
Reasoning about Strings in Databases

Gosta Grahne, Matti Nykanen and Esko Ukkonen

Department of Computer Science

P.O. Box 26, FIN-00014 University of Helsinki, FINLAND

{grehne ,mnykanen,ukkonen} @cs.helsinki. f i

Abstract

In order to enable the database programmer to

reason about relations over strings of arbitrary length

we introduce alignment logic, a modal extension of

relational calculus. Iu addition to relations, a state

in the model consists of a two-dimensional array

where the strings are aligned on top of each other.

The basic modality in the language (a transpose, or

“slide” ) allows for a rearrangement of the alignment,

and more complex formulas can be formed using a

syntax reminiscent of regular expressions, in addition

to the usual connective and quantifiers. It turns

out that the computational counterpart of the string-

based portion of the logic is the class of multit ape

two-way finite state automata, which are devices

particularly well suited for the implement ation of

string matching. A computational counterpart of

the full logic is obtained from relational algebra by

extending the selection operator into filters based

on these multitape machines. Safety of formulas in

alignment logic implies that new strings generated

from old ones have to be of bounded length. While

an undecidable property in general, this boundedness

is decidable for an important subclass of formulas.

As far as expressive power is concerned, alignment

logic includes previous proposals for querying string

databases, and gives full Turing computability. The

language can be restricted to define exactly regular

sets and sets in the polynomial hierarchy.

1 Introduction

In this paper we focus on the problem of strings

in databases. Our primary source of motivation is

the storage and qualitative processing of genetic

information. For instance, the theory of gene reg-

ulation explores the combinatorial or grammati-

cal structure inherent in genetic data, as opposed

Permission to co without fee all or part of this material is
${granted provide t at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

to its statistical properties. This grammatical

structure can be quite involved, since gene regu-

lation involves non-context-free dependencies be-

tween different parts of a string [COV9 1]. Such

dependencies should be explicitly expressible, as

they constitute knowledge about the family of

strings that the current database represents.

For serving as a framework for databases con-

taining stringological information we extend the

relational model to include strings over some finite

alphabet Z. A relation of arity k in our model is

then a finite subset of the k-fold Cartesian product

of X* with itself. In other words, each column in

a relation can contain a string of arbitrary length,

instead of just a single atomic value.

It is quite clear that a database language op-

erating on string relations should have a pattern-

matching ability in order to be able to express

queries of the form “list all tuples of relation

r, where the second component is of the form

(GC + A)*.” However, in applications such as

the aforementioned gene regulation the language

needs to have expressive power beyond regular

sets.

In addition to data extraction features, the

string language also needs data restructuring con-

structs. For example, given two unary relations,

one might want to concatenate each string from

one of the relations with a string from the other

relation, as opposed to merely taking the Carte-

sian product of the two relations. Or for a more

involved example, one might want to shuffle two

relations (we shall see in Section 2 how to express

such a transformation).

How should one go about when building a

database language having such features? From

the literature we find the following types of

proposals. On one hand, like in [PiT86, HeS93]

one can add, say to relational algebra, a selection

predicate for testing membership in a set specified

by for instance a regular expression. This

partially solves the data extraction problem but

SIGMOD/PODS 94- 5/94 Minneapolis, Minnesota USA
@ 1994 ACM 0-89791 -639-5/94/0005..$3.50

303



does not support restructuring operations very

well. On the other hand, one can add a

restructuring operator, such as the transducer

mappings of Ginsburg and Wang [GiW92]. This

gives good data restructuring abilities, but only

rather implicit data extraction features, because

(finite-state) transducers generate the regular sets

only.

Then there is the avenue of a declarative

approach. The idea is to design a language

for expressing properties of strings. One such

proposal can be found in [Ric92], which essentially

suggests using the modalities of temporal logtc

for this purpose. Each successive position in a

string is seen to be the timewise “next” instance

of that string. The temporal modalities lend

themselves naturally to reasoning about strings.

But as shown by Wolper [W0183], using only the

modalities next and untzl, to say that a property

holds in every even position of the string is

not within the power of the language. Using

Wolper’s extended temporal logic would be a step

in the right direction. Still, extended temporal

logic cannot express for instance the two-place

predicate of equalness between strings, not to

mention predicates such as saying that one string

is a manifold of the other.

We therefore define a logic in which we can

express both properties of individual strings and

properties relating strings to each other. The

purely relational part of the logic is handled by

relational calculus. The string part of the logic is

state based (as opposed to second or higher order)

like e.g. temporal and dynamic logic. A state of

the strings is a structure where the strings are

aligned on top of each other in a certain way, and

a state change is obtained by sliding some of the

strings.

The logic is defined in Section 2. In Section

3 we give an algebraic language and show that

it has the same expressive power as the logic.

The novel construct in the algebraic language

is a selection operator based on certain finite

state acceptors. In Section 4 we study the safety

of formulas in the logic. The main tool for

determining safety is the concept of limitation

in the string formulas: does the boundedness of

some variables imply boundedness of some other

variables. We show that the limitation problem

is undecidable in general, and decidable for an

important subclass of formulas. In Section 5 we

use the same subclass of formulas to obtain a

characterization of the polynomial hierarchy. The

components of our logic that the aforementioned

acceptors are a counterpart of are called string

formulas. The string formulas as such have the

same expressive power as the multitape two-way

automata. This alone is enough e.g. for string

matching [GaS83]. The string formulas together

with one projection operator yield the power of

full Turing computability.

2 Alignment Logic

In the world of strings we distinguish as state

an alignment of the strings. The following

figure illustrates an alignment of the three strings

abc, abb, and cacd.

a

B

c

ab

c cd

Figure 1: An alignment of three strings

Properties of an alignment are expressed with

respect to the vertical window. For instance,

in the alignment above the following proposition

is true: “window position of the topmost string

equals a or the window position of the middle

string is different from c.” On the other hand, the

following proposition is false in that alignment:

“the window position of the middle and the

bottom string of the alignment are equal.”

Let X be a henceforth fixed finite alphabet.

Formally an alignment is then a partial function

A : N x Z-+ X, such that for all i E N, there is a

k c Z and an m EN, such that

{

a for some a 6 Z,

A(i, j) = ifj~{k, . . ..k+rn}

undefined otherwise.

The wtndow co!umn is numbered O. Thus, if

the alignment in Figure 1 represents the three first

rows of A, then we have for instance A(2, – 1) =

c, A(2,0) = a) A(2, 1)= c, A(2, 2) = d, and A(2, j)

is undefined elsewhere.

Alignments are connected to each other through

state transitions called transposes. A transpose

says that certain strings in the alignment should

be shifted one position to the left (or to the

right). A lefl transpose is a construct of the form

[ii, . . . . i~]i, where k and each ij are in N, and it

represents a function on the set of all alignments.

304



This function is defined asl 5. A + (~~)~ iff not A + #d.

[i,,...
{

A(i, j+l)ifi E{il, . . ..i~}
,i~], A(i, ~) = A(i, j)

otherwise

The r-zght transposes are denoted [ill . . . . ik]r,

and are defined similarly to the left ones, except

that the rows mentioned in the expression are

transposed one position to the right, instead of

to the left (e.g. [3,5] FA(3, j) = A(3, j – 1), and

[3, 5]rA(5, j) = A(5, j – 1), and all the other

rows remain unchanged). Below we show some

transposes of the alignment in Figure 1.

a

1?

c [0], ab

ab w ab

c cd c I cd

1[2]1Y’” 1[2]1
a

I

c ab

ab ab

ca d T ca H d

Figure 2: Transposing alignments

The propositions on the window of a particu-

lar alignment are expressed through window for=

rnulas, which are Boolean combinations of atomic

window formulas of the form z = 1, x = a, or

x = y, where x and y are variables in an countably

infinite set V, 1 denotes “undefined, ” and a is a

symbol in X.

The variables range over row numbers in align-

ments, and they are fixed through an assignment,

which is a function O : V -i N. Given a partic-

ular alignment A and a window formula ~, the

definition below tells us when A satisjies @ with

assignment 0, in symbolic notation A \ @.

1. A 1= (z = 1)0 iff A(OZ, O) is undefined.

3. A + (z = y)O iff A(Or, O) = A(t@, O).

1We also require that at least one of A (i, j ) and

.4(1, J + 1) is defined, i.e. the rows are never shifted more

than one position into the undefined area.

For instance, if the three first rows of A are as

in Figure 1, and if O maps z to O, y to 1, and z to

2, then we have A ~ ((z = a) V ~(y = c))8, and

A ~ (z = z)O.

Transposes are expressed as indexed modalities

in the language, and these modalities can be

applied to window formulas. Formally, if @Jis

a window formula, and {zl, . . . . Zk} c V, then

[x,,..., z~]~~and [zl, ..., Xk]r4 are UtOm2C Sfrlng

formulas. For example, [z], (z = c A y = b),

[.z]l(z = c), and [z, Z]r(.z = avy = b) are all atomic

string formulas. The definition of satisfaction

for atomic string formulas in alignment A with

assignment O is

As an illustration, let A be the top-left align-

ment, and A’ the bottom right alignment in Fig-

ure 2, and let 0 map ~ to O, y to 1, and z to 2.

Then we have A + ([x], (x = c A y = b))O, A #

([.z], (z = c))O, and A’ + ([~, z],(z = avg = b))~.

Using the concatenation operation we can com-

pose atomic string formulas. We define a formula

word to be an expression of the form ~l~z . . . ~k,

where each q$j is an atomic string formula. For in-

stance, ([z,.z]r(% = aVy = b))([z], (z = CAY = b))

and ([~, z]r(.z = a V y = 6))([z]I(z = c)) are for-

mula words.

Before we proceed we shall introduce some

notation for convenience: Atomic string formulas,

like [~, z]r(.z = a V y = b), will sometimes be

denoted ra, where in the above case r stands for

[z, z],, and a stands for (.z = a V y = b). If O is

an assignment, and ra as above, then r6’ denotes

[z(?, .zO],, and crO denotes (z= a V y = b)~.

Now we can denote formula words generically

by Tl~lT2~2 . . . Tk ~k and define

Once again, let A’ be the bottom right align-

ment in Figure 2, and let O map z to O, y to 1,

and z to 2. Then we have the following: A’ 1=

(([$, z].(z = a V Y = ~)).([z]l(x = CAY = ~)))@,

and A’ ~ (([z, Z]7(Z = a V y = b)). ([z], (z = c)))O.

Sets of formula words can be represented by

expressions called string formulas: all atomic

string formulas are string formulas, and if q$ and

@ are string formulas, then so are ~.+, ~ + @

and (q$)*.

305



A string formula can be seen as a regular

expression over the alphabet of atomic string

formulas. The set of formula words it thus defines

is denoted L(@). For example, if @ is the string

formula

([z,,z],(z = aVy= b)) (([z]I(x= cAy= b))

+ ([Z], (LZ= c)))

then L(4) is

{([z, z].(z = avv = ~))([~],(~= CAY = ~)),
([z, z]r(z = aVy= b))([z]l(z = c))}.

We now define

9. A \ @, for string formula d, iff there is a

formula word ~lcrl’rzaz rk~k in L(d), such

that A + (’rlcxlrzcxz . . .~kak)~.

If q+ is the string formula given in the preceding

example, A’ is the bottom right alignment in

Figure 2, and O maps z to O, y to 1, and z to

2, then the reader can easily verify that indeed

A’ + @. If the fourth row in alignment A’

were abababa, with the first a positionend in the

window, and O mapped variable u to 3, then we

would have A’ # (([u], (u = b)).([u], (u = a)))*@,

and A’ & ((([u], (u = a)).([u], (u = 6)))”0.

A database db is a tuple (rl, ., ., r~), where each

r, is a finite subset of the k,-fold Cartesian product

of X* with itself, with k$ being the arity of r~.

Given an alignment A, the string represented

by i an A is the string obtained by concatenating

the symbols in the defined portion of row i. This

string is denoted by ~A (i), or simply by a(i), when

A is clear from the context. Thus we can say for

instance that the tuple whose first component is

the string represented by the third row in A, and

whose second component is the string represented

by the sixth row, is a member of binary relation

rg. In symbolic notation this amounts to writing

(a,4(2), a~(5)) & r,.

In our language there is a relation symbol R, for

each relation rZ in the database. We then evaluate

the truth (under assignment 0) of an an atornz’c

relational formula Ri(xl, . . . . Xk) with respect to

a pair consisting of an alignment and a database,

Formally we have

To complete the definition of our language we

take the set of all string formulas and atomic

relational formulas and close it under A, -, and

3. The semantic definitions for A, ~, and 3 are

Note that truth definitions 1–9 do not hinge on

a particular database. Therefore we can extend

them to tuples (A, db) as such. (E.g. 2: (A, db) >

(z = a)6’ iff A(OZ, O) = a. Note also that

when the truth definition involves a transpose, the

relational part remains intact, e.g. 6 : (A, db) \

[z,,. .,z~]t@ iff ([Oz~,. ... Oxk]lA, db) \ 40.)

When formulating a query on a database, the

programmer is to assume that all involved strings

that he or she is reasoning about are in a starting

position corresponding to an tntttal alzgnm ent,

which is an alignment where the leftmost symbol

in each string is placed one position to the right

of the window, i.e. at column 1. Initial alignments

are denoted A.. We thus have for instance

A. \ (z = 1)0, for all assignments O and initial

alignments A..

We have now introduced all the apparatus

necessary to define the meaning of queries in string

databases. A query in our model is an expression

xl> ..., x~ ] @ where @ is a formula whose set of

free variables is {zl, . . . . ~k}. The answer to such

a query when posed to a database db is

(J{(d&),... , ~(6X~)): (AI), db) + @}

Ao, R

In other words, the query asks to list those

tuples of strings, such that there is a way of

initially aligning the strings (possibly together

with other (quantified) strings), then substituting

the strings for the free variables and having the

formula become true w .r.t. the initial alignment

and the database.

In the sequel we shall leave out the union

over initial alignments A. and assignments .9,

when denoting answer sets. The existential

quantification will be tacitly assumed.

Examples. Let rl be a binary and r2 a unary

string relation. The following queries will serve

as an illustration of our model. We freely

omit parenthesis symbols and concatenation dots

whenever we feel that the structure is clear

without them. We shall also as a notational

convenience abbreviate atomic window formulas
of the form x = 1 by Z1. The symbol T denotes

a tautology, e.g. x = x.

● List the second component of all tuples in rl

where the first component is abc:

z \ 3y : Rl(y, z)A

([YIIY = a)([yl, y = ~)

([Yli Y = C)([YIIY1)standard.

306



●

●

●

●

List all tuples in rl where the first component

equals the second component:

z,y I RI(z, y) A([Z, y]lZ = y)*

.( [X, y],Zl Ay~ )

List all tuples of rz that are a concatenation of

the two components in a tuple in relation rl:

z I qy, ; : Rl(y, z) A R,(z)A

([x, y]lz = y)”([z, z]lz = 2)”

.( [Z,y,Z],Z~ AY~ Az~ )

List all tuples of PI where the first component

is a manifoldz of the second:

Z,Y I R1(z, Y)A

( ([~)Yll~ = Y)*([YliYJ-)([Ylr~ Yl)*({Yl.YL) )*
.([z, y]lx = y)”( [Z, y],Zl Ayl )

The string formula repeatedly checks that y is

indeed a prefix of the remaining part of z until

x is exhausted.

List all tuples in r2 that are

two components of a tuple in

a shuffle3 of the

rl:

● List all tuples of rl where the second compo-

nent is of the form (gc + a)”:

Z,Y I &(x, Y)A

( ([YIIY = 9)([Y11Y= c) + ([YIIY = a) )*
([YI,YL)

● List all tuples of rl where the first component

occurs in the second:

Z,Y [ ~l(z,Y)A

([Yl,T)*([~, Yll$ = Y)*([~l,$L)

●

●

●

2 String u is a manifold of string v if u = vv , , , v. —

List all tuples of rl where the edit distance4

between the first and the second component is

no larger than k:

The formula requires that z and y must match

character by character, except that in at most

k places the characters need not match. A

replacement can be allowed by relaxing the

window formula z = y to T. An insertion into

z is taken into account by transposing only x,

and a deletion from x by transposing only y.

List all tuples of rz that are of the form

aXbXa, where X E Z*. Here we abbreviate

by z =. y the formula that says that strings x

and y are equal (see the second example).

z I ~y~z’: (y=. z) A R2(z)A

([z],z = a)

.([z, y], z = y)*

.([Z, y], Z = b A y~)

.([X, Z],Z = z)*

.([X, Z]lZ = a A ZL)

.([X]lZL)

The formula states the existence of a string

y such that z is of the form aybya. Instead

of explicitly transposing y to the right the

formula states the existence of an identical

“copy” z for verifying that the first and second

occurrences of y are indeed equal. This shows

how the logical “and” operation can be used to

“reset” the strings into the initial alignment.

List all tuples of rz that are in the language

consisting of strings containing an equal num-

ber of a’s and b’s and only those symbols:

The formula says that each occurrence of the

character a in z must match some position in

3The shuffle, or interleaving, of strings u and v is 4The edit distance between strings u and v is the

the set of all strings of the form UI tq U2 Wz . . . Uk Vk where minimum number of steps required to transform u to v.

u=u~u~...u~,v=v~ v~. . . vk, and each u, and u, can be Each step can consist of replacing one symbol by another,

of arbitrary length, including zero. or of inserting or deleting a symbol, see e.g. [SaK83].

307



●

●

3

a string y. Likewise, each occurrence of the

character b must match a position in a string z.

Furthermore, strings y and z can be exhausted

simultaneously, i.e. they are of equal length.

List all tuples of r2 that are in the language

{ambncn:n 6 N}:

z I 3y : R2(z)A

([z, y]lz = a A --IyL)*

([ YI,Y1)
.([xI]lT.[y]y = b A yy~)’

([YI.YL)
.([X, y]lZ = c A =yl)”

.([x, y],z~ A yl)

Here we require that z is of the form a* b* c*

and that there is a “counter string” y, such

that each of the three portions of c can be

put into a one-to-one correspondence with y.

The fourth line of the formula also shows how

simultaneous left and right transpositions are

expressible in string formulas.

List all tuples of r2 that are of the form (a+b)”,

and whose second half is a translation of the

first half obtained by replacing each a by b,

and each b by a. This type of problem occurs

e.g. in [COV91].

z I ~y, z :R2(x)A

([z, y],z = y)*.([y], y*)

.([Z, Z],Z = Z)*.([Z]lZ*)

A

([Y,’], Y=aAz=b Vy=bAz=a)*

([ Y-z],Y~ A ‘1)

The formula states that z is of the form yz

where z is the translation of y.

Alignment Logic and

Computation

Since the queries are expressed in alignment logic
in a declarative fashion, we need a procedural
interpretation of the formulas in order to be able

to compute the answers. Our procedural language

is an extension of relational algebra, with the

main addition being a selection operator based

on certain finite state devices. These finite state

devices correspond to the string formulas in the

query.

Intuitively a k-tape jinzte state acceptor is a

“nondeterrninistic two-way finite state automa-

ton,” with k “input tapes. ” Formally, a k-FSA

is a system A = (Q,s, F, T) where Q is a finite

set of states, s ~ Q is a distinguished start state,

F G Q is a set of final states, and T is a transi-

tion relation. The transition relation is a subset of

(Q X(~U{&$})k)X(QX {–l,O, +1}~). The sym-

bols + and $ are used to mark the left and right

ends of the input on each “tape. ” The markers

are assumed not to be symbols in Z. There is one

“head” per tape, and given a state and the sym-

bols under the heads on each tape, a transition

consists of swit thing the control into a next state

and of winding each tape one cell to the left (indi-

cated by – 1 in 7’), one cell to the right (indicated

by +1 in T), or holding the tape stationary (in-

dicated by O in T). Furthermore, tapes are never

wound off the input area marked by + and $.

In the initial state each tape is positioned so

that the symbol ~ is on the cell under the head.

The device accepts the tape contents if there is a

sequence of transitions leading into a final state,

such that there is no possible next state after

that. If a k-FSA d accepts the tape contents

with +Wi$ on tape i, we say that (WI, . . . . Wk) E

L(A). Furthermore, such tuples (WI, . . . . Wk) are

the only members of L(d).

We now have a means of computing the “bind-

ings” making string formulas true in initial align-

ments.

T’heorexn 3.1 For each strtng formula ~ on vart-

ables xl,..., Xk there is a k-FSA A$ such that

L(A+) = {(uAo(@~l),. .,~Ao(~~k)) : J40 ~ f#O}.

The main idea in the proof is to transform @into a

normal form where each atomic string formula ra

is such that the window formula a is a conjunction

of atomic window formulas. Then we build an

acceptor for each ra, and proceed inductively on

the .,+, x-structure of normalized d.

The computational power of k- FSA’s corre-

spond exactly to string formulas over k variables;

i.e. the converse of Theorem 3.1 is also true.

Theorem 3.2 For each k-FSA A there M a strang

formula 4A on varzabies xl,..., Zk such that

{(~Ao(&), . . . . ~AO(~~k)) : Ao \ +A6} = L(d).

For this theorem we construct an atomic string

formula for each transition in A, and then we build

q5A in the same manner as regular expressions are

built from automata.

In Figure 3 we show an example of a string’

formula and the corresponding finite state accep-

tor. The convention in the figure is that a tuple

(P, a, b, +, ~, –1, O, +1) in the transition relation T

308



is drawn as an arc labelled “a – 1 bO 4 1“ going

from node p to node q. The alphabet Z is for

simplicity assumed to be {a, b}.

al

al

$0$”0$0

&3

([z,y],z = y)”([z, z]lz = Z)*

.( [z, Y,:],zLAY~ A Z-L )

bl

Figure 3: A string formula and the corresponding

3-FSA.

If we now turn our attention to the problem of

evaluating queries formulated in the full language,

the first issue we have to tackle is the possible

infiniteness of the answer set. For instance, the

answer to the query z I ([z]lz = a)*([z]lxl)

is the infinite set {a, aa, aaa, aaaa, . . .}. Since

our domain (i.e. Z) is finite, a necessary and

sufficient condition for finite answers is that every

component in a tuple in the answer is of bounded

length. If a formula # has this boundedness

property we shall say that # is (semantically)

safe. As an example of a safe query consider

z I R(x) A ([z]lz = a)”([x]lzl). The answer set
is finite because the candidate strings have to
appear in database relation r. An answer set

can of course also be finite as a consequence of

the finiteness of the language specified by a string

formula. (More involved reasons for finiteness are

studied in the next section. ) In either case there is

an explicit bound depending on the fomula and/or

the database.

It now turns out that if we take the relational

algebra operators projection, union, difference,

Cartesian product, the constant unary relations

E~~ (all strings of at most 1 characters) and

Z“ (all finite strings), and an extended selection

operator, we end up with a language having the

same expressive power as alignment logic. The

extended selection operator is defined as

where A is a k-FSA. In other words, we project

a relation on some k components (the arity of r

has to be ~ k) and filter the resulting relation

through the acceptor A. We then retain the

original version of the accepted tuples.

Let us call this extended algebra alignment alge-

bra. An expression in the algebra is built up from

the basic operators and relation symbols as usual.

The value of such an expression when applied to a

particular database is obtained by replacing each

relation symbol with the corresponding actual re-

lation from the database and then applying the

operators.

Theorem 3.3 For each alignment formula there

as an ezpresston tn altgnment algebra such that

the answer set for the formula on any database as

the same as the va!ue of the expression on that

database. The converse is aiso true.

In the algebra Z* is an in finitary operator

needed for representing the underlying infinite

domain. In practice we will be interested in

evaluating safe queries only. For safe queries

finite domains suffice. It turns out that algebraic

expressions without 2“ and safe formulas are

closely related.

Theorem 3.4 For each ezpresston f in align-

ment algebra not using the Z* -operator there M

a safe ahgnment formula ~j such that the answer

set for @t on any database db is the same as the

resuit of evaluating f on db.

In the other directton, for each safe ahgnment

formula ~ there exists an ahgnment algebra ex-

pression fd wzth the followtng property: corre-

sponding to each database db there M a constant

ldb such that when every occurrence of ~“ in f~

M substituted wtth ~s[~b, the resu!t of evaluating

the substituted expression on db as the same as the

answer set for ~ on db.

The theorem means that in order to determine

the answer set for a safe alignment formula on a

309



database db it is sufficient to consider some finite

subset E<rdb of the domain Z“. This finite subset

depends on the database (actually on the length

of its longest string) as well as on the formula.

We could thus in the algebraic expressions corre-

sponding to safe formulas regard occurrences of
~. as a ~enerac symbol to be substi-

the operator ~

tuted with some particular operator ~s~db when

actually evaluating the algebraic expression, just

as relation symbols in the expression are substi-

tuted with the actual relations.

The above wrinkle is due to the fact that

alignment logic queries have the ability to generate

new (and longer) strings not appearing in the

database. An example is the safe query

z I ~y, 2: ~I(y) A &(.z) A~J(z, y, z),

where @ is the formula in Figure 3 (cf. also the

third example in Section 3). The query asks for

the strings that are a concatenation of a string

from rl and another string from rz. In this case

ldb can be chosen to be k, where k equals twice the

length of the longest string occurring in rl or rz.

An algebraic exression equivalent to the query is

m3(61,2,3,d@(ft1 x R2 x ~“))~

where A@ is the 3-FSA in Figure 3. For our

particular relations rl and r2 the answer set for

the query can be obtained by evaluating

~3(fil,2,3,A+(n x r2 x Xk)).

4 Safety Analysis

In the previous section we assumed that the

alignment formulas were semantically safe. An

important question is whether semantic safety can

be syntactically determined. It is well known

that safety is undecidable for purely relational

formulas [U1188]. Thus there is no hope that

safety would be decidable for alignment formulas.

We shall however first look into the possibility of

determining safety for string formulas alone. It

turns out that there is a source of undecidability

in the string formulas too.

We are interested in more than just determining
whether the language defined by a string formula

is finite. Consider the following two queries, where

we abbreviate by x ●. y* the formula that says

that ~ is a manifold of y (see the fourth sample

query).

Y I 3z:R(z)Aycs.c*

!/ I ~z:R(x)Az E,y*

The first query is unsafe, whereas the second

one is safe. In neither case does a boundedness

of y come from y having to appear in a database

relation. However, in the second query x has to

be a manifold of y, and thus y is at most as long

as z. Furthermore, z has to appear in a database

relation. The interesting observation is that “z

limits y.” Note that in the first query it is not

true that “x limits y.” As an additional example,

in the query of the previous section asking for

compositions of strings in relations rl and r2 it

is true that “Z and y together limit z.”

Let ~ be a string formula and {{zl, . . . . z~},

{Yl, ., Y~ }} be a partition of its variable set.

Then we say that {xl,. .,xk} izmds{yl) .,ym}

an # if for every sequence W1, . . . . w~ of not

necessarily distinct elements of Z“, the set

{W,} x... x{wk}xx”xx”. xx”

m tames

n
{((7(6X,),.., O(fkk), (7((AJ,),..,a(oym)) : A, /= (#M}

is finite. We are thus interested in inferring

the finiteness constraints ~ : {zl, . . . . z~ } -

{Yl,... , Ym } proposed by Ramakrishnan et al

[RBS87].

Theorem 4.1 The ltmttation problem w undecid-

able when k >1 and m >3.

The proof is based on the fact that we can encode

the behaviour of an arbitrary 2-counter machine

as a string formula on variables xl, yl, y2, y3.

The undecidability of the limitation problem then

follows from the undecidability of the totality

problem for 2-counter machines.

Far from everything is lost however. The

simulation of counter machines makes use of the

fact that rows of an alignment can be transposed

both left and right. We believe that for practical

queries this is not needed: it is enough to have the

ability to transpose only one row both to the right

and to the left in a string formula. All other rows

are to be transposed to the left only. Note that all

our sample queries fall into such a rzght-restricted

class. We shall also see in the next section that

certain right-restricted formulas characterize the

polynomial hierarchy.

Theorem 4.2 The hmitatzon probiem w decid-

able for right-restricted string formulas.

This proof is based in the fact that “x does not

limit y“ in ~ if and only if there is a string s for

310



which we can find strings u, w, and v, such that

(s, UW’W) E L(A@) for all i 6 N. Furthermore, in

right-restricted formulas the length of w can be

bounded. We can thus determine the existence of

such strings w by inspecting the transition graph

of A@. Technically, strings s, u, w, and w are found

using a crossing-sequence construction.

The solution to the limitation problem repre-

sents a first step towards a syntactic characteri-

zation of safety and an implementation of align-

ment logic. However, in addition to be able to

determine whether a query in the logic is safe,

we also need to determine the upper bound of

the length of y as a function of the length of z,

when {z} --+ {g}. Only then we can construc-

tively determine the constant idb of Theorem 3.4

for each database db. Note also that not all string

formulas of a safe alignment logic formula need

to be right-restricted, provided that only right-

restricted string formulas are used for generating

new strings while the others are used only for ver-

ifying them.

5 Expressive power

In this section we study the definitional power

of alignment logic. For simplicity we focus on

formulas without relation symbols. Furthermore,

we assume that there is only one free variable and

w.1.o.g. that all quantifiers are at front. Given

such an “unrelational” formula @ we say that

~ dejines the set

By the (data) complexity [Var82] of a set defined

by a formula q5 we mean the complexity of the

decision problem “w E {a~O (Ox) : A. + q$~}?,”

measured as a function of the length of the

string w.

First we observe that if there are no quantifiers

in the formulas, then the corresponding acceptors

are 1-FSA’S, and conversely. As a consequence of

Theorems 3.1 and 3.2 we thus obtain the following

result.

Theorem 5.1 Every quantifier-free formula de-

fines a regular set, and every regular set M dejin-

able by a quanttjier-free formuia.

Using the fact that counter machines can be

specified by alignment formulas, and that the

2-counter machines characterize the recursively

enumerable sets we obtain the next theorem.

Theorem 5.2 Every formula with two existential

quanttfers and no negation dejines an r.e. set, and

every r.e. set M dejinable by such a formula.

The following result follows from the fact that

extended temporal logic has the expressive power

of regular expressions.

Theorem 5.3 Every set dejinable m extended

temporal logic is definable in aizgnment logtc.

There are sets definabie m ahgnment logzc that

are not definable m extended temporal logtc.

For those programmers who are comfortable

reasoning with temporal modalities, our logic of-

fers the possibility of regarding a transpose as go-

ing into the future (left) or the past (right) in

those linear time structres (rows) that are men-

tioned in the transpose. The following conven-

tions can then be used.

next along xl, . . .,xk ~ = dj. [~l,... )~k]td

eventuid]y dongxl, . . . . Xk ~

‘dj, ([x,,..., xk]l T)*([zl, . . . . x~]l+)

henceforth a]ong xl, . . . . Xk 4

‘df ([xl, ..., xk]l~)”([~l, . . ., Xk]l XI LA. .. Axkl).

For instance, the two-place predicate “x occurs

in y“ (see the seventh sample query) could be

formulated as

eventually along y (a = y along z, y until XL).

The modalities for past tense are obtained by

using right transposes instead of the left ones in

the list above, e.g.

@ alongzl, . . .,xk since+

= dj ([q). ... Z~]r#)*([%I,.. .,xk].@).

As far as the sequence logic of Ginsburg and

Wang [GiW92] is concerned, it turns out that it

is included in alignment logic.

Theorem 5.4 Every set definable in sequence

!og~c M dejinable in alignment logic.

We note that the programming paradigms un-

derlying sequence logic and alignment logic are

different. The basic stringological construct in se-

quence logic is the transducer mapping. Since

regular sets are closed under transducer map-

pings [GiS65], computational power is achieved by

resorting to “extra-stringological” features, such

as first order logic. In alignment logic, on the

other hand, full Turing computability is available

311



already when using unquantified string formulas

on three variables and a projection operator (cf.

Theorem 5.2). As pointed out by Ginsburg and

Wang [GiW92], it is of course always possible to

increase the expressive power of sequence logic by

strengthening the language used to specify the

transducers. However, in alignment logic it not

necessary to go beyond regular expressions in the

syntax of the string formulas.

We have also been able to obtain a correspon-

dence between alignment formulas and the poly-

nomial hierarchy [Sto77]. For this correspondence

we need the class of quant@er limzted formulas. A

formula @ with variable set {x, yl, . . . . ym }, where

x is free and the y:s are quantified, is said to be

quantifier limited if {a} limits {yl, . . . . yin}.

The reader is asked to recall from the previous

section that right-restriction in formulas means

that at most one variable is transposed in both

directions.

Theorem 5.5 Each right-restricted and quanti-

fier hmited formula with a leading ezistent~al (unz-

versal) quantifier and with k quantifier alterna-

tions defines a set tn Z; (in ~~). Furthermore,

for each k E N there w a rtght-restricted quantifier

ltmited formula with a leading existential (untuer-

sai) quantifier and wtth k quanttjier alternations

that defines a E~-hard (resp. II: -hard) set.

The upper bound follows from the fact that if {z}

limits {y}, then the limit is a polynomial of the

length of x. Thus quantifier limitation implies

that the quantification is polynomially bounded.

Also, model checking for string formulas can be

done in time polynomial in the length of the

strings. For the lower bound we show that for each

k E N there is a formula ~k of the form stated in

the theorem, such that for any quantified boolean

formula @ that has k quantifier alternations and

leading quantifier existential, the following holds:

there is a log-space reduction from the formula @

to a string s+ such that @ is true if and only if

s~ = {OAO (~d): zh ~ ~k~}. similar formulas ~~

can also be exhibited when the leading quantifier

is universal.

References

[COV91] J. Collado-Vides. The search for a gram-

matical theory of gene regulation is for-

mally justified by showing the inadequacy

of context-free grammars. Computer Ap-

phcations in the Bzosczences 7 (1991),

321-326.

[GaJ79]

[GiS65]

[GiW92]

[HeS93]

[PiT86]

[RBS87]

[Ric92]

[SaK83]

[sto77]

[ul188]

[Var82]

[W0183]

M. R. Garey and D. S. Johnson. Com-

puters and Intractabdity: A Gu~de to the

Theory of NP-Completeness. Freeman

Press 1979.

S. Ginsburg and H. Spanier. Mappings of

languages by two-tape devices. J. ACM

12 (1965), 423-434.

S. Ginsburg and X. Wang. Pattern match-

ing by rs-operations: towards a unified

approach to querying sequenced data.

PODS ’92, pp. 293-300

C. Helgesen and P. R. Sibbald. PALM -

A pattern language for molecular biology.

In: Proc. First Int. Conf. on Intelligent

Systems for Molecular Biology (ISMB-93),

AAAI Press 1993, pp. 172-180.

P. Pistor and R. Traunmueller. A data-

base language for sets, lists and tables.

ln~ormatzon Systems Ii (1986), 323-336.

R. Ramakrishnan, F. Bancilhon and A.

Silberschatz. Safety of recursive Horn

clauses with infinite relations. PODS ’87,

pp. 328–339.

J. Richardson. Supporting lists in a data

model (a timely approach). IBM research

report RJ 8853, June 1992.

D. Sankoff and J. B. Kruskal (eds. ) Tzme

Warps, String Edits and Macromolecules:

The Theory and Practzce of Sequence

Comparison. Addison-Wesley 1983.

L. J. Stockmeyer. The polynomial-time

hierarchy. Theoretical Computer Science

.3 (1977), 1–22.

J. D. Unman. Prwsctples of Database

and li’nowledge-base Systems. Computer

Science Press 1988.

M. Vardi. The complexity of relational

query languages. STOC ’82, pp. 137-145.

P. Wolper. Temporal logic can be more

expressive. Information and Control 56

(1983), 72-93.

[GaS83] Z. Galil and J. Seiferas. Time-space

optimal string matching. JCSS 26 (1983),

280-294.

312


