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Abstract. This paper discusses an OWL ontology for specifying sen-
sors. The ontology is intended as the basis for the semantic representa-
tion of sensors and as the formal description for reasoning about sensors
and observations. The paper describes the ontology, presents two exam-
ple sensor descriptions and shows how standard reasoning and query-
ing techniques can be used to perform tasks including classification and
composition. In conjunction with the technical material the trade-offs
required to express complex material in OWL is also discussed.

1 Introduction

A number of ontologies for specifying sensors have been developed and published.
However, all lack the ability to describe sensors as compositions of existing sen-
sors and algorithms. SensorML [3] includes process descriptions, descriptions of
how a sensor’s parts constitute the whole sensor, as one of its fundamental fea-
tures. Indeed, if semantic sensor networks are to be used in the complex ways
that have been envisaged, then semantic descriptions for sensors must be capa-
ble of describing sensors as processing units, and be capable of describing how
existing sensors can be composed to form virtual sensors.

This paper presents an ontology that can describe the capabilities and prop-
erties of sensors as well as describing sensors as compositions of their compo-
nents (§3). Two examples of sensors encoded in the ontology are presented (§4).
The first (§4.1) shows the encoding of details of an actual sensor into the ontol-
ogy, and the second (§4.2) discusses composition and virtual instruments. The
examples are used to illustrate a discussion on OWL classification (§5) and rea-
soning other than OWL (§5.1). The main discussion on reasoning (85.2) shows
how the SPARQL plus OWL reasoning in SPARQL-DL [19] can be used to search
for and construct virtual instruments.

Sensors observe physical qualities of features: for example, the temperature
(quality) of a lake (feature). Here we take sensors to be sources that react to
stimulus (physical or digital) and produce values representing a quality, thus
including transducers, sensor devices and computations: for example, the spec-
ification of wind chill sensor in Section 4.1 could be implemented as an in situ
device that measures wind speed and ambient temperature and calculates wind
chill or a program that reads wind speed and ambient temperature measurements
from external, co-located sensors and calculates wind chill.

Proc. Semantic Sensor Networks 2009, page 33



While semantics can assist in searching for existing sensors, a more advanced
use is to automatically compose a sensor satisfying a query if no such sensor
exists. Once composed, such a sensor should be available as a sensor in its own
right, and available to be used as a component of new virtual sensors. For exam-
ple, a query such as “report event E each time condition C' is reached in time
period P” requires finding or composing a sensor that can detect C, finding or
making a process that builds an F from a C and understanding the constraints
in availability, power, and eventual degradation of the sensors over P.

Searching for and, if required, automatically or semi-automatically compos-
ing web services remains a much researched topic for Web services; see, for ex-
ample, the September 2008 edition of the Data Engineering Bulletin [20]. While
there have been some investigations on sensors and compositions, the work pre-
sented here is novel as compositions are built into the ontology and the bulk of
the search is done using description logic (DL) reasoning and SPARQL, rather
than with bespoke algorithms, and because the compositions use input, output
and functional information.

Specifying detailed aspects of sensors and compositions requires a modelling
capacity beyond the expressive and reasoning limits of OWL. Numeric informa-
tion in describing accuracy, for example, cannot be reasoned about in description
logic. However, trade-offs between the accuracy of the description and the ability
to reason in OWL need to be made even for seemingly simple choices such as de-
scribing what a sensor measures or the input and output types of processes. The
technical material on sensors and compositions in this paper is used to highlight
a number of the choices that must be made to describe sensors in OWL.

In this paper OWL refers to the OWL2 Candidate Recommendation [1].
Concepts are written with an initial capital letter and roles with a lowercase
letter. For simplicity we write

role : (ConceptA x ConceptB)

to indicate that role is a DL role with domain ConceptA and range ConceptB.
The definition of a role may be superscripted with F to indicate a functional
role, 7 for transitive, S for symetric and R for reflexive. Composition of roles is
written r; o rp for roles r; and r2. That individual a is classified into concept
C is written C(a). In general, the so-called German DL Syntax is used.

2 Related Work

See the survey paper in the same proceedings [5] for a more complete review of
sensor ontologies and technologies surrounding them.

The OntoSensor [18,17] ontology was intended as a general knowledge-base
of sensors for query and inference. Search using a mixture of DL reasoning and
Logic Programming (LP) is discussed. Based on SensorML, OntoSensor covers
similar concepts to the ontology in this paper. It is more complete in some areas,
such as defining a hierarchy of sensor types, but is only able to express part-of
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relations and is thus not suitable for describing sensor compositions and virtual
instruments as discussed here.

Eid et al. [7,8] and Kim et al. [12] developed sensor ontologies for enabling
semantic Web services. Both use DL reasoning to check the consistency of the
ontologies and SPARQL for simple searches. The ontologies are not available.

Calder et al. [4] and Thirunarayan et al. [21] use LP rules to make inferences
about data emanating from sensor networks.

Whitehouse, Zhao and Liu [22] use LP to query and compose streams of data
from sensors. Liu and Zhao [14] use an ontology of sensing concepts and services
to convert declarative queries to service and sensor composition graphs, though
note that the compositions are not represented in the ontology.

DL inference and LP are used with the ISTAR sensor ontology to find sensors
that have outputs matching a task’s requirements; a set covering algorithm is
then used to find combinations that can cover all requirements [6,16,9]. The
method suggested in this paper can find more complex compositions, though
the ISTAR tool chain (SAM) is clearly further developed than that reported in
this paper.

Horan [11] proposes the OWL-S [15] Web services ontology for a sensor on-
tology. While no ontology is given, and an OWL-S ontology for sensors would
need to include many of the concepts defined in OntoSensor and the ontology
discussed here, Horan’s approach essentially argues that sensors and Web ser-
vices are not different enough to require separate ontologies. There is not yet a
consensus on the best way to model the semantics of services, and the ontology
presented here is focused on sensor concepts and is structurally different from
OWL-S, for example in the modelling of composite processes, but it is not yet
clear if sensors and Web services, or other workflows and task models, should
exist as semantically separate concepts or be unified in a single ontology that
allows for different perspectives depending on the main features in any particular
modelling task.

Clearly then, research on Web service specification and composition is rele-
vant to the semantic specification of sensors. Mixtures of DL inference, structural
similarity and information retrieval techniques, as in Klusch et al. [13], could thus
be applied to sensor networks, as could service composition approaches [20]. This
paper is the first time SPARQL and DL reasoning have been combined to search
for compositions.

3 The Sensor Ontology

Although the ontology® is reasonably small with fewer than one hundred defi-
nitions of each of concepts and roles, it is still too large to give the complete
definition here. Figure 1 pictorially represents the important parts of the ontol-
ogy for this paper.

3 A version is available at http://www.w3.org/2005/Incubator/ssn/wiki/images/
4/42/SensorOntology20090320.owl.xml.
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Fig. 1. Sensor Ontology Core Concepts
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The ontology is built around the central notion of a sensor, and then three
important clusters of concepts referenced by the sensor: domain concepts, ab-
stract sensor properties and concrete properties. The abstract properties specify
sensors’ functions and capabilities. The concrete properties ground the abstract
by providing, for example, the interface details to the functions. It is essentially
the difference between specifying the properties of a sorting algorithm and giv-
ing a path to a binary. The abstract and concrete sections are independent in
that neither requires the other: for example, the wind chill sensor in Section 4.2
specifies only the abstract properties — it is a schema for all wind chill sensors
of this type and thus cannot specify the groundings, much as a specification of
a sorting algorithm cannot also specify all implementations.

Separating concrete and abstract aspects of sensors means that descriptions
of types of sensors, functions and the like can be shared among specifications and
also that a single sensor type can have multiple concrete descriptions, promoting
reuse and allowing for differences in deployment.

3.1 Domain Features

The domain ontology is left unspecified: a general sensor ontology cannot hope
to capture all possible domains. Instead the ontology references abstract rep-
resentations of real world entities (Feature, for example, a lake), which are not
observed directly but through their observable qualities (PhysicalQuality, for
example, temperature or depth). Similarly, units of measurement, locations and
time are not described by the ontology, but rather deferred to appropriate au-
thoritative sources. Any external ontologies can be included with OWL imports.

3.2 The concrete sensor

The SensorGrounding models the concrete realisation of a sensor. The grounding
represents, in the case of an instrument, its physical implementation, including
size, shape, materials and location. The grounding also models the concrete
aspects of accessing data from the sensor, including the types and expected
formats of input when calling functions, the format of output and other details
for accessing the sensor (radio, network or physical access, for example).

3.3 The abstract sensor

Each sensor may have any number of OperationModels describing the operations
(functions) of the sensor, how the measurements are made and properties of the
measurements.

Process is used to model the structure and data flow of an operation. An
AtomicProcess models a single computation step. A Composite Process can model
many ways of combining processes to form new processes. An AbstractProcess
is used as a unit of abstraction, allowing a single specification to be described
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at multiple levels of abstraction. The Input and Output of processes is uncon-
strained, allowing the model to describe physical processes as well as computa-
tions.

A ResponseModel is use to represent a sensor’s responses to stimuli under
various conditions. Each OperationModel may have a number of Results which
specify properties such as the function that the operation computes (its Effect),
accuracy and latency and in various Conditions.

The ontology shows a number of important issues in specifying sensors and
processes in OWL. Firstly, it is not possible to actually specify in OWL what a
process does: for example, the WindChillCalculation process in Section 4.2 can-
not express in OWL that it computes the wind chill formula given wind speed and
temperature measurements. The processes can show the process structure, data
flow, etc., but some details must be handled outside OWL. Here, an FExpression
in some MathLanguage is essentially a string in the given language that can be
parsed and interpreted outside of OWL — this is the same handling as OWL-S.
Also, the types of Inputs, Outputs and what a sensor measures are not able to be
properly expressed in OWL.# Following OWL-S, the types of inputs and outputs
are represented as the URIs of concepts, while measures follows the approach
used in previous sensor ontologies.

The following examples illustrate the ontology further and demonstrate how
the TBox and ABox are used to encode sensor types and sensor instances.

4 Examples

Sensors are encoded in the ontology using an interplay of TBox concepts, ex-
pressing what it means to be a particular type of sensor, and ABox individuals
and roles, expressing properties of sensor instances. In the following a number
of definitions are omitted but can be reasonably inferred from the context.

4.1 Vaisala WM30 wind sensor

The Vaisala WM30 wind sensor® measures wind speed and direction. As an ex-
ample, it shows two important aspects of the ontology. First, the two different
measurements of the WM30 show the capacity of the ontology to describe mul-
tiple capabilities of a single sensing device. Second, since the WM30 performs

4 The definition Imeasures. Temperature, intending that the sensor measures temper-
atures, does not capture the correct meaning because OWL roles link individuals
to individuals: there is no way to link to the concept Temperature — OWL-FULL
in OWL1 can link individuals to concepts with roles, but cannot reason about such
roles. Other sensor ontologies seem to take resolve this difficultly by interpreting the
intention rather than the definition.

See also the Semantic Web Best Practice Descriptions discussion on this issue
http://www.w3.org/TR/swbp-classes-as-values/

5 See http://www.vaisala.com/files/WM30_Brochure_in_English.pdf for the the
Vaisala WM30 data sheet.
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differently under various conditions — it’s accuracy is rated at +0.3m/s for wind
speeds below 10m/s, at 2% for wind speeds up to 60m/s and isn’t rated for
wind speeds over 60m/s — it shows how the ontology can encode fine distinc-
tions in operation. In this case showing, not only different accuracies in different
conditions, but also accuracy expressed as both relative and absolute error. That
the wind and direction measurements have different accuracies, direction being
rated at < +3°, further shows the detail that can be obtained.

The definitions begin with those for the domain of sensing.

WindSpeed, WindDirection & WindQuality T PhysicalQuality

Next, the main definitions of the WM30 sensor and its restrictions.

VaisalaWM30 T Sensor
VaisalaWM80 T JhasOperationModel.
Vaisala WM30WindDirectionOperationModel
VaisalaWM30 T JhasOperationModel.
VaisalaWM30WindSpeedOperationModel
VaisalaWM30 T Imeasures. WindDirection
VaisalaWM30 T Ameasures. WindSpeed
VaisalaWM30 T dsupports. Vaisala WMS30Grounding

The grounding specifies physical properties and metadata, which includes
the URL of Vaisala’s data sheet. Some aspects from the data sheet, such as
materials, data and electrical connections and power supply are not shown, but
are similar to the following definitions. Note that complex values and units of
measurement are not yet included in the ontology and are included as text in
OWL data type properties, which are written Concept “value” here to avoid
strings of role names; the intent should be clear from the context.

VaisalaWM30Grounding T Grounding
VaisalaWM30Grounding T JhasOperatingCondition.
TemperatureRange “ — 40 ...+ 55 C”

The definition of the WM30’s sensing capabilities show how accuracy is en-
coded (again currently as text while our model of values of units are being
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constructed). Only wind speed is shown, direction is similar.

VaisalaWM30WindSpeed OperationModel T
JhasResult.
JwithAccuracy.AbsoluteAccuracy “ =+ 0.3m/s”
and
FinCondition.expressionBody “0.4 ...10m/s”))
and
JhasResult.
JwithAccuracy. RelativeAccuracy “ + 2%
and
JinCondition.expressionBody “10 ...60m/s”))
and
JhasResult.
VwithRange. MeasurementRange “0.5 ... 60m/s”
and
JhasOutput.
dparameterType. URI “. ..+ WindSpeed”

Other aspects from the data sheet such as the distance constant, starting
threshold, transducer output and even the characteristic transfer function (U =
—0.24 4 (0.699) x F') are encoded as part of the ResponseModel.

There are two options for the WM30 wind direction sensor, the WMS301
and the WMS302, with 355° and 360° measurement ranges respectively. The
VaisalaWM30WindDirectionOperationModel is defined as the disjoint union of
these options, with the two sub-concepts inheriting all their properties from
VaisalaWM30WindDirectionOperationModel except the definition of the mea-
surement range.

These TBox definitions capture what it is to be a Vaisala WM30. The defini-
tions are a schema defining the class of all WM30 sensors in terms of properties
that are static for all WM30 instances. WM30 individuals are recorded in the
ABox and can be specified with a definition as minimal as asserting an individual
to be a WM30.

Vaisala WM30 (wm30; )

The remainder of the individuals defining wm30;, such as its accuracy and oper-
ations, must exist — they are implied by the specification — but the TBox defi-
nitions make it unnecessary to include them, unless a particular WM30 instance
has properties that require further specification. Properties such as location are
unique to each individual and are generally asserted for each sensor instance.
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Fig. 2. Wind chill sensor composed from a temperature sensor, a wind speed sensor
and a calculation for wind chill.

4.2 SensorML wind chill sensor

The definitions for the wind chill sensor in this section are based on SensorML
examples.® Ambient temperature, T, and wind speed, V, measurements are re-
quired to calculate wind chill using the following formula.”

35.74 + (0.6215 * T') — 35.75 * (VO-10) 4 0.4275 x T * (V0-16)

Figure 2 shows the structure of the wind chill sensor. There are, of course, any
number of modelling options for such a process, those chosen here are meant to
demonstrate aspects of modelling and the ontology and aren’t prescriptive ways
of modelling processes.

First, simple definitions for domain concepts and the basic definition of a
wind chill sensor.

WindChill T WindQuality
WindChillSensor © Sensor
WindChillSensor T dmeasures. Wind Chill
WindChillSensor = hasOperationModel. WindChillSensorOutput

Next, a temperature sensor is defined as a sensor that is also a process to
demonstrate that the two concepts can be conflated, giving extra expressive

6 http://vast.uah.edu/downloads/documents/Creating_SensorML_Process_
Models_preV1.0.pdf

" This is the formula used by the United States National Weather Services, see http:
//www.wrh.noaa.gov/slc/projects/wxcalc/windChill.pdf
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power and the option of defining the sensor itself as the process of making an
observation.

TemperatureSensor C Sensor
TemperatureSensor C dAmeasures. Temperature

TemperatureSensor C FhasOperationModel.Self

Then, the calculation of wind chill is defined as a process, showing one option
for how the formula itself could be encoded; though, MathML would be a better
choice if the aim is automatically composing and orchestrating such a process,
rather than human readability. It is also possible to attach a reference to a pro-
gram that implements the calculation. Wind speed is assumed to come from a
process with the only important property that it outputs a wind speed measure-
ment. Types of inputs and outputs are removed throughout this example, see
Figure 2 for an indication of what the types are for the various processes and
the previous example for how they are defined. The SplitJoin process models
parallel execution of its left and right components, which in this example could
be either speed or temperature — the disjunction is added to indication that
the wind speed and temperature process can accept processes with the sensors
specified in either of the two possible orderings.

WindChillCalculation T Process
WindChillCalculation T VhasResult.
JhasEffect.JexpressionLanguage.mathText
and
expressionBody
“85.74 +(0.6215 % T)—35.75 % (V"0.16) + 0.4275 + T x (V" 0.16)”
WindSpeedandTemperature T SplitJoin
WindSpeedand Temperature T (IleftComponent. TemperatureSensorProcess
and
Iright Component. WindSpeed Output)
or
(FleftComponent. WindSpeed Output
and
Iright Component. TemperatureSensorProcess)
WindChillSensorOutput T Sequence
WindChillSensorOutput T leftComponent. WindSpeed And Temperature
WindChillSensorOutput T Iright Component. Wind ChillCalculation
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The definitions to this point specify the components of the wind chill sensor
and their properties, but do not yet connect the outputs of the wind speed and
temperature sensors to the inputs of the calculation. The idea is simple enough,
but cannot be expressed precisely in OWL. In specifying bindings in the TBox,
it is possible to state that the wind chill sensor connects inputs and outputs of
the correct type to the correct type of processes; however, TBox definitions can’t
state that the bindings connect the outputs and inputs of the actual left and
right components, just any components of the correct type. The same is true of
OWL-S and its bindings. The situation in the ABox is somewhat different where
the precise specifications of individuals can be made by actually connecting the
left and right individual’s inputs and outputs. It is another case of needing to
interpret the intent of the TBox definitions rather than the DL; however, this
has obvious consequences in classification, where the DL reasoner applies the
DL semantics, not the intent of the definition.

Similarly to the previous example the TBox definitions here define a schema
for wind chill sensors, under which any number of actual, or virtual, sensors can
be classified.

5 Reasoning

Reasoning techniques such as DL consistency checking, simple SPARQL queries
and LP rules for sensors and data have been published previously and are not
discussed further here (see §2). Classification is briefly discussed first, then non-
DL reasoning and lastly using DL and SPARQL to automatically compose virtual
instruments.

The sensor ontology as presented is an ontology of sensor capabilities. An-
other view of a sensor ontology is sensors organised into hierarchies of sensing
concepts. OWL can classify the sensors into a hierarchy given suitable definitions:
for example,

WindSpeedSensor = Ameasures. WindSpeed

would allow the reasoner to infer VaisalaWM30 = WindSpeedSensor. Similarly,
sensors could be classified according to accuracy or other properties. This simple
use of classification demonstrates that hierarchies of capabilities and hierarchies
of sensor types are compatible ways of viewing the same ontology.

5.1 External reasoners

We used the OWL-API® interface to give a Java reasoner access to the ABox. We
expressed the Region Connection Calculus (RCC) in OWL. Our OWL embed-
ding of RCC is based on Griitter et al.’s [10], who show that full RCC inference
cannot be done in OWL. In our application, files describing sensors are parsed
(we intend to allow SensorML and other descriptions) and individuals asserted
into the ABox. When required, the Java RCC reasoner harvests quantitative

8 http://owlapi.sourceforge.net/
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information (numeric properties) from the ABox (sensor locations, regions of
sensing, etc) derives new facts about the regions and asserts qualitative infor-
mation (RCC relations) back into the ABox. The newly asserted facts are then
available to the OWL reasoner. If new sensors are discovered, the procedure can
be re-run to generate yet further facts.

This RCC example might be possible with rules; however, as the reasoning
becomes more complex or if it involves existing reasoning routines (or compu-
tational models), rules become cumbersome. We intend to use this style of in-
teraction to allow the results of a range of reasoning engines and computational
models to be made available for DL inference.

The RCC example works because there is no interaction between OWL and
RCC — they simply use the same fact base. The differences between closed- and
open-world reasoning can be made to fit into a consistent reasoning package with
rules (though this does not imply that any given set of rules is correct), and in
combining other reasoning with OWL it is important to ensure that the combined
reasoning is consistent. If the RCC and OWL assertions were dependent on each
other then the situation is much more complex (see Baader et al. [2] for a more
detailed discussion on the issues of combining logics).

5.2 Composition

The definitions of the wind chill sensor can be seen as defining a search goal.
The search goal is to find existing sensors that can be composed into a wind chill
sensor. Given, the TBox definitions of the WM30 and the wind chill sensor, and
ABox definitions for

WindSpeedOutput(ws; )
TemperatureSensor(ts; )
WindChillCalculation(caley )

and perhaps many other sensors, but no wind chill sensor individuals, the goal is
to construct all the possible wind chill sensors (for the moment constraints like
co-location are ignored).

Running a DL reasoner on the definitions shows that WindChillSensor is
satisfiable — it can have instances. The reasoner can also prove if there are in-
stances composed from existing sensors. If the possible instances for the wind
speed, temperature and calculation are enumerated, the reasoner is forced to
build a model demonstrating the satisfiability of WindChillSensor using only
existing sensors. For example, the satisfiability of WindChillSensor after assert-
ing

WindSpeed Output = {ws; }
TemperatureSensor = {ts;}

WindChillCalculation = {calc; }
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query 1 : are there any

Wind ChillSensor (Sequence) WindChdlSansors

query 2 can a
WindC hil IC alculation
W axlAnd T it Ll
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WindSpe adAnd Temperature
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query 3 1are here
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TemperaraSensor Wind Spaed Sansor basic components

Fig. 3. Parse tree and queries.

shows that there is a composition of these sensors that makes a wind chill sen-
sor. If there were many more sensors, it wouldn’t be possible to determine which
sensors the reasoner had used in building its model. If the proofs of satisfiability
could be extracted from DL reasoners, it could be possible to find composi-
tions by analysing the proofs; however, DL reasoners only build certain kinds of
models, so not all compositions could be found this way.

Compositions can be found using SPARQL-DL, a subset of SPARQL with
DL inference. SPARQL-DL will only return results for existing instance, not
inferred instance, though the inferred instance can be used as bnodes in SPARQL
queries (bnodes, or blank nodes are unnamed nodes in RDF graphs; generally,
bnodes are explicitly stated as part or the RDF graph, but in SPARQL-DL they
needn’t be present if they are implied to exist by the ontology). Hence, simply
converting the goal (wind chill sensor concept) to a SPARQL-DL query will not
find compositions. However, the goal is structured enough that a parse tree can
be constructed for the process. Issuing a query for each combination in the parse
tree will find all possible compositions (see Figure 3).

For wsy, ts; and calcy, the relevant query is a simple selection on the sensor
types (query 3 in Figure 3).

SELECT 7ts ?ws 7calc
WHERE {
?ts rdf:type sensor:TemperatureSensor .
?ws rdf:type sensor:WindSpeedOutput .
?calc rdf:type sensor:WindChillCalculation .

SPARQL-DL returns a result for each binding of variables that satisfies the
query. Compositions are then constructed by following the specification to link
the individuals. In this case linking the inputs and outputs of wsy, ts; and calc;
and creating new individuals for the bindings, the split join process and the wind
chill sensor.

Since this method follows OWL semantics, issues such as searching correctly
for sub-concepts are handled by SPARQL-DL. Constraints, such as co-location
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or accuracy restrictions on sensors, can be added to the query as SPARQL filters.
Types, however are still problematic. In this query there is no requirement to
match the input and output types of the processes — the definitions are specific
enough to not require it. In general, the query requires constraints ensuring that
the input and output types match, which can be handled by simply matching
the stated types. However, it is correct to match an output if it is a sub-type
of the required input. But this is not easily handled in the query because the
definition of a type is a datatype URI, which is not amenable to SPARQL-
DL reasoning, so a simple subClassOf constraint can’t be added to the query.
The required type checking can be handled by interpreting the query results as
potential compositions and, for each, checking that the input and output types
match correctly.

6 Discussion and Conclusion

This paper has discussed an OWL ontology for describing details of sensors. The
ontology is more expressive than previous sensor ontologies as it can express
complex compositions and fine details of the function and results of sensors and
processes. The ontology can also encode much of the information in SensorML
documents. Since OWL is unable to express concepts such as the function com-
puted by a process, the ontology includes the ability to express these aspects
in other languages. This capability is based on similar features in OWL-S, as
is some of the structure of the ontology; however, for example, the modelling
of processes, and in particular composite process, does not follow the OWL-S
model.

The ontology is designed such that domain semantics, units of measurement,
time and time series, and location and mobility ontologies can be easily included
with the usual OWL import mechanism.

The SPARQL-DL method of composition is simple, but powerful enough
that it will successfully find compositions even for complex processes. Its biggest
drawback is the number of queries that need to be issued as the goal gets more
complex; a search strategy is needed if not all compositions are required. We
have not yet experimented with its performance.

Sensors cannot be modelled precisely using OWL. Issues involving numbers
or describing functions require external mechanisms, but the issues in encoding
type information, for example, can have subtle consequences. Here the input
and output types of processes were modelled as URIs which captures the correct
meaning, but can no longer be reasoned about inside OWL, though they can
be processed externally and then used in DL reasoning. The alternate choice
of simply using a role, as with measures here, warps the logical interpretation
somewhat, though retains the possibility of some reasoning in OWL. However,
attempting to model inputs and outputs with this method would still require
external reasoning because, for example, a query that asks for processes whose
inputs and outputs match requires a quantification over the types that can’t be
expressed in OWL.
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In cases such as binding inputs to outputs the TBox isn’t able to limit the
interpretation to only the intended models. To some extent an external mech-
anism could be used to interpret such definitions, but it is not clear in general
how to reconcile the intention with the definition, or a reasoner’s handling of it.
In essence, each of these issues implies some trade-off between decidability and
expressivity.

In future work, we intend to further investigate how Web service composition
can be used to automatically construct virtual sensors. We intend to use our
ontology in data integration and scientific workflows. We also plan to extend the
ontology to allow descriptions of values and their units as well as observations
and results.

Acknowledgements

This research was conducted as part of the CSIRO Water for a Healthy Country
National Research Flagship and the Sensor Network Technologies Theme.

The Tasmanian ICT Centre is jointly funded by the Australian Government
through the Intelligent Island Program and CSIRO. The Intelligent Island Pro-
gram is administered by the Tasmanian Department of Economic Development,
Tourism and the Arts.

Khoi-Nguyen Tran worked in this research as a CSIRO summer research
scholar and as an honours student at the Australian National University.

References

1. OWL 2 Web Ontology Language. W3C Candidate Recommendations and Work-
ing Drafts, 2009. Available at http://www.w3.0rg/2007/0WL/wiki/0OWL_Working_
Group.

2. F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics and
abstract description systems. Journal of Artificial Intelligence Research, 2002.

3. M. Botts and A. Robin. OpenGIS Sensor Model Language (SensorML) imple-
mentation specification. OpenGIS Implementation Specification OGC 07-000, The
Open Geospatical Consortium, July 2007.

4. M. Calder, R. Morris, and F. Peri. Machine reasoning about anomalous sensor
data. In International Conference on Eccological Informatics, 2008.

5. M. Compton, C. Henson, H. Neuhaus, L. Lefort, and A. Sheth. A survey of the
semantic specification of sensors. In 2nd International Semantic Sensor Networks
Workshop, 2009.

6. G. de Mel, M. Sensoy, W. Vasconcelos, and A. Preece. Flexible resource assignment
in sensor networks: a hybrid reasoning approach. In st International Workshop
on the Semantic Sensor Web, 2009.

7. M. Eid, R. Liscano, and A. E. Saddik. A novel ontology for sensor networks data.
In IEEFE International Conference on Computational Intelligence for Measurement
Systems and Applications, 2006.

8. M. Eid, R. Liscano, and A. E. Saddik. A universal ontology for sensor networks
data. In IEEFE International Conference on Computational Intelligence for Mea-
surement Systems and Applications, 2007.

Proc. Semantic Sensor Networks 2009, page 47



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Gomez, A. Preece, M. Johnson, G. de Mel, W. Vasconcelos, C. Gibson, A. Bar-
Noy, K. Borowiecki, T. Porta, and D. Pizzocaro. An ontology-centric approach
to sensor-mission assignment. In 16th International Conference on Knowledge
Engineering and Knowledge Management, 2008.

R. Griitter, T. Scharrenbach, and B. Bauer-Messmer. Improving an RCC-derived
geospatial approximation by OWL axioms. In 7th International Conference on the
Semantic Web, 2008.

B. Horan. The use of capability descriptions in a wireless transducer network.
Technical report, Sun Microsystems Laboratories, 2005. SMLI Technical Report
TR-2005-131.

J. Kim, H. Kwon, D. Kim, H. Kwak, and S. Lee. Building a service-oriented
ontology for wireless sensor networks. In 7th IEEE/ACIS International Conference
on Computer and Information Science, 2008.

M. Klusch, B. Fries, and K. Sycara. OWLS-MX: a hybrid Semantic Web service
matchmaker for OWL-S services. International Journal of Web Semantics, 7(2),
2009.

J. Liu and F. Zhao. Towards semantic services for sensor-rich information sys-
tems. In IEEE/CreateNet International Workshop on Broadband Advanced Sensor
Network.

OWL-S Coalition. OWL-S: Semantic Markup for Web Services. W3C Member Sub-
mission, November 2004. Available at http://www.w3.org/Submission/0WL-S/.
A. Preece, M. Gomez, G. de Mel, W. Vasconcelos, D. Sleeman, S. Colley, G. Pear-
son, T. Pham, and T. Porta. Matching sensors to missions using a knowledge-based
approach. In SPIE Defense Transformation and Net-Centric Systems, 2008.

D. Russomanno, C. Kothari, and O. Thomas. Building a sensor ontology: a prac-
tical approach leveraging ISO and OGC models. In 2005 International Conference
on Artificial Intelligence (vol 2), 2005.

D. Russomanno, C. Kothari, and O. Thomas. Sensor ontologies: from shallow to
deep models. In 87th Southeastern Symposium on System Theory, 2005.

E. Sirin and B. Parsia. SPARQL-DL: SPARQL query for OWL-DL. In 3rd OWL
Ezperiences and Directions Workshop, 2007.

J. Su, editor. Data Engineering Bulleten, Special Issue on Semantic Web Services:
Composition and Analysis, volume 31. IEEE Computer Society, 2008.

K. Thirunarayan, C. Henson, and A. Sheth. Situation awareness via abductive rea-
soning for semantic sensor data: a preliminary report. In International Symposium
on Collaborative Technologies and Systems, 2009.

K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: a framework for composable
inference over sensor data. In 8rd European Workshop on Wireless Sensor Network,
2006.

Proc. Semantic Sensor Networks 2009, page 48



