

∂ Open access • Journal Article • DOI:10.1145/161468.161471

Reasoning about naming systems — Source link ☑

Mic Bowman, Saumya K. Debray, Larry L. Peterson

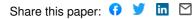
Institutions: Pennsylvania State University, University of Arizona

Published on: 01 Nov 1993 - ACM Transactions on Programming Languages and Systems (ACM)

Topics: Inference

Related papers:

- A study on video browsing strategies
- · The cubic mouse: a new device for three-dimensional input
- An extensive empirical study of feature selection metrics for text classification
- A widget framework for augmented interaction in SCAPE
- Achieving application requirements



Reasoning About Naming Systems

MIC BOWMAN The Pennsylvania State University and SAUMYA K. DEBRAY and LARRY L. PETERSON The University of Arizona

This paper reasons about naming systems as specialized inference mechanisms. It describes a *preference hierarchy* that can be used to specify the structure of a naming system's inference mechanism and defines criteria by which different naming systems can be evaluated. For example, the preference hierarchy allows one to compare naming systems based on how *discriminating* they are and to identify the class of names for which a given naming system is *sound* and *complete*. A study of several example naming systems demonstrates how the preference hierarchy can be used as a formal tool for designing naming systems.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—query languages; H.2.4 [Database Management]: Systems—query processing; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—selection processes; H.3.4 [Information Storage and Retrieval]: Systems and Software—question-answering (fact retrieval) systems

General Terms: Design, Theory

Additional Key Words and Phrases: Descriptive naming systems, inference mechanisms

1. INTRODUCTION

A *name* is a syntactic entity that denotes an object, and a *naming system* is a mechanism that answers queries of the form "what object is denoted by this name?" A naming system resembles a restricted database system that infers the object(s) referenced by a name. The class of queries that can be handled by such a system and the precision of the answers it returns depend directly on the power of its inference mechanism.

Conventional naming systems, such as those found in compilers [Price 1971], virtual memory managers [Fabry 1974], and file systems [Ritchie and Thompson 1974], are functionally simple: The database contains a table of name/value pairs, clients submit a single name, and the system returns the

© 1993 ACM 0164-0925/93/1100-0795 \$03.50

 $ACM\ Transactions\ on\ Programming\ Languages\ and\ Systems, Vol\ 15,\ No.\ 5,\ November\ 1993,\ Pages\ 795-825$

This work was supported in part by National Science Foundation Grant DCR-8609396 and National Aeronautics and Space Administration Grant NCC-2-561.

Authors' address: S. K. Debray and L. L. Peterson, Department of Computer Science, University of Arizona, Tucson, AZ 85721.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

corresponding value. More elaborate naming systems, such as *white-pages* services used to identify users [International Organization for Standardization 1988; Peterson 1988; Pickens et al. 1979; Solomon et al. 1982], *yellow-pages* services used to identify network resources [Peterson 1987; Sun Microsystems Inc. 1986], and document-preparation utilities for managing bibliographic data [Budd 1986], allow clients to identify an object by giving a collection of attributes that describe the object; we refer to such systems as *descriptive* or *attribute-based* naming systems. For example, a client may learn a user's mailbox address by querying a white-pages service with a name of the form

name = John Doe, phone = 621-1234, org = State University.

Similarly, a client may learn the address of a cycle server by querying a yellow-page service with a name of the form

service = cycle, arch = mips, load < 2, mips = max.

In both cases, the answer returned by the naming system depends on the information available in its database and the power of its inference mechanism.

From an operational perspective, a naming system's database contains a collection of records, and a query (name) is also given by a record. The naming system matches the query against the records in the database using a sequence of matching functions, until one of the functions yields a nonempty set of matches or the sequence is exhausted. The main contribution of this paper is an algebra for specifying these sequences of matching functions. We call this algebra a *preference hierarchy* and show how it can serve as a formal tool for designing and reasoning about naming systems. In particular, it allows us to evaluate naming systems based on how *discriminating* they are and the set of names for which they are *sound* and *complete*.

The rest of Section 1 motivates the preference hierarchy and discusses related work. Section 2 then presents preliminary definitions, and Section 3 describes how preference hierarchies can be used to specify the structure of a naming system's inference mechanism. Finally, Section 4 demonstrates the utility of preference hierarchies, and Section 5 makes some concluding remarks.

1.1 Motivation

To appreciate the impact and utility of the preference hierarchy, it is important to understand that the naming-system designer must accommodate two sets of constraints: the requirements placed on the naming system by the entities that use the system, and the conditions under which the naming system must operate.

First, the clients of a naming system place a set of requirements on the system: The naming system must accept as a name whatever information its clients possess for the objects they want to identify and must respond with the precision expected by those clients. For example, the client of a symboltable manager, in this case another program, specifies an object with an identifier and expects at most one answer; a program that uses the symbol

table cannot accommodate ambiguous answers. In contrast, the clients of a white-pages service, in this case human users, often possess several pieces of information about the object they want to name and are sometimes willing to tolerate ambiguous results as long as it contains the desired object.

Second, the naming system is constrained by the conditions under which it is implemented, that is, the properties of the environment in which it must function. In many cases, there are no limitations; the naming system exists in a perfect world. For example, the parser for a compiler never fails to insert identifiers in the symbol table, and the symbol-table manager cannot fail independently of the entire compilation. In contrast, many naming systems must function in an imperfect world. For example, a white-pages service can only resolve names that contain information put into the system by users. If a user does not enter a particular fact in the naming system, then the system cannot respond to queries using that information. As another example, naming systems that are implemented in distributed environments may lose information because independent components fail, or information may become out-of-date because of communication delays between the components that make up the system.

The preference hierarchy defined in this paper can be used to guide the design of naming systems that must satisfy various requirements and constraints. Although the preference hierarchy is most useful when applied to more complex descriptive naming systems, we have found that the preference hierarchy provides insights into the design of more conventional naming systems as well. In fact, Section 5 points out a naming system originally conceived as a conventional system, but that has evolved over time in a way that suggests the unconscious use of the preference hierarchy.

1.2 Related Work

Previous studies of naming focus on the operational aspects of naming systems, describing their architecture and the implementation of the architecture's base elements. For example, Fowler [1985], Lampson [1986], Mann [1987], Oppen and Dalal [1981], and Terry [1987] each describe techniques for managing a decentralized naming service. In addition, studies by Comer and Peterson [1989] and Watson [1981] give general characterizations of the resolution process. In contrast, this paper is concerned with the functional aspects of naming. In other words, we consider the question of what objects are identified by a given name, rather than the question of how the system is structured.

In addition to work that explicitly addresses the problem of naming, many of the underlying ideas found in this paper can be traced to two other related areas: First, naming systems can be thought of as specialized database systems, where the process of resolving a name is conceptually similar to that of solving a database query [Gallaire et al. 1984]. In particular, the preference hierarchy unifies ideas from work being done in open-world and closed-world databases [Reiter 1978], partial match retrieval [Ullman 1988], and incomplete information [Lipski 1979; 1981]. Second, one can view naming as a specific constraint-satisfaction problem [Borning et al. 1987]. More specific

comparisons to these related topics are made throughout the rest of this paper.

2. BASIC CONCEPTS

In the abstract, naming systems answer queries about a universe of *resources*, each of which has certain *properties*. If a resource possesses a particular property, then the property is said to *describe* the resource. For example, if we are considering the universe of printers, then the properties any element of this set might possess include "fonts," "location," and "resolution." The specific property "location is Room 723" describes a particular printer.

In practice, a naming system maintains and manipulates a database of syntactic information about a set of resources: It denotes each resource with a database *object* (a record) and each property with an *attribute* (a tagged field in the record). For example, a naming system that knows about printers might store facts of the sort "printer ip2 supports italic font and is located in room 723," "printer lw6 is of type laserwriter and has 300 dots per square inch resolution," and so on. The corresponding objects in the naming-system database would be

(font italic, location.723, uid:ip2)
(type:laserwriter, resolution:300, uid:lw6)

where **font:italic** is an example of an attribute. Each attribute consists of a *tag* and a *value*, denoted $\mathbf{t}: \mathbf{v}$. For example, the attribute font: italic consists of the tag font and the value italic. For convenience, we assume that each object contains a uld attribute and refer to the object by this attribute's value, for example, object ip2. Also, if an attribute a is entered in the naming-system database for object \mathbf{x} , then \mathbf{a} is said to be *registered* for \mathbf{x} .

The meaning of objects and attributes is given by a meaning function μ : The resource represented by object **x** is given by $\mu(\mathbf{x})$, and the meaning $\mu(\mathbf{a})$ of an attribute **a** is the property specified by **a**. For example, in the universe of printers, $\mu(\text{font: italic})$ is the property supporting the italic font. The information in a naming system is accurate when an attribute **a** is registered for an object **x** implies that $\mu(\mathbf{a})$ describes $\mu(\mathbf{x})$. For example, if the attribute phone: 621-1234 is registered for the object **jones**, then we expect the referent of **jones**, presumably a person, to have the phone number 621-1234.

Clients query a naming system with a set of attributes, and the naming system responds with the set of objects that correspond, in some sense, to those attributes. Formally, a set of attributes **N** names object **x** if every attribute in **N** is registered for **x**. That is, names maps sets of attributes into sets of objects, where names(**N**) denotes the set of objects named by a set of attributes **N**. If $\mathbf{x} \in names(\mathbf{N})$, then **N** is said to be a name for **x**. The corresponding semantic notion is represents: A set of properties $\mu(\mathbf{N})$ represents a resource if every property in the set describes the resource.

The relationship between the semantic and syntactic domains and the parallel between working with a single attribute and a set of attributes are schematically depicted in Figure 1. The top layer corresponds to database

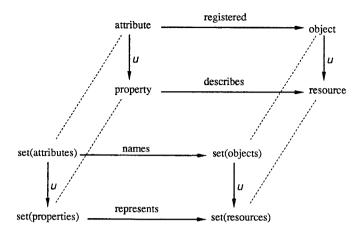


Fig. 1. Relationship between semantic and syntactic entities.

objects (i.e., operations on fields and records), while the bottom layer corresponds to resources (i.e., operations on real-world entities, such as a printer or a person). The dotted edges link single items with sets of items.

Conventional naming systems that operate in a "perfect" world, for example, symbol tables and virtual memory systems, only have to implement a procedure that supports the *names* function. That is, they simply return the set of objects for which all of the given attributes are registered. In general, however, naming systems do not operate in a perfect world. The information that a client uses to query a naming system may contain imperfections. For example, the client may not possess enough information to identify the desired objects uniquely, or the information that the client does possess may be inaccurate. Likewise, the information contained in the naming-system database may not be perfect; it may contain incomplete or out-of-date information. Thus, a naming system must use information specified by the client and registered in the database to approximate the results that would be obtained by *names* if it operated in a perfect world. The preference hierarchy described in the next section suggests a method for deriving various procedures, called resolution functions, that approximate the names mapping in an imperfect world.

3. PREFERENCE HIERARCHY

Many naming systems distinguish between the "quality" of different kinds of information. For example, a descriptive naming system must be able to resolve names that contain a multiplicity of attributes. In doing so, it is reasonable to give some attributes more importance than others. Suppose a user is trying to identify John Smith at State University, where the user is sure that the individual is at State University, but uncertain as to whether his first name is John. Such a user would prefer that the naming system respond with information about any Smith at State University, rather

than information about some John Smith not at State University. As another example, because naming systems implemented in a distributed environment such as the Domain Name System [Mockapetris 1987] must accommodate out-of-date information, they generally prefer attributes that are guaranteed to be current over cached attributes that may have become stale.

In a perfect world, where the client accurately and completely identifies a set of objects and where there is no possibility of missing or out-of-date information in the database, it suffices to always use *names* to resolve a set of attributes. Indeed, this is essentially what is done when responding to queries in conventional database systems. In an imperfect world, however, the naming system must cope with two potential problems: inaccuracies in the attributes specified by the client, and imperfect information in the database. Furthermore, rather than providing a single resolution function that compensates for these problems, a naming system might support a number of different resolution functions. Each function might be tailored for a set of assumptions about the contents of the database and the structure of names.

Intuitively, each resolution function in a naming system uses certain assumptions about the quality of information in the system and resolves names according to the most preferred set of assumptions. Formally, a *preference*, denoted by \prec , is a total order on a set of functions that approximate portions of a perfect-world naming system. Each of these approximation functions compensates for some imperfection believed to exist in the naming system, either in the information specified by the client (called *client approximation* functions) or in the information contained in the database (called *database approximation* functions). The preference encapsulates some metainformation about the system by describing the assumptions that the client believes are most reasonable. The most preferred approximations provide answers based on what is believed to be the most reasonable and accurate information in the system. If that information fails to distinguish among a set of objects, then another approximation is tried.

The rest of Section 3 defines the notion of a preference hierarchy and describes the role it plays in resolving names. In particular, it introduces the intuition behind preference hierarchies and gives several example preferences, it establishes a framework for designing naming systems based on combinations of preferences, and it shows how that a framework can be used to reason about naming systems. To understand preferences better and to appreciate how preferences are used in real attribute-based naming systems, several examples of client and database preferences are provided, as defined in the Univers [Bowman et al. 1990] and Profile [Peterson 1988] attribute-based name servers.

3.1 Client Preferences

Using the attributes specified by the client, a client approximation function constructs a set of attributes that accurately describes the objects sought by the client. Generally, these functions use information about the property

ACM Transactions on Programming Languages and Systems, Vol 15, No 5, November 1993.

denoted by an attribute in order to determine its accuracy. For example, an approximation might consider social security number attributes to be accurate, because a client that specifies a social security number usually knows it accurately. Given a set of attributes, an approximation function based on a preference for accurate attributes would remove those attributes that it believes to be inaccurate, returning the accurate ones. It always returns a subset of the attributes it is given.¹ Formally, a client approximation function is defined as follows:

Definition 3.1 (Client approximation function). A client approximation function over a domain of attributes **A** is a function $f: 2^{\mathbf{A}} \to 2^{\mathbf{A}}$ that is monotonic increasing; that is, for all set of attributes **M** and **N**, $\mathbf{M} \subseteq \mathbf{N}$ implies that $f(\mathbf{M}) \subseteq f(\mathbf{N})$.

A client preference is a finite, totally ordered set of client approximation functions. Approximations high in the order are those the client considers most likely to be accurate. For example, a client may specify that an approximation that assumes that social security numbers are accurate is preferred to an approximation that assumes that social security numbers are inaccurate. The selection of the approximation functions and the order on them encapsulate information about the attributes supplied by the client. In practice, the selection of a specific preference depends on the client's assumptions about the information within a system and on the kind of objects that the client intends to identify. For example, a client that intends to identify processors will specify a different preference than a client that intends to identify human users.

The following list informally describes several preferences that we have found useful in the naming systems we have designed. This list illustrates some possible preferences; it is not intended to be complete. Formal definitions for several of the preferences are given in Section 4, where we consider specific resolution functions in more detail.

Universal Preference. The universal preference consists of a single function universal that maps every set of attributes to itself. This function is used most often when the client believes that all of the attributes it specified are accurate and are sufficient to distinguish the set of objects that are identified. In other words, this function assumes that the client operates in a perfect world.

Registered Preference. The registered preference, denoted \prec_R , prefers attributes that are guaranteed to be registered in the database over those that are not. It consists of the approximation functions *open* and *closed*, where

open \prec_R closed.

 $^{^{1}}$ Certain client approximation functions augment the attributes specified by the client with additional attributes, such as the type of object being described or the object's location. These functions unnecessarily complicate the constructions in this paper. A formal treatment of these functions is given in Bowman [1990].

ACM Transactions on Programming Languages and Systems, Vol. 15, No 5, November 1993.

An attribute with tag \mathbf{t} is *closed* if every attribute constructed from \mathbf{t} is guaranteed to be registered for every object it describes. For example, a naming system may guarantee that every object with a name will have that name registered in the database. The client approximation function closed, which returns the closed attributes in a name, limits the scope of resolution to portions of the database with complete information. An open attribute may not be registered for an object even though the corresponding property describes the resource the object denotes. The resolution of a name based on open attributes may not contain all of the objects in the database that represent resources described by the attributes. This preference is particularly useful when users are responsible for maintaining some of the information in the naming system. For example, one user may decide to include a home phone number in the database, but another may choose to leave it out. In this case, home phone number attributes are not closed and may provide incomplete answers. Note that the registered preference order is similar to the idea of open/closed world databases [Reiter 1978]. Instead of making the closed-world assumption over an entire database, however, we make the distinction on an attribute-by-attribute basis.

Mutability Preference. The mutability preference, denoted \prec_U , considers the time interval over which an attribute describes an object, thereby accommodating changes in object properties over time. The mutability preference may be defined as

dynamic \prec_U static.

The *static* approximation function considers accurate those attributes that will always describe the objects that they currently describe. For example, the serial number and architecture of a processor remain constant throughout its lifetime. Thus, *static* believes that any attribute describing a processor's serial number or architecture is accurate. In contrast, *dynamic* returns only those attributes that may change over time. Properties that involve a processor's location or a professor's class load may change over time. The information that a client possesses about these properties may become out-of-date. In this way, the mutability preference encapsulates a client's belief that some of the specified information once described the object it seeks, but may not describe it any longer.

Precision Preference. The precision preference, denoted \prec_p , prefers attributes that match a very small set of objects. Given a set of attributes, the *unambiguous* client approximation function returns the attributes that are unambiguous, that is, those that are registered for at most one object in the database. Names based on unambiguous attributes, for example, address: 192.12.69.22, tend to be very precise. An attribute is ambiguous if it is registered for more than one object. Ambiguous attributes generally match several objects so that names based on them are less precise; for example, hostname: pollux currently matches at least four different machines on the Internet. The *ambiguous* approximation function returns those attributes in

a name that are ambiguous. Thus

ambiguous \prec_p unambiguous.

The precision preference can be used to optimize queries, that is, optimize the search for objects that match a name. Unambiguous attributes match at most a single object so that the set of matching objects can be computed more efficiently.

Yellow-Pages Preference. When a person wishes to locate an inexpensive plumber to fix the sink, he or she searches the yellow pages of the phone book looking for plumbers who advertise inexpensive rates. Within computer systems, clients often wish to locate a set of resources that provide a particular service. For example, a client might wish to locate a printer that supports a particular font and is located in a nearby building. When a person looks for an inexpensive plumber, he or she may be willing to accept a plumber that is expensive, but will probably not accept an inexpensive carpenter. In the same way, certain characteristics of the object that a client seeks are absolutely necessary, though others may not be. For example, the client may specify that the printer "must" have a particular font and that it would be "nice" if it were also in a certain building. In this case, the naming system should first determine which printers have the specified font and, form this set, select one in the specified building if possible. In this example, one could define a yellow-pages preference \prec_Y as follows:

optional \prec_{Y} mandatory.

Explicit Preference. Finally, it is possible to have clients themselves partition the attributes in a name into several classes. Each partition corresponds to the result of applying an approximation function to the entire set of attributes in the name, except that the approximation function does not reside in the name server and potentially changes with each query. Consider, for example, a user querying a bibliographic name server. The user may be certain of the author's name, confident that the paper was published in a journal during the last year, but somewhat unsure about the exact title of the paper. The user explicitly partitions the attributes in the name into three sets; intuitively, these three sets correspond to the set of attributes the approximation functions would return if they existed. The first set contains the ideal match on all four attributes. The assumption is that the author correctly guessed the title and the year. The second partition removes the title attribute. The least preferred set of attributes contains only the author's name.

3.2 Database Preferences

Preferences that consist of one or more client approximations provide information about the client's specification. Similarly, preferences that consist of database approximations encapsulate information about the descriptions of a set of objects. In particular, a database approximation function accommodates imperfect information in the database by approximating the selection of objects from the perfect database. Rather than reconstruct a perfect database,

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 5, November 1993

these functions select objects from the existing database in a way that mirrors the selection of objects from what the function believes to be the perfect database. This usually takes the form of some strategy for handling partial matches, although it may use more sophisticated techniques such as the statistical inference methods described by Wong [1982].

Definition 3.2 (Database approximation function). A database approximation function over a domain of attributes **A** and a domain of objects **O** is a function $m: 2^{\mathbf{A}} \times 2^{\mathbf{O}} \to 2^{\mathbf{O}}$ that is a contraction on its second argument; that is, for any set of objects **D**, $m((\mathbf{N}, \mathbf{D}) \subseteq \mathbf{D}$.

Intuitively, the definition says that a database approximation function never adds new objects to the database. Most useful database approximation functions have two other characteristics: First, most database approximation functions return more complete answers with more information abut the world. In other words, as the size of the database increases, the number of objects matching a name increases. More formally, a database approximation function m is monotonic increasing relative to the set of objects; that is, for sets of objects C and D, C \subseteq D implies that $m(\mathbf{N}, \mathbf{C}) \subseteq m(\mathbf{N}, \mathbf{D})$. The unique approximation described below is an exception to this rule; unique returns the single object that uniquely matches the set of attributes. Second, most database approximation functions cannot approximate the set of objects that the client intended to identify without some information from the client; thus, $m(\emptyset, \mathbf{D}) = \emptyset$ for any set of objects **D** is true for most database approximation functions. One specific function that does not conform to this principle is a database approximation function called *identity*; *identity* always returns the set of objects that it is given no matter what attributes the client specifies.

A database preference is a total order on a set of database approximation functions. As with client preferences, the selection of a particular preference supplies the naming system with information about the assumptions that the client possesses regarding the database. A particular preference may supply information about how to handle different degrees of partial match or matches in different locations. The following examples describe potential solutions to these problems:

Match-Based Preference. The match-based preference, denoted \prec_M , provides approximations that match attributes to objects at four different precisions. The functions in this preference are ordered by

possible \prec_M partial \prec_M exact \prec_M unique.

The least preferred approximation, *possible*, maps a set of attributes to the set of all objects that could possibly match. In other words, an object is selected as long as there is no conflict between an attribute in the name and in the object description contained in the database. For example, consider a database that contains descriptions for four users

<uid : cmb, office : 737, department : cs> <uid : rao, office : 737> <uid : Ilp, office . 725> <uid : gmt>

and consider a name that consists of the attributes office: 737 and department: cs. In this case, *possible* returns cmb, rao, and gmt. This function computes $||Q||^*$, as defined by Lipski in the case where there is no partial information [Lipski 1979; 1981]. The second approximation, partial, returns all objects that possibly match and have at least one attribute in common with the name. Partial would return cmb and rao, but not gmt in the example. The third approximation, exact, returns all objects that are described by all of the attributes in a name. For this example, *exact* returns just cmb; it is the only object that is known to match both attributes in the name. Exact computes Lipski's $||Q||_{\ell}$. The final approximation, *unique*, returns either the single object that exactly matches the name or the empty set; in this case, cmb would be returned by *unique*, but no objects would be returned for a name that consists of the single attribute office: 737 because there is no unique match. This preference may be used when the accuracy of the database is not in question, though it may not be complete. That is, no object will be returned if it conflicts with one of the attributes that the client supplies. Note that this preference generalizes the idea of partial match retrieval [Ullman 1988].

Voting Preference. The voting preference, denoted \prec_V , views the attributes that are specified as votes for objects. If an attribute in the name is registered for an object, then the attribute casts its vote for the object. The voting preference is defined as

also-ran \prec_V majority \prec_V unanimous.

The most preferred approximation, *unanimous*, is functionally equivalent to *exact* and prefers objects that receive all of the votes. The *majority* approximation returns the set of objects that receive a majority of the votes; that is, each object in the set is described by more than half of the attributes in the name. This implies that *majority* may return objects with attributes that conflict with some attributes in the name. Finally, *also-ran* matches the set of attributes to any object that receives at least one vote, that is, any object for which one or more of the client-specified attributes are registered. In contrast with the match-based preference, the voting preference does not assume that all of the information in the database is correct. Rather, it attempts to return reasonable matches, even though conflicts may exist with attributes specified by the client.

Temporal Preference. The temporal preference, denoted \prec_T , differs from the voting and match-based preferences in that it does not attempt to match a set of attributes to an object. Rather, the approximation functions that constitute the temporal preference distinguish between objects based on the length of time until the information contained in the database becomes stale. The temporal preference prefers objects that are described by authoritative information, that is, information that is guaranteed to be accurate, over information that has been cached. This provides one method for handling

out-of-date information within the database. The temporal preference may be defined as

out-of-date \prec_T cached \prec_T authoritative.

The *authoritative* approximation assumes that the only accurate information in the database is authoritative information. As such, the only objects that match a name are those with authoritative attributes registered for each trait that appears in the name. Both *cached* and *authoritative* allow an object to be described by information that is cached. However, *authoritative* demands that the attributes registered for objects not be stale; the database expects that the attribute value still describes the object. *Out-of-date* allows information to be in any condition: The value in the database described the object at one time, and the assumption is that even out-of-date information may provide hints about the correct value.

Note that the temporal database preference bears close resemblance to the mutability client preference. However, the basic assumptions are different. On the one hand, the mutability preference assumes that the database contains information that actually describes the object in question. In this case, the client possesses information that has become out-of-date. For example, a client may remember that a printer **lw11** was located in **GS725**. Since then, however, the printer has been moved to **GS737**, and the database has been updated to reflect the change. The information that the client possesses is out-of-date and will produce erroneous results if used to identify the printer. On the other hand, the temporal preference assumes that the client's information is accurate, but that the value of an attribute in the database has become out-of-date. This corresponds to the case where the client knows the actual location of **lw11**, but the location of **lw11** was never updated within the database. Here, the database contains information that will keep the client from identifying **lw11** by location.

3.3 Resolution Functions

A resolution function is defined by an ordering on a set of client and database preferences; this ordering is called a *preference hierarchy*. The preference hierarchy specifies the relative importance of each preference when resolving names. Functionally, this means that a resolution function selects an approximation function from each preference, constructs a composition of the functions, and evaluates the composition relative to the given name and database. It continues to select functions until one combination computes a nonempty set of objects. The preferences specify the order in which approximation functions are selected, and the preference hierarchy specifies the order of composition for the sets of approximations. In theory, if the assumptions made by each of the approximation functions are correct, then the set of objects selected by their composition should resemble the set that the client intended to identify.

For example, consider the construction of a resolution function for a naming system with the following three assumptions: First, the client always presents the naming system with accurate information. Second, the database

contains information that may be incomplete. Finally, some of the information in the database is authoritative, that is, it is always up-to-date, and some is cached. For a naming system based on these assumptions, three preferences seem most applicable:

```
 \begin{array}{l} \prec_R : \ open \ \prec_R \ closed, \\ \prec_T : \ cached \ \prec_T \ authoritative, \\ \prec_M : \ partial \ \prec_M \ exact. \end{array}
```

This collection of preferences means that the resolution function can select from eight different sets of approximations:

$\{open, authoritative, exact\}$	$\{open,authoritative,partial\}$
{open, cached, exact}	$\{open, cached, partial\}$
$\{closed, authoritative, exact\}$	$\{closed, authoritative, partial\}$
$\{closed, cached, exact\}$	$\{closed, cached, partial\}.$

It is reasonable to assume that the registered preference \prec_R is more important than the match-based preference \prec_M and at least as important as the temporal preference \prec_T . This assumption implies that the relative importance of the three preferences defines a preference hierarchy \triangleleft as $\prec_M \triangleleft \prec_T \triangleleft \prec_R$.

The preference hierarchy has two effects on the evaluation of sets of approximations. First, the approximations in any set must be applied in order from most important to least important. For example, the first set of approximations above must be evaluated in order: *open*, *authoritative*, and *exact*, because *open* is the approximation from the most important preference and *exact* is from the least important. Three rules guide the evaluation of an ordered set of approximations f_1, f_2, \ldots, f_n :

- (1) If $f_i \cdots f_{i+j}$ are database approximation functions, then the composition of $f_i \cdots f_{i+j}$ is a database approximation function f defined as $f(N, D) = f_i(N, D) \cap f_{i+1} \cap \cdots \cap f_{i+j}(N, D)$.
- (2) If $f_i \cdots f_{i+j}$ are client approximation functions, then the composition of $f_i \cdots f_{i+j}$ is a client approximation function f defined as $f(N) = f_i(N) \cap f_{i+1}(N) \cap \cdots \cap f_{i+j}(N)$.
- (3) If f_i is a client approximation and f_{i+1} is a database approximation, then the composition of f_i and f_{i+1} is a database approximation function f defined as $f(N, D) = f_{i+1}(f_i(N), D)$.

Intuitively, database approximation functions act as filters, refining the set of objects; the composition of two database approximation functions removes any objects that either component removed. Similarly, client approximations act on sets of attributes by removing some and by adding others; the composition of two client approximations respects the effect of both operations. Operationally, the first two rules are applied until the ordered set alternates between database and client approximation functions. At this point, the third rule is applied to adjacent database and client approxima-

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 5, November 1993.

tions to construct a series of database approximation functions. Finally, the first rule is applied to construct a single function called a *composite approximation function*. Thus, the composition of $\{open, authoritative, exact\}$ is a function f defined as $f(N, D) = authoritative(open(N), D) \cap exact(open(N), D)$.

The second effect of the preference hierarchy is the order in which a set of composite approximation functions are applied to the name. A preference hierarchy specifies an induced preference on a set of composition functions; that is, it orders the set of composite approximation functions that can be constructed from the preferences in the hierarchy. In this example, the resolution function attempts both exact and partial matches on the closed attributes before attempting any match on open attributes. The preference hierarchy induces the following preference on the sets of approximations:

{open, cached, partial}	\prec	$\{open, cached, exact\}$	\prec
{open, authoritative, partial}	\prec	{open, authoritative, exact}	\prec
$\{closed, cached, partial\}$	\prec	$\{closed, cached, exact\}$	\prec
{closed, authoritative, partial}	\prec	{closed, authoritative, exact}	

In other words, {*closed*, *authoritative*, *exact*} is the most preferred approximation. If this composite approximation function computes a nonempty set of objects, than that set is returned by the resolution function. The resolution function evaluates compositions in order from most preferred to least preferred. It returns the first nonempty set computed by a composition.

Formally, if we are given a set of preferences $\Pi = \{\prec_1, \ldots, \prec_N\}$, totally ordered by the preference hierarchy \triangleleft , then, for any two members \prec_j and \prec_k of Π , we say that \prec_k is more important than \prec_j if $\prec_j \triangleleft \prec_k$. Without loss of generality, assume that k < j implies that \prec_k is more important than \prec_j . Let the set of approximations of \prec_j be given by π_j . The preference, \prec , induced by $\langle \Pi, \triangleleft \rangle$ is defined to be the lexicographic order on the following set of compositions:

$$\pi_1 \times \pi_2 \times \cdots \times \pi_n.$$

Given an induced preference on a set of compositions, the name resolution function computes the set of objects described by a name in a way that respects the induced preference. This means that a resolution function may not return a set of objects using a composition function c_i unless every more preferred composition, that is, any composition c_j where $c_i \prec c_j$, failed to compute a nonempty set of objects. Formally, we have the following definition:

Definition 3.3 (Name resolution function). An induced preference order \prec on a set of composite approximation functions $\Pi = \{\pi_1, \pi_2, \ldots, \pi_n\}$ defines a name resolution function $\rho: 2^{\mathbf{A}} \times 2^{\mathbf{O}} \to 2^{\mathbf{O}}$ over a domain of attributes **A** and a domain of objects **O** by $\rho(\mathbf{N}, \mathbf{D}) = \pi_i(\mathbf{N}, \mathbf{D})$, where

(1) $\pi_i(\mathbf{N}, \mathbf{D}) \neq \emptyset$, if i < n, and

(2) $\forall \pi_j \in \Pi [\pi_1 \prec \pi_j \text{ implies that } \pi_j(\mathbf{N}, \mathbf{D}) = \emptyset].$

Intuitively, a composition function supports several approximations of the perfect-world system, one from each preference in the hierarchy. The assumptions encapsulated in the set of approximations are considered "accurate" if the composition returns a nonempty set of objects. A resolution function computes the set of objects described by the name relative to the most preferred, "accurate" set of approximations.

To complete the example, consider the implementation of the resolution function defined by the preference hierarchy $\prec_M \lhd \prec_C \lhd \prec_R$ within a Univers name server [Bowman et al. 1990]. Univers resolution functions are defined in a Scheme-based language that supports persistent data [Betz 1989]. Several redundant compositions have been removed from this definition. For example, the approximations *partial* and *exact* compute the same set of objects for names that consist of closed attributes. Thus *partial* (closed(N), D) is equivalent to exact(closed(N), D). Using these optimizations, the Univers function lookup is defined as follows:

```
(define (lookup N D)
  (cond
      [(intersect (authoritative (closed N) D) (exact (closed N) D))]
      [(intersect (cached (closed N) D) (exact (closed N) D))]
      [(intersect (authoritative (open N) D) (exact (open N) D))]
      [(intersect (authoritative (open N) D) (partial (closed N) D))]
      [(intersect (cached (open N) D) (exact (open N) D))]
      [(intersect (cached (open N) D) (partial (open N) D))]
      [(intersect (cached (open N) D) (partial (open N) D))]
      ))
```

3.4 Tools for Reasoning about Resolution Functions

)

The previous section focused on the structure of the preference induced by a preference hierarchy. This makes it possible to understand and reason about some aspects of the behavior of resolution functions. This section describes the semantics of the preference hierarchy model and develops some tools that may be used to describe and reason about sets of related resolution functions. In the discussion that follows, we use Δ to denote the set of name/database pairs that serve as the domain of a resolution function. Specifically, Δ consists of pairs (**N**, **D**), where **N** is a set of attributes and **D** is a set of objects. Δ is determined by the characteristics of the naming system that will support the resolution function.

3.4.1 Soundness and Completeness. Clearly, it is possible to construct many resolution functions that differ in how many (or how few) objects they return for a given set of attributes. In this context, two properties are of interest: Given a set of attributes, it may be desirable that the resolution function (1) return only those objects named by the attributes, and (2) return all those objects that are named by the attributes. In order to formalize these properties, we postulate an *oracle* function that returns precisely the set of objects that the client intended to identify. The objects that *oracle* returns are those that would be returned if the client had presented its request to a naming system that contained perfect information. That is, *oracle* knows

about all of the imperfections that exist in the system and compensates for them. We assume that every client attempts to identify at least one object; therefore, *oracle* always returns at least one object. Using the *oracle* function, soundness and completeness can be formalized as follows:

Definition 3.4 (Soundness). A name resolution function ρ is said to be sound for a name/database pair (\mathbf{N}, \mathbf{D}) in Δ if and only if $\rho(\mathbf{N}, \mathbf{D}) \subseteq oracle(\mathbf{N}, \mathbf{D})$.

Definition 3.5 (Completeness). A name resolution function ρ is said to be *complete* for a name/database pair (**N**, **D**) in Δ if and only if *oracle*(**N**, **D**) $\subseteq \rho(\mathbf{N}, \mathbf{D})$.

We denote the set of name/database pairs in Δ for which ρ is sound by Σ_{ρ} and the set of name/database pairs for which ρ is complete by Γ_{ρ} .

Often, the designer of a naming system must ensure that the resolution functions the system provides satisfy constraints about soundness or completeness. For example, our experience suggests that clients generally want a white-pages naming system that allows clients to search for and to name users to be complete. In contrast, clients want a yellow-pages naming system that allows clients to locate system services to be sound. In the first case, clients are willing to discard extra objects but want the desired object to be contained in the result, whereas in the second case, the client often depends on all of the answers being equally valid; for example, if a client asks for a processor with a 68020 architecture then an answer that contains a processor that has a different architecture cannot be tolerated.

Suppose we are given a resolution function defined by a preference hierarchy $\langle \Pi, \triangleleft \rangle$. Then, given information about the soundness or completeness of each approximation function in the preferences of Π , it is necessary to be able to reason about the soundness or completeness of the induced resolution function. For instance, Profile supports several white-pages resolution functions that attempt to handle databases that may contain incomplete information and clients that may specify inaccurate descriptions [Peterson 1988]. It is important that the Profile functions be complete on many name/ database pairs where the database is incomplete and the name contains some inaccuracies. The following results help a system designer determine the extent to which such a resolution function meets its goals for soundness and completeness.

A resolution function that consists of a single composite approximation function is sound only if the composition returns a subset of the objects the client intends to identify. Similarly, the resolution function is complete only if the objects that client seeks are contained in the set that the composition returns. This observation leads to the definition of soundness and completeness for a composite approximation function: A composite approximation function c is sound on a set of Σ_c if a resolution function constructed from just c is sound on Σ_c ; c is complete on Γ_c if the resolution function is complete on Γ_c .

PROPOSITION 3.1. The composition $c \circ d$ of two monotonic database approximation functions c and d, where c is sound on Σ_c and d is sound on Σ_d , is sound on $\Sigma_c \cup \Sigma_d$.

PROOF. Recall that database approximation functions always return a subset of the objects in the database. If d is sound on (\mathbf{N}, \mathbf{D}) , then $c \circ d$ must be sound because c cannot add any objects; a database approximation always returns a subset of the objects in the database. Since c and d are monotonic increasing relative to the database, $(\mathbf{N}, \mathbf{D}) \in \Sigma_c$ implies that every subset of \mathbf{D} is also in Σ_c . Therefore, if c is sound on (\mathbf{N}, \mathbf{D}) then $c \circ d$ is sound on (\mathbf{N}, \mathbf{D}) . \Box

PROPOSITION 3.2. The composition $c \circ d$ of two composite approximation functions c and d, where c is complete on Γ_c , d is complete on Γ_d , and c is an additive function—c has the property that $c(\mathbf{N}, \mathbf{D}_1 \cup \mathbf{D}_2) = c(\mathbf{N}, \mathbf{D}_1) \cup c(\mathbf{N}, \mathbf{D}_2)$ for all sets of objects \mathbf{D} —is complete on $\Gamma_c \cap \Gamma_d$.

PROOF. If d is complete on (\mathbf{N}, \mathbf{D}) , then it returns at least the objects that the client seeks. If c is pointwise determined and complete on (\mathbf{N}, \mathbf{D}) , then it is complete on every subset of \mathbf{D} that contains $oracle(\mathbf{N}, \mathbf{D})$. Thus, $c \circ d$ is complete on all name/database pairs in $\Gamma_c \cap \Gamma_d$. \Box

These two propositions allow a system designer to determine when a composite approximation that consists of several client and database approximations is sound and complete. For example, it is easy to show that a composite approximation defined by $\langle closed, unanimous, open, also-ran \rangle$ is complete on $\Gamma_{\langle open, also-ran \rangle} \cap \Gamma_{\langle closed, unanimous \rangle}$. In particular, this composite approximation is complete when the database is accurate but potentially incomplete and when the client's description contains at least one accurate open attribute and a nonempty set of closed attributes, all of which are accurate. Since every name resolution function consists of one or more composite approximation functions ordered by an induced preference, we may use the sets on which the composite functions are sound and complete to construct a set of name/database pairs on which the resolution function is sound or complete.

In general, we are concerned with the entire resolution function. A resolution function, defined by an induced preference on a set of composite approximations, determines the set of objects described by a name based on the failure of inaccurate approximations. Recall that an approximation fails when it computes an empty set of objects. The set of name/database pairs on which any composite approximation c fails is contained in Σ_c , the set of name/ database pairs where c is sound. In fact, Σ_c may be partitioned into two disjoint sets P_c and E_c , where c computes a nonempty set of objects for every (**N**, **D**) in P_c . Given a resolution function ρ consisting of an induced order on several composite preferences, Σ_p and Γ_ρ may be computed using information about the

name/database pairs in P_c and in E_c for each composite approximation c according to the following propositions:

PROPOSITION 3.3. A name resolution function ρ defined by the induced preference $c_n \prec c_{n-1} \prec \cdots \prec c_1$ is sound on

$$\Sigma_{\rho} = P_1 \cup (E_1 \cap (P_2 \cup (E_2 \cap \dots \cap \Sigma_n))),$$

where c_i is sound on $\Sigma_i = P_i \cup E_i$ and c_n is sound on Σ_n .

PROPOSITION 3.4. A name resolution function ρ defined by the induced preference $c_n \prec \cdots c_2 \prec c_1$ is complete on

 $\Gamma_{n} = \Gamma_{1} \cup (E_{1} \cap (\Gamma_{2} \cup (E_{2} \cap \cdots \cap \Gamma_{n}))),$

where c_i is complete on Γ_i and empty on E_i .

If it is the case that $E_1 \cap E_2 \cap \cdots \cap E_i \subseteq P_{i+1}$ for all *i* in the induced preference, then Σ_{ρ} is just the union of all P_i . In fact, the union is a good approximation for Σ_{ρ} whenever P_i is very small relative to E_i . A similar approximation may be made for Γ_{ρ} . That is, when Γ_i is very small relative to E_i , then Γ_{ρ} is simply the union of all Γ_i . These simplifications provide an adequate estimate of Σ_{ρ} and Γ_{ρ} for most resolution functions that we have written.

3.4.2 *Discrimination*. An important criterion when considering related naming systems is that of how many (or how few) objects they return for a given set of attributes. A more discriminating resolution function always returns a smaller set of objects for a given set of attributes relative to a particular database. This may be formalized as follows:

Definition 3.6. Given two resolution functions ρ_1 and ρ_2 and a set of name/database pairs Δ , if $\rho_1(\mathbf{N}, \mathbf{D}) \subseteq \rho_2(\mathbf{N}, \mathbf{D})$, for all $(\mathbf{N}, \mathbf{D}) \in \Delta$, then ρ_2 is said to be *less discriminating* than ρ_1 on Δ (written $\rho_2 \sqsubseteq_{\Delta} \rho_1$).

Let $\operatorname{Resolve}_{\Delta}$ denote the set of all resolution functions defined on Δ , partially ordered by \sqsubseteq_{Δ} . $\operatorname{Resolve}_{\Delta}$ is a complete lattice whose bottom element is the function that always returns the set of all objects and whose top element is the function that always returns the empty set. Different resolution functions can therefore be compared and reasoned about based on their power of discrimination. For example, consider two resolution functions ρ_1 and ρ_2 , where ρ_1 is defined by a single composite approximation $\langle universal, possible \rangle$ and ρ_2 is defined by a single composite approximation $\langle universal, exact \rangle$. It is easy to show that

 $\rho_1 \sqsubseteq_{\Delta} \rho_2$

for Δ containing all name/database pairs.

In general, the choice of a particular resolution function from the family $\mathsf{Resolve}_{\Delta}$ depends on a consideration of trade-offs between the computational cost and the precision of resolution offered by alternative functions. Elements of $\mathsf{Resolve}_{\Delta}$ that are low in the lattice defined by \sqsubseteq_{Δ} are relatively efficient,

ACM Transactions on Programming Languages and Systems, Vol 15, No 5, November 1993.

but typically not very discriminating. In other words, they may return multiple objects that the user then has to sift through. On the other hand, elements of $\mathsf{Resolve}_{\Delta}$ that are high in the lattice may be computationally more expensive, but are typically more discriminating. These functions, however, run the risk of being overly discriminating in that they may not return the object the user wants. Our experience is that, in practice, useful resolution functions are tuned experimentally and are strongly influenced by the client requirements and the underlying system constraints.

4. APPLICATIONS

The preference hierarchy provides a framework for precisely specifying and reasoning about naming systems. This section shows how the preference hierarchy can be applied to several existing naming systems. It also demonstrates how the preference hierarchy can be used as a prescriptive model for designing new naming systems. This section concludes with a discussion of how different naming systems can be compared to each other. The Appendix contains procedures that implement each resolution function.

4.1 Profile Resolution Functions

The Profile naming system [Peterson 1988] provides a *white-pages* service that is used to identify users and organizations. Profile supports a suite of resolution functions that were designed with three assumptions in mind. First, Profile assumes that the database is accurate, but potentially incomplete. Profile automatically generates some of the information in the database. These attributes are considered closed because they are entered by a reliable system administrator. The remainder of the information is added to the database by the system's clients. These attributes are considered open because one client might enter different information than another. Second, the attributes contained in a name may be inaccurate, because people may forget or incorrectly remember information about other people. Third, as mentioned earlier, clients of the Profile system are generally interested in complete answers, that is, ones that definitely contain the objects the client intended to identify. This section shows how the first two assumptions affect the completeness of the resolution functions in Profile.

The preferences used to construct the Profile resolution functions consist of three client approximation functions and four database approximation functions. Although based on the example approximation functions informally presented in Section 3, we define these functions formally so that we may reason about the resolution functions that use them.

Definition 4.1 (Profile client approximation functions). The client approximation functions used by the Profile naming system are

- $-universal(\mathbf{N}) = \mathbf{N};$
- $-closed(\mathbf{N}) = \{\mathbf{t} : \mathbf{v} \in \mathbf{N} | \text{ for all } \mathbf{u}, \ \mu(\mathbf{t} : \mathbf{u}) \text{ describes } \mu(\mathbf{x}) \text{ implies that } \mathbf{t} : \mathbf{u} \text{ is registered for } \mathbf{x}\};$ and
- $-open(\mathbf{N}) = \mathbf{N} closed(\mathbf{N}).$

Definition 4.2 (Profile database approximation functions). The database approximation functions used by the Profile naming system are

- $-identity(\mathbf{N},\mathbf{D}) = \mathbf{D};$
- $-also-ran(\mathbf{N}, \mathbf{D}) = \{\mathbf{x} \in \mathbf{D} | \text{there exists an } \mathbf{a} \in \mathbf{N} \text{ such that } \mathbf{a} \text{ is registered for } \mathbf{x}\};$
- $-unanimous(\mathbf{N}, \mathbf{D}) = \{\mathbf{x} \in \mathbf{D} | \text{for every } \mathbf{a} \in \mathbf{N}, \mathbf{a} \text{ is registered for } \mathbf{x}\}; \text{ and }$
- $-unique(\mathbf{N}, \mathbf{D}) = \text{if } | unanimous(\mathbf{N}, \mathbf{D}) | = 1$, then $unanimous(\mathbf{N}, \mathbf{D})$; otherwise \emptyset .

We now formally define each of the four resolution functions that constitute the Profile naming system. For each function, we give an intuitive overview of the function, the preferences used by the function, and the importance order on the preferences.

 $Profile_1$. Returns all objects that match any of the given attributes. $Profile_1$ is defined by $\prec_V \lhd \prec_U$ on the following preferences:

 $Profile_2$. Computes the conjunction of the given attributes, given preference to closed attributes over open attributes. $Profile_2$ is defined by $\prec_V \lhd \prec_R$ on the following preferences:

$$\prec_R$$
: open \prec_R closed,
 \prec_V : also-ran \prec_V unanimous.

 $Profile_3$. Like $profile_2$, except that it uses open attributes to reduce the set of objects returned. $Profile_3$ is defined by $\prec_v \lhd \prec_r \lhd \prec_V \lhd \prec_R$ on the following preferences:

 $\begin{array}{l} \prec_R: open \prec_R closed, \\ \prec_V: also-ran \prec_V unanimous \prec_V unique, \\ \prec_r: open, \\ \prec_n: identity \prec_v also-ran \prec_v unanimous. \end{array}$

*Profile*₄. Matches at most one object. *Profile*₄ is defined by $\prec_V \triangleleft \prec_R$ on the following preferences:

Given these definitions, it is easy to show that a discrimination order \sqsubseteq_{Δ} exists for Profile's resolution functions. The order is as follows:

PROPOSITION 4.1. For Δ containing all name/database pairs,

 $profile_1 \sqsubseteq_{\Delta} profile_2 \sqsubseteq_{\Delta} profile_3 \sqsubseteq_{\Delta} profile_4.$

Before considering the completeness of these resolution functions, we make the following assumption to simplify the analysis: An inaccurate attribute

ACM Transactions on Programming Languages and Systems. Vol 15, No 5, November 1993

in the client specification, that is, one that does not describe any of the objects that the client intends to identify, does not match any object within the database. Although, in practice, the assumption cannot be guaranteed, it is unlikely that a client will specify an inaccurate attribute that actually describes another object.² That is, the information in the naming system is sparse in the same sense that error-detection codes, such as parity and Hamming codes, use the distance between reasonable values to detect the presence errors in binary information.

The following claims about completeness are valid under this assumption:

PROPOSITION 4.2. The function $profile_1$ is complete for all sets of attributes that contain at least one attribute that is registered for each object that the client intended to identify.

PROPOSITION 4.3. $Profile_2$ is complete on names that contain a nonempty set, C, of closed attributes that are accurate; that is, each attribute in C describes every object that the client intends to identify.

PROOF. Consider $\Gamma_{cu} = \{(\mathbf{N}, \mathbf{D}) | \mathbf{x} \in oracle(\mathbf{N}, \mathbf{D}) \text{ implies that } \mu(closed(\mathbf{N}))$ represents $\mu(\mathbf{x})\}$. If $\mathbf{x} \in oracle(\mathbf{N}, \mathbf{D})$, then $\mu(closed(\mathbf{N}))$ represents $\mu(\mathbf{x})$. By the definition of closed, each of these attributes is registered in \mathbf{D} . Since $\langle closed, unanimous \rangle$ returns the objects that match all of the closed attributes, it returns to \mathbf{x} . Therefore, $\mathbf{x} \in oracle(\mathbf{N}, \mathbf{D})$ implies that $\mathbf{x} \in$ $unanimous(closed(\mathbf{N}), \mathbf{D})$ and that $\langle closed, unanimous \rangle$ is complete on Γ_{cu} .

Let $\Gamma_{ca} = \{(\mathbf{N}, \mathbf{D}) | \text{there exists a nonempty set } C \subseteq closed(\mathbf{N}) \text{ such that } \mathbf{x} \in oracle(\mathbf{N}, \mathbf{D}) \text{ implies that } \mu(C) \text{ represents } \mu(\mathbf{x})\}.$ If $\mathbf{x} \in oracle(\mathbf{N}, \mathbf{D})$, then there is a nonempty set of closed attributes, C, that represent \mathbf{x} . By definition, each attribute in C is registered for \mathbf{x} in \mathbf{D} . Also-ran(closed(\mathbf{N}), \mathbf{D}) \text{ is the set of objects in } \mathbf{D} for which at least one of the closed attributes is registered. Therefore, \mathbf{x} is contained in also-ran(closed(\mathbf{N}), \mathbf{D}) \text{ if } \mathbf{x} \text{ is in } oracle(\mathbf{N}, \mathbf{D}) \text{ and if } \langle closed, also-ran \rangle is complete on Γ_{ca} .

 E_{cu} consists of the name/database pairs that have either no closed attributes or at least one erroneous closed attribute and $\Gamma_{cu} \subseteq \Gamma_{ca}$. At this point, it is trivial to show that Proposition 3.4 implies that $\Gamma_{cu} \cup (E_{cu} \cap \Gamma_{ca}) = \Gamma_{ca} \subseteq \Gamma_{profiles}$. Thus, Proposition 4.2 holds. \Box

We previously defined a closed attribute as one that is guaranteed to be registered for every object it describes. A resolution function that uses open attributes may be incomplete if some open attribute in the name is not registered for some objects that the client intends to identify. For example, $\langle open, unanimous \rangle$ returns a set of objects that match every attribute in the name. However, one of the attributes in the name may not be registered for an object that the client seeks, and so that object does not match every attribute in the name according to the database. This leads to the following definition: An attribute **a** is *relevant* to a set of objects **D** if, for every object **x**

 $^{^{2}}$ It is possible to argue the completeness of resolution functions formally without this assumption; however, it is far more cumbersome to describe the set of name/database pairs where an approximation fails.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 5, November 1993.

in **D**, $\mu(\mathbf{a})$ describes $\mu(\mathbf{x})$ implies that **a** is registered for **x**. (Thus, an attribute is closed if it is relevant to the entire database.) Using this definition, it is possible to show the following:

PROPOSITION 4.4. $Profile_2$ is complete on names where all open attributes in the name are accurate and relevant to the set of objects that the client intends to identify.

PROOF. Let $\Gamma_{ou} = \{(\mathbf{N}, \mathbf{D}) \mid \mathbf{x} \in oracle(\mathbf{N}, \mathbf{D}) \text{ implies that } \mu(open(\mathbf{N})) \text{ represents } \mu(\mathbf{x}) \text{ and each attribute in } open(\mathbf{N}) \text{ is registered for } \mathbf{x}\}$. If $\mathbf{x} \in oracle(\mathbf{N}, \mathbf{D})$, then $\mu(open(\mathbf{N}))$ represents $\mu(\mathbf{x})$, and each attribute in $open(\mathbf{N})$ is registered for \mathbf{x} in \mathbf{D} . Recall that $\langle open, unanimous \rangle$ returns the objects that match all of the open attributes. Therefore, $\mathbf{x} \in unanimous(open(\mathbf{N}), \mathbf{D})$ if $\mathbf{x} \in oracle(\mathbf{N}, \mathbf{D})$, so that according to the definition of completeness $\langle closed, unanimous \rangle$ is complete on Γ_{ou} .

When $profile_2$ resolves names using $\langle open, unanimous \rangle$, both of the earlier composite approximations returned empty sets. This occurs whenever all of the closed attributes are inaccurate; that is, $E_{cu} \cap E_{ca}$ is the set of all (\mathbf{N}, \mathbf{D}) where $closed(\mathbf{N})$ contains no closed attributes that describe the objects the client intended to identify. $\Gamma_{cu} \cup (E_{cu} \cap \Gamma_{ca})$ includes any name that contains a nonempty set of closed attributes that describe the client's objects. Γ_{ou} may be partitioned into two disjoint sets: one where the names contain accurate closed attributes and one where they do not contain any accurate closed attributes. It is trivial to show that the former is contained in $\Gamma_{cu} \cup (E_{cu} \cap \Gamma_{ca})$ and the latter in $(E_{cu} \cap E_{ca} \cap \Gamma_{ou})$. Thus, $\Gamma_{ou} \subseteq \Gamma_{cu} \cup (E_{cu} \cap \Gamma_{ca}) \cup (E_{cu} \cap E_{ca} \cap \Gamma_{ou})$. Proposition 3.4 implies that $\Gamma_{ou} \subseteq \Gamma_{profile_2}$. Therefore, profile_2 is complete on Γ_{ou} , and Proposition 4.4 holds. \Box

PROPOSITION 4.5. $Profile_2$ is complete on names that contain at least one inaccurate, open attribute and a nonempty set of accurate, open attributes, such that at least one attribute in this set is registered for every object that the client intended to identify.

PROOF. Let $\Gamma_{oa} = \{(\mathbf{N}, \mathbf{D}) \mid \mathbf{x} \in oracle(\mathbf{N}, \mathbf{D}) \text{ implies that there exists a nonempty set } O \subseteq open(\mathbf{N}) \text{ such that } \mu(O) \text{ represents } \mu(\mathbf{x}) \text{ and each attribute in } O \text{ is registered for } \mathbf{x}\}$. If $\mathbf{x} \in oracle(\mathbf{N}, \mathbf{D})$, then there is a nonempty set of open attributes, O, that represent \mathbf{x} , and each attribute in O is registered for \mathbf{x} in \mathbf{D} . Also-ran(open(\mathbf{N}), \mathbf{D}) is the set of objects in \mathbf{D} for which at least one open attribute is registered. Therefore, \mathbf{x} is contained in also-ran(open(\mathbf{N}), \mathbf{D}) if \mathbf{x} is in oracle(\mathbf{N}, \mathbf{D}) and if $\langle open, unanimous \rangle$ is complete on Γ_{oa} .

If every name **N** contains at least one inaccurate attribute, then Γ_{ou} is empty. In this case, $\Gamma_{cu} \cup (E_{cu} \cap \Gamma_{ca}) \cup (E_{cu} \cap E_{ca} \cap \Gamma_{ou}) \cup (E_{cu} \cap E_{ca} \cap E_{ca} \cap E_{ou} \cap \Gamma_{oa})$ is equivalent to $\Gamma_{cu} \cup (E_{cu} \cap \Gamma_{ca}) \cup (E_{cu} \cap E_{ca} \cap \Gamma_{oa})$. As before, this expression contains Γ_{oa} . Therefore, $profile_2$ is complete on Γ_{oa} , and Proposition 4.5 holds. \Box

Since $profile_3$ uses the open attributes to "trim" the set of objects returned, it may not always be complete. However, we can give sufficient conditions for

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 5, November 1993.

its completeness. First, note that, if there are no open attributes present in a set of attributes submitted by the client, then no filtering is possible, and $profile_3$ is identical to $profile_2$. Thus, we have the following proposition:

PROPOSITION 4.6. Profile₃ is complete on names that do not contain any open attributes, but do contain a nonempty set of closed attributes that describe the objects the client intends to identify.

We can, however, do better than this. Proposition 4.6 is based on the fact that, if there are no open attributes in the set, then they cannot contribute to the discarding of an intended object. Thus, the reason for any possible incompleteness is that some open attribute in the given set of attributes was not registered for the intended object. Thus, if an open attribute is relevant to the objects that the client intends to identify then it does not contribute to the discarding of an intended object.

PROPOSITION 4.7. Profile₃ is complete on names that contain a nonempty set of accurate attributes that are relevant to the set of objects that the client intends to identify.

Note that Proposition 4.6 is a special case of Proposition 4.7, because a closed attribute is, by definition, relevant to all objects.

The resolution functions provided by the Profile naming system attempt to respond with complete answers. The analysis presented in this section points out one design decision that adversely affects this goal. The composite function, $\langle open, unanimous \rangle$, selects objects that match all open attributes in a name. This function is complete only if every open attribute in the name is relevant to all of the objects that the client identifies. Because the very definition of an open attribute is one that is not relevant to a large portion of the database, it is unlikely that more than one or two open attributes will be relevant to the set of objects that a client attempts to identify. Based on this understanding, it is possible to design a new function similar to $profile_2$ that does not use a precise match on open attributes and, thus, avoids this problem. The function, called $profile_{new}$, is defined on the following preferences:

$$\begin{array}{l} \prec_R: \ closed, \\ \prec_V: \ identity \prec_V \ also-ran \prec_V \ unanimous, \\ \prec_r: \ open, \\ \prec_v: \ identity \prec_v \ also-ran, \end{array}$$

where $\prec_v \triangleleft \prec_r \triangleleft \prec_V \triangleleft \prec_R$. The following two propositions hold for *profile*_{*new*}:

PROPOSITION 4.8. Function $profile_{new}$ is more discriminating than $profile_2$, except when

- (1) every open attribute in the name is accurate and relevant to every object that the client identifies and
- (2) every attribute in the name is either inaccurate or irrelevant to every object that the client identifies.

PROPOSITION 4.9. Function $profile_{new}$ is complete if for every object that the client intends to identify there is an accurate, open attribute in the name that is relevant to it.

This example shows that the preference hierarchy can help a system designer understand how well a resolution function meets its goals. $Profile_2$ sacrifices completeness for a substantial set of name/database pairs because it uses an exact match on open attributes, whereas $profile_{new}$ overcomes this weakness at the expense of being less discriminating for certain unlikely sets of attributes.

4.2 Lookup Resolution Function

Consider a naming system where the database contains accurate but potentially incomplete information and where the set of attributes specified by the client is accurate but may match more objects than the client intended. For these assumptions it seems unreasonable to use database approximation functions that return any object that conflicts with the client's description. For example, if the client specifies two accurate attributes, $\langle name:pollux, domain:as.arizona.edu\rangle$, *also-ran* may match an object with the attributes $\langle name:toto, domain:as.arizona.edu\rangle$, even though name:toto conflicts with part of the client's specification. In this case, since by definition a processor may have only one name, the object that is returned cannot be the one that the client intends to identify.

We define a new resolution function, *lookup*, specifically for this situation. *Lookup* uses *partial* and *possible* in conjunction with closed attributes to guarantee that no object that is returned conflicts with attributes specified by the client. Formally, *partial* and *possible* are defined as follows:

Definition 4.3 (Possible database approximation function). possible(N, \mathbf{D}) = { $\mathbf{x} \in \mathbf{D}$ | for every $\mathbf{t} : \mathbf{v} \in \mathbf{N}$ either $\mathbf{t} : \mathbf{v}$ is registered for \mathbf{x} or no attribute with tag \mathbf{t} is registered for \mathbf{x} }.

Definition 4.4 (Partial database approximation function). $partial(\mathbf{N}, \mathbf{D}) = \{\mathbf{x} \in possible(\mathbf{N}, \mathbf{D}) | \text{there is an } \mathbf{a} \in \mathbf{N} \text{ such that } \mathbf{a} \text{ is registered for } \mathbf{x}\}.$

The *lookup* resolution function is defined by the following preferences:

 $\begin{array}{l} \prec_{p}: ambiguous \prec_{p} unambiguous, \\ \prec_{R}: open \prec_{R} closed, \\ \prec_{M}: partial \prec_{M} exact, \\ \prec_{p}: ambiguous, \\ \prec_{r}: open, \\ \prec_{m}: possible \prec_{m} partial \prec_{m} exact, \end{array}$

where $\prec_m \triangleleft \prec_r \triangleleft \prec_p \triangleleft \prec_M \triangleleft \prec_R \triangleleft \prec_P$. If the assumptions about the information in the system are valid, then *lookup* never returns objects that are known to conflict with the client's specification. In general, it prefers

ACM Transactions on Programming Languages and Systems, Vol 15, No 5, November 1993

objects that are known to match the client's description over those that are not known to conflict with the description.

4.3 Other Nontrivial Resolution Functions

This section discusses several other nontrivial resolution functions.

4.3.1 Yellow-Pages. A yellow-pages resolution function allows clients to discriminate among similar computational resources, such a printers, processors, databases, and network services, according to their particular characteristics. The descriptive yellow-pages function [Peterson 1987], denoted yp, is defined as follows: The set of attributes presented to yp are partitioned into mandatory and optional subsets, denoted by \mathbf{N}_m and \mathbf{N}_o , respectively, where the optional attribute set is ordered; that is, $\mathbf{N}_o = \{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$. The most preferred answer matches the mandatory attributes and all of the optional attributes; however, if no such match exists then a match based on optional attribute a_i is preferred over a match based on attribute a_j if i < j. Thus, n optional attributes define n + 1 different client approximation functions o_0, o_1, \ldots, o_n , where o_i returns the mandatory attributes and the first i optional attributes. Thus, for a given set of attributes, yp is defined by $\prec_M \, \triangleleft \, \prec_A$, where \prec_A and \prec_M are given by

$$\prec_A : o_0 \prec_A o_1 \prec_A \cdots \prec_A o_n, \\ \prec_M : exact.$$

For example, yp allows a client to ask for a processor that has a 68020 architecture and supports a Pascal compiler, and, of all processors that possess those properties, to select those with a load less than 1.5, should any exist.

4.3.2 CSNET. Consider the CSNET name server that is used to identify users and organizations [Solomon et al. 1982]. Like yp, the CSNET name server defines a client approximation in which a given set of attributes is partitioned into mandatory and optional subsets. The resolution function used by the CSNET name server, denoted *csnet*, is defined by $\prec_m \lhd \prec_f \lhd \prec_M \lhd \prec_F$ on the following preferences:

$$\begin{array}{l} \prec_F \colon mandatory, \\ \prec_M \colon exact \prec_M unique, \\ \prec_f \colon optional, \\ \prec_m \colon identity \prec_m maximum, \end{array}$$

where *maximum* selects the set of objects that match the maximum number of attributes. The function-based preference is given priority over the matchbased preference.

4.3.3 NIC. The NIC name server (also called WHOIS) limits queries to a single attribute and defines a resolution function that returns all objects partially matched by that attribute [Pickens et al. 1979]. The resolution function is therefore functionally equivalent to $profile_1$. The NIC name server also enforces a restriction that an unambiguous attribute, called a *handle*, be

ACM Transactions on Programming Languages and Systems, Vol. 15, No 5, November 1993.

registered for each object, such that, if a client gives a handle, the naming system is guaranteed to return at most one object. Handles are implemented by attaching a unique prefix to a registered attribute so as to ensure its uniqueness.

4.4 Resolution Functions for Conventional Naming Systems

Although descriptive naming systems such as Profile, the CSNET name server, and the NIC name server take advantage of the full expressive power of the preference hierarchy, understanding preferences provides insight into more conventional systems.

Conventional naming systems support a simple inference system: They restrict the database to accurate, unambiguous attributes and restrict queries to names containing a single, accurate attribute. This implies that all matches are unique. As a consequence, conventional naming systems are trivially given by a resolution function *conv*, which returns the set of objects uniquely matched by the set of unambiguous attributes in the name. Given this definition, it is easy to see the following:

PROPOSITION 4.10. The function conv is sound for all singleton sets of attributes.

Notice, however, that the restriction that only unambiguous attributes may be registered implies that such systems cannot be complete for attribute sets other than those that contain a single, unambiguous attribute. Thus, we have the following:

PROPOSITION 4.11. The function conv is complete for all sets of attributes that contain no ambiguous attributes.

Consider a common scenario in which the naming system is used to map a symbolic name into a machine-readable address. In this case, the symbolic name registered for a particular object is an *authoritative* attribute, that is, one that always describes the object, and the object's machine-readable address is either a *cached* attribute, that is, one that currently describes the object, in which case the system must be designed to flush the binding if there is any chance that it has become stale, or it is an *out-of-date* attribute, that is, one that described the object at one time but may not describe it now, in which case users of the naming system must be able to accommodate out-of-date information. The latter case is commonly referred to as a *hint* [Terry 1987].

It is important to note that conventional naming systems, because of the requirements placed on them, generally sacrifice completeness for the sake of soundness. Descriptive naming systems, on the other hand, often sacrifice soundness for the sake of completeness. To accomplish this, conventional (low-level) systems are likely to deal exclusively with preference classes that are high in the preference hierarchy (e.g., *unambiguous, unique*, and *authoritative* attributes), whereas descriptive (high-level) systems are likely to accept preference classes that are low in the hierarchy (e.g., *ambiguous* and *cached* attributes). Moreover, although high-level naming systems are more

likely to accommodate multiple preference classes, even low-level naming systems that accommodate only one preference class have implicitly made a decision regarding that preference. That is, they mandate a certain preference class.

4.5 Comparing Systems

The preference hierarchy provides a handle on comparing naming systems. For example, because conventional naming systems assume *unambiguous* attributes and *unique* matches, and because both of these preference classes are present in the preference hierarchy upon which Profile is based, one can directly compare Profile's most discriminating resolution function with *conv* as follows:

$profile_4 \sqsubseteq _ _ conv$

for all sets of name/database pairs in Δ . In other words, it is accurate to view *conv* as a restrictive member of the Profile family of resolution functions.

Although we cannot compare naming systems unless the preference hierarchy of one can be embedded in that of the other, being able to conclude that the naming systems are inherently different is itself useful. For example, one might be interested in knowing if white-pages and yellow-pages services are fundamentally different or if they are simply synonyms for the same thing. The answer, at least relative to the systems with which we have experience, is that they are fundamentally different. White-pages services are based on *open* and *closed* preference classes, whereas yellow-pages services are based on *mandatory* and *optional* preference classes.

Furthermore, our experience strongly suggests that these preference classes correctly represent the environment in which the two systems operate and the requirements placed on the two systems by the clients that use them. In the case of white-pages services, the fact that not all useful information about users is known to the naming system is a significant constraint on the system: the resolution functions must be designed in a way that accommodates missing information. Also, because clients of a white-pages system generally have a particular object in mind when they submit a name, it is implied that the object identified by the attribute should possess all of the attributes in the name; that is, the distinction between mandatory and optional attributes is not relevant. In the case of yellow-pages services, it is possible to ensure that all of the necessary information be stored in the database. A program is responsible for registering attributes; the distinction between open and closed attributes is not an issue. Moreover, the client that names a computational resource is most interested in distinguishing between similar resources; that is, clients generally do not care which processor they get as long as it has the appropriate blend of attributes. Thus, the fine-grain control afforded by partitioning the name into mandatory and optional attributes is useful.

5. CONCLUDING REMARKS

This paper reasons about naming systems as specialized inference mechanisms. It defines a preference hierarchy that is used to specify the resolution

ACM Transactions on Programming Languages and Systems, Vol. 15, No 5, November 1993.

function(s) associated with a given naming system, including both conventional and descriptive systems. The preference hierarchy has proved powerful enough to describe the naming systems we have encountered. We have implemented a general name server that explicitly enforces this model and are using it to implement many of the naming systems described in this paper.

In addition to providing a formal model for understanding existing naming systems, we have also found the preference hierarchy to be a prescriptive tool that can be used when designing new naming systems. For example, the Profile naming system introduced in Section 3 was designed before we had formally defined the preference hierarchy, but clearly, an intuitive understanding of preferences guided the design. It is interesting to note that the formal specification of the preference hierarchy led us to understand and correct a subtle flaw in the original definition of $profile_2$. It also led to the definition of the new function, $profile_{new}$, given in Section 4.1.

As another example, after having defined the preference hierarchy, we were able to apply it to the problem of designing a yellow-pages service used to identify computational resources such as printers, processors, databases, network servers, and so on [Peterson 1987]. In particular, we wanted a descriptive yellow-pages service that would allow users to discriminate among a set of similar resources, that is, resources that provided approximately the same service. The result was the resolution function yp given in Section 4.3.

As a final example, we have observed that the domain naming system (DNS) [Mockapetris 1987] evolved in a way that suggests an implicit understanding of the preference hierarchy. Specifically, DNS provides the same functionality as conventional systems: It maps host names into network addresses. Unlike simpler systems, however, DNS is implemented in a network environment in which the database is distributed over multiple hosts. Several years of experience with the system led its designers to understand that the DNS mechanism must be able to deal correctly with out-of-date data. In particular, an updated specification of the system reads, "Cached data should never be used in preference to authoritative data " This informal definition directly corresponds to the temporal preference cached \prec , authoritative. The important points are that, even in functionally simple systems that maps names into addresses, it is possible for the environment in which the system is implemented to impose constraints on the system, and that the technique used to deal with these constraints can, in turn, be expressed in terms of the preference hierarchy.

APPENDIX

This Appendix contains several Scheme function definitions used to implement the name resolution functions described in Section 4. This is how we actually define resolution functions in the Univers name server [Bowman et al. 1990]. These functions may be included as part of the query, or stored in the Univers server and referenced by the query. Note that several optimiza-

tions have been made in order to avoid redundant computations of composite approximation functions.

```
(define (profile 1 N D)
  (also-ran (universal N) D)
)
(define (profile2 N D)
  (cond
     [(unanimous (closed N) D)]
     [(also-ran (closed N) D)]
     [(unanimous (open N) D)]
    [(also-ran (open N) D)]
  )
)
(define (profile3 N D)
  (cond
     [(unique (closed N) D)]
     [(unanimous (open N) (unanimous (closed N) D))]
     [(also-ran (open N) (unanimous (closed N) D))]
     [(unanimous (closed N) D)]
     [(unanimous (open N) (also-ran (closed N) D))]
     [(also-ran (open N) (also-ran (closed N) D))]
     [(also-ran (closed N) D)]
     [(unanimous (open N) D)]
    [(also-ran (open N) D)]
  )
)
(define (profile4 N D)
  (unique (closed N) D)
)
(define (profile-new N D)
  (cond
     [(also-ran (open N) (unanimous (closed N) D))]
     [(unanimous (closed N) D)]
     [(also-ran (open N) (also-ran (closed N) D))]
     [(also-ran (closed N) D)]
     [(also-ran (open N) D)]
    [D]
  )
)
(define (lookup N D)
  (cond
     [(exact (closed (unambiguous N)) D)]
     [(partial (open (unambiguous N)) D)]
     [(exact (ambiguous N) D)]
     [(partial (open (ambiguous N)) (exact (closed (ambiguous N) D))]
     [(possible (open (ambiguous N)) (exact (closed (ambiguous N)) D))]
     [(exact (open (ambiguous N)) D)]
     [(partial (open (ambiguous N)) D)]
  )
)
```

```
(define (yp M O D)
  (if (null? O)
    (exact M D)
    (cond
      [(exact O (exact M D))]
      [(yp M (cdr O) D)]
    )
 )
)
(define (csnet N D)
  (cond
    [(unique (mandatory N) D)]
    [(maximum (optional N) (exact (mandatory N) D))]
    [(exact (mandatory N) D)]
  )
)
(define (conv N D)
  (unique (unambiguous N) D)
```

ACKNOWLEDGMENTS

The authors wish to thank the anonymous referees, who persisted in helping us improve the quality of this paper.

REFERENCES

BETZ, D. M 1989. Xscheme: An Object-Oriented Scheme. Peterborough, N.H.

BORNING, A., DUISBERG, R, AND FREEMAN-BENSON, B. 1987. Constraint hierarchies. In Proceedings of OOPSLA '87 (Oct). ACM, New York, 48–60.

BOWMAN, M. 1990. Univers: The construction of an internet-wide descriptive naming system. Ph.D thesis, Dept. of Computer Science, Univ. of Arizona, Tucson, Aug.

- BOWMAN, M., PETERSON, L., AND YEATTS, A. 1990. Univers An attribute-based name server. Softw. Prac. Exper. 20, 4 (Apr.), 403-424.
- BUDD, T. 1986. Bib—A program for formatting bibliographies. In Unix User's Supplementary Documents. 4.3 Berkeley Software Distribution Apr.
- COMER, D. E., AND PETERSON, L. L. 1989. Understanding naming in distributed systems. Distrib. Comput. 3, 2 (May), 51-60.
- FABRY, R. S. 1974. Capability-based addressing. Commun. ACM 17, 7 (July), 403-411.
- FOWLER, R. J. 1985. Decentralized object finding using forwarding addresses. Ph.D. thesis, Dept. of Computer Science, Univ. of Washington, Seattle, Dec.
- GALLAIRE, H., MINKER, J., AND NICOLAS, J. 1984. Logic and databases: A deductive approach. ACM Comput. Surv. 16, 2 (June), 153–186.
- INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 1988. Information processing systems: Open systems interconnection—The directory—Overview of concepts, models, and service. Draft International Standard ISO 9594-1:1988(E), International Organization of Standardization, New York.
- LAMPSON, B. 1986 Designing a global name service. In Proceedings of 5th Symposium on the Principles of Distributed Computing (Aug.). ACM, New York, 1–10.
- LIPSKI, W., JR. 1981. On databases with incomplete information. J. ACM 28, 1, 41-70.
- LIPSKI, W., JR. 1979 On semantic issues connected with incomplete information databases. ACM Trans. Database Syst. 4, 3 (Sept.), 262-296.
- MANN, T. 1987. Decentralized naming in distributed computer system. Ph.D. thesis, Stanford Univ., Palo Alto. Calif, May.

- MOCKAPETRIS, P. 1987. Domain names—Implementation and specification. Request For Comments 1035, USC Information Sciences Institute, Marina del Ray, Calif., Nov.
- OPPEN, D., AND DALAL, Y. 1981. The clearinghouse: A decentralized agent for locating named objects in a distributed environment. Tech. Rep. OPD-T8103, Xerox Office Products Division, Palo Alto, Calif., Oct.

PETERSON, L. L. 1988. The Profile naming service. ACM Trans. Comput. Syst. 6, 4 (Nov.), 341-364.

- PETERSON, L. L. 1987. A yellow-pages service for a local-area network. In Proceedings of the SIGCOMM '87 Workshop: Frontiers in Computer Communications Technology (Stowe, Vt., Aug.). ACM, New York, 235-242.
- PICKENS, J., FEINLER, E., AND MATHIS, J. 1979. The NIC name server—a datagram based information utility. In *Proceedings of the 4th Berkeley Workshop on Distributed Data Management and Computer Networks* (Aug.).

PRICE, C. 1971. Table lookup techniques. ACM Comput. Surv. 3, 2, 49-65.

- REITER, R. 1980. On closed world databases. In *Logic and Databases*, H. Gallaire and J. Minker, Eds. Plenum Press, New York, 55-76.
- RITCHIE, D. M., AND THOMPSON, K. 1974. The Unix time-sharing system. Commun. ACM 17, 7 (July), 365–375.
- SOLOMON, M., LANDWEBER, L., AND NEUHENGEN, D. 1982. The CSNET name server. Comput. Networks 6, 161–172.
- SUN MICROSYSTEMS INC. 1986. Yellow Pages Protocol Specification. Sun Microsystems Inc., Mountain View, Calif., Feb.
- TERRY, D. 1987. Caching hints in distributed systems. *IEEE Trans. Softw. Eng. SE-13*, 1 (Jan.), 48-54.
- ULLMAN, J. D. 1988. Principles of Database and Knowledge-Base Systems. Vol. 1. Computer Science Press, Rockville, Md.
- WATSON, R. 1981. Identifiers (naming) in distributed systems. In Distributed Systems— Architecture and Implementation, B. Lampson, M. Paul, and H. Siegert, Eds. Lecture Notes in Computer Science. Springer-Verlag, New York, 191–210.
- WONG, E. 1982. A statistical approach to incomplete information in database systems. ACM Trans. Database Syst. 7, 3 (Sept.), 470-488.

Received October 1987; revised February 1989, June 1990, April 1992, and March 1993; accepted March 1993