134 97.760 88.781

Std dev 11.482 4.477 13.382 4.477 0.771 2.841 0.929 4.477

Table 14

Descriptive statistics of interruption classifier performance (accuracy) using bin

analysis.

Mean Std. dev. Min. Max. Median Skewness Kurtosis

Random

assign-

ment

0.506 0.046 0.422 0.585 0.504 0.208 −0.463

Interruption

classifier

0.962 0.033 0.881 1.000 0.970 −1.229 1.038
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with historic event knowledge.

4.3.2. Determining the classifier's performance using the bin analysis

framework

This section presents the analysis that was performed to assess the
classifier's performance based on the bin analysis framework. Table 14

presents the summary of computed accuracy (Eq. (1)) of the classifier

involving all 25 participants using descriptive statistics. The classifier
performed at 96% accuracy (mean), with a variation from 88% in worst

case to 100% in the best case.

4.4. Summary of most successful and least successful models

4.4.1. Most successful models

Beyond the successful models presented earlier, models that in-

corporated historic information performed the best across the entire
population. Table 15 presents the results of a model based on Partici-

pant #2 training data set with PreviousTimeStep. Twelve other models
that used historic information performed similarly with very high ac-

curacy.

4.4.2. Least successful models

During this multi-year research project, hundreds of models were
created using different training data sets and combinations of properties

from the user, task and environment dimensions, and classifier para-
meter settings. Most of these models performed unsatisfactorily. One of

the models that performed poorly was based on Participant #8′s
training data. This participant saved the fewest jumpers: 28/48 (po-

pulation mean=35.2), completed fewer interruption tasks: 24.5/50
(population mean= 45.5), and took longer than other participants to

perform the interruption tasks: mean=13.3 s (population
mean=3.6 s). Furthermore, it was also discovered that this participant

did not execute a consistent strategy with respect to choosing appro-
priate times to serve interruptions. Table 16 shows the confusion matrix

results of a model based on this participant.
Another poorly performing model was based on Participant 25's

training data. This person reported “very low tolerance to interrup-
tions,” “very high level of frustration,” “very high level of distract-

ibility,” and “very difficult to regain focus [after an interruption].”
Table 17 shows the results of a model based on this participant.

5. Discussion

This section presents a summary of the significant factors in de-
signing good models; predictive factors of interruptible moments; im-

plications of the empirical results for theories of interruption; and im-
plications of the empirical results for deploying classifiers for detecting

interruptible moments in practice.

5.1. Significant factors in the design of good models

• Training datasets: Good training data sets had the largest impact on
creating good models. Several participant data sets (6 out of 25)

produced models that exceeded the performance criteria (see
Table 10). These models performed well across the entire partici-

pant group (generalizable to the sample population). Unfortunately,
there is no way to determine from the outset if a training data set

will provide the foundation for a good model. The process of pre-
senting it to the machine learning tool for training, testing the model

created and then analyzing the results is required to determine if it
good or not.

• Historic information: The impact of historic event knowledge is sig-

nificant. Knowing the past, especially when it is 100ms or less in the
past has a large impact in reasoning and deciding whether to in-

teract with the user at a given point in time. All models created that
used historic knowledge performed extremely well: the number of

cases correctly classified was very high (> 99%); the TPs and TNs
were very high (> 96% and 99% respectively); the FNs and FPs

were very low (< 4% and<0.7% respectively); and the models
were accurate (> 98%) with little variation in the measures

(1.2≤ σ≤ 6.0)).

• User model: Incorporating characteristics from the user model had a

positive impact on the models created. The models that exceeded
the performance criteria were: Initial model augmented with toler-

ance to being interrupted; Initial model augmented with frustration

level; and Initial model augmented with distractibility level.

• Machine learning: An appropriate machine learning tool is necessary
to create effective, well performing models. The classifier is based

on an Adaptive Neuro-Fuzzy Inference Systems machine learning
tool. The ANFIS is an advanced hybrid soft computing tool that uses

fuzzy logic and artificial neural networks (Jang et al., 1997). The
classifier created during this research is the first of its kind based on

Table 15

Confusion matrix results with supporting statistical measures and summative standard descriptive statistics for the Participant #2 training data set for the initial

model with PreviousTimeStep.

Cases correctly classified (%) True positive (%) True negative (%) False negatives (%) False positives (%) Accuracy (%) Precision (%) Sensitivity (%)

Min 94.994 73.879 93.807 0.757 0.149 83.843 92.265 73.879

Max 99.876 99.243 99.851 26.121 6.193 99.547 99.850 99.243

Mean 99.011 94.271 98.797 5.729 1.203 96.534 98.667 94.271

Median 99.407 96.738 99.274 3.262 0.726 98.018 99.255 96.738

Std dev 1.061 5.793 1.305 5.793 1.305 3.539 1.598 5.793

Table 16

Confusion matrix results with supporting statistical measures and summative standard descriptive statistics for the Participant #8's training data set for the initial

model.

Cases correctly classified (%) True positive (%) True negative (%) False negatives (%) False positives (%) Accuracy (%) Precision (%) Sensitivity (%)

Min 78.016 0.000 76.314 54.173 10.885 40.154 0.000 0.000

Max 90.189 45.827 90.138 100.000 27.738 64.849 78.107 45.827

Mean 83.880 7.008 82.630 92.992 18.850 44.551 22.399 7.008

Median 83.862 4.179 83.561 95.821 19.244 43.235 17.606 4.179

Std dev 2.984 8.935 3.405 8.935 4.177 4.780 17.274 8.935
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ANFIS for HCI purposes. Please see Appendix F: Functional De-

scription of the Interruption Classifier for more details about the
machine learning algorithm used in this research.

• Generalizable: The classifier is generalizable to a degree. We dis-
covered that user modeling information such as personality traits

are generalizable across all models in all the experiments conducted.
However, other aspects of the modeling process (e.g., task details),

need to be explicitly represented in a model for it to be successful
and are therefore not directly generalizable.

5.2. Predictive factors of interruptible moments

In this research, both quantitative and qualitative data were col-

lected and analyzed. Since the paper primarily focused on the quanti-
tative aspects, this section presents some of the insights from the qua-

litative data as to why users preferred certain points for interruption.
One of the goals in the qualitative area of research was to shed some

light onto the motivation and context to answer the question “Why
now?” —that is, why did participants choose those specific points to

serve interruptions and what was the context surrounding that decision.
The following selected anecdotes are from the closing questionnaires

from Participant #2 and Participant #17 whose data sets produced

good models (Appendix D presents all of the participant's strategies
with respect to interruption timings):

``I tried to position the paramedics in a logical place and tried to
switch when people were bouncing up. I picked people that were closer

to the ambulance when deciding who would be saved/not saved. For
the matching task, I just focused on the word, and let my peripheral

eyesight decide [colour vs. shape].” (Participant #2).
``The matching [interruption] task by itself and the game [primary]

task by itself were very simple. Together though it was more difficult. I
would position my stretcher so the jumpers would be secure while I

switched tasks.” (Participant #17).
Researcher observation and analysis showed that both participants

followed the same advanced strategies when compared to other parti-
cipants:

• In the primary task, the character on the third bounce has increased

value in that the participant has invested effort and time in saving
the character thus far. So, when faced between saving a new

jumping character from the building versus saving the character on
the third and final bounce into the ambulance, the participant would

position the stretcher at the last bounce location to fulfil this goal.

• The participants would keep track of the number of interruption

tasks waiting in the queue by counting the number of flashes on the
screen. They would wait until the primary task was sufficiently

stable (i.e., few jumpers to manage or several jumpers to manage
but they were all nicely in the air) and then perform the switch and

complete all the required interruption tasks.

These strategies enabled the participants to perform well on both
the primary and interruption tasks: Participant #2 saved 90% of the

jumpers, and completed 93% of the interruption tasks correctly;

Participant #17 saved 85% of the jumpers, and 99% interruption tasks
were completed successfully. (Their performance was statistically sig-

nificantly higher than other participants – across the entire study the
mean number of jumpers saved was: 73%, and the mean number of

interruption tasks completed successfully was: 91%). In regards to
predictive factors of the interruptible moment, these strategies were

consistently and accurately performed and were implicitly recorded in
the participants’ data sets which served well in training the classifier.

Regarding the participants’ user models, both Participant #2 and
#17 reported on their opening questionnaires a strong capacity to

perform well on the upcoming experiment tasks (please see Appendix B:
Opening Questionnaire). Table 18 presents these participant's personal

characteristics and the means across all participants.
On the closing questionnaires, both Participant #2 and #17 re-

ported: Performed well (100%) and Picked the right time for serving the

interruption (100%) (please see Appendices C: Closing Questionnaire).

Across the entire study the means for Performed well was: 78%, and
Picked the right time for serving the interruption was: 84%.

In developing the models for the classifier, numerous combinations
of characteristics were used (ToleranceToInterruptions, Age,

VideoGameFamililiarity, Frustration, Distractibility, MultitaskingAbility,

GeneralComputerFamiliarity, and ThinkingStyle). Through experimenta-

tion many of these models were discarded, however, the models that
performed well were the Initial model augmented with tolerance to being

interrupted; Initial model augmented with frustration level; and Initial
model augmented with distractibility level. These personal character-

istics were found to be significant in designing models that were pre-
dictive of good interruption points.

This section presented some of the insights from the qualitative data
as to why users preferred certain points for interruption. It also showed

that the predictive factors of interruptible moments for free-form tasks

is very dependent on well-defined data sets that accurately represent
the specific task details, strategies and nuances, coupled with good user

models. These data sets are essential for training in the machine
learning process to create good classifiers.

5.3. Implications of the empirical results for theories of interruption

Based on the empirical results in this research there are several

implications to theories of interruption. Gievska's theory focused ex-
clusively on task-based contextual information (Gievska and

Sibert, 2005). These researchers stated that additional work needs to be
done in this area by including information from the other dimensions in

their taxonomy: “Subjective preferences were not considered as a factor
in the current implementation of the interruption mediator. However,

they should not be neglected when designing user interfaces that give
equal priority to user's satisfaction and comfort as to other performance

measures” (Gievska et al., 2005, pg 176). One specific implication of
the empirical results is that Gievska's theory of interruptions could be

updated to emphasize the characteristics that were found to be sig-
nificant in this research, namely: tolerance to interruptions; frustration

Table 17

Confusion matrix results with supporting statistical measures and summative standard descriptive statistics for the Participant #25's training data set for the initial

model.

Cases correctly classified (%) True positive (%) True negative (%) False negatives (%) False positives (%) Accuracy (%) Precision (%) Sensitivity (%)

Min 77.218 0.000 73.895 79.212 10.459 38.873 0.000 0.000

Max 90.064 20.788 89.845 100.000 28.279 49.619 52.536 20.788

Mean 83.182 4.602 82.396 95.398 19.423 43.134 17.604 4.602

Median 83.605 2.975 83.261 97.025 19.244 42.381 13.856 2.975

Std dev 3.055 4.475 3.432 4.475 4.195 2.673 13.764 4.475
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level; and distractibility level.

The empirical results from this study also highlight the importance

of well-defined rules that capture the salient features of the tasks. The
models that performed the best in this study incorporated good task

management strategies in their design. From this perspective, it re-
inforces the theory that task properties and details are fundamentally

important in designing systems that determine good interruptible mo-
ments. This perspective is well represented in the literature on theories

of interruption. Beyond these implications, there are many opportu-
nities for addition research to be conducted in the spirit of refining

these theories.

5.4. Implications for practice

This research showed that there is significant potential to create
classifiers using machine learning to determine appropriate times to

interrupt the user. In regards to deploying machine learning classifiers
in practice, there are a number of opportunities through which we may

witness a significant uptake on classifiers that improve our quality of
experiences with computers and computing devices (mobile devices,

wearable devices, etc.) that determine good interruption points.

5.4.1. Considerations for a robust multi-user classifier

The next step in developing this classifier for use in practice would

be to create a system of classifiers in which each classifier would be
responsible for learning and personalizing the interruption strategy for

a specific user for a specific set of tasks the user routinely performs. In
this way, the classifier would be able to tune its behaviour to the spe-

cific user it is assisting.

The current method for creating satisfactory models requires sub-
stantial manual effort on the part of the researcher to train a classifier,

analyze the results and then select the best performing models that
meet the requirements. Further work is needed to refine this process by

designing an automated solution (model_evaluator) that would receive
the interactive datasets, generate and analyze a variety of models, and

then rank and select the best model from this list.
In terms of implementation, a cloud-based system would be a sui-

table architecture to receive interruption and associated contextual
information to support each user. This research focused on a primary

and interruption task, however, in a practical implementation, rather
than collecting datasets from a variety of people performing the same

tasks, it would be more effective for many unique classifiers to be
created primarily based on datasets from individuals. In this way, a

variety of classifiers would learn based on personalized models and thus
be better attuned to each user. Each classifier would learn its user's

personal interruption characterization profile of when s/he prefers to
be interrupted and when to be left undisturbed. Once the cloud service

has a sufficient amount of data from a user, the machine learning al-
gorithm would be trained and models created. The overarching module

(model_evaluator) would evaluate and tune the machine learning para-
meters and attempt to improve the models for that specific user. The

best performing model that meets the requirements (see Table 10)
would be used for determining the timing of interruptions for that user.

If none are acceptable, the cloud-based system continues to collect
additional interaction data. This cyclic process continues over time to

refine the models generated and to persistently select the best model
representative for that specific user. In this way, this system would

provide multiple dynamically adjusting classifiers for each user for
tasks that s/he performs on a regular basis.

5.4.2. Users learning to interact with the classifier

One of the key benefits of the classifier created in this work is that

the user is not required to be involved in the classifier's learning process
whatsoever. The interruption points are discovered by the classifier

from the interaction datasets (e.g., the task switches from the primary
task to the interruption task among other contextual information). ThisT
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desirable characteristic is one of the main contributions of this work
and essential for future versions of the classifier. We believe this ap-

proach is an appropriate direction of research due to two main powerful
trends: 1) Big Data, and advances in machine learning, and 2) Computer

Vision and facial feature detection.
With the advances in Big Data and machine learning there are many

algorithms that can extract features from data that could be used to
drive or enhance the operation of the classifier. It is foreseeable the

associations that are not obvious to us may in fact be readily uncovered
by an ML algorithm that can identify if a user is becoming frustrated,

confused, or is concentrating intensely, etc. This input in combination
with task understanding could aid the Interruption Classifier with an

increased ability to interrupt the user more accurately and in more
widespread scenarios.

Additionally, with advances in computer vision and facial feature
analysis, a future version of the Interruption Classifier could accept

input such as eye-tracking information (e.g., saccades,6 perclos, fixa-
tions, gazepoints, percentage of time the user focused on tasks and

subtasks, pupil diameter, and blink rates), and facial features (e.g., head
positions and rotations; eyelid aperture; lip and eyebrow movements

with appropriate inferences (e.g., smiling, frowning, concentrating,
etc.). These feature rich details provide significant insight into the

cognitive state of a person and may be key indicators to assist in picking
appropriate times to interrupt the user (Davison et al., 2018; Reisenzein

et al., 2017). These inputs, in combination with the other data collected
in this study, would provide a robust version of our classifier a more

holistic view of the user and the tasks that s/he is performing, ulti-
mately enabling the classifier to better learn and reason about ideal

interruption points.

5.4.3. Content and relevance of the tasks

The content and nature of the tasks the user is performing needs to
be precisely represented (as in this study with the various task rules) for

the Interruption Classifier to make good decisions about ideal inter-
ruption points. In this research, the primary and interruption tasks and

user contexts were well represented in the machine learning algorithm.
The primary task had a substantial number of rules that collectively

captured ideal situations for when an interruption could occur.
However, by comparison, there were significantly fewer rules em-

bodying the task characterization for the interruption task.
In practice where users are regularly multi-tasking, it may be dif-

ficult to determine what the primary / interrupting task is. In these
scenarios, when the distinction between the primary and interruption

tasks may not be obvious, the same degree of rigor is required to re-
present the tasks the user routinely performs. In this way the classifier

would have models of all relevant tasks in play and can more effectively
reason about making interruption decisions. Essentially, the rule base

for both the primary and interruption tasks would be equally well-
defined so that interruptions could occur from within either task. This

approach could be extended to multiple tasks the user may perform.

5.4.4. User productivity and contentment

A natural question to ask regarding this work is: “Would users be-

come more productive and/or more content over time?” Theoretically,
the classifier is generating interruptions at points when the user would

have selected them. As mentioned earlier, this classifier is not con-
cerned about optimizing the user's productivity, but rather choosing

times that most appropriately coincide with the user's preference while
considering contextual factors such as task and user characteristics.

While our classifier may not explicitly try to optimize the user's

productivity, it is a plausible outcome because the classifier is in tune
with that person's personal interruption profile. As a result, the user's

overall satisfaction with respect to interruptions could be said to be
optimized. If the user is more content, then the user's productivity may

well increase too (Li and Fuller, 2017; Lucassen et al., 2017).

5.5. Limitations and future work

This research showed that there is significant potential to create
classifiers using machine learning to determine appropriate times to

interrupt the user. This section presents some of the limitations and
goals for future work.

Limitations
As with any research there are limitations. Some of the main lim-

itations of this work are:

1. When good training datasets are used, the classifier's accuracy is
increased significantly. A limitation of the classifier is that finding

good training datasets in complex real-world problem domains may
be difficult to acquire. We believe we can address this by im-

plementing the cloud-based system proposed earlier where each
user of the system seamlessly provides interaction data and task-

based contextual information to enable classifiers to learn, improve
and adapt over time.

2. The number of participants involved in this study was sufficient for
this research, however, it would be interesting to find out how the

classifier performs with a large population, for instance, what is its’
performance when 1000 participants are involved? Also, it would be

interesting to find out how the models work with older participants
(e.g., seniors) or with user models vastly different from those used in

this study.

Future work

5.5.1. Mobile device interruption management services

The field of mobile computing is growing at a staggering rate and
the problem of interruptions is even more poignant in this context

(Pielot et al., 2014; David et al., 2015; Sarker et al., 2017). Not until
quite recently did smartphones provide support for developers to cus-

tomize user notifications and interruptions (Pielot et al., 2017). The
classifier could be extended to draw from the user model and rich set of

sensory components on these devices (accelerometer, GPS location,
microphone, calendar, etc.). These additional input sources may en-

hance the performance of the classifier to increase user satisfaction and
productivity. Building on the findings of this research, future studies

should explore how the classifier could be adapted and improved to
serve in the context of mobile devices.

5.5.2. Intelligent personal assistant

In alignment with the current trends of cognitive computing and
personal assistants (e.g., Siri, Cortana, etc.), the classifier could be ex-

tended to observe what the user is doing in a broader more compre-
hensive perspective. For example, suppose the user is working on a

paper that involves many activities and the classifier observes that the
user has attempted to perform the same activity many times within a

½ h period. The classifier reasons about the ideal interruption point and
decides to issue an interrupt message, such as, “Excuse me, Sue, it ap-

pears that you have you been trying 〈name of task〉 repeatedly now for
30 min – the following 〈suggested action〉 will accomplish the same goal

more quickly.” Since the machine learning tool used in this research
(i.e., ANFIS) contains details about its reasoning process, an appropriate

detailed message can be provided. The classifier is well-designed to
support future work regarding presenting specific interruption6 A saccade is an abrupt quick but short movement in both eyes. An Eye

Tracker records major saccades (noticeable to the naked eye) and minor sac-

cades (where special instrumentation is needed to detect them). Perclos is the

percentage of eyelid closure over the pupil.
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messages that are personally relevant and of substantial utility to the
user's current context.

5.5.3. Enhanced personal modeling

This research showed that some user characteristics (e.g.,
ToleranceToInterruptions) are significant in the creation of good classi-

fiers. Future research that aims to deploy machine learning classifiers
for detecting interruptible moments in practice should focus on col-

lecting additional user characteristics such as, biometrics from wear-
able devices (e.g., SP02 pulsioximeter, spirometer, blood pressure,

EMG, ECG, temperature, etc.), and enriched personality trait attributes
(e.g., Myers–Briggs personality test). These additional inputs in com-

bination with task and environment details may result in classifiers that
offer improved accuracy, performance and relevance to users’ inter-

ruption experiences.

6. Conclusion

Determining when to interrupt a user at appropriate times as s/he
performs computer-based tasks is an ongoing problem to which we

have provided a solution. We created a classifier that contributes to the
field in the following ways:

1. The classifier incorporates a user model in its’ reasoning process.

Most interruption systems focus on task-based contextual

information only. Our classifier includes user and task contextual
information.

2. The classifier performs better than random, and, in the best models
constructed, performs at an accuracy of 98% with historic event

knowledge and 95.4% without historic knowledge (Tables 11–13).
3. User modelling integration with machine learning algorithms was

explored and appears to be very promising.
4. The classifier was implemented using an advanced machine learning

technology (ANFIS)—which is a novel contribution. No other in-
terruption system uses an ANFIS.

5. This research sheds light on reasoning about ideal interruption
points for free-form tasks. Currently, this is largely an unsolved

problem.

This research also assessed the participant's performance at the tasks
and evaluated the classifier's performance. It was demonstrated that

many models performed extremely well. The classifier was designed
with a framework so that it could be generalized to other tasks and

problem domains.
In the spirit of furthering science and this work, the MATLAB source

code for the classifier, models, and data sets will be openly available on
the author's and/or journal's website. We hope this will encourage other

researchers to extend and explore our work and to test and compare our
classifier with other interruption systems.

Appendices

This section presents supporting documents used in conducting this research. The appendices are:

• Appendix A: Experiment protocol

• Appendix B: Opening questionnaire – participant

• Appendix C: Closing questionnaire – participant

• Appendix D: Closing questionnaire – results: strategies and general comments

• Appendix E: ANFIS fuzzy rules

• Appendix F: Functional description of the interruption classifier

• Appendix G: Raw numbers for the cases "interrupt" relative to the total number of cases

Appendix A: experiment protocol

This appendix presents the experiment protocol that was used by the researcher to ensure the experiment was being conducted in a consistent

way for all participants.

Experiment protocol

1. Greeting and introduction
2. Verify the participant has the minimal requirements to participate in this experiment: (a) Have you have normal color vision?” (b) “can you read

English?” (c) “can you press keys on a computer keyboard with one hand?” and (d) “are you 18 years old or older?”
3. Acquire participant's signature on a consent form that explains their rights.

4. Administer participant opening questionnaire.
5. Ask participant to read the instruction sheet.

6. Ask participant to sit in a comfortable chair in front of a computer with the experimental tasks ready.
7. Set the -s114 -g3 in Run_Experiment.java

8. Record this information on Opening Questionnaire.
9. Administer the 12 trials of the computer-based dualtask: The experimenter will sit near the back of the room so as not to interfere, but able to

answer questions if necessary. Encourage participant to ask questions during the practice sessions.

10. Administer the Closing Questionnaire.

11. Debriefing—Ask participant to clarify their strategy used and explain why. Give participants their compensation.
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Appendix B: opening questionnaire – participant

This appendix presents the opening questionnaire that was used to collect information from participants in this research.
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Appendix C: closing questionnaire – participant

This appendix presents the closing questionnaire that was used to collect information from participants after completing the experiment.
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Appendix D: closing questionnaire – results: strategies and general comments

This appendix presents the strategies and general comments from selected participants (data extracted from closing questionnaires).

Participant

#

Strategy and general comments

1 ``I would bounce the character to make sure they are elevated in the air, and then serve the interruption.”
2 ``I tried to position the paramedics in a logical place and tried to switch when people were bouncing up. I picked people that were

closer to the ambulance when deciding who would be saved/not saved. For the matching task, I just focused on the word, and let my
peripheral eyesight decide.” [colour vs. shape]

3 ``If there were a lot of falling people, I would let the matching tasks queue up for a little bit.”
4 ``I usually served the interruption immediately after an interruption notification was issued (flash on the screen). This strategy, I

feel, rarely affected me from saving people. I would put most of my efforts into saving people and deal with the interruptions as they
came up.”

6 ``It was impossible to save all the people (jumping characters). Noted the number of matching interruptions that were queued (from

the number of flashes on the screen) and switched from game to matching task so that most of the time I would save the jumpers
and complete as many matching tasks as possible. Errors occurred when the estimated time to complete the match exceeded the

time estimated, resulting in failure to save jumpers (only in tight situations).”
7 ``My strategy was to save as many people by performing each interruption task right when notified to avoid a build-up of

interruption tasks (matching tasks).”
8 ``Wait for a period with a few jumpers or high jumpers, then go through the colour/shape task quickly. Sometimes, I let the number

of matching tasks build up too much. At times it was easy, other times, I felt rushed and stressed. I experienced some eye strain, and
staying focused was difficult.”

9 ``I tried to position the net/trampoline under oncoming people before activating the interruption task. Sometimes multiple matches
at once would thwart this strategy.”

10 ``Anticipate where people would fall and place the stretcher (medics) before switching to the interruption task.”
11 ``I put the catching net in place in advance, then switched to the interruption task while they bounced up.”

12 ``The mental demand for the Game Task was 3/5, whereas the Matching Task was 5/5. Effort: It took most of my focus. I had to
remind myself to blink. Serve interruptions when people are bouncing up. Leave stretcher in optimal place to catch (bounce) people

before serving interruption task.”
14 ``Place the stretcher under the next fall so that I could do the interruption as they bounced up then go back to the game task.”

15 ``Try to line up stretcher with as many falling people and quickly do the matching task.”
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16 ``I found the practice sessions very good – they were difficult, but near the end I had no trouble performing both the Game Task and
Matching Task. I would position the stretcher in the spot that a Jumper would hit and then served the interruption task. Before I

switched to serve an interruption, I made sure to remember the position of the falling people in my mind.”
17 ``The Matching Task by itself and the Game Task by itself were very simple. Together though it was more difficult. I would position

my stretcher so the jumpers would be secure while I switched tasks.”
19 ``I tried to keep tabs on the characters, and only interrupted the game play when I knew they wouldn't be falling away from the

stretcher. I usually let the matching tasks queue up for a bit, but if the queue was too big, then I would miss the timing for a jumper's
rescue when I returned to the Game Task.”

20 `I tried to interrupt when most of the jumpers were ascending to give me time to complete the matching task but I tried not to queue
more than three at a time. I am a person who does not like to lose and I was determined to get 100% even though I knew I couldn't

save all the Jumpers.”
21 “Move to a spot where I could remain for a few seconds, then perform a matching task.”

22 “I found the tasks easy to perform. My strategy was to anticipate and predict when the characters will start to fall. I would do a
matching task if the characters were bouncing up in the air.”

23 “Sometimes I tried to pick the interruption task quickly to get it out of the way, however, sometimes this is not the best strategy. I
tried to be in the right position with the medics before I served an interruption. Got used to the control and feel of the Game (both

Game Task and Matching Task) within 10 minutes. Frustrated that I couldn't save all the Jumpers.”
25 “Waited until the jumpers were in the air (bouncing up), then it was safe to serve the Matching Task.”

Appendix E: ANFIS fuzzy rules

This appendix presents the ANFIS Fuzzy Rules used during the development and refinement of the interruption classifier.

Table 1

ANFIS fuzzy rules—initial model.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 19

ANFIS fuzzy rules—initial model+ JumperState rules.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

E.R. Sykes International Journal of Human-Computer Studies 120 (2018) 66–93

85



Table 20

ANFIS fuzzy rules—initial model+ JumperState rules (Comprehensive).

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 21

ANFIS fuzzy rules: initial model+ ToleranceToInterruption.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 22

ANFIS fuzzy rules: initial model+ ToleranceToInterruption +Age.

Rule # Rule sescription

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 23

ANFIS fuzzy rules: initial model+Video_Game familiarity.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)
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Table 24

ANFIS fuzzy rules: initial model+ ToleranceToInterruptions+Video_Game familiarity.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 25

ANFIS fuzzy rules: initial model+ ToleranceToInterruptions+ frustration.

Rule # Rule fescription

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 26

ANFIS fuzzy rules: initial model+ frustration.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)
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Table 28

ANFIS fuzzy rules: initial+ tolerance to interruptions+distractibility.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 29

ANFIS fuzzy rules: initial model+ ToleranceToInterruptions+MultiTaskingAbility.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)

Table 27

ANFIS fuzzy rules: initial model+ distractibility.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)
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Table 31

ANFIS fuzzy rules—all rules model.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is small) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes1) (1)

2 If (Workload is easiest) and (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is

yes2) (1)

3 If (Workload is easy) and (QueueSize is small) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes3) (1)

4 If (Workload is easy) and (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes4)

(1)

5 If (Workload is easy) and (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (PreviousTimeStepMode is

InterruptionTask) then (interruptDecision is yes5) (1)

6 If (Workload is easiest) and (QueueSize is most) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes6) (1)

7 If (Workload is easiest) and (QueueSize is great) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes7) (1)

8 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then

(interruptDecision is yes8) (1)

9 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (PreviousTimeStepMode

is InterruptionTask) then (interruptDecision is yes9) (1)

10 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes10) (1)

11 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (UserSensitivity is Low) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes11) (1)

12 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (JumperStateNo4 is BouncingUp) and (UserSensitivity is Low) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes11) (1)

13 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then

(interruptDecision is yes13) (1)

14 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (PreviousTimeStepMode

is InterruptionTask) then (interruptDecision is yes14) (1)

15 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes15) (1)

16 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (UserSensitivity is Low) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes16) (1)

17 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (JumperStateNo5 is BouncingUp) and (UserSensitivity is Low) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes17) (1)

18 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then

(interruptDecision is yes18) (1)

19 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (PreviousTimeStepMode

is InterruptionTask) then (interruptDecision is yes19) (1)

20 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes20) (1)

21 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (UserSensitivity is Low) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes21) (1)

22 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (JumperStateNo5 is BouncingUp) and (UserSensitivity is Low) and (PreviousTimeStepMode is InterruptionTask) then (interruptDecision is yes22) (1)

23 If (JumperStateNo1 is FallingDown) and (UserSensitivity is Low) and (PreviousTimeStepMode is InGame) then (interruptDecision is no1) (1)

24 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (UserSensitivity is Low) and (PreviousTimeStepMode is InGame) then (interruptDecision

is no2) (1)

25 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (JumperStateNo3 is FallingDown) and (UserSensitivity is Low) and

(PreviousTimeStepMode is InGame) then (interruptDecision is no3) (1)

26 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (JumperStateNo3 is FallingDown) and (JumperStateNo4 is FallingDown) and

(UserSensitivity is Low) and (PreviousTimeStepMode is InGame) then (interruptDecision is no4) (1)

27 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (JumperStateNo3 is FallingDown) and (JumperStateNo4 is FallingDown) and

(JumperStateNo5 is FallingDown) and (UserSensitivity is Low) and (PreviousTimeStepMode is InGame) then (interruptDecision is no5) (1)

28 If (Workload is hard) and (PreviousTimeStepMode is InGame) then (InterruptDecision is no6) (1)

29 If (Workload is hardest) and (PreviousTimeStepMode is InGame) then (InterruptDecision is no7) (1)

Table 30

ANFIS fuzzy rules: initial model+ PreviousTimeStep.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is least) then (interruptDecision

is no1) (1)

2 If (Workload is easiest) and (QueueSize is small) then (interruptDecision

is yes2) (1)

3 If (Workload is easy) and (QueueSize is most) then (interruptDecision is

yes3) (1)

4 If (Workload is easy) and (QueueSize is great) then (interruptDecision is

yes4) (1)

5 If (Workload is hard) and (QueueSize is least) then (interruptDecision is

no2) (1)

6 If (Workload is hard) and (QueueSize is small) then (interruptDecision

is no3) (1)

7 If (Workload is hardest) then (interruptDecision is no4) (1)
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Appendix F: functional description of the interruption classifier

The Interruption Classifier is based on an Adaptive Neuro-Fuzzy Inference Systems machine learning tool. The ANFIS is an advanced hybrid soft

computing tool that use fuzzy logic and artificial neural networks (Jang et al., 1997). Fuzzy systems and neural networks are two tools that nicely
complement one another. While fuzzy logic allows a problem to be viewed on higher and more human-intuitive level, neural networks have been

shown to work very effectively in learning, adapting and dealing with raw data (Jang et al., 1997). However, fuzzy systems lack the ability to learn
and make self-adjustments. Thus, the amalgamation of a fuzzy system with a neural network into one system (i.e., ANFIS) offered a number of

benefits for building the Interruption Classifier. Fig. 7 shows a 2-input ANFIS.

Layer 1 is the input layer. Layer 2 is the fuzzification layer where neurons determine the degree of membership based on the input and quantifier
(this is the if-part of the fuzzy rules). Layer 3 is the rule layer: each neuron in this layer corresponds to a fuzzy rule. Layer 4 is the normalization layer.

Layer 5 performs defuzzification during which each neuron calculates the weighted consequent value of a given rule (this is the then-part of the fuzzy
rules). Layer 6 produces the final output. For a comprehensive description of ANFIS please see Jang et al. (1997).

ANFIS's offer efficient and effective learning and adaptiveness capabilities (Jang et al., 1997). This is accomplished through forward and
backward propagation of error signals through its network. In the forward pass, a training set is presented to the ANFIS, neuron outputs are

computed layer-by-layer in the network and the rule-consequent parameters are determined by the least-squares estimator (Jang et al., 1997). These
results are then used in the next pass in the learning process—the backward pass. In the backward pass the back-propagation algorithm is used. Error

signals are sent backwards through the network and the antecedent parameters are tuned appropriately using the chain rule (Jang et al., 1997). In
this way, an ANFIS can learn and adapt quickly based on training datasets. In this work, the successful models created by the Classifier were based on

the following principles:
Defining fuzzy rules and membership functions: The success of a model is dependent on well-defined rules that represent the task and user contexts

as fully and precisely as possible. A set of rules were created based on user modeling information such as personality traits, frustration level,
tolerance to interruptions, etc. Additional set of rules characterized task details in combination with the user's real-time activities. For example, in

the main experiment, the fuzzy variable,Workload, is dynamically adjusted based on the number of jumpers in the primary (game) task. This variable
was characterised by 4 membership functions: easiest, easy, hard, hardest. Similarly, QueueSize representing the number waiting of interruption tasks,

Table 32

ANFIS fuzzy rules—all rules model except PreviousTimeStepMode input variable.

Rule # Rule description

1 If (Workload is easiest) and (QueueSize is small) then (interruptDecision is yes1) (1)

2 If (Workload is easiest) and (QueueSize is small) and (JumperStateNo1 is BouncingUp) then (interruptDecision is yes2) (1)

3 If (Workload is easy) and (QueueSize is small) then (interruptDecision is yes3) (1)

4 If (Workload is easy) and (QueueSize is small) and (JumperStateNo1 is BouncingUp) then (interruptDecision is yes4) (1)

5 If (Workload is easy) and (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) then (interruptDecision is yes5) (1)

6 If (Workload is easiest) and (QueueSize is most) then (interruptDecision is yes6) (1)

7 If (Workload is easiest) and (QueueSize is great) then (interruptDecision is yes7) (1)

8 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) then (interruptDecision is yes8) (1)

9 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) then (interruptDecision is

yes9) (1)

10 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) then (interruptDecision is yes10) (1)

11 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (UserSensitivity is Low) then (interruptDecision is yes11) (1)

12 If (QueueSize is small) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (JumperStateNo4 is BouncingUp) and (UserSensitivity is Low) then (interruptDecision is yes11) (1)

13 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) then (interruptDecision is yes13) (1)

14 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) then (interruptDecision is

yes14) (1)

15 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) then (interruptDecision is yes15) (1)

16 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (UserSensitivity is Low) then (interruptDecision is yes16) (1)

17 If (QueueSize is most) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (JumperStateNo5 is BouncingUp) and (UserSensitivity is Low) then (interruptDecision is yes17) (1)

18 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) then (interruptDecision is yes18) (1)

19 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) then (interruptDecision is

yes19) (1)

20 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) then (interruptDecision is yes20) (1)

21 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (UserSensitivity is Low) then (interruptDecision is yes21) (1)

22 If (QueueSize is great) and (JumperStateNo1 is BouncingUp) and (JumperStateNo2 is BouncingUp) and (JumperStateNo3 is BouncingUp) and (JumperStateNo4 is

BouncingUp) and (JumperStateNo5 is BouncingUp) and (UserSensitivity is Low) then (interruptDecision is yes22) (1)

23 If (JumperStateNo1 is FallingDown) and (UserSensitivity is Low) then (interruptDecision is no1) (1)

24 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (UserSensitivity is Low) then (interruptDecision is no2) (1)

25 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (JumperStateNo3 is FallingDown) and (UserSensitivity is Low) then (interruptDecision

is no3) (1)

26 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (JumperStateNo3 is FallingDown) and (JumperStateNo4 is FallingDown) and

(UserSensitivity is Low) then (interruptDecision is no4) (1)

27 If (JumperStateNo1 is FallingDown) and (JumperStateNo2 is FallingDown) and (JumperStateNo3 is FallingDown) and (JumperStateNo4 is FallingDown) and

(JumperStateNo5 is FallingDown) and (UserSensitivity is Low) then (interruptDecision is no5) (1)

28 If (Workload is hard) then (InterruptDecision is no6) (1)

29 If (Workload is hardest) then (InterruptDecision is no7) (1)
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was characterized by 4 membership functions: least, small, great and most. Each membership function was a trapezoidal wave form carefully con-
structed from ANFIS research literature, researcher observation, user's strategies and empirical evidence. The Classifier then tuned these functions

based on the training datasets.
Training datasets: Using different training datasets had a profound impact on the models created. Several participant datasets produced models

that met and exceeded the performance criteria. These models performed well and were generalizable across the entire participant group. Analysis
showed that these participants were very consistent in their strategies and interruption timings when performing the tasks.

Checking datasets: Checking datasets were used for model validation. The model error for the checking data set tends to decrease as the training

takes place up to the point that overfitting begins (Jang, 1996). A substantial amount of research was conducted to reduce overfitting. This was
accomplished by experimenting with different checking datasets and the number of epochs (iterations of forward-backward passes) for the ANFIS to

learn effectively.
Historic event knowledge: The impact of historic event knowledge is significant. Knowing the past, especially when it is 100ms or less in the past

has a profound impact in reasoning and deciding whether to interrupt the user at a given point in time. All models created that used historic
knowledge performed extremely well.

The Classifier is generalizable to a degree. We discovered that user modeling information such as personality traits are generalizable across all
models in all the experiments conducted. However, other aspects of the modeling process (e.g., task details), need to be explicitly represented in a

model for it to be successful and are therefore not directly generalizable.

Appendix G: raw numbers for the cases of ``interruptions" relative to the total number of cases

Participant

#

% Cases correctly

classified

total # of cases (both "interrupt" and "do not

interrupt") (ms)

Time in interruption

cases (ms)

% of interruption cases /

total # of cases

1 98.799 270,000.000 55,727.924 20.640

2 99.795 270,000.000 46,340.689 17.163
3 97.372 270,000.000 43,297.927 16.036

4 99.839 270,000.000 48,495.032 17.961
5 98.726 270,000.000 68,743.174 25.460

6 99.202 270,000.000 52,578.077 19.473
7 98.112 270,000.000 42,764.913 15.839

8 94.994 270,000.000 47,395.328 17.554
9 99.846 270,000.000 48,066.241 17.802

10 99.649 270,000.000 47,859.298 17.726
11 99.180 270,000.000 41,405.168 15.335

12 97.848 270,000.000 64,242.230 23.793
13 99.663 270,000.000 79,478.079 29.436

14 98.690 270,000.000 60,126.867 22.269
15 98.316 270,000.000 57,187.750 21.181

16 99.649 270,000.000 60,934.798 22.568
17 99.407 270,000.000 58,854.531 21.798

Fig. 7. 2-input adaptive Neuro-Fuzzy inference system.
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18 99.414 270,000.000 62,066.451 22.988
19 99.517 270,000.000 46,867.749 17.358

20 98.763 270,000.000 59,503.997 22.039
21 99.810 270,000.000 51,865.072 19.209

22 99.876 270,000.000 52,997.285 19.629
23 99.810 270,000.000 29,388.352 10.885

24 99.392 270,000.000 73,065.327 27.061
25 99.597 270,000.000 30,644.713 11.350

Min 94.994 29,388.352 10.885
Max 99.876 79,478.079 29.436

Mean 99.011 53,195.879 19.702
Median 99.407 52,578.077 19.473

Std Dev 1.061 11,577.532 4.288

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ijhcs.2018.06.005.
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