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Motivations

e Why use Datalog to program distributed systems?
o Conciseness [1]

o Executable programs generated directly from high-level
specifications [1]

o Database techniques applied to distributed systems [1, 3]

o Matching between implementation and specification
properties [1, 2]

O ...

o
=
=
®
=
=
O
M
A

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 4



Motivations Cont'd

 BUT
o Still something is missing: the capability to express what a
node knows
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= We are able to think about what a node knows and not about
communication details

= Specifications become more intuitive and therefore less error-
prone

= Nice formalization for both data and code communication
= Separation between functional and non-functional properties

* Knowlog: Datalog leveraged with epistemic modal
operators for designing distributed systems

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 5
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Preamble

e Based on Dedalus [4]
e BUT

o No asynchronous rules
= We want to push non-functional properties outside the logic
= In the future we will investigate how non functional properties
affect the logic
o We use accessible relations as communication means

= We want to restrict the set of relations used to transmit facts
= More close to data integration approaches [5]
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DedalusX: Datalog in Time and Space

e Datalog with a notion of time...

o Tuples by default are ephemeral. they exist just in one
time-step

o Tuples can be persisted using frame rules

o Multiple instances I[n], one for each time-step n

o Two sets of rules: Deductive and Inductive [4]
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e ...and space
o A set of accessible relations partitioned among nodes
o Each adb relation contains a location specifier term [0]

o Facts are exchanged using adb relations by specifying the
desired location

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 9
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States, Runs and Systems

e The local state s; of node / is defined by the tuple (2, I.)
where Zis the program of node jand I is an instance over 2

e A global state g is a tuple in the form (s, ..., S,) where s; is
the node /s state

e A run is a function that binds time values to global states:

or:N — Gwhere G = {5, ..., S} with § the set of possible local
states for node j

o Given a run rand a time ¢, the tuple (r, t) is referred as a point
o A system .Sis a non empty set of runs

e An interpreted system is a tuple (S, m) with Sa system and
rTan interpretation
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Knowledge in Distributed Systems [7]

e Situation to model: “for what node / knows, the
system could be at point where ¥ is true”
o Knowledge is determined by /s local state

o [ cannot distinguish two point in the system in which it

has the same local state

= Given two points with global states respectively g and g’ and an
indistinguishable relation ~;, g ~; g’ if node / has the same local
state both in gand g’
o An interpreted system can be modeled using a Kripke
structure

o
=
=
®
=
8
O
M
A

M= (W, 4,, ..., 4, D, mn

with W the set of possible global states, 4, = ~;, D the

domain and rr an interpretation
= Assumption: D is the same in every possible world

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 13



The modal operator K [7]

e Given a Kripke structure ‘M, a world w € Wand a
valuation v on ‘M, the satisfaction relation for a

formula ¥ is:

o (M, w, V) |= R, ..., t)iff (At1), ..., (tn)) € n(w)(R)
o (Mw,v) |= =y iif (Mw,v) |+ ¢

o (Mw,v) |=¢ A piff(M,w,v)|=¢¥and (M,w,V) |=¢

o (Mw, V) |= VY if(Mw,v[x/a]) |= ¢ forevery a € U

o (Mw,v) |= K¢ iff (M,u,v) |=¢ for all usuch that
(W,U) < Szli
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e The modal operator K express what a node i "knows”
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The Axiom System S5 [7]

e The definition of knowledge has the S5 properties
1.
2.

Distributed Axiom: |= (K¢Y A K(Y — ¢)) = Ko
Knowledge Generalization Rule: For all structures 41, if A1
|= ¥ then M |= K¢

Truth Axiom: |= K¢ — ¢

Positive Introspection Axiom: |= K¢¥ — KK Y

Negative Introspection Axiom: |= =K¢ — K=Ky

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 15
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KnowlogX

e A rule in Knowlogk has the form:

(H<B.,...B)).

o
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with each literal in the form AR.

o Symbols 1 and A denoting a (possibly empty) sequence
of modal operators K.

o [ is called modal context and is used to assign to each
node, the rules the node is responsible for

o A communication rule has no modal context, but every
body atom is in the form KAR, while head atom has the
form KAR', with i #j.
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An Example: the Two Phase Commit

o Inspired by [8]
e Phases:

o voting phase - the coordinator submits to all the
transaction’s participants the willingness to perform a
distributed commit. Each participant sends a vote to the
coordinator

o decision phase - the coordinator collects all votes and
decides if performing global commit or abort. The decision
is then issued to the participants

e Assumption:
o No failures
o No time-out actions
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The 2PC Coordinator

\\Initialization
. K (1og(Tx_id,State)@next:-log(Tx_id,State)).
: Ky(part_cnt(count<N>):-participants(N)).

: K(start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
—log(Tx_id,State_R),State_2!=“Vote-req”).

. Ky(transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State)).
: Kgparticipants(pl).
. Kgparticipants(pR).
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\\Decision Phase
r7: K (yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: K (log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
State=="vote-req”,transaction(Tx_id,State)).

r9: K (log(Tx_id,"abort"):-vote(Vote, Tx_id,Part),Vote == "no",
transaction(Tx_id,State), State =="vote-req").

\\ Communication
rl0: Kitransaction(Tx_id, State):-K participants(X), K transaction(Tx_id,State).

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 20
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\\Decision Phase
r7: K (yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: K (log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
State=="vote-req”,transaction(Tx_id,State)).

r9: K (log(Tx_id,"abort"):-vote(Vote, Tx_id,Part),Vote == "no",
transaction(Tx_id,State), State =="vote-req").

\\ Communication
r10: {K, tjpnsaction(Tx_id, State

priicipants(Xf K thansaction(Tx_id,State).
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The 2PC Coordinator

\\Initialization
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\\Decision Phase
r7: K (yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: K (log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
State=="vote-req”,transaction(Tx_id,State)).

r9: K (log(Tx_id,"abort"):-vote(Vote, Tx_id,Part),Vote == "no",
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The 2PC Coordinator (with syntactic sugar)

#Program initialization @C
log(Tx_id,State)@next:-log(Tx_id,State).
part_cnt(count<N>):-participants(N).

start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
—log(Tx_id,State_R),State_R2!=“Vote-req”.

transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State).
participants(pl).
participants(pR).

#Program decisionPhase @C
rv: yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes”.

r8: log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1l),C==C1,
State=="vote-req”,transaction(Tx_id,State).

ro9: log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
transaction(Tx_id,State), State =="vote-req”.

\\ Communication
rl0: Kitransaction(Tx_id, State):-K participants(X), K transaction(Tx_id,State).
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Operators for Knowledge in Group of Nodes [7]

e Given a non empty set of nhodes G
o (Mw,v) |= E;¢ iff (Mw,v) |=K¢ forall i € G
o (Mw,v) |= Ds¢ iff (M,u,v) |=9¢ for all uthat are (w,u) €
rWIEG Ri
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e The Knowledge Axiom, Distribution Axiom, Positive
Introspection Axiom, and Negative Introspection Axiom
hold also for E.and D,

e In addition:

o |=Dpt « KUY
o|=Dgp = DU if GE G’
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Incorporating Higher level of Knowledge: Knowlog

r8: K, (log(Tx_id,"commit”):-Eyvote(“yes”, Tx_id), participants(X),
State=="vote-req”,transaction(Tx_id,State)).
r9: K, (log(Tx_id,"abort"):-D,vote(Vote, Tx_id),Vote == "no",participants(X),
transaction(Tx_id,State), State =="vote-req").
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e E.is used when a fact, to be considered true, is
correctly replicated in every node /i € G
— in front of communication rules emulates the multicast
primitive
— as a model context

e D.is employed when facts that are fragmented inside
relations distributed in G must be assembled in one
place

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 26



Reified Form

e Each Knowlog rule is rewritten in its reified form:
o each relation contains a knowledge accumulator term
o knowledge operators are pushed into the accumulator term

o for each accessible relation also the location term is filled
accordingly

o 4 new built-in relations:
= ©(X,Y,7) to concatenate epistemic operators
= K(X,Y), E(<X>Y), D(<X>Y) to build knowledge accumulator
terms
o if E; in front of a communication rule, a set of new
communication rules is generated, each one with K;and / €

G
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Reified Form: Examples

* Examples
o K,(cursor(Index):-new(Index)) =>»
cursor(Ka,Index):-new(Ka,Index)
o K,Kgvote(Tx_id):-Kgzvote(Tx_id),Kgpath(A,B) =

vote(KaKb,#A,Tx_id):-vote(Kb,#B,Index),path(Kb,#B,A),
K(B,Kb), K(A,Ka), ®(Ka,Kb,KaKb)
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o Eymessage(1d):-K,info(Id,Value), K,nodes(X) =»
K,message(1d):-K,info(Id,Value)
K.message(Id):-K,info(Id,Value)
K.message(Id):-K,info(Id,Value)
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Conclusions

e Knowlog: Datalog + the epistemic modal operators
for:
o high-level specifications of distributed systems
o communication of data and code

e Future works:

o Definition of the Knowlog framework

o Operational semantics, complexity, expressiveness
o How do nodes “learn”?
O

How do non-functional properties may affect the logic
= Definition of synchronous and asynchronous systems

o Proof-of-concept implementation
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