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Abs t r ac t .  The p-calculus can be viewed as essentially the "ultimate" 
program logic, as it expressively subsumes all propositional program log- 
ics, including dynamic logics, process logics, and temporal logics. It is 
known that the satisfiability problem for the p-calculus is EXPTIME- 
complete. This upper bound, however, is known for a version of the logic 
that has only forward modalities, which express weakest preconditions, 
but not backward modalities, which express strongest postconditions. 
Our main result in this paper is an exponential time upper bound for the 
satisfiability problem of the p-calculus with both forward and backward 
modalities. To get this result we develop a theory of two-way alternating 
automata on infinite trees. 

1 I n t r o d u c t i o n  

The propositional p-calculus is a propositional modal logic augmented with least 
and greatest fixpoint operators. It  was introduced in [16], following earlier stud- 
ies of fixpoint calculi in the theory of program correctness [3,23,27]. Over the 
past 15 years, the p-calculus has been established as essentially the "ult imate" 
program logic, as it expressively subsumes all propositional program logics, in- 
cluding dynamic logics such as PDL, process logics such as YAPL, and temporal  
logics such as CTL* [7]. The p-calculus has gained further prominence with the 
discovery that  its formulas can be evaluated symbolically in a natural  way [2], 
leading to industrial acceptance of computer-aided verification. More recently, 
the p-calculus has found a new application domain in the theory of description 
logics in Artificial Intelligence [9]. As a result of this prominence, the p-calculus 
has been the subject of extensive research; in particular, researchers focused on 
the t ruth problem and the satisfiability problem. 

In the t ruth problem, we are asked to verify whether a given formula holds 
in a given state of a given Kripke structure (which is the essence of model 
checking). In spite of extensive research, the precise complexity of this problem 
is still open; it is known to be in NPNco-NP and PTIME-ha rd  [1,6]. In contrast,  
the complexity of the satisfiability problem, where we are asked to decide if a 
given formula holds in some state of some Kripke structure, has been precisely 
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identified. An exponential time lower time bound follows from the lower bound 
for PDL in [8], and an exponential t ime upper time bound was shown in [4]. 

The exponential time upper bound for the /t-calculus was shown, however, 
only for a version of the logic that has only forward modalities. The formula (a)~a 
holds in a state s of a Kripke structure M when ~ holds in some a-successor 
of s; in contrast, the "backward' formula (a-)~a holds in s if ~a holds in some 
a-predecessor of s. Here a -  describes the converse of the atomic program a. 
Essentially, forward modalities express weakest preconditions, while backward 
modalities express strongest postconditions. Backward modMities correspond to 
reasoning about the past. There is now a significant body of evidence of the 
usefulness of reasoning about the past in the context of program correctness [20]. 
For example, it is shown in [25] that past temporal  connective can conveniently 
replace history variables in compositional verification. Backward modalities also 
have a counterpart  in description logics, where they correspond to inverse roles 
[9]. 

The importance of backword modalities motivated the study of procedures 
for the satisfiability problem for logics that include them [11,18,24,30,34,35,38]. 
(Backward modalities do not, in general, pose any difficulty to truth-checking 
procedures.) The challenge in developing such decision procedures is that the 
interaction of backward modalities with other constructs of the logic can be quite 
subtle. For example, backward modalities interact with the Repeat construct of 
Repeat-PDL, posing a great difficulty to the development of decision procedures. 
The first elementary decision procedure for Repeat-Converse-PDL was octuply 
exponential [32]. This was improved later to a quadruply exponential procedure 
[30]. Finally, combining the techniques in [4] with the techniques in [34] lead to 
a singly exponential procedure. 

Because of the subtlety of dealing with backward modalities, the satisfiability 
problem for the full/t-calculus, which has both forward and backward modal- 
ities, is still open. Our main result in this paper is an exponential t ime upper 
bound for the problem. The approach we take is the automata-theoret ic  ap- 
proach advocated in [4,30,38]. We first show that even though the full/t-calculus 
does not have the finite-model property, it does have the tree-model property. 
(As argued in [37], the tree-model property, which asserts that  if a formula is 
satisfiable then it is satisfiable by a bounded-degree infinite tree structure, offers 
an explanation for the robust decidability of many propositional program log- 
ics.) We then show how a formula ~ can be translated to an automaton A~ on 
infinite trees that  accepts precisely the tree models of ~. To check whether ~ is 
satisfiable it suffices then to solve the emptiness problem for A~. 

Earlier papers that employed the automata-theoret ic  approach used nonde- 
terministic tree automata  [4,30,38]. The translation from formulas to nondeter- 
ministic au tomata  is nontrivial; for example, the translation in [38] is exponen- 
tial and consists of a sequence of successive translations. As demonstrated in 
[1,36], it is easier to translate formulas to alternating automata.  Alternating 
tree au tomata  generalize nondeterministic tree au tomata  by allowing multiple 
successor states to go down along the same branch of the tree. It is known that  
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while the translation from branching temporal  logic formulas to nondetermin- 
istic tree au toma ta  is exponential,  the translation to al ternating tree au toma ta  
is linear [1,21]. Similarly, there is a simple translation f rom p-calculus formu- 
las to al ternating tree au t om a t a  [1,5]. Alternating tree au toma ta  as defined in 
[22], however, cannot easily handle backwards modalities, since they are one-way 
automata .  To deal with backward modalit ies we introduce two-way alternating 
au toma ta  on infinite trees, based on an analogous notion of two-way au toma ta  
on finite trees in [29]. 

It remains then to solve the emptiness problem for two-way al ternating tree 
au tomata .  Alternating tree au toma ta  can be viewed as infinite games [22]; this 
holds for both  one-way and two-ways au tomata .  It  is shown in [14] that  under 
certains conditions, which hold here, the winning player has a memoryless strat-  
egy in these games. We use this to show that  two-way al ternating tree au toma ta  
can be translated to equivalent one-way nondeterministic tree a u t o m a t a  with an 
exponential blowup. The emptiness problem can then be solved by using known 
algorithms for emptiness of nondeterministic tree au toma ta  [4,19,26]. This yields 
an exponential t ime upper bound for the emptiness problem for al ternating tree 
au tomata ,  resulting in a bound of the same complexity for satisfiability of the 
full p-calculus. 

2 P r e l i m i n a r i e s  

2.1 T h e  p - C a l c u l u s  

The propositional p-calculus is a propositional modal  logic augmented with least 
and greatest fixpoint operators [16]. A signature ~ for the p-calculus consists of 
a set AP of atomic propositions, a set Vat of proposit ional variables and a set 
Prog of a tomic programs.  In the full p-calculus, we associate with each atomic 
program a its converse a - .  A program is either an atomic program or its converse. 
We denote programs by (~. 

A formula of the full p-calculus over the signature ~ is either: 

- t r u e ,  false,  p or ~p for all p E AP; 
- y for all y E Var; 
- 91 A 92 or 91 V 92, where 91 and 92 are p-calculus formulas; 
- ( a ) 9  or [a]9, where 9 is a p-calculus formula and a is a program; 
- PY.9(Y) or uy.9(y),  where y E Var and 9(Y) is a formula. 

The only difference between the full p-calculus and the standard p-calculus is 
that  in the full p-calculus both atomic programs and their converse are allowed 
in the modalit ies ( a ) 9  and [a]9, while only atomic programs are allowed in such 
modalities in the s tandard p-calculus. A sentence is a formula that  contains no 
free propositional variables. We call p and u fizpoint operators. We say tha t  a 
formula is a p-formula (u-formula), if it is of the form PY.9(Y) (uY.9(Y)). We 
use A to denote a fixpoint operator p or u. For a A-formula Ay.9(y), the formula  
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9(Ay.~(Y))  is ob t a ined  f rom 9(Y) by rep lac ing  each free occurrence  of y wi th  
Ay.~(y) .  We call  a f o r m u l a  of  the  fo rm (or}9 an existential fo rmula .  

T h e  seman t i c s  of the  full p -ca lcu lus  is defined with  respect  to a Kripke 
structure K = (W,R ,L}  over the  s igna tu re  2 ,  where W is a set of  poin ts ,  
R : Prog --4 2 W• assigns to each a t o m i c  p r o g r a m  a t r ans i t i on  re l a t ion  over W,  
and L : AP --9 2 W assigns to each a t o m i c  p ropos i t i on  a set of  poin ts .  We  now ex- 
t end  R to the  converse of  a tomic  p rog rams .  For each a t o m i c  p r o g r a m  a, we define 
R(a-)  to be the  r e l a t iona l  inverse of  R(a), i.e., R(a- )  = {(v, u ) :  (u, v) E R(a )} .  

Given  a Kr ipke  s t ruc tu re  K = (W, R, L) and  a set { Y t , . . . ,  Y,~} of  var iab les  in 
Vat, a valuation/2 : {Yl, �9 �9  Yn} --+ 2 W is an a s s ignment  of  subse ts  of W to the  

var iables  Yt, .  - . ,  Yn. For  a vMuat ion  12, a var iab le  y, and  a set W ~ C W, we denote  
by 12[y t-- W r the  va lua t ion  o b t a i n e d  f rom 12 by ass igning W r to y. A f o r m u l a  
9 wi th  free var iables  a m o n g  Y l , - . . ,  Yn is i n t e rp re t ed  over the  s t ruc tu re  K as 
a m a p p i n g  9 K f rom va lua t ions  to 2 W. Thus,  9K(12) denotes  the  set of  po in t s  
t h a t  sa t i s fy  ~ wi th  the  va lua t ion  12. T h e  m a p p i n g  9 K is defined induc t ive ly  as 

follows: 

- t rueK(12)  : W and  falseK(12) = ~; 
- For  p E AP, we have pK.~12) = L(p) and (~p)K(12)  = W \ L(p);  

For  Yi E Var, we have Yi (12) = 12(Yi); 
A = 9 (v) n 

(9,  v = 9 (v) u 
- ([a]9)K(12) = {w E W :Vw' such tha t  (w,w') E R(a), we have w' E ~aK(12)}, 

( (a)9)K(12)  = {w E W :  3w'  such t ha t  (w,w') E R(a) and w'  E 9K(12)}, 
- (py.9(y))~"(12) = A { W '  c_ w:J '~C(12[ye--  w']) c w'}; 
_ (~,y.~(y))K(12) = U{ W, c W :  W' c_ f (12[y +- W' ] )} .  

Note  t ha t  no va lua t ion  is requi red  for a sentence.  For a po in t  w E W and  a 
sentence T, we say t h a t  9 holds at  w in K ,  deno ted  K,  w ~ 9 iff w E 9 K. 

2 . 2  A l t e r n a t i n g  T r e e  A u t o m a t a  

For an i n t roduc t i on  to the  theory  of  a u t o m a t a  oil infini te  t rees see [33]. An  
infinite tree is a set T C IN+, such t ha t  if x �9 c E T where x E IN* and  c E IN, 
then  also x E T,  and,  if  the  tree is full, then  also x �9 d E T for all  0 < c I < c, 
(Here we use IN to denote  the  positive integers.)  The  e lements  of  T are cal led 
nodes, and the  e m p t y  word c is the  root of T.  For  every x E T,  the  nodes  x �9 c 
where c E IN are the  successors of x. As a convent ion,  we take  x - 0 = x and  
( x .  i ) - - 1  = x ( e . - 1  is undef ined) .  The  branching degree d(x) denotes  the  
n u m b e r  of  different successors x has.  I f  d(x) = k for all nodes  x, then  we say 
t ha t  the  tree is k-ary.  A n  infinite path P of T is a pref ix-closed set P C T such 
t ha t  for every i >_ 0, there  exists  a unique  x E P wi th  Ix] = i. A labeled tree over 
an a l p h a b e t  Z is a pa i r  (T, V) where T is a tree and  V : T -9  Z .  

Alternating automata on inf ini te  t rees general ize  n o n d e t e r m i n i s t i c  t ree au-  
t o m a t a  and were first  i n t roduced  in [22]. Here we descr ibe  two-way a l t e r n a t i n g  
tree a u t o m a t a  Let B+(X) be the set of pos i t ive  Boolean  fo rmulas  over X (i.e., 
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boolean fo rmulas  buil t  f rom elements  in X us ing/~ and  V), where we also allow 
the fo rmulas  t r u e  and fa l se ,  and,  as usual , /~  has precedence over V. For a set 
Y C X and a f o rmu la  0 E B + (X) ,  we say t ha t  Y satisfies 0 iff assigning t r u e  to 
e lements  in Y and assigning f a l s e  to e lements  in X \ Y makes  O true. on k-ary  
trees. Let [k] = { - 1 , 0 ,  1 , . . . ,  k}. A two-way alternating automaton over infinite 
k -a ry  trees is a tuple  A = ( ~ ,  Q, (f, q0, F ) ,  where Z is the input  a lphabe t ,  Q is a 
finite set of  s tates ,  ~ : Q • Z -+ B + ([k] • Q) is the t rans i t ion  funct ion,  q0 E Q is 
an initial  s ta te ,  and F specifies the acceptance  condit ion.  

A run of an a l te rna t ing  a u t o m a t o n  A over a labeled tree (T, V) is a labeled 
tree (Tr, r} in which every node  is labeled by an e lement  of  T • Q. A node in 
Tr, labeled by (x, q), describes a copy of the a u t o m a t o n  tha t  is in the s ta te  q 
and reads the node x of  T.  Note  tha t  m a n y  nodes of  Tr can correspond to the 
same  node of T;  there is no one- to-one correspondence between the nodes of  the 
run and the  nodes of  the tree. T h e  labels of  a node and its successors have to 
sat isfy the t ransi t ion funct ion.  Formally,  a run (T~, r)  is a Z~- labeled tree, where 
X'r = T • Q and (Tr,  r)  satisfies the following: 

1. r E Tr and r(c)  = (~, q0). 
2. Let y E T~ with v(y) = (x, q) and ~(q, V(x)) = 0. Then  there is a (possibly 

emp ty )  set ~S' -= {(c,,qO,(ct,ql),...,(c**,q,~)} C { - 1 , 0 , . . . , k }  • Q, such 
tha t  the following hold: 

- ,5' satisfies ~, and 
- for all 1 < i < n, we have y.i E T~, z.c~ is defined, and r (y . i )  = (x.c~, q~). 

Note tha t  the a u t o m a t o n  cannot  go backwards  f rom the root  of  the input  tree, 
as we require t ha t  x - ci be defined, but  r �9 - 1  is undefined. 

A run (T~, r)  is accepting if all its infinite pa ths  sat isfy the acceptance  condi- 
t ion. We consider here parity acceptance  condit ions [5]. A par i ty  condi t ion over 
a s ta te  set Q is a finite sequence F = (G1,G2,.. . ,Gm) of subsets  of  Q, where 
G1 C G2 C ... C Gm = Q. Given a run (T~, r)  and an infinite pa th  P C Tr, 
let inf(P) C_ Q be such tha t  q E inf(P) if and only if there are infinitely m a n y  
y E P for which r(y) E T • {q}. T h a t  is, inf(P) conta ins  exact ly  all the s ta tes  
tha t  appea r  infinitely often in P .  A pa th  P satisfies the condit ion F if there is 
an even i for which inf(P) N G~ # 0 and inf(P) N G~_, = 9. (For co-parity 
acceptance  condi t ion we require i to be odd.) An a u t o m a t o n  accepts  a labeled 
tree if and only if there exists a run tha t  accepts  it. We denote  by s  the set 
of all ~ - l abe l ed  trees tha t  A accepts.  

3 T h e  T r e e - M o d e l  P r o p e r t y  

To de te rmine  the t ru th  value of a Boolean fo rmula  it suffices to consider its 
subformulas .  For moda l  formulas ,  one has  to consider a bigger collection of for- 
mulas ,  the  so called Fischer-Ladner  closure [8]. T h e  closure, el(w), of a sentence 

is the smal les t  set of sentences tha t  satisfies the following: 
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- If pl  A 9~2 E cl(p) or Pl V P2 E c/(p), then Pl E cl(p) and p~ E cl(p). 
- If (a)r E cl(9~) or [a le  E cl(p), then r E el(p). 
- If AB.P(y) E cl(p), then p(Ay.p(y)) E cl(9~). 

As proved in [16], for every sentence p, the number of elements in cl(~) is linear 
in the length II~ll of ~. 

An atom A of ~ is a set of formulas in cl(p) that satisfies the following 
properties: 

- i f p  E AP, then, exclusively, either p E A or -~p E A, 
- i f ~ l  A p2Ecl(~), then pl  Ap2EA i f f ~ l E A  and p~EA, 
- if pl  V p2Eel(p), then pl Vp~EA iff ~ I E A  or 9~2EA, 
- if )~X.r then AX. r  iff r 162  

Intuitively, an atom is a consistent subset of el(p). The set of atoms of p is 
denoted at(9~). Clearly, the size of at(p) is at most exponential in the length of 
p. 

A pre-model (K, ~r) for p is a pair consisting of a Kripke structure K = 
(W, R, L} and a labeling function ~r : W --+ at(p) that satisfies the following 
properties: 

- pE~r(u), for some u E W, 

- i f p  E ~r(u), then u E L(p), and if-~p E ~r(u), then u ~ L(p), for p E AP and 
u E W ,  

- if (@r for u E W, then r for some v E W such that  (u, v) E 

- if [a]OETr(u), for u E W, then CETr(v), for all v E W such that (u, v) E R(a). 

A pre-model of 7~ is almost a model of p except for fixpoint formulas that  do not 
necessarily get the right semantics ( that  is, fixpoints are arbitrary rather than 
minimal or maximal as needed). 

A choice function [31] p for a pre-model (K, 7r) of p, where K = (W, R, L), is 
a partial function from W x cl(p) to WUcl(9~) such that for each u E W: (a) for 
each disjunction pl Vp2 E ~r(u), we have that p(u, T1 Vp2) is either pl  or P2, and 
p(u, ~1 V P2) E 7~(u), and (b) for each existential formula (@ r  E ~-(u), we have 
that p(u, (a)r is some v E W such that  (u, v) E R(a)  and ~/~ E ~r(v). Intuitively, 
a choice function identifies how a disjunctive formula or an existential formula 
is satisfied. An adorned pre-model (K, 7r, p) for p consists of a pre-model (K, ~r) 
for p and a choice function p. 

We can now define formally the notion of derivation between occurrences of 
sentences in adorned pre-models. Let (K, ~r, p) be an adorned pre-model of ~, 
The derivation relation, denoted ~-, is defined as follows: 

- i f  v t h e n  V p ,  V p 2 ) ,  .), 
- if r A p2E~r(u), then (~1 A ~2, u)~-(pl, u) and (Pl A p2, u)~-(~2, u), 

- if (a)r then ((@r u)h(r  p(u, (a)r 
- if A x . C ( x ) ~ ( u ) ,  then () ,X.r  u)F(r u). 
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A least-fixpoint sentence # X . r  is said to be regenerated from point u 
to point v (u might be equal to v) in an adorned premodel (K, ~r, p) if there 
is a sequence ( 0 1 , u l ) , . . . , ( 0 k , u k ) ,  with k > 1, such that  01 = ~k = # X . r  
ul = u, Uk -= v, (Of, ut)F(0t+l, uz+l), for 0 < l < k, and p X . r  is a subsentence 
of each of the t~i's. We say that  (K, re, p) is well-founded if there is no fixpoint 
sentence p X . r  ) and an infinite sequence u0, U l , . . .  such that  p X . r  
is regenerated from uj to Uj+l for all j > 0. 

The following theorem was shown for the s tandard p-calculus, but the proof 
is insensitive to the direction of the modalities.  

T h e o r e m  1. [31] A sentence 9 of the full p-calculus has a model K if and only 
if it has a well-founded adorned pre-model (K, ~r, p). 

We can now establish the tree-model property for the full p-calculus. Note 
that  it follows from [30] that  the finite-model property does not hold for the 
full p-calculus; in contrast, it does hold for the s tandard /t-calculus [17]. The 
tree-model property asserts that  if a sentence is satisfiable then it is satisfiable 
by a bounded-degree infinite tree structure. A tree structure is a Kripe structure 
(W, R, L) where W is a tree and for each program a if (u, v) E R(a) ,  then either 
v is a successor of u or u is a successor of v. 

The standard way of proving the tree-model property is to take a model 
and straightforwardly "unravel" it; see [37]. Special care, however, is needed to 
ensure that  the number  of successors at each node is bounded. 

T h e o r e m  2. I f  a formula 9 in the full p-calculus is satisfiable, then it is sat- 
isfiable at the root of a tree structure whose branching degrees are bounded by 
11911. 

Note that  the tree model constructed in the above proof is not a full tree; it 
is possible for xi to be a node in the tree without x(i  - l) being a node in the 
tree. It  is technically more convenient to deal with full trees. To that  end we add 
a new atomic proposition PT. The intuition is that  PT is true only at nodes that  
belong to the tree (so nodes where PT is false are d u m m y  nodes). We now replace 
each modal  subformula ( a ) r  by (a)(PT A r and each modal  subformula [a le  by 
[a](Pw --4 r  This t ransformation causes only a linear blow-up, I t  is easy to see 
that  the if the original formula is satisfiable at the root of a tree structure whose 
branching degrees are bounded by ]191t, then the new formula 9 '  is satisfiable at 
the root of a 119'll-ary tree (where PT is true at the root). We call such formulas 
uniform formulas, and we can thus restrict attention to full trees. Since we need 
to represent the information about  the transition function R, we introduce new 
atomic propositions to represent this information. For each atomic program a we 
introduce two atomic propositions: Pa holds at a node x j  when (x, x j)  E R(a) 
and p~- holds in x j  when (x j, x) e R(a). We call tree structures that  obey these 
constraints well-behaved tree structures, 

We are now ready to describe the translation from formulas to two-way al- 
ternating t ree-automata .  
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T h e o r e m  3. Given a uniform formula 9 of the full It-calculus, we can construct 
a two-way alternating parity automaton A~, whose number of states is O(11911), 
such that s is exactly the set of well-behaved )lgll-ary tree structures satis- 
fying 9 at the root. 

P r o o f  S k e t c h :  The au tomaton  is obtained by taking the intersection of two 
a u t o m a t a  (intersection is trivial for al ternating au toma ta  [22]). The first au toma-  
ton checks that  the input tree is well-behaved. Constructing this au tomaton  is 
an easy exercise. The  second au tomaton  checks that  9 is satisfied at the root of 
the input tree. Take A~ = (2 AP, cl(9), 5, 9, F}. We need to define the transition 
function 5 and the acceptance condition F. Let n = 11911. For all ~ E 2 AP and 
a C Prog we define: 

- 5(p, cr) = t r u e  if p E ~. * 5(p, cr) = fa l se  if p ~ cr. 
- 5(-~p, cr) = t r u e  if p ~ g. * 5(-,p, o) = f a l se  if p E r 
-- 5 (91  A 92,0") = ( 0 , 9 1 )  A ( 0 , 9 2 ) .  
-- 5(91 V 92, tr) -"- (0, 91) V (0, 92) .  
- 5(Au.9(y) ,  = (o, 
- 5((a)r  c~) = ( ( -1 ,  r A (0,p2))  vVc~_-, ((c, r A (c, pa)). 
- 5 ( ( a - ) r  cr) = ( ( - 1 ,  r  (O,pa)) VVcn=l ((C,~)/~ (C, pa) ). 
- 5([a]r  = ( ( - 1 ,  r  V (0 , - 'PZ))  A hc\  ((c, r  v (e, 
- 5 ( [ a - ] r  cr) _--_ ( ( - - 1 ,  r  V (0,  "Pa)) A Acn__l ( (c ,  r  v ( e , - ~ P a ) ) "  

T h e  translation here is by a straighfoward induction on the structure of 9. It  
simplifies the translation given in [1] (for the s tandard it-cMculus), since we allow 
the usage of ~-transitions (i.e., transitions to the direction 0). 

It remains to define the pari ty acceptance condition F. This is done analo- 
gously to the construction in [6], which drew a tight relationship between model 
checking for the s tandard it-calculus and one-way nondeterministic par i ty  tree 
au tomata .  [] 

C o r o l l a r y  4. A uniform formula 9 of the full it-calculus is satisfiable iff s 
is not empty. 

4 E m p t i n e s s  o f  T w o - W a y  A l t e r n a t i n g  T r e e  A u t o m a t a  

We solve the emptiness problem for two-way al ternating tree au tomata ,  by re- 
ducing them to one-way nondeterministic tree au tomata .  A run of a nonde- 
terministic tree au tomaton  is a tree with the same structure as the input tree 
but a different label set; the run tree is labeled by states. In contrast,  a run of 
an alternating au tomaton  is a tree whose structure can be quite different than 
that  of the input tree. Thus, to reduce alternating au toma ta  to nondeterministic 
au tomata ,  we have to overcome this difficulty. 

Let A = (Z,  Q, 5, q0, F)  be a two-way al ternating au tomaton  on k-ary trees. 
A strategy tree for A is a mapping  ~" : { 1 , . . . ,  k}* --4 2 qx[klxq. Thus,  each label 
in a strategy is an edge-[k]-labeled directed graph on Q. Intuitively, each label is 
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a set of transitions. For each label ( ,  we define state(() = {u :  (u, i, v) E (}, i.e., 
state(~) is the set of sources in the graph (. The strategy tree v is on a k-ary input 
tree ( { 1 , . . . , k } * , V ) i f q o  E state(v(s)), and for each node x E { 1 , . . . , k } *  and 
each state q E state(r(x)),  the set {(c, q~) : (q, c, q~) E r (x)}  satisfies 5(q, V(x)).  
Thus, each label can be viewed as a s trategy of satisfying the transition function. 

A path ~ in a strategy tree r is a sequence (ua, qi), (u2, q2),. . ,  of pairs 
from { 1 , . . . ,  k}* • Q such that,  for all i > 0, there is some ci E [k] such that  
(qi, ci, qi+a) E v(ui) and ui+] = ui .ci. Thus, /3 is obtained by following tran- 
sitions in the s trategy tree. We define inf(~)  to be the set of states in Q that  
occur infinitely often in/3. We say tha t  an infinite pa th /3  satisfies a pari ty con- 
dition F = ( G I , G 2 , . . . )  if there is an even i for which in f (~)  N Gi ~ ~ and 
inf(~)  M G i - 1  -~ ~. We say that  v is accepting if all infinite paths in v satisfy F.  

P r o p o s i t i o n  5. A two-way alternating parity automaton accepts an input tree 
iff it has an accepting strategy tree over the input tree. 

P r o o f  S k e t c h :  The "if" direction is immediate .  For the "only if" direction, 
let A = (Z,Q,~f, q0, F) ,  F = (G1 ,G2 , . . . ) ,  and let ( {1 , . . . , k}* ,  V) be the input 
tree. Consider the following game between two players: the Protagonist  and the 
Antagonist.  Intuitively, the Protoganist  is trying to show that  A accepts the 
input tree, and the Antagonist  is trying to challenge that.  A configuration of the 
game is a pair in { 1 , . . . ,  k}* x Q. The initial configuration is (e, q0). Consider a 
configuration (x, q). The Protagonist  now chooses a set {(cl, q l ) , . . . ,  (era, qm)} 
that  satisfies ~f(q, V(x)); the Antagonist  responds by choosing an element (ci, qi) 
of the set. The new configuration is then (x . ei ,  ql) .  If  x �9 ci is undefined or 
if ci(q, V(x)) = false ,  then the Antagonist  wins immediately.  Consider now an 
infinite play 7. Let in f(7) be the set of states in Q that  repeat infinitely in the 
sequence of configurations in 3'. The Protagonist  wins if there is an even i for 
which in f(7) N G~ ~ 0 and in f(7) (1G~-a = 0. It is not difficult to see that  the 
Protagonists wins the game, i.e., has a winning strategy against the Antagonist ,  
iff A accepts the input tree. 

The game as we described it meets the conditions in [14]. It  follows that  if the 
Protagonist  wins then it as a memoryless strategy, i.e., a s t rategy whose moves 
do not depend on the history of the game, but only on the current configuration. 
Thus, A accepts the input tree iff it has a strategy tree over the input tree. [] 

We have thus succeeded in defining a notion of run for al ternating a u t o m a t a  
that  will have the same tree structure as the input tree. We are still facing the 
problem tha t  paths in a strategy tree can go both up and down. We need to find 
a way to restrict at tention to uni-directional paths.  

Let A = (~ ,  Q, (f, q0, F) ,  F = (G1, G2, . . . ,  Grn), be a two-way al ternating 
au tomaton  on k-ary trees, and let v : { 1 , . . . , k } *  -+ 2 q• be a s trategy 

tree for A. An annotation for A is a mapping  ~1 : { 1 , . . . , k } *  --+ 2 qx2{ ....... }xq 
Thus, each label in an annotat ion is an edge-2 {1 ..... m}-labeled directed graph on 
Q. For each s tate  q E Q, let index(q) be the minimal i such that  q E Gi. We 
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say tha t  ~/is an anno ta t ion  of r if some closure condit ions hold for each node 
x E { 1 , . . . , k } * .  Intuitively, these condit ions say tha t  7j contains all relevant 
in format ion  about  finite pa ths  in T. T h e  condit ions are: (a) if (q, H1, q') E ~(x) 
and (q ' ,H2,q")  E ~l(x), then (q, H1 U H2, q") E ~(x), ( b ) i f  (q,O,q ~) E v(x)  
then (q, index(q~),q ~) E 71(x), ( c ) i f  x = yi, ( q , - 1 , q  ~) E v(x),  (q~,H,q')  E 
~(y), and (q", i, q'") E v(x),  then (q, g U {index(q') ,  index(q'")},  q'") E 71(x), 
(d) i f y  = xi, (q,i ,q') E v(x),  (q ' ,H,q")  E 7I(y), and (q", - 1 ,  q'") E v(y),  then 
(q, H U {index(q'),  index(q'")},  q'") E ~?(x). 

A downward path tr in ~ is a sequence (ua, q~, t~), (u2, q2, t 2 ) , . . ,  of triples, 
where each ui is in { 1 , . . . ,  k}*, each qi is in Q, and each ti is ei ther an element  
of "r(ui) or ~(ui), such that :  (a) ei ther ti is (qi, e, qi+l) for some c E { 1 , . . . ,  k}, 
and Ui+l = ul .c; in this case we define index(ti)  to be index(q~+~), or (b) t~ is 
(qi, H, qi+l), for H C_ { 1 , . . . ,  m}, and Ui+l = ui; in this case we define index(t i)  
to be ra in(H) .  We consider two kinds of downward paths:  (a) infinite paths  tr = 
(u~, ql, t l ) ,  (u2, q2, t 2 ) , . . . ,  whose index, index(x)  is defined as the minimal  j such 
tha t  index(ti)  = j infinitely often, or finite paths  x = (Ul, q~, t~ ) , . . . ,  (u~, q~, G), 
where t~ = (q~, H~, q~) (i.e., the pa th  ends in a loop),  whose index, index(g) is 
defined as index(G).  In either case we say tha t  tr violates F if index(x)  is odd. 
We say tha t  71 is accepting if no downward pa th  in ~1 violates F.  

P r o p o s i t i o n  6. A two-way alternating parity automaton accepts an input tree 
iff it has a strategy tree over the input tree and an accepting annotation of the 
strategy tree. 

P r o o f  Sketch:  Let A = (E', Q, d, q0, F), F = (G,, (;2 . . . . .  Gin), and let ({ 1 , . . . ,  k}*, V) 
be the input  tree. Suppose first tha t  A accepts the input  tree. By Proposi t ion 5, 
there is an accepting s t ra tegy tree r over ( { 1 , . . . , k } * ,  V). Consider two an- 
nota t ions  711 and 712 of r .  Thei r  intersection 711 (3 712, defined by 7/1 r ~2(x) = 
711(x) n 712 (x) for each x E { 1 , . . . ,  k}*, is also an annota t ion  of r .  Thus,  there  ex- 
ists a minimal annota t ion  71 of r .  (Tha t  is, if 71' is also an annota t ion  of r ,  then 71 
must  be contained in 71' , i.e., for each x E { 1 , . . . ,  k}* we have tha t  z/(x) C__ ~'(x).)  
It can be shown tha t  since all pa ths  in r satisfies F,  no downward pa th  in 71 vio- 
lates F.  Conversely, suppose that  7- is a s t ra tegy tree over ( { 1 , . . . ,  k}*, V) and q 
is an anno ta t ion  of r such tha t  no downward pa th  in 71 violates F .  Let 71' be the 
minimal  annota t ion  of r ;  7/' must  be contained in 71. It follows tha t  no downward 
pa th  in 71' violates F .  From this we can show tha t  all pa ths  in r satisfy F .  By 
Proposi t ion 5, A accepts ( { 1 , . . . ,  k}*, V). [] 

Consider now annotated trees ( { 1 , . . . ,  k}*, V, r, 71) , where r is a s t ra tegy  tree 
for A o,, ({ ,  . . . .  , k } ' ,  V) , . , , ,  ,p i~ . , , , . , , , , , t a t i , , , ,  , ,r  T. w ~  ,~y th , , t  ({J . . . . .  k } ' ,  V, ~, ,j) 
is accepting if ~/is accepting. 

T h e o r e m  7. Let A be a two-way alternating parity tree automaton. Then there 
is a nondeterministic parity tree automaton A n such that E(A) = E(An).  The 
number of states in A n is exponential m the number of states of A, but the size 
of the acceptance condition of A '~ is linear in the size of the acceptance condition 
of A. 
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P r o o f  Ske t ch :  Let A = (Z:, Q, (i, q0, F) ,  F = ( G i , . . . ,  Gin). The nondetermin- 
istic automaton A '~ is the intersection of two automata.  Given an annotated 
tree ( {1 , . . . ,  k}*, V, r ,q) ,  the first automaton,  A•, checks that r is a strategy 
tree on ({1 , . . . ,  k}*, V) and that 7/is an annotation of r.  Constructing A? is a 
not-too-difficult exercise. The second automaton,  A~, checks that v is accepting. 
We construct A~ in several steps. 

Consider a downward path ~r = (Ul, ql, tl),  (u2, q2, t2) , . . . .  We define its pro- 
jection to be the sequence proj(n) = (ql, tl), (q2, t2),.. . ,  which is is a sequence 
over the finite alphabet Q x ((Q x [k] x Q) u (Q x 2 {1 . . . . .  m} X Q)). We can con- 
struct a co-parity word automaton B that accepts projections of downward paths 
that violates F.  The state set of B is Q • { 1 , . . . , m } .  All that B does is check 
that  (a) either ti is (qi, c, qi+l) for some c E { 1 , . . . , k } ,  (b) tl is (qi, H, qi+i) 
for some H C { 1 , . . . , m } .  In either case B also remembers index(ti). B ac- 
cepts if there is some tl : (qi, Hi, qi) with an odd index(ti) or if the minimal 
index that repeats infinitely often is odd. The size of the acceptance condition 
of B is linear in the size of the acceptance condition of A. From B we construct 
another co-parity word automaton B'.  This automaton reads a sequence of la- 
bels of 7 or 71 and checks whether it contains a projection of a downward path 
that violates F.  The state set of B' is still Q • { 1 , . . . , m } ,  though its alpha- 

bet is 2 qx[k]xq U 2 Qx2{1 ...... }xq. The size of the acceptance condition of B'  is 
still linear in the size of the acceptance condition of A. We now co-determinize 
B', i.e., determinize it and complement it in a singly-exponential construction 
[28,33] to obtain a deterministic parity word automaton B" that rejects violating 
downward paths. The deterministic tree automaton B'" is obtained by simply 
running B" in parallel over all branches of ({ 1 , . . . ,  k}*, V, v, 7]). Thus, its size is 
exponential in the size of A. The size of the acceptance condition of B"' is still 
linear in the size of the acceptance condition of A. Finally, A~ is obtained from 
B"' by projecting out the r and 71 component of the inputs tree, so the input 
tree is of the form ({1 , . . . ,  k}*, Y). O 

We can now combine Theorem 3, Corollary 4, Theorem 7, and the tree au- 
tomata  emptiness algorithms in [4,19,26] (which are polynomial in the number 
of states, but  exponential in the size of the acceptance condition) to obtain: 

T h e o r e m  8. The satisfiability problem for the full p-calculus is decidable in 
exponential time. 

Remark 9. One can extend the framework of the p-calculus by allowing deter- 
ministic atomic programs. Such programs correspond to functional roles in de- 
scription logics [10]. The mapping R in a Kripke structure I i  : (W, R, L) assigns 
to each deterministic atomic program a partial function over W. The results in 
this paper can be extended also to prove an exponential time upper bound for the 
full tt-calctdus with deterministic programs. (See h t tp  ://www. cs.  r i c e .  edu/~vardi . )  

5 C o n c l u d i n g  R e m a r k s  

Over the last few years there has been a significant interest in logics with bounded 
number of variables (see [15]). One surprising result in this line of research is that  
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while F O  3, 3-variable first-order logic, is already undecidable, the satisfiability 
problem for F O  2, 2-variable first-order logic, is NEXPTIME-complete  [12]. This 
lead researchers to consider extensions of F O  2. Unfortunately, fairly modest ex- 
tensions of F O  2 by fixpoint constructs quickly lead to undecidability [13]. On the 
other hand, the full p-calculus can be viewed as a fragment of 2-variable fixpoint 
logic [37]. Our main decidability result here for the full p-calculus pushes the 
"decidability envelope" further. The key difference between the full p-calculus 
and the fixpoint extensions of F O  2 seems to be the tree-model property, which 
was offered in [37] as an explanation for the robust decidability of propositional 
program logics. 
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