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Motivations 
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•  Why use Datalog to program distributed systems?  

o  Conciseness [1] 

o  Executable programs generated directly from high-level 
specifications [1] 

o Database techniques applied to distributed systems [1, 3] 

o Matching between implementation and specification  
properties [1, 2] 

o … 
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Motivations Cont’d 
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•  BUT 
o  Still something is missing: the capability to express what a 

node knows 

§  We are able to think about what a node knows and not about 
communication details 

§  Specifications become more intuitive and therefore less error-
prone 

§  Nice formalization for both data and code communication  

§  Separation between functional and non-functional properties 

 

•  Knowlog: Datalog leveraged with epistemic modal 

operators for designing distributed systems 
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Preamble 
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•  Based on Dedalus [4] 

•  BUT 

o No asynchronous rules  

§  We want to push non-functional properties outside the logic 

§  In the future we will investigate how non functional properties 
affect the logic 

o We use accessible relations as communication means 

§  We want to restrict the set of relations used to transmit facts 

§  More close to data integration approaches [5] 
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DedalusK: Datalog in Time and Space 
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•  Datalog with a notion of time…  

o  Tuples by default are ephemeral: they exist just in one 

time-step 

o  Tuples can be persisted using frame rules  

o Multiple instances I[n], one for each time-step n 

o  Two sets of rules: Deductive and Inductive [4] 
 

•  …and space  

o A set of accessible relations partitioned among nodes 

o Each adb relation contains a location specifier term [6] 

o  Facts are exchanged using adb relations by specifying the 

desired location  
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States, Runs and Systems 

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 12 

•  The local state si of node i is defined by the tuple (Pi, Ii) 
where Pi is the program of node i and Ii is an instance over Pi 

•  A global state g is a tuple in the form (s1, ..., sn) where si is 

the node i ’s state 

•  A run is a function that binds time values to global states: 

o  r : N → G where G = {S1, …, Sn} with Si the set of possible local 
states for node i  

o  Given a run r and a time t, the tuple (r, t) is referred as a point  

•  A system S is a non empty set of runs 

•  An interpreted system is a tuple (S, π) with S a system and 

π an interpretation 
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Knowledge in Distributed Systems [7] 

•  Situation to model: “for what node i knows, the 

system could be at point where ψ is true” 

o  Knowledge is determined by i ’s local state 

o  i cannot distinguish two point in the system in which it 

has the same local state 
§  Given two points with global states respectively g and g’ and an 

indistinguishable relation ~i , g ~i g’ if node i has the same local 
state both in g and g’ 

o  An interpreted system can be modeled using a Kripke 
structure 

" " "M = (W, A1, …, An, D, π) 

   with W the set of possible global states, Ai = ~i , D the 

domain and π  an interpretation 
§  Assumption: D is the same in every possible world 
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The modal operator K [7] 

•  Given a Kripke structure M , a world w ∈ W and a 
valuation v on M, the satisfaction relation for a 

formula ψ is: 

o  (M, w, v) |= R(t1, ..., tn) iff (v(t1), ..., v(tn)) ∈ π (w)(R) 

o  (M,w,v) |= ¬ψ iif (M,w,v) |≠ ψ 

o  (M,w,v) |=ψ∧φiff(M,w,v)|=ψand (M,w,v) |=φ  

o  (M,w,v) |= ∀ψ iif (M,w,v [x/a]) |= ψ for every a ∈ U 

o  (M,w,v) |= Kiψ iff (M,u,v) |=ψ for all u such that  
   (w,u) ∈ Ai 

•  The modal operator Ki express what a node i ”knows” 

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 14 
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The Axiom System S5 [7]  

•  The definition of knowledge has the S5 properties 

1.  Distributed Axiom: |= (Kiψ ∧ Ki(ψ → φ)) → Kiφ  

2.  Knowledge Generalization Rule: For all structures M, if M 
|= ψ then M |= Kiψ  

3.  Truth Axiom: |= Kiψ → ψ  

4.  Positive Introspection Axiom: |= Kiψ → KiKiψ  

5.  Negative Introspection Axiom: |= ¬Kiψ → Ki¬Kiψ 

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 15 
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KnowlogK 

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 18 

•  A rule in KnowlogK has the form: 

   ☐(H ← B1,…, Bn). 
 

    with each literal in the form ΔR.  

o  Symbols ☐ and Δ denoting a (possibly empty) sequence 

of modal operators K. 

o  ☐ is called modal context and is used to assign to each 
node, the rules the node is responsible for 

o  A communication rule has no modal context, but every 

body atom is in the form KiΔR, while head atom has the 
form KjΔR’, with i ≠j. 
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An Example: the Two Phase Commit 

•  Inspired by [8] 

•  Phases: 

o  voting phase - the coordinator submits to all the 

transaction’s participants the willingness to perform a 
distributed commit. Each participant sends a vote to the 
coordinator 

o  decision phase - the coordinator collects all votes and 

decides if performing global commit or abort. The decision 
is then issued to the participants 

•  Assumption: 

o No failures 

o No time-out actions 

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 19 
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The 2PC Coordinator  

         \\Initialization

r1:   KC(log(Tx_id,State)@next:-log(Tx_id,State)).

r2:   KC(part_cnt(count<N>):-participants(N)).

r3:   KC(start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”, 
                        ¬log(Tx_id,State_2),State_2!=“Vote-req”). 

r4:   KC(transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State)). 

r5:   KCparticipants(p1).

r6:   KCparticipants(p2).


         \\Decision Phase

r7:    KC(yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r8:    KC(log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
           State=="vote-req”,transaction(Tx_id,State)).

r9:    KC(log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
       transaction(Tx_id,State), State =="vote-req").



           \\ Communication

r10:   KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).
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Knowledge-Oriented 
Programming [9]  

 

•  Modal operators for expressing: 

o  State of knowledge 

o  Actions 
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The 2PC Coordinator (with syntactic sugar)  

        #Program initialization @C

r1:       log(Tx_id,State)@next:-log(Tx_id,State).

r2:       part_cnt(count<N>):-participants(N).

r3:       start_transaction(Tx_id):-log(Tx_id,State),State==“Vote-req”, 
                       ¬log(Tx_id,State_2),State_2!=“Vote-req”. 

r4:       transaction(Tx_id,State):-start_transaction(Tx_id),log(Tx_id,State). 

r5:       participants(p1).

r6:       participants(p2).


         #Program decisionPhase @C

r7:       yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes”.

r8:       log(Tx_id,"commit”):-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,
        State=="vote-req”,transaction(Tx_id,State).

r9:       log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",
    transaction(Tx_id,State), State =="vote-req”.



          \\ Communication

r10:   KXtransaction(Tx_id, State):-KCparticipants(X), KCtransaction(Tx_id,State).
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Operators for Knowledge in Group of Nodes [7] 

•  Given a non empty set of nodes G  

o   (M,w,v) |= EGψ iff (M,w,v) |=Kiψ for all i ∈ G 

o   (M,w,v) |= DGψ iff (M,u,v) |=ψ for all u that are (w,u) ∈   

 ∩i∈G Ri 

•  The Knowledge Axiom, Distribution Axiom, Positive 
Introspection Axiom, and Negative Introspection Axiom 

hold also for EG and DG  

•  In addition: 

o  |= D{i}ψ ↔ Kiψ 

o  |= DGψ → DG’ψ if G ⊆ G′
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Incorporating Higher level of Knowledge: Knowlog 

r8:  KC(log(Tx_id,"commit”):-EXvote(“yes”,Tx_id), participants(X),              
         State=="vote-req”,transaction(Tx_id,State)).

r9:  KC(log(Tx_id,"abort"):-Dxvote(Vote,Tx_id),Vote == "no",participants(X),
        transaction(Tx_id,State), State =="vote-req").



•  EG is used when a fact, to be considered true, is 
correctly replicated in every node i ∈ G 

–  in front of communication rules emulates the multicast 
primitive 

–  as a model context 

•  DG is employed when facts that are fragmented inside 
relations distributed in G must be assembled in one 

place  

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 26 
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Reified Form 

•  Each Knowlog rule is rewritten in its reified form: 

o  each relation contains a knowledge accumulator term  

o  knowledge operators are pushed into the accumulator term 

o  for each accessible relation also the location term is filled 

accordingly 

o  4 new built-in relations: 
§  ⊕(X,Y,Z) to concatenate epistemic operators

§  K(X,Y), E(<X>,Y), D(<X>,Y) to build knowledge accumulator 
terms 

o  if EG in front of a communication rule, a set of new 
communication rules is generated, each one with Ki and i ∈ 
G 

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 27 
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Reified Form: Examples 

•  Examples 
o  KA(cursor(Index):-new(Index)) è 

cursor(Ka,Index):-new(Ka,Index)

o  KAKBvote(Tx_id):-KBvote(Tx_id),KBpath(A,B) è  

 vote(KaKb,#A,Tx_id):-vote(Kb,#B,Index),path(Kb,#B,A),
        K(B,Kb), K(A,Ka), ⊕(Ka,Kb,KaKb)



o  EXmessage(Id):-KAinfo(Id,Value), KAnodes(X) è 

K1message(Id):-KAinfo(Id,Value)

K2message(Id):-KAinfo(Id,Value)

K3message(Id):-KAinfo(Id,Value)

     …

Matteo Interlandi - Reasoning about Knowledge in Distributed Systems Using Datalog 28 
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Conclusions 

•  Knowlog: Datalog + the epistemic modal operators 
for: 

o  high-level specifications of distributed systems 

o  communication of data and code 

•  Future works: 

o  Definition of the Knowlog framework 

o  Operational semantics, complexity, expressiveness 

o  How do nodes “learn”? 

o  How do non-functional properties may affect the logic 
§  Definition of synchronous and asynchronous systems 

o  Proof-of-concept implementation 
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THANKS!! 
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