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Abstract. Mobile robot control remains a difficult challenge in chang-
ing and unpredictable environments. Reacting to unanticipated events,
interacting and coordinating with other agents, and acquiring informa-
tion about the world remain difficult problems. These actions should be
the direct products of the robot’s capabilities to perceive, act, and pro-
cess information intelligently, taking into account its state, that of the
environment, and the goals to be achieved. This paper discusses the use
of model-checking to reason about robot actions in this context. The
approach proposed is to study behaviors that allow abstract, but in-
formative models, so that a computer program can reason with them
efficiently. Model-checking can then be used as a means for verifying and
planning robot actions with respect to such behaviors.

1 Introduction

Mobile robot control remains a difficult challenge in unstructured or dynamic
environments in which operating conditions are changing and unpredictable.
In such instances, the behavior-based robot programming paradigm advocates
distributing a robot task among several processes (called behaviors), running
concurrently, each dealing with a simpler subtask [1]. A behavior operates by
updating one or more robot control parameters at different steps of execution.
For instance, a behavior to avoid an obstacle is implemented by a program that
changes the robot’s heading and speed, at every step of execution, depending
on the robot’s sensors. A behavior that moves the robot to a target position
controls the same parameters, but based on target coordinates instead of the
robot’s current position. In principle, the latter behavior is not supposed to
account for obstacles. Rather it should be the combination of both behaviors that
move the robot to the target position while avoiding obstacle. Different behavior-
based architectures have been proposed, all agreeing on the concurrent nature of
behaviors. They differ in mechanisms used to implement this concurrency and
abstraction [2, 3]

Designing behaviors as concurrent processes facilitates their design, but intro-
duces, at the same time, all the fundamental problems of concurrent processes.
One typical problem is deadlocks, which appear when the execution of a process



is blocked by a condition that was supposed to be enabled by another process.
In some cases, deadlocks are normal and intended in the design. For example, an
obstacle-avoidance process is blocked while waiting for an obstacle to be signaled
by a separate obstacle-detection process. In other cases, deadlocks are not in-
tended at all and they represent design faults that should be fixed. To illustrate,
because of programmer oversight, the obstacle-detection process fails to signal a
detected obstacle in the obstacle-avoidance process. Another typical problem is
livelocks, which appear when the concurrent execution fails to progress towards
a desired execution point, for instance, because of pathological cyclic execution
by one or more processes. These kinds of design errors are very difficult to detect,
yet they can cause fatal robot behaviors.

Similar problems have been being investigated in the area of protocol verifica-
tion, where successful tools have been developed to automatically detect typical
error designs, using model-checking techniques [4]. The basic idea is to simulate
protocol rules (or their models) in such a way that the simulation covers all
their potential executions, and to check that every simulated execution sequence
satisfies a correctness statement. If the statement is specified as a formula in
temporal logic, then the problem becomes to check that the execution sequence
satisfies the formula; in other words, we check that the execution sequence is a
logical model of the formula, that is, model checking. One important problem in
this approach is developing efficient modeling and simulation techniques to cover
the entire space of execution sequences for given protocol rules. Lesser coverage
will yield proportional confidence in the correctness of the protocol rules, but
not complete confidence. It may nevertheless be useful as a debugging tool.

We propose adopting similar ideas to improve the design of robot behaviors.
As with automatic protocol verification, we would like to check whether the con-
current execution of robot behaviors satisfies a given correctness property. There
are three contexts to which we would like to apply this: off-line verification, on-
line verification, and planning. For off-line verification, we would like to simulate
a correctness condition to be verified on a set of behaviors, covering the space
of their possible executions and checking that they satisfy the correctness condi-
tion. For online verification, given a progress condition that should be satisfied
by a normal execution of robot behaviors, we would like to track the execution,
checking that it does not violate the progress condition. Goals represent tasks for
behaviors and may be changed at any time by user requests or by other trigger
events. Changes in goals require a reconfiguration of behaviors. Reconfiguration
may also be required when the environment context changes, for example, upon
failure detection. Behavior planning addresses these reconfiguration problems.
Given a goal statement and an environment context, we would like to simulate
given behaviors to select combinations or configurations that best suit a given
context or goal.

If robot behaviors were like network protocol rules, we could easily solve
the above problems through the straightforward adaptation of tools tailored
to verify protocol rules. Unfortunately, there are important fundamental dif-
ferences between protocol rules and robot behaviors. Robot actions (e.g., turn,



stop, accelerate, grasp an object or release it) rely on noisy sensors and error-
prone actuators. Although noise also exists in protocols (because of unreliable
transmission media), it is more easily abstracted over by checking for corrupted
packets at lower levels. Consequently, the problem of verifying protocols deals
with higher level transmission rules, such as ensuring logical consistency in the
acknowledgement of received packets [4]. Another important difference between
robot behaviors and communication protocols is that robot behaviors are more
clearly goal-oriented. Hence, the notion of a “goal” should be part of the lan-
guage used to express correctness statements, so that we can check, for example,
if two behaviors involve conflicting goals.

In this paper we discuss some steps relating to the development of more
suitable tools for verifying robot behaviors, whether in the context of online
verification, off-line verification, or planning. We propose using Linear Temporal
Logic (LTL) [5] as the language for specifying properties of robot behaviors. As
explained above, depending on the context, such a property will express a design
correctness statement, an execution progress condition, or a goal. As these ideas
are at the early stage of experimentation, the discussion in this paper remains
at a relatively abstract level.

The remainder of the paper is organized as follows. The next section briefly
discusses coding robot behaviors using the SAPHIRA control architecture. Sec-
tion 3 deals with specifying properties of behaviors using LTL. Section 4 discusses
a technique for efficiently checking that a behavior trace violates an LTL property
and the application of this technique to monitor real-time executions, to detect
off-line design errors, and to plan behaviors. We conclude with a discussion on
related work.

2 Coding Robot Behaviors

2.1 Robot Platform

We use one indoor Pioneer-1 mobile robot and one outdoor all-terrain Pioneer-
1.1 Figure 1 shows a snapshot of both robots in our lab. Each robot is equipped
with 8 sonars (allowing to detect obstacles), a pan-tilt-zoom color camera, an
onboard image processing system (allowing recognition of 3 different colors si-
multaneously), a radio modem (that transmits information from the robot to a
remote computer and vice versa), an audio-video transmitter that transmits the
camera video output to the computer, and grippers. Information transmitted
from the robot to the remote computer via the radio modem mainly consists of
sonar readings, robot motor and wheel status, features extracted by the onboard
image processor, and the gripper status. Information transmitted from the re-
mote computer to the robot consists of commands on actuators. There are few
basic robots control parameters that directly affect the actuators: heading angle
(i.e., turning angle for the wheels), speed, camera configuration (pan, tilt, zoom)
and gripper configuration (open, closed).
1 Pioneer-1 mobile robot is a trademark of ActivMedia Inc.



Fig. 1. Pioneer-1 and Pioneer-1 AT robots

2.2 SAPHIRA Behaviors

We program robot behaviors using SAPHIRA architecture [2], which is based
on a synchronous model of concurrency. Each behavior is launched with a given
priority. Behaviors are executed by a process scheduler, which cycles through
them every 100 milliseconds. At every cycle, the scheduler considers each active
behavior to determine its output control actions; actions from all processes are
combined to determine their joint effect on the robot’s actuators, using behavior
priorities to resolve conflicts. How control actions are joined cannot be fully
described here, but it can be approximated by saying that when behaviors with
different priorities affect the same control variable with conflicting values, then
the behavior with the highest priority takes precedence. If the behaviors have the
same priority, then their conflicting effects on the control variables are merged.
For example, if one indicates turning left 45 degrees and the other turning right
with 45 degrees, the end result will be moving front (i.e., turn 0 degrees).

To illustrate, let us consider oversimplified specifications of some of the basic
robot navigation behaviors that are provided with SAPHIRA (Figure 2). For the
sake of concision, we have removed variable declarations that are not crucial for
understanding the examples, but that are required for a complete and correct def-
inition. Obstacle-avoidance is implemented by two behaviors: avoidCollision
(which avoids obstacles close to the robot) and keepOff (which veers the robot
away from longer obstacles). Both behaviors are similar in description, but react
differently as one focuses on close obstacles while the other is detecting long
distant obstacles. Behavior goToPos moves the robot to a given position. The
command Turn Left get_turn_amount turns the robot’s wheel to the left the
number of degrees indicated by get_turn_amount. This variable is updated pe-
riodically using rules that are declared in the behavior (omitted here for the sake
of concision) but roughly the amount is proportional to how far to the left or
right the obstacle is. The command Turn Right is similar. The command Speed
sets the robot’s speed to a given value in mm/sec.

Variables are local to behaviors and have a fuzzy interpretation. To simplify
the examples here, we assume a binary interpretation for variables in the rule an-



BeginBehavior avoidCollision

If obstacle_right Then Turn Left turning_depth

If obstacle_left Then Turn Right turning_depth

If obstacle_front Then Turn preferred_turn turning_depth

EndBehavior

BeginBehavior keepOff

If obstacle_right Then Turn Left turning_depth

If obstacle_left Then Turn Right turning_depth

If obstacle_front Then Turn preferred_turn turning_depth

EndBehavior

BeginBehavior goToPoS

If gt_too_fast Or gt_too_slow Then Speed gt_speed

If gt_pos_on_left Then Turn Left gt_turn_amount

If gt_pos_on_right Then Turn Right gt_turn_amount

If gt_pos_achieved Then Speed 0.0

EndBehavior

Fig. 2. Avoid-collision, keep-off and go-to behaviors

tecedents and crisp values for command Turn and Speed. In avoidCollision,
obstacle_left is set to true when the sensor readings indicate a close ob-
stacle to the left of the robot (say within a range of 2 meters). In keepoOff,
obstacle_left is set to true when the sensor readings indicate there is an ob-
stacle to the left of the robot but further away. An analogue interpretation holds
for the other variables. The reader is referred to the SAPHIRA programming
manual for a more accurate description of behaviors, but the above abstract
examples are sufficient to illustrate our point.

For our examples, the basic control variables affected are robot heading
(through command Turn) and speed. Consider the situation depicted in Fig-
ure 3(a): the robot’s goal is to reach the position marked by the large black
dot, from a position marked by the large white dot. Presently, there are no ob-
stacles, either close or distant. In this instance, avoidCollision and keepOff
have no effect on the control variables; goToPos changes the robot’s heading to
align it with the target position. In Figure 3(b), the robot has detected a dis-
tant obstacle in front, but no close obstacle. In this situation, keepOff veers the
robot to the right to avoid the obstacle. In Figure 3(c), the robot has detected
a distant obstacle in front as well as closer obstacles on the left and right, re-
sulting in conflicting actions. keepOff would have the robot veer to the right
or left; avoidCollision and goToPos would have it move front. The SAPHIRA
operating system joins the actions, yielding the action of moving straight ahead.

The above behaviors implement obstacle avoidance while moving towards
the target position with obstacles. This works quite well in most cases. Yet it is
not difficult to find a configuration of obstacles that causes the robot to oscillate
between two positions without ever making progress towards the goal (e.g., see
Figure 3(d)). In such situations, the robot needs some global path planning.
It would, however, run counter to the principle of behavior-based approaches



Fig. 3. Robot navigation snapshots

to include a path planner in the obstacle-avoidance behavior itself. Complex
tasks should result from the combination of simple behaviors, not some complex
deliberative process.

In keeping with the spirit of behaviors, it would be better to use tools that
can monitor the robot’s behaviors in order to detect their failures. Such tools can
enable us to keep our basic navigation behaviors with the knowledge that they
fit some contexts but may fail in some tricky situations. In the latter, a recovery
behavior can be invoked to put the robot on the right track. In other words,
what is needed is a way to specify progress conditions under which behaviors
or combination of behaviors are deemed to be progressing normally. Then, we
can have another behavior or process that monitors those progress conditions
to send signals when they are violated. That way, with the previous example,
we would write a progress condition stating that “as long as the robot has not
reached the target position, then its position should progress towards the goal
more than 10 m every 60 s.” This approach is general and goes beyond navigation
behaviors. We would also use it, for example, to control a robot grasping objects
by writing progress statement such as “the robot keeps approaching the object
only as long as the object is in the visual field of the camera.” With higher-level
object delivery behaviors, we may say something like “the robot remains within
a region until some condition holds, such as until another robot puts an object
there required by the first robot.”



3 Specifying Properties of Behaviors

A robot state is described by specifying control variables and their respective
values. Basic state properties are expressed using predicates, that is, functions
over states, that return true or false, depending on whether or not the prop-
erty holds. For instance, the predicate =(x,y) is defined to return true if x is
equal to y. As this example shows, the state argument is implicit in the no-
tation of a predicate. With an appropriate definition, the predicate in(x,y)
evaluates to true in a state in which object x or robot x is in room y. Predi-
cates can have function applications as arguments. For instance, the statement
=(speed(robot),v) evaluates to true in a state in which the robot’s speed is
v mm/sec.

First-order-logic is a predicate language allowing to write more complex log-
ical expressions (called formulas) from predicates by using the logic connectives
&& (and), || (or) , ! (not), -> (implies), forall and exists. Our use of the
forall quantifier is always bounded by a predicate, that is, we can only quan-
tify on something true of a given a predicate. For instance, we can write

forall (x) in(x,Lab3031)
(<=(position-x,30) && >=(position-x,0) &&
<=(position-y,30) && >=(position-y,0))

The predicate in(x,Lab3031) here is mandatory. This means for every x such
that x is in Lab3031, the position of x satisfies the indicated boundary con-
straints.

First-order logic allows us to write statements that are true about a given
state. In order to write statements that are true about behaviors, we need a
logic that can express statements about possible execution sequences. LTL is
such a language obtained from First-order logic by introducing operators that
are applied to formulas to relate them to the future of a given execution sequence
or to its past.2

3.1 Formal Syntax

The LTL formula formation rules are:

1. a predicate is the most simple LTL formula (including the primitive propo-
sitions true and false);

2. for any LTL formulas f and g, and time interval i, then the following are
also LTL formulas:

2 First-order logic becomes suitable for expressing properties of execution sequences
if we include a state argument in predicates. For example, “in(x,Lab3031,s)” would
mean that “in(x,Lab3031)” holds in state “s”. This extension of First-order logic
is known as Situation-Calculus [6]. LTL relates predicates to states in a different
way using modal temporal operators, leading to a different approach for evaluating
formulas over execution sequences.



(a) ! f (intuitively: “not f”),
(b) f && g (intuitively: “f and g”),
(c) next i f (intuitively: “the next state is on the time interval i and sat-

isfies f”);
(d) f until i g (intuitively: “on the forwards time interval i, f holds in

every future state up to a state satisfying g”);
(e) last i f (intuitively: “the last state is on the time interval i and sat-

isfies f”);
(f) f since i g (intuitively: “f holds in every past state up to a state

satisfying g, on the time interval i”)
(g) forall x1 ... xn p f (intuitively: “for all x1 ... xn such that p holds,

then f holds”, where p is a predicate involving x1 ... xn as free vari-
ables, and f is a formula also possibly involving those free variables);

(h) Parenthesis may be used to resolve ambiguities.

The future (or forwards) operators (next and until) refer to future of an
execution sequence, that is, the subsequence rooted from the current state. The
past (or backwards) operators (last and since) are like their mirror reflections
referring to the history of an execution sequence, that is, the subsequence starting
from initial state for the execution sequence and ending in the current state. The
arguments of a temporal operator are a time interval and one or two formulas.
The time interval is noted [i,j], where i is the starting time, assuming the
time in the current state is 0, and j is the ending time. The ending time is noted
? when it is infinite. This interpretation holds going forwards if the interval is
associated to a future operator, or going backwards if it is associated to a past
operator. In our case, the time unit is generally set to the length of a cycle for the
SAPHIRA operating system (i.e., 100 milliseconds.) The following abbreviations
are standard:

– f || g is equivalent to !(!f && !g) (intuitively: “f or g”).
– f->g is equivalent to !f || g (intuitively: “f implies g”)
– eventually i f is equivalent to true until g (intuitively: “f eventually

holds in some future state on the time interval i”).
– always i f is equivalent to ! eventually i !f (intuitively: “f holds in

every future state on the time interval i”).
– previously i f is equivalent to true since i f (intuitively: “f holds on

some past state on the time interval i”).
– alwaysPreviously i f is equivalent to ! previously i !f (intuitively: “f

holds in past future state on the time interval i”).
– exists x1 ... xn p f is equivalent to ! forall x1 ... xn p !f (intu-

itively: “there exists x1, ..., xn such that if p holds then f holds”);

3.2 Examples of LTL formulas

1. The LTL formula always (0,?) !(active(B1) && active(B2)) states that
behavior B1 and behavior B2 must never be active at the same time.



2. The formula

always [0,?] (! in(robot,Lab3031) ->
next [0,?] (in(robot,Lab3031) ->

eventually [0,2]
always [0,100] active(B1)))

means that, once the robot enters Lab3031, then behavior B1 must be active
within 2 time units and remain active during 100 time units.

3. The formula

always [0,?] (forall (x) in(x,Lab3031)
(grasping(robot,x) -> requested(x)))

means that, in Lab3031, the robot should only grasp requested object.
4. The formula

always [0,?]
(((last [0,?] ! in(robot,Lab3031)) &&
in(robot,Lab3031)) ->
eventually [0,2] (always [0,100] active(B1)))

is just another way of expressing the same statement as in (2) above.
5. The formula

always [0,?] ((alwaysPreviously [0,10)] stalled()) ->
next [0,?] active(B3))

means that, if the robot is stalled since 10 time units, then behavior B3 must
be active in the next state.

6. The formula

always [0,?]((last [0,?] clost() &&
last [0,?] last [0,?] clost() &&
last [0,?] last [0,?] last [0,?] clost()) ->
next [0,?] active(B4))

means that, if we have three consecutive losses of communication with the
robot (clost), then behavior B4 must be active in the next state.

3.3 Formal Semantics

Reactive behaviors, such as obstacle-avoidance, are cyclic by nature, with no
predefined terminating point. Such a cyclic execution unwinds into an infinite
execution sequence. Thus the semantics of LTL formulas is defined by consider-
ing infinite execution sequences. In this case, a terminating execution sequence
is represented by an equivalent one obtained by replicating the terminal state
infinitely.



The LTL interpretation rules are recursively defined in Figure 4. This func-
tion takes three arguments, respectively, an LTL formula h, an execution se-
quence E, and a state s on E. It returns true if h holds in s; otherwise, it returns
false. This must be only regarded as a specification of the semantics rule, not
as an effective procedure for checking LTL formulas over an execution sequence.
Since we assume an infinite execution sequence, the “algorithm” does not ac-
tually terminate. In fact, we realized that it facilitates understanding when the
semantics rules are given that way in an algorithmic style. Below, we explain sim-
ple modifications to this specification to obtain an effective method for checking
LTL formulas.

The basic case is with predicates. The generic function holdPredicate takes
a predicate and state as arguments and then calls a domain-dependent predicate-
evaluation function that returns true if the predicates holds in the state, false
otherwise.

The recursive case is domain-independent and implements the interpretation
of logical connectives and temporal operators. A formula ! f holds on s if f does
not hold on s. A conjunctive formula holds on s if each conjunct holds on s.

A formula of the form next i f holds on s if f holds on the successor of
s, and this successor appears in the interval i; note that every state has a
successor since the sequence is infinite. Function succ(s,E) returns the state
immediately following s on the execution sequence E; dur(s,s1,E) returns the
duration between state s and state s1 on the execution sequence E; lb(i) returns
the lower bound of a time interval i; ub(i) returns the upper bound.

The interpretation rule for until means f until i g is satisfied in the cur-
rent state if the interval i is active (i.e., its lower bound is 0) and g is sat-
isfied in the current state, otherwise if f is satisfied in the current state and
(f until j g) is satisfied in the next state, with j representing a reduction of
i with the time elapsed between the current and the next state. For a situation
in which the upper-bound of an interval is ?, ?-d reduces to ? for any duration
d.

The interpretation rules for previously and since are analogue to, respec-
tively, next and until, but it goes backwards, using the function pred(s,E) to
access to the state before s on the execution sequence E (this yields null if s is
the initial state).

Finally, forall x1 ... xn p f holds in a state if f holds in that state for
every instantiation of x1, ..., xn that makes p true in the state.

4 Monitoring and Planning Behaviors

4.1 Monitoring Robot Behaviors

The SAPHIRA operating system cycles through behaviors every 100 ms to deter-
mine their effects on robot control parameters, resulting in a state change every
100 ms. However, abstract properties do not require such a fine granular level of
state sampling. For instance, if we are checking whether or not a robot enters a



hold(h,E,s) {

if (h is a predicate) return holdPredicate(h,s);

if (h is of the form (! f)) return (! hold(f,E,s));

if (h is of the form (f && g)) return (hold(f,E,s) && hold(g,E,s));

if h is of the form (next i f)

return ((lb(i) <= dur(s,succ(s,E),E)) &&

(ub(i) >= dur(s,succ(s,E),E)) &&

hold(f,succ(E,s),E));

if (is of the form (f until i g)) {

let s1 = succ(E,s);

let j = [max(0,lb(i) - dur(s,s1,E)), max(0,ub(i) - dur(s,s1,E))];

if (j == [0,0]) return hold(g,E,s);

else return ((lb(i)==0 && ub(i) != 0 && hold(g,E,s)) ||

(hold(f,E,s) && hold((f until j g),E,s1)));}

if (h is of the form (last i f))

return ((pred(s) == void) ||

((lb(i) <= dur(pred(s,E),s,E)) &&

(ub(i) >= dur(pred(s,E),s,E)) &&

hold(f,E,pred(s))));

if (is of the form (f since i g)) {

let s1 = pred(E,s);

if (s != null)

let j = [max(0,lb(i) - dur(s1,s,E)), max(0,ub(i) - dur(s1,s,E))];

else let j = [0,0];

if (j == [0,0]) return hold(g,E,s);

else return ((lb(i)==0 && ub(i) != 0 && hold(g,E,s)) ||

(hold(f,E,s) && hold((f since j g),E,s1)));}

if (is of the form (forall x1 ... xn p f)) {

let result = true;

for every p1 obtained from p by instantiating (x1, ..., xn)

such that holdPredicate(p1,s) {

let f1 obtained from f by applying the same instantiation;

result = result && hold(f1,E,S);}

return result;}}

Fig. 4. LTL Semantics



given room, we may check this at a periodicity in terms of minutes rather than
milliseconds. For this, we define state-sampling frequency parameter, at which
states are sampled. This depends on the type of progress conditions being mon-
itored. Not all robot control variables have to be tracked. Only those relevant
to atomic propositions in LTL progress conditions need to be involved. For this,
we introduce a function state-reflector that tracks relevant state features.3

By keeping a trace of the robot state during an execution, we check whether
or not the robot’s execution up to the current point of execution does not vio-
late given LTL progress conditions (for example those in Section 3.2). However,
rather than explicitly applying the LTL interpretations, we use a more efficient
approach by checking the LTL progress conditions on the fly , keeping infor-
mation relevant to the history in past formulas rather than explicitly in trace,
and delaying the evaluation of future formulas in the next state. This technique
is known as “progressing LTL formulas over a sequence of states”. It was first
introduced for future operators, in the TLPLAN planning system [7]. Here we
extend it to formulas with past operators.

4.2 Progressing Formulas

The idea is to keep track of the following: (1) the current state, (2) a trace
of execution to the current state and (3) a set of delayed LTL formulas, each
corresponding to a “delayed” progress condition in the current state. Each of
these is updated at every execution cycle (i.e., at every state change).

Intuitively, a delayed formula is one which would have been evaluated in the
next successor state by a recursive call to hold, but instead, had its evaluation
postponed. The delayed formula is also called “progressed formula”, because it
is progressed from one state to another.

Initially, the current state is the initial state of the robot (as given by the
state reflector); the trace is empty; the set of delayed formulas is the given set
of progress conditions.

At a current state, this is how each of the three components are updated.
The new state, successor of the current one, is automatically given by the state
reflector . The new trace is obtained from the current one by appending the cur-
rent state.4 For each LTL progress condition, a corresponding new LTL formula
is obtained by invoking a “delayed” evaluation of the LTL-interpretation proce-
dure on the current formula, current trace and current state, assuming the new
state as successor and a time duration between them equal to the state-sampling
period .
3 The SAPHIRA operating system maintains a basic robot’s control state in a struc-

ture accessible to user-written programs. This includes the current robot position,
speed, heading, and sonar readings. The status of behaviors (active or suspended)
is also accessible to user-written programs and hence can be traced.

4 This is a naive approach for storing traces. We are investigating more efficient ap-
proaches, where we can exploit syntactic information about the LTL progress con-
ditions being monitored to only store partial, but sufficient information about the
trace.



By “delayed” evaluation of LTL-interpretation procedure, we mean an in-
vocation of the procedure in Figure 4, such that each recursive call to hold
involving the new state as argument just returns its input formula without fur-
ther evaluation; that is, the evaluation is delayed by just returning the formula.
All other recursive calls are made, leading either to true or false. With simplifi-
cations, the final result is either true, false or a formula whose main connective
is next. This is the new, updated LTL progression condition.

That way, the formula f’ returned by the delayed evaluation of f expresses
would have to be satisfied by any execution sequence starting from the new state
in order for a corresponding execution just one step earlier in the current state
to satisfy f. A proof of this claim simply follows from the fact that this is a
delayed evaluation of the LTL semantics rules.

Hence, if the delayed formula is true this means that any future execution is
satisfactory; we can stop monitoring the corresponding progress condition since
it becomes valid from this point of execution. On the other hand, if the delayed
formula is false, this means that we have a violation of the progress condition;
we must thus send a notification to a handling behavior.

If the delayed formula is other than true or false, this means that so far
the execution is progressing normally. There may still be conditions requiring
eventual achievement in the future, but none of them has been violated so far.

It is interesting to note that a formula like (eventually (0, ?) p), for
any proposition p, is never violated by an execution trace. As long as the
current trace does not contain a state satisfying p, this will be progressed to
(eventually (0, ?) p). Intuitively, as long as we have not encountered p, we
still have a chance of meeting such a state later. It is only at the end of the
execution sequence that we can conclude that p is not satisfied. A trace that
does not contain a state satisfying p does not violate (eventually (0, ?) p),
but it does not satisfy it either.

In contrast, if we have the formula (eventually (0, 10) p), then at every
step, this will be progressed into a similar formula, but with the upper bound
of the time interval decremented by the duration between the current and next
state. Soon or later, we will reach a state in which 10 time units have elapsed
from the initial state, yet without having a met a state satisfying p (if we met
a state satisfying p the delayed formula would have been true). This will be
progressed to false, thus indicating a failure of the progress condition.

Properties that are only violated by infinite executions (or cyclic executions in
practice) are usually called liveness properties [5]. They are conveyed by until or
eventually operators with an unbound time-intervals. The opposite are safety
properties, which are conveyed by until or eventually operators with bounded-
time intervals, and always operators regardless of their time-intervals. In fact, an
until operator with an unbounded-time actually conveys both a safety property
(because its first formula component must be maintained true) and a liveness
property (because its second component must be eventually made true, without
a deadline ).



4.3 Planning Robot Behaviors

Monitoring is about checking that runtime traces do not violate progress condi-
tions. Planning deals with checking that predicted, simulated future behaviors
would continue satisfying those progress conditions. That way, the robot can
anticipate failures to re-configure its behaviors.

While a runtime execution is deterministic, a simulation involves nondeter-
ministic guesses. This is so because the effects and preconditions of actions in
future states depend, in part, on real-time conditions unknown in the current
state.5 Hence, when simulating behaviors, we must account for all possibilities;
which yields a simulation graph rather than a single execution sequence.

In order to simulate behaviors efficiently, we need a state transition model
that hides details of behaviors that are irrelevant to progress conditions being
monitored. The state-transition model specifies preconditions for the execution
of a robot’s actions and their effects. Specifying it is one of the most challenging
hurdles in our approach. Currently, it is specified independently using STRIPS
or ADL action descriptions [7], but we are investigating approaches that would
make it possible to ground the state-transition model in the source code of
SAPHIRA behaviors.

The simulation is essentially a search process through the space of possible
future executions of robot behaviors at a level of abstraction described by the
state-transition model. In this context, it is helpful to classify progress conditions
into goals (i.e., tasks that the robot must achieve) and search control strategies
that guide the search process [7]. LTL search-control formulas can be understood
as additional constraints on the behaviors reflecting behaviors that are irrelevant
to some goals and, hence, that should not be simulated.

Liveness properties pose an additional difficulty when planning for cyclic be-
haviours. A property like (eventually (0, ?) p) expresses a goal of eventually
achieving p, without a deadline. Formula-progression alone cannot check the vi-
olation of such properties, unless some simplifying assumptions are made, such
as fixing one goal state [7], or approximating goals without deadlines with goals
with arbitrary deadlines [8]. 6 Cyclic behaviours can be dealt with by explicitly
checking that goals of achievement without deadline are not violated by cyclic
behaviours, but this introduces an additional complexity [10].

5 Since SAPHIRA uses a synchronous model of concurrency, no nondeterminism is
entailed in the interleaving of processes as in the asynchronous case. With UNIX
processes, for example, we would have to guess how the UNIX operating system
would interleave them.

6 This is the approach taken by Drummond and Bresina, although using a goal lan-
guage that is a subset of LTL and a model-checking procedure less general than
formula-progression [8]. In general, assuming that only propositions are negated, us-
ing goals with deadlines limit formulas to only safety properties and hence completely
verifiable by using formula-progression alone [9].



4.4 Summary

The key software components composing our approach are summarized in Fig-
ure 5. The state extractor implements an interface between SAPHIRA and LTL,
by extracting state features that are relevant to predicates appearing in the LTL
specification of progress conditions. The Runtime monitor checks given progress
conditions over runtime behavior. This is done incrementally, by labelling each
state of the trace with the corresponding LTL formulas, using LTL formula
progression. A formula progressed to false in a given state means that the cor-
responding condition is violated by the trace. For each violated formula, a signal
is generated indicating which formula is violated and at what point of the trace.
The signal is then handled by an ad-hoc behavior.
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Fig. 5. Software Architecture

On the other hand, from a state-transition model, we simulate execution se-
quences from a given context; a simulation-based planner evaluates LTL goal
statements over those sequences, allowing to determine combinations of behav-
iors whose future execution would be expected to best satisfy the goal, that is,
planned behaviors. In a different mode, the planner accepts correctness criterion
to validate over simulated behaviors.

As the implementation currently stands, the monitor and the planner are
operational, but both still need validation on more realistic applications. This
is where most of the current implementation effort is being driven. Besides the
automatic extraction of state-transition models from SAPHIRA behaviors that



is mentioned above, we are also working on a more efficient approach for storing
past information during a simulation. This is essential when planning is done
with a goal that is a mixture of past and future operators, because a trace has to
be stored somehow in every state. As most states share traces, the question is to
represent this efficiently into the planner. This is less problematic in monitoring
because there is always one single trace.

5 Conclusion

Pure behavior-based approaches are simply reactive. They involve no explicit
representation of the robot’s goals, plans, or internal “world model.” Goals are
only implicit in the situation-action coupling and plans emerge as one action
is executed in a way that it triggers or deactivates another. This is done in a
modular way, in which simple behaviors are run concurrently to achieve com-
plex behaviors. This simplicity facilitates the design of immediate real-time re-
sponses to sensed events. This is well illustrated by the remarkable performance
of behavior-based approaches in robot navigation, using very simply coded be-
haviors. On the other hand, deliberative approaches use explicit representation of
the world model constructed from sensory data and the actions executed by the
robot emerge from the interplay of an explicit planner (or other formal reason-
ing component) on the world model and given robot goals. One clear advantage
of this approach is that behaviors can be planned automatically. Having both
features in a robot control architecture leads to hybrid control architectures.

Our motivation is not to propose yet another hybrid architecture. Instead,
we are proposing tools to both monitor and plan robot behaviors using the same
basic technique, that is, checking that execution sequences generated from run-
time or simulated behaviors satisfy LTL correctness statements. Experimenting
with this approach in the SAPHIRA architecture facilitates its implementation
because SAPHIRA is already a deliberative architecture allowing symbolic repre-
sentation of the robot world model. In particular, all basic feature of the robot’s
control state are available symbolically, such as robot speed, heading, and acti-
vation status of processes. Hence, it is easy to define LTL propositions on top of
these features and other user-defined control variables.

Our approach can also be integrated with other behavior-based architectures,
provided it is possible to extract symbolic state information. Schönherr et al. de-
scribe a method doing that for connected behavior-based architectures [11]. More
precisely, their approach makes it possible to extract symbolic facts characteriz-
ing the activation of behaviors. These facts could be considered as proposition
from which LTL progress conditions could be defined, which enable the use of
our formal monitoring tool. In a similar vein, but with respect to planning, Nico-
lescu and Mataric discuss an idea about relating behaviors (coded in Ayllu ar-
chitecture) to STRIPS-like operators [12]. This is compatible with our approach
since it makes it possible to simulate Ayllu behaviors through the application of
STRIPS operators to obtain state sequences for LTL goal checking.



In the earlier stage of this work, we started with a fuzzy version of LTL [13].
This was motivated by the use of fuzzy control in SAPHIRA. In the end, we
introduced past operators and planning, and at the same time abstracted over
fuzzy-control, so as to keep uniformity in the language used for planning and
monitoring. Haslum is also exploring techniques similar to ours for monitoring
and predicting control systems for unmanned aerial vehicles [14]. Our approach
can also be related, to a limited extent, to a research program being conducted by
Alur et al. [15]. They are experimenting the use of automata-theoretic methods
to synthesize robot behaviors that are constructively proven to satisfy some
logical properties.
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