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A b s t r a c t 
A basic feature of Intelligent Tutoring Sys­
tems (ITS) is their ability to represent do­
main knowledge that can be attributed to the 
student at each stage of the learning process. 
In this paper we present a general (first or-
der logic) framework for the representation of 
this kind of knowledge acquired by the system 
through the analysis of the student answers. 
This represantation makes it possible to de­
scribe the behaviour of well known ITSs and 
to provide a direct implementation in a logic 
programming language. Moreover, we point 
out several improvements that can be easily 
achieved by exploiting the features of a declar­
ative approach. In particular, we address the 
representation and use of the knowledge that 
the system knows not to be possessed by the 
student. 

1 I n t r o d u c t i o n 
The goal of Intelligent Tutoring Systems (ITSs) is to sup­
port the learning process of a student on a specific sub 
ject domain. This is usually achieved through a conver­
sational system which aims at providing the student with 
the knowledge and skills required for solving problems in 
the domain of interest. The learning status reached by 
the student is also tested, mistakes are discovered, tlieir 
causes are diagnosed and eliminated by appropriate re­
mediation actions. 

ITSs usually embody a knowledge base built by an­
alyzing the student's responses to tests and problems. 
This knowledge base, called student model, represents 
the knowledge attr ibuted by the system to the stu­
dent and can therefore include explanations of the stu­
dent's mistakes. Such explanations are built by tak 
ing into account empirical knowledge about students1 

mistakes derived from the study of typical student be-
haviours. The idea is that the ITS attempts to sin­
gle out matters that the student may have not well 
understood and therefore need further attention (for a 
detailed description of the typology and role of stu­
dent modelling in ITSs see for instance [Self, 1988, 
VanLehn, 1988]). 

A first part of the work presented in this paper is 

concerned with a rational reconstruction of the process 
of building and maintaining the knowledge base repre­
senting the system knowledge about the student knowl­
edge in existing ITSs, with the aim of identifying a 
domain independent formalization schema that accom­
modates apparently different approaches. Previous re­
sults of this work are presented in [Cialdea et al., 1990, 
Cialdea, 1991] and show that it is indeed possible to pro­
vide a common framework for the specification of some 
well-known systems and that such a formal specification 
can be directly translated into a run liable logic program. 

A further important outcome of this formalization, 
winch is in the spirit of Self's Computational Mathetics 
[Self, 1991], is that within a simple declarative frame­
work some previously neglected aspects of the represen-
tation and use of the system knowledge about the stu­
dent become easily available. 

The main goal of our work is to improve the represen­
tation and use of the system knowledge about student, 
knowledge. We take a deductive approach to represent­
ing knowledge, where the information manipulated by 
the system is represented in knowledge bases (for gener­
ality, we consider them to be sets of first-order logic for-
mulae, called contexts), arranged in a met.a-level archi­
tecture. This approach originates from our work on rea­
soning about knowledge and reasoning in a multi-agent 
scenario [Aiello et al., 1991 ]. In the case of ITSs, we have 
two agents the system and the student. The interaction 
between the system and the student can therefore be re­
garded as a process that enables the system to acquire 
new knowledge about the student. 

The process is activated by the answers provided by 
the student to specific problems. They can be definite 
answers (either correct or incorrect) or "I don't know'1 

answers. Typically, existing ITSs do not analyze "I don't 
know" answers, that, conversely, can provide useful in­
formation about the student's learning status. 

The analysis of student answers (diagnosis) leads to 
what we call an explanation. We compute it by find­
ing a derivation for the answer. An explanation can be 
formed by looking at the student knowledge and at two 
separate knowledge sources: the expert knowledge (i.e. 
the knowledge of the teaching domain that the system 
typically uses to find the correct solution to a problem) 
and the buggy knowledge (i.e. information about stu­
dent mistakes, generally expressed in the form of mal 
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rules). The kind of explanation built by the system de­
pends on the answer: correct, incorrect and "I don't 
know". A correct answer requires to find all possible 
explanations and select a preferred one. An incorrect 
answer requires to identify all possible explanations by 
using buggy knowledge and then to select a preferred 
one. A "1 don't know" answer requires to identify which 
knowledge the student is lacking, that would enable him 
to provide a correct answer. Therefore, explanations of 
"I don't know" answers are given by considering every 
explanation of the corresponding correct answers. In 
the rest of the paper we show how this analysis can be 
phrased in terms of operations on knowledge bases. 

Once the system has found an explanation for the stu­
dent's answer, the representation of the knowledge the 
system has about the student should be updated accord­
ingly. The above sketched analysis suggests that the sys­
tem maintains a representation of what it knows to be 
known by the student, as well as of what it knows not to 
be known by the student. 

The paper is organized as follows. We first discuss 
the structure of TTSs in terms of a deductive approach 
and present a simple meta-level framework based on 
first-order logic. We then show how the diagnostic be-
haviour of three well-known TTSs proposed in the lit­
erature, namely SEDAF [Aiello and Micarelli, 1990], 
LMS [Sleeman and Smith, 1981, Sle eman, 1983], and the 
B U G G Y / D E B U G G Y system [Brown and Burton, 1978, 
Burton, 1982], can be rephrased. We finally address 
some features that can be considered in order to improve 
the performance of ITSs: the exploitation, on the side 
of the system, of the informative content of the student 
ignorance. 

2 A deduc t i ve approach to the 
represen ta t ion o f s tudent knowledge 

This section describes the meta-level architecture un-
derlying the formulation of the diagnostic principles of 
ITSs: the fundamental object-level contexts, the meta­
language and some basic definitions and axioms shared 
by any met a-theory. 

2.1 Ob jec t - l e ve l s t ruc tu res 

The fundamental object-level structures representing the 
system's knowledge about the teaching domain and the 
student's learning status are here provided an abstract 
description. Such structures are what the meta-theory 
reasons about. 

As already mentioned, we assume that any statement 
about the teaching domain is represented as a first order 
formula. Such a simplification is made only for method-
ological reasons and it does not impose an a priori restric­
tion to the approach. For example, domain knowledge 
can itself be organized into meta-levels, where heuris­
tic principles and reasoning strategies are represented at 
higher levels, following [Vivet, 1988]; or else, the cum­
bersome logical expression of some operations on object-
level entities can be avoided by using semantic attach­
ments [Weyhrauch, 1980]. 

According to the above assumption, the object-level 

language is a first order language containing constants, 
predicates and functions denoting corresponding types of 
objects in the teaching domain. The expert knowledge 
and the student's beliefs can thus be represented by sets 
of first order formulae, called contexts. 

At the object-level there are two contexts, correspond­
ing to the Expert Module and the Student Model of ITSs: 
E, that contains formulae denoting correct statements 
about the teaching domain, and S, containing formulae 
believed by the student. 

In a malrule approach, a "bug catalogue" is also con-
sidered: at the object-level there is a context, B, con­
taining formulae corresponding to the incorrect beliefs 
that could possibly be ascribed to a student. It plays 
the role of a database which the teacher consults when 
trying to explain a wrong answer given by the student. 
Usually,  

Contexts E and S can be considered as standard logi­
cal theories, in the sense that they contain correct logical 
inference rules (even if possibly incomplete) and proper 
axioms representing domain knowledge. For the sake of 
generality, we do not make any assumption on the kind 
of logic in such contexts, even if, in actual implementa­
tions, it is not full first-order logic (for example, S and 
E may be production systems or Horn clause theories). 
However, we assume that the two contexts have the same 
logic. Even if such an assumption, that the student and 
the expert have the same reasoning capabilities, looks 
quite strong, it seems necessary in order for the system to 
be able to tell anything about the student's reasoning in 
the teaching domain. Context B has no logical inference 
rule at all: deductions within B make no sense. Hence, 
the only set of object-level inference rules we consider 
is that of context E. We do not make any assumption 
about the consistency of contexts: B is very likely to 
contain contradictory formulae. The same may happen 
to S, although its logic is correct. 

In the sequel, any finite set of object-level formulae 
will be considered as a context, as well as the union of 
any pair of contexts. Formulae in any context wi l l be 
called axioms of that context. Proofs in any context are 
built by means of the inference rules in E. 

2.2 M e t a - T h e o r y 

We now introduce the basic meta-language and defini­
tions that will be shared by any meta-theory (the generic 
meta-theory wil l be called M T ) . The meta-language 
contains suitable constants, functions and predicates al­
lowing the object-level entities to be referred to. Among 
them, the constants E, B,S wil l be used, to denote re­
spectively contexts E, B and S. Moreover, the language 
of MT contains a functional symbol allowing the repre­
sentation of finite sets of object-level formulae and the 
predicate defining the membership relation. MT con­
tains a functional symbol denoting union of contexts, so 
that, i f and d e n o t e a n d t h e n  
denotes their union.   

The meta-language contains constants denoting 
object-level symbols and functional symbols allowing the 
meta-level coding of object-level complex formulae. If a 
is an object-level formula, denotes the representation 
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Answers given by the student are coded by the meta-
level predicate answers We consider only positive 
answers, since a question requiring a value as an answer, 
is turned into a relation instantiated with the answered 
value, and negative answers can be obtained by negating 
the question. 

In order for MT to be an adequate meta-theory for 
the object-level contexts, the derivability relation in any 
context has to be definable in M T . As we are interested 
not only in knowing whether a formula is a theorem of 
a given context, but also which axioms are effectively 
used to derive i t , the key meta-level formula linking the 
object-level context C to the meta-theory is the formula 
derivablcc{x,y) wi th two free variables, such that for 
any finite set of formulae and formula if there exists 
a (non tr ivial) proof of a in C using exactly the formulae 
in as axioms, then derivable  

We assume that such a notion of derivability excludes 
tr ivial cases, i.e. is a minimal set of axioms from which 
a can be derived in and is not contradictory. The 
consistency condition may seem a strong requirement 
in computational terms, because it is a generally non-
decidable predicate. However, in actual systems, the 
proof procedure used at the object-level usually guar­
antees both the consistency and the minimality require­
ments, so that there is no need to check for non triviality 
of proofs. Or else, as it is the case of the three systems 
described in Section 3, consistency can be defined in a 
more constructive way. In fact, the object domain of 
such systems is formalized as a production system, where 
each malrule is associated with a correct rule, so that a 
set of axioms is contradictory only if it contains either 
both a correct rule and one of its buggy versions, or two 
buggy versions of the same correct rule. In such cases, 
if the predicate buggyversion defines the relation hold­
ing between a rule and one of the associated malrules, 
consistency can be defined as: 

Other basic formulae defining object-level relations in 
MT are the following: subconjunct\ defines the 
relation holding between a subconjunct and the whole 
conjunction; for any context C, defines the 
set of axioms of C. 

We assume that the meta-theory contains also simple 
axioms rul ing the relations among contexts, such as, for 
any context C1 , C 2 : 

3 The diagnost ic p r inc ip les of some 
ex is t ing systems 

In this section we show how to express in our meta­
language the diagnostic principles adopted by three ex­
isting ITSs, namely SEDAF [Aiello and Micarell i, 1990], 
the two versions of LMS [Sleeman and Smith, 1981, 
Sleeman, 1983], and the B U G G Y / D E B U G G Y system 
[Brown and Burton, 1978, Burton, 1982]. We abstract 
from some features that are strictly peculiar to a system, 
in order to point out how the general diagnostic princi-
ples can be expressed and compared in our formalism. 

The meta-theory of each system contains the predicate 
ascribes representing the result of a meta-level reason­
ing. Different hypotheses on the student's way of reason­
ing can be expressed by means of the meta-level axioms 
defining the predicates ascribes-

Let us assume that the student admittedly believes 
to be true and that we already know how to find out the 
set of the axioms in that best explains then 
the system can conclude that every formula in must 
be in S. So, each of the meta-theories corresponding to 
the diagnostic principles of the systems considered below 
contains the following axiom: 

The hard task is the definition of the predicate explains. 
As expected, the theories we are now going to consider 
differ fundamentally in the axioms defining the predicate 
explains. However, all of them are patterned in the same 
style. 

3.1 The system S E D A F 

SEDAF teaches students to graph mathematical func-
tions by solving for the characteristics of the function 
(singular points, asymptotes, maxima, etc). It embeds 
an expert module consisting of a set of correct rules, a 
database of malrules and a student module consisting of 
a set of correct rules and malrules. 

During each phase in the study of a function, SEDAF 
asks questions to the student. If the student's response 
is correct, the system assumes that it has been correctly 
derived and that the student knows all the facts and 
rules used in the corresponding deduction built by the 
expert module. So, a first, axiom defining explains is: 

This axioms assumes that there is always a single correct 
way of proving a correct statement. This corresponds to 
a design choice made in SEDAF, where, like in many 
other ITSs, the focus of the diagnostic activity is on 
finding out reasons for wrong answers, while taking the 
correct ones more or less for granted. A more articulated 
version of El could cope with the case of multiple expla­
nations for a correct answer (see for example [Cialdea, 
1991]). 

If the response provided by the student is incorrect, 
SEDAF takes the student's solution as a goal, and 
tries to build a deduction that leads to the goal, using 
also malrules. During this process the system interacts 
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with the student in order to discriminate among differ­
ent inference chains, by asking him to confirm which 
rule/malrule he has actually used. This is described by 
the following axiom, where test student represents 
the fact that the student confirms he believes a. 

These formal statements compactly describe the di­
agnostic principles of SEDAF. In addition, they point 
out an incoherence in their application: SEDAF assumes 
that correct responses have been correctly derived (ax­
iom E l ) ; but this principle is not recursively applied 
when building subproofs of correct statements used to 
reach a wrong conclusion, as axiom shows; in fact, in 
such cases, the student is questioned to confirm his use 
of any rule and not malrules only. 

3.2 T h e sys tem L M S 
LMS models students who are learning to solve linear 
algebraic equations in one variable. The domain knowl­
edge is represented as a production system and both the 
expert and the student's procedure to solve a problem 
are represented as ordered sets of production rules. The 
order in which rules are applied may be relevant; in fact, 
precedence of operators is modelled by the ordering of 
rules (e.g., compute products before sums), rather than 
by modifications of the rules' preconditions. Bugs are 
represented either as variants of correct rules or as an 
incorrect order of application of correct rules. The fact 
that control errors are represented by an incorrect or­
dering of rules is irrelevant, for our purposes, so we as­
sume that the object domain of LMS is represented as an 
unordered set of production rules, where control is ex­
pressed by additional requirements for the applicability 
of relevant rules and corresponding malrules drop such 
additional requirements. 

In LMS-1 [Sleeman and Smith, 1981], a first version of 
LMS, the student is presented with a sequence of prob­
lem sets of growing complexity; each of them requires 
the application of one new rule and it is assumed that if 
the student has applied a given sequence of rules (either 
correct or incorrect) in solving a problem set, he will ap­
ply the same rules, plus one more, to the probems at 
the next level. So, the student model is incrementally 
built: once a partial student model has been inferred, 
the subsequent one is obtained by the addition of the 
next correct rule or one of its incorrect variants. 

It is also assumed that, the set of problems presented 
to the student at each level is discriminatory, so that it 
can never happen that two different extensions of the 
existing student model explain the student's answer. 

In terms of the meta-language proposed in this work, 
the diagnostic meta-theory of LMS-I is characterized by 
the following axiom: 

Note that here represents the student's answers to a 
set of problems (at a given level). 

The second version of LMS [Sleeman, 1983] takes into 
account the fact that, for instance, the abil ity to apply a 
correct rule may depend on the complexity of the prob­
lem. LMS-I I thus rejects the assumption that partial 
student models are never contradicted. In order to re­
duce the search space of all possible (ordered) subsets of 
the rule and malrule set, in an off-line phase, the system 
generates a complete and non reduntant set of models, 
retaining only those which give unique results wi th the 
predefined problem set. Proper subsets of a given model 
are considered as different models, because they pertain 
to a different level. So, in particular, the system has a 
set of expert models, one for each level. In the on-line 
phase, the student's performance is compared against 
such models. It is stil l assumed that the set of prob­
lems for each level is adequate to discriminate among all 
possible models at that level. 

The on-line phase of LMS-I I could be described 
by introducing a set of Expert and Buggy theories, 

which are assumed to 
result from the off-line phase. In that case, a set of rules 

explains the answer given by the student to a prob­
lem set if, for some i, is a theorem of and is the set 
of axioms of C j . However, if we abstract from the com­
putational problems dealt with in the off-line phase, we 
see that the subset of corresponding to the model 
entailing can equally well be seen as the set of axioms 
used to prove in the context So, the meta-
theory embedding the diagnostic principles of LMS-I I is 
characterized by the following axiom for explains: 

Note that El is a derivable from E4. 
Of course, the simplicity of E4 is due to the assump­

tion that is a discriminatory set of problems, so that, 
in practice, there is not a real diagnostic problem (the 
emphasis of LMS is rather on the reduction of the search 
space of possible models). 

3.3 B U G G Y a n d D E B U G G Y 
Brown and Burton [Brown an d Burton, 1978] proposed 
"the Buggy model", a descriptive theory of bugs, where 
students' mistakes in simple procedural skills are seen 
as symptoms of local modifications (bugs) to the correct 
procedure. The model was developed and explored in 
the domain of place-value subtraction. 

The object domain is represented by a set of goals and 
methods for satisfying these goals, linked together in a 
procedural network, where links represent goal-subgoal 
relations. Corresponding to each goal, there are correct 
and incorrect methods. A student's incorrect behaviour 
can be reproduced by replacing some correct methods 
by one of their buggy variants in the basic (correct) net­
work. The same structure can of course be represented 
by other means and, for our purposes, we consider it as 
represented by a set of rules. 

A first naive diagnostic system based on the buggy 
model compares the student's answers on a given set 
of problems with the output of each network obtained 
by replacing a single method with one of its bugs. So, 
if one single bug can explain the student's answers, it 
is assumed to be possessed by the student. BUGGY 
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diagnostic system assumes, like SEDAF, that, if part 
of the solution is correct, then the student achieved it 
correctly; and, like LMS, that diagnosis is fired on the 
results of a discriminatory test: there can be at most 
one bug explaining the student's behaviour on the entire 
test. 

Abstracting from some details, BUGGY met a-theory 
is characterized by: 

Note that El is derivable from E5 and E5 is derivable 
from E4. 

DEBUGGY [Burton, 1982], a development of 
BUGGY, is a much more sophisticated diagnostic sys­
tem, that takes into account both the fact that more 
than one bug can cause the student's errors and the fact 
that sometimes there is no hypothesis explaining the stu-
dent's behaviour completely, so that the system has to 
find out the model that best explains it . The diagnos­
tic technique in DEBUGGY is quite heavy and we shall 
only sketch it here, just to show that it can be expressed 
in the same style as the others. 

DEBUGGY assumes that simple bugs that form mul­
tiple ones can also be detected individually. So, an initial 
set of hypotheses is generated, containing all single bugs 
that explain at least one of the student's incorrect an­
swers (for effectiveness reasons, the initial set of hypothe­
ses is then reduced by eliminating bugs subsumed by 
others and bugs that can be considered as casual match-
ings. We shall not describe here the criteria used for 
the reduction). To represent this fact, we emulate the 
dynamic construction of a new context, , the initial 
set of hypotheses containing simple bugs, by defining: 

This definition allows us to define the predicate 
derivable in the obvious way. 

The elements of the set, of hypotheses are then com­
bined and compound bugs (up to a given depth) are 
added to the set of hypotheses if they explain more of 
the student's behaviour than their constituents. A com­
pound bug that is a good candidate to explain can 
be defined as a set of axioms in that entails a 
subconjunct of and is more explicative than any of its 
subsets: 

Here, stands for proper set inclusion; the predicate 
explainsrnore defines the fact that, if E U £ 
entails the subconjunct of and entails the 
subconjunct of then is a proper subconjunct of 

If we abstract from computational problems, in the 
above definition can be replaced by B. 

After the generation of compound bugs (i.e. good can­
didates), each bug is compared with the others, by taking 
into account not only the number of predicted answers, 
but also the number and type of mispredictions and a 

simplicity criterion. Finally, the best of them is cho­
sen as an explanation of the student's behaviour. If we 
assume that the predicate wins represents the 
fact that is a better candidate than according to the 
above quantitative and qualitative criteria, then diagno­
sis in BUGGY is performed according to the following: 

Various considerations can be made after the analysis 
we have just performed. The most relevant one is that 
the diagnostic principles followed by the three ITSs can 
be accommodated in a unique framework that is inde-
pendent of the domain and largely independent of the 
particular diagnostic strategy adopted by each system. 
The three systems essentially differ in the criteria used 
to choose the best explanations for given answers. This 
last aspect is somewhat more domain dependent and of­
ten neglected. It deserves a more analytical investigation 
and the use of a formal tool such as the one we propose 
could be of great value and effectiveness. 

4 R e p r e s e n t a t i o n a n d u s e o f " I d o n ' t 
k n o w " a n s w e r s 

Most existing intelligent tutoring systems concentrate 
their diagnostic effort on the justif ication of incorrect 
answers provided by students, in terms of bugs present 
in their procedures or misconceptions in their knowledge. 
Correct answers are rarely analysed in some depth. "1 
don't know" answers, even when admitted, only trigger 
the system to give help to the student, and no infor­
mation about the student's knowledge is inferred from 
them. The logical treatment presented in the previous 
sections accommodates the diagnostic principles coping 
with both correct and incorrect answers provided by the 
student. In this section we briefly show how a tutoring 
system can gather information about what the student 
does not know and how it can be used. So, we assume 
that the student is given the possibility to tell the sys­
tem "I don't know". Of course, as shown in the sequel, 
information about the student's ignorance can also be 
obtained indirectly, by met a- reasoning. 

4.1 An exp l i c i t rep resen ta t ion o f t he s tuden t 
ignorance 

Both during the diagnostic and teaching-remediation 
phase, the system has to access what the student knows 
and what he doesn't know. It must, be remarked, how­
ever, that the system cannot be assumed to have com­
plete knowledge about the student beliefs1. So if a for­
mula is not contained in S, the system cannot infer 
that the student does not believe It only means that 
the system does not know whether the student believes 

or not. In other words, S contains what the system 
knows that the student believes. For this reason, we add 

1The system's knowledge may also be partially incorrect, 
in the sense that a previous hypothesis can reveal to be in­
consistent with a new assertion of the student. This problem 
will not he touched upon within this work. 
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a fourth component to the object level structure: con­
text U, containing what the system knows the student 
does not know2 . 

Considering the nature of the diagnostic task in this 
wider view, two main cases can be distinguished: 

1. The system has to discover the reasons why the stu­
dent believes something (either correctly or not); 

2. The system has to explain where the student's ig­
norance of some facts originates from. 

In the first case the system has to deal with an abductive 
task: if the student believes are all the 
possible (non- tr ivial) proofs of > that can be constructed 
in then only one of them has to be chosen. Let's 
say that is the preferred one; if are all the 
axioms of E U B used in , then it can be concluded that 
the student believes all of Point 1 above will 
be called the abductive aspect of diagnosis. 

The second case represents the dual situation. If the 
student does not believe and if are all the 
possible proofs of that can be constructed in 
then the system can reasonably conclude that the stu­
dent is not able to construct any of them. In this case 
there is no abductive problem, being the system's task-
purely deductive. However, there is again a choice prob­
lem, at the level of the subsets of axioms used in the 
proofs: if are all the axioms of used 
in , for then surely the student does not 
believe the conjunction But this does not 
mean that the student lacks all of so an ex­
tra investigation should be performed in order to single 
out which of them the student actually does not know 
or possibly believes to be false. This second aspect of 
diagnosis wil l be called deductive. 

It is worth noting that the abductive aspect of diag­
nosis is treated very roughly in SEDAF (just ask the 
student what he thinks) and it is absent in both versions 
of LMS and in BUGGY. The difficulty of finding good 
criteria for abductive diagnosis supports our conviction 
that it is important to have a formal language to state 
them clearly and explicitly. Note that standard tech­
niques for abduction only consider sets of assumptions, 
while here we are interested in general axioms used in 
the derivation. 

4.2 T h e d e d u c t i v e aspect o f diagnosis 
Answers given by the student are now coded by the meta-
level predicate answers where t is either the con­
stant yes or dontknow. The axioms dealing with the 
deductive aspect of diagnosis allow the system to con­
clude that the student does not believe something, i.e. 
ascribe  

2Usually, existing ITSs identify the student's ignorance 
with the systems's ignorance about the student. Mizoguchi 
[Mizoguchi et al., 1988] recognizes the importance of the dis­
tinction, by use of four truth values for statements a about 
the object domain: true (the student knows false (the 
student knows unknown (the student does not know 

and fail, which is a meta-truth attribute, referring to the 
system's knowledge (the system cannot attribute any of the 
previous three values to  

The first axiom states that if the student answered "1 
don't know" to a question then he knows no way to 
derive either or the negation of So, axiom D2 is: 

where conjunction defines the relation between a 
set and the formula  

Note that a is a conjunction of axioms in , so 
axiom D2 can lead to conclude that the student does not 
have a misconception. Even if such information is usu­
ally of no importance for the teaching and remediation 
activities, it can be useful when the student model is 
used during the diagnostic process itself. In fact, know­
ing that the student cannot have used a given miscon­
ception can help to reduce querying/testing the student 
about her or his beliefs, when an incorrect answer has to 
be explained. 

The second axiom of the deductive aspect of diagnosis 
concludes that the student does not believe something 
from the fact that he believes something else. It states 
in fact that if the student believes to be true, then 
he does not know any way to derive the negation of 
In other words, axiom D3 states a minimal consistency 
hypothesis about the student's knowledge. 

The problem of reducing the size of an unbelieved con­
junction has been addressed in [Cialdea, 1991]. 

The explicit representation of what knowledge the stu­
dent has shown to lack can guide the choice of a suitable 
teaching action. For instance, if the system realized that 
the student has not mastered some basic abilites yet, it 
tries to remediate before going on with more complex 
concepts and problems. 

Information about what the student does not know 
can also help in the diagnostic task. For example, if the 
student believes to be true and can be derived using 
exactly the axioms in then can be con­
sidered as a good explanation of only if it does not 
contain any statement that the system has checked to 
be unknown to the student. So, the following require­
ment could be added to the preconditions of any axiom 
enabling a conclusion of the form explains  

A complete example showing how to state axioms for 
the abductive aspect of diagnosis that take into account 
such principle can be found in [Cialdea, 1991]. 

5 C o n c l u s i o n s 

In this paper we have presented a formal framework for 
the description of diagnostic principles in ITSs. It con­
sists in a set of object level (first order) theories along 
with a meta-theory, where reasoning about reasoning is 
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described. Our formal framework has been used to ra 
tionally reconstruct the diagnostic process of some well 
known existing ITSs and to propose further extensions 
to the diagnostic capabilities of ITSs, namely by allow­
ing them to make also a sense out of "1 don't know" 
answers provided by a student, i. e. answers that point 
out student's ignorance. 

There are several good reasons supporting the useful­
ness of a formal approach to the problem of specifying 
general principles for student modelling in educational 
systems. First, the meta-language we have proposed is a 
design tool for ITSs: it can be used as a high level specifi­
cation language, when conceiving the student modelling 
features of a concrete system. 

Second, the high level specifications thus obtained can 
be directly implemented in a (logic) programming lan-
guage; the prototypes constructed that way help to test 
the validity of the specifications and give the possibility 
of modifying them rapidly, at low cost, as described in 
[Cialdea et ai, 1990]. 

Furthermore, the proposed framework can be an in­
strument for a comparative study of existing systems: 
the analytical study of the student modelling guidelines 
adopted in existing systems leads to point out enhance­
ments and enlargements of such principles. To support 
this last claim, in the paper we have shown how the 
analytical study and logical formulation of the princi­
ples informing meta-reasoning in the student modelling 
component of educational systems can lead to take into 
account something new: the possible uses of the student 
model during the diagnostic process itself, in order to re­
duce querying/testing the student and the possible uses 
of an explicit representation of what the system knows 
the student does not know. 

Our proposal can be extended and refined in many 
directions. As a first example, different strategies for 
treating the set of malrules can be easily accommodated. 
For instance, it would be easy to organize misconcep­
tions into subsets, possibly ordered according to a like­
lihood criterion. A further important issue that can be 
addressed is the treatment of student's contradictory be­
liefs. And more: what happens if the student is allowed 
to have incomplete and possibly incorrect reasoning ca 
pabilities? 

It is of great importance to deal with such issues in 
a uniform way, by exploiting both the theoretical and 
software engineering advantages of a logic specification. 
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