
D
B

 G
ro

u
p
 @

 u
n
im

o

Reasoning about Knowledge in Distributed
Systems Using Datalog

Matteo Interlandi
University of Modena and Reggio Emilia

Datalog 2.0 Workshop - 11 September 2012, Wien

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

D
B

 G
ro

u
p
 @

 u
n
im

o

Motivations

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 4

•  Why use Datalog to program distributed systems?

o  Conciseness [1]

o  Executable programs generated directly from high-level
specifications [1]

o Database techniques applied to distributed systems [1, 3]

o Matching between implementation and specification
properties [1, 2]

o …

D
B

 G
ro

u
p
 @

 u
n
im

o

Motivations Cont’d

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 5

•  BUT
o  Still something is missing: the capability to express what a

node knows

§  We are able to think about what a node knows and not about
communication details

§  Specifications become more intuitive and therefore less error-
prone

§  Nice formalization for both data and code communication

§  Separation between functional and non-functional properties

•  Knowlog: Datalog leveraged with epistemic modal

operators for designing distributed systems

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

D
B

 G
ro

u
p
 @

 u
n
im

o

Preamble

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 8

•  Based on Dedalus [4]

•  BUT

o No asynchronous rules

§  We want to push non-functional properties outside the logic

§  In the future we will investigate how non functional properties
affect the logic

o We use accessible relations as communication means

§  We want to restrict the set of relations used to transmit facts

§  More close to data integration approaches [5]

D
B

 G
ro

u
p
 @

 u
n
im

o

DedalusK: Datalog in Time and Space

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 9

•  Datalog with a notion of time…

o  Tuples by default are ephemeral: they exist just in one

time-step

o  Tuples can be persisted using frame rules

o Multiple instances I[n], one for each time-step n

o  Two sets of rules: Deductive and Inductive [4]

•  …and space

o A set of accessible relations partitioned among nodes

o Each adb relation contains a location specifier term [6]

o  Facts are exchanged using adb relations by specifying the

desired location

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

✓

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

✓

D
B

 G
ro

u
p
 @

 u
n
im

o

States, Runs and Systems

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 12

•  The local state si of node i is defined by the tuple (Pi, Ii)
where Pi is the program of node i and Ii is an instance over Pi

•  A global state g is a tuple in the form (s1, ..., sn) where si is

the node i ’s state

•  A run is a function that binds time values to global states:

o  r : N → G where G = {S1, …, Sn} with Si the set of possible local
states for node i

o  Given a run r and a time t, the tuple (r, t) is referred as a point

•  A system S is a non empty set of runs

•  An interpreted system is a tuple (S, π) with S a system and

π an interpretation

D
B

 G
ro

u
p
 @

 u
n
im

o

Knowledge in Distributed Systems [7]

•  Situation to model: “for what node i knows, the

system could be at point where ψ is true”

o  Knowledge is determined by i ’s local state

o  i cannot distinguish two point in the system in which it

has the same local state
§  Given two points with global states respectively g and g’ and an

indistinguishable relation ~i , g ~i g’ if node i has the same local
state both in g and g’

o  An interpreted system can be modeled using a Kripke
structure

" " "M = (W, A1, …, An, D, π)

 with W the set of possible global states, Ai = ~i , D the

domain and π an interpretation
§  Assumption: D is the same in every possible world

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 13

D
B

 G
ro

u
p
 @

 u
n
im

o

The modal operator K [7]

•  Given a Kripke structure M , a world w ∈ W and a
valuation v on M, the satisfaction relation for a

formula ψ is:

o  (M, w, v) |= R(t1, ..., tn) iff (v(t1), ..., v(tn)) ∈ π (w)(R)

o  (M,w,v) |= ¬ψ iif (M,w,v) |≠ ψ

o  (M,w,v) |=ψ∧φiff(M,w,v)|=ψand (M,w,v) |=φ

o  (M,w,v) |= ∀ψ iif (M,w,v [x/a]) |= ψ for every a ∈ U

o  (M,w,v) |= Kiψ iff (M,u,v) |=ψ for all u such that
 (w,u) ∈ Ai

•  The modal operator Ki express what a node i ”knows”

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 14

D
B

 G
ro

u
p
 @

 u
n
im

o

The Axiom System S5 [7]

•  The definition of knowledge has the S5 properties

1.  Distributed Axiom: |= (Kiψ ∧ Ki(ψ → φ)) → Kiφ

2.  Knowledge Generalization Rule: For all structures M, if M
|= ψ then M |= Kiψ

3.  Truth Axiom: |= Kiψ → ψ

4.  Positive Introspection Axiom: |= Kiψ → KiKiψ

5.  Negative Introspection Axiom: |= ¬Kiψ → Ki¬Kiψ

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 15

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

✓

✓

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

✓

✓

D
B

 G
ro

u
p
 @

 u
n
im

o

KnowlogK

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 18

•  A rule in KnowlogK has the form:

 ☐(H ← B1,…, Bn).

 with each literal in the form ΔR.

o  Symbols ☐ and Δ denoting a (possibly empty) sequence

of modal operators K.

o  ☐ is called modal context and is used to assign to each
node, the rules the node is responsible for

o  A communication rule has no modal context, but every

body atom is in the form KiΔR, while head atom has the
form KjΔR’, with i ≠j.

D
B

 G
ro

u
p
 @

 u
n
im

o

An Example: the Two Phase Commit

•  Inspired by [8]

•  Phases:

o  voting phase - the coordinator submits to all the

transaction’s participants the willingness to perform a
distributed commit. Each participant sends a vote to the
coordinator

o  decision phase - the coordinator collects all votes and

decides if performing global commit or abort. The decision
is then issued to the participants

•  Assumption:

o No failures

o No time-out actions

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 19

D
B

 G
ro

u
p
 @

 u
n
im

o

The 2PC Coordinator

 \\Initialization

r1: KC(log(Tx_id,State)@next:-log(Tx_id,State)).

r2: KC(part_cnt(count<N>):-participants(N)).

r3: KC(start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
 ¬log(Tx_id,State_2),State_2!=“Vote-req”).

r4: KC(transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State)).

r5: KCparticipants(p1).

r6: KCparticipants(p2).

 \\Decision Phase

r7: KC(yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: KC(log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
 State=="vote-req”,transaction(Tx_id,State)).

r9: KC(log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
 transaction(Tx_id,State), State =="vote-req").

 \\ Communication

r10: KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 20

D
B

 G
ro

u
p
 @

 u
n
im

o

The 2PC Coordinator

 \\Initialization

r1: KC(log(Tx_id,State)@next:-log(Tx_id,State)).

r2: KC(part_cnt(count<N>):-participants(N)).

r3: KC(start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
 ¬log(Tx_id,State_2),State_2!=“Vote-req”).

r4: KC(transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State)).

r5: KCparticipants(p1).

r6: KCparticipants(p2).

 \\Decision Phase

r7: KC(yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: KC(log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
 State=="vote-req”,transaction(Tx_id,State)).

r9: KC(log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
 transaction(Tx_id,State), State =="vote-req").

 \\ Communication

r10: KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 21

D
B

 G
ro

u
p
 @

 u
n
im

o

The 2PC Coordinator

 \\Initialization

r1: KC(log(Tx_id,State)@next:-log(Tx_id,State)).

r2: KC(part_cnt(count<N>):-participants(N)).

r3: KC(start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
 ¬log(Tx_id,State_2),State_2!=“Vote-req”).

r4: KC(transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State)).

r5: KCparticipants(p1).

r6: KCparticipants(p2).

 \\Decision Phase

r7: KC(yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: KC(log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
 State=="vote-req”,transaction(Tx_id,State)).

r9: KC(log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
 transaction(Tx_id,State), State =="vote-req").

 \\ Communication

r10: KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 22

Knowledge-Oriented
Programming [9]

•  Modal operators for expressing:

o  State of knowledge

o  Actions

D
B

 G
ro

u
p
 @

 u
n
im

o

The 2PC Coordinator

 \\Initialization

r1: KC(log(Tx_id,State)@next:-log(Tx_id,State)).

r2: KC(part_cnt(count<N>):-participants(N)).

r3: KC(start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
 ¬log(Tx_id,State_2),State_2!=“Vote-req”).

r4: KC(transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State)).

r5: KCparticipants(p1).

r6: KCparticipants(p2).

 \\Decision Phase

r7: KC(yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8: KC(log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
 State=="vote-req”,transaction(Tx_id,State)).

r9: KC(log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
 transaction(Tx_id,State), State =="vote-req").

 \\ Communication

r10: KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 23

D
B

 G
ro

u
p
 @

 u
n
im

o

The 2PC Coordinator (with syntactic sugar)

 #Program initialization @C

r1: log(Tx_id,State)@next:-log(Tx_id,State).

r2: part_cnt(count<N>):-participants(N).

r3: start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”,
 ¬log(Tx_id,State_2),State_2!=“Vote-req”.

r4: transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State).

r5: participants(p1).

r6: participants(p2).

 #Program decisionPhase @C

r7: yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes”.

r8: log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
 State=="vote-req”,transaction(Tx_id,State).

r9: log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
 transaction(Tx_id,State), State =="vote-req”.

 \\ Communication

r10: KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).

 Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 24

D
B

 G
ro

u
p
 @

 u
n
im

o

Operators for Knowledge in Group of Nodes [7]

•  Given a non empty set of nodes G

o  (M,w,v) |= EGψ iff (M,w,v) |=Kiψ for all i ∈ G

o  (M,w,v) |= DGψ iff (M,u,v) |=ψ for all u that are (w,u) ∈

 ∩i∈G Ri

•  The Knowledge Axiom, Distribution Axiom, Positive
Introspection Axiom, and Negative Introspection Axiom

hold also for EG and DG

•  In addition:

o  |= D{i}ψ ↔ Kiψ

o  |= DGψ → DG’ψ if G ⊆ G′

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 25

D
B

 G
ro

u
p
 @

 u
n
im

o

Incorporating Higher level of Knowledge: Knowlog

r8: KC(log(Tx_id,"commit”):-EXvote(“yes”,Tx_id), participants(X),
 State=="vote-req”,transaction(Tx_id,State)).

r9: KC(log(Tx_id,"abort"):-Dxvote(Vote,Tx_id),Vote == "no",participants(X),
 transaction(Tx_id,State), State =="vote-req").

•  EG is used when a fact, to be considered true, is
correctly replicated in every node i ∈ G

–  in front of communication rules emulates the multicast
primitive

–  as a model context

•  DG is employed when facts that are fragmented inside
relations distributed in G must be assembled in one

place

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 26

D
B

 G
ro

u
p
 @

 u
n
im

o

Reified Form

•  Each Knowlog rule is rewritten in its reified form:

o  each relation contains a knowledge accumulator term

o  knowledge operators are pushed into the accumulator term

o  for each accessible relation also the location term is filled

accordingly

o  4 new built-in relations:
§  ⊕(X,Y,Z) to concatenate epistemic operators

§  K(X,Y), E(<X>,Y), D(<X>,Y) to build knowledge accumulator
terms

o  if EG in front of a communication rule, a set of new
communication rules is generated, each one with Ki and i ∈
G

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 27

D
B

 G
ro

u
p
 @

 u
n
im

o

Reified Form: Examples

•  Examples
o  KA(cursor(Index):-new(Index)) è

cursor(Ka,Index):-new(Ka,Index)

o  KAKBvote(Tx_id):-KBvote(Tx_id),KBpath(A,B) è

 vote(KaKb,#A,Tx_id):-vote(Kb,#B,Index),path(Kb,#B,A),
 K(B,Kb), K(A,Ka), ⊕(Ka,Kb,KaKb)

o  EXmessage(Id):-KAinfo(Id,Value), KAnodes(X) è

K1message(Id):-KAinfo(Id,Value)

K2message(Id):-KAinfo(Id,Value)

K3message(Id):-KAinfo(Id,Value)

 …

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 28

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

✓

✓
✓

D
B

 G
ro

u
p
 @

 u
n
im

o

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

Motivations

Preamble

The Knowledge Model

Knowlog

Conclusions

✓

✓

✓
✓

D
B

 G
ro

u
p
 @

 u
n
im

o

Conclusions

•  Knowlog: Datalog + the epistemic modal operators
for:

o  high-level specifications of distributed systems

o  communication of data and code

•  Future works:

o  Definition of the Knowlog framework

o  Operational semantics, complexity, expressiveness

o  How do nodes “learn”?

o  How do non-functional properties may affect the logic
§  Definition of synchronous and asynchronous systems

o  Proof-of-concept implementation

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 31

D
B

 G
ro

u
p
 @

 u
n
im

o

References

Joseph M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic. In SIGMOD Rec. 39, September 2010, 5-19.

T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for
declarative networking. In PODS’11, Athens, Greece, USA, 283-292.

Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and
Yun Mao. Efficient querying and maintenance of network provenance at
internet-scale. In SIGMOD'10, Indianapolis, Indiana, USA, 615-626.

Peter Alvaro, William R. Marczak, Neil Conway, et al. Dedalus: datalog in
time and space. Datalog’10, Springer-Verlag, Berlin, Heidelberg, 262-281.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Inconsistency tolerance in P2P data
integration: An epistemic logic approach. In Inf. Syst., June 2008, 33, 4-5,
360-384.

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 32

[1]

[2]

[3]

[4]

[5]

D
B

 G
ro

u
p
 @

 u
n
im

o

References (2)

Boon Thau Loo, Tyson Condie, Inos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative networking: language, execution and optimization. In
SIGMOD’06. Chicago, IL, USA, 97-108.

Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses.
Reasoning about Knowledge. 2003, MIT Press, Cambridge, MA, USA.

Peter Alvaro, Tyson Condie, Neil Conway, Joseph M. Hellerstein, and Russell
Sears. I do declare: consensus in a logic language. SIGOPS Oper. Syst. Rev.
43, 4, January 2010, 25-30.

Yoram Moses and Orit Kislev. Knowledge-oriented programming. PODC '93,
Ithaca, NY, USA, 261-270.

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 33

[6]

[7]

[8]

[9]

D
B

 G
ro

u
p
 @

 u
n
im

o

THANKS!!

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog

