
Reasoning about Time and Knowledge

Neural-Symbolic Learning Systems

Artur S. d' Avila Garcez" and Luis C. LambA

"Dept. of Computing, City University London
London, EC1V OHB, UK (aag@soi.city.ac.uk)

ADept. of Computing Theory, PPGC-II-UFRGS
Porto Alegre, RS 91501-970, Brazil (lamb@inf.ufrgs.br)

Abstract

We show that temporal logic and combinations of temporal logics
and modal logics of knowledge can be effectively represented in ar
tificial neural networks. We present a Translation Algorithm from
temporal rules to neural networks, and show that the networks
compute a fixed-point semantics of the rules. We also apply the
translation to the muddy children puzzle, which has been used as a
testbed for distributed multi-agent systems. We provide a complete
solution to the puzzle with the use of simple neural networks, capa
ble of reasoning about time and of knowledge acquisition through
inductive learning.

1 Introduction

.
In

Hybrid neural-symbolic systems concern the use of problem-specific symbolic
knowledge within the neurocomputing paradigm (d'Avila Garcez et al., 2002a).
Typically, translation algorithms from a symbolic to a connectionist representation
and vice-versa are employed to provide either (i) a neural implementation of a logic,
(ii) a logical characterisation of a neural system, or (iii) a hybrid learning system
that brings together features from connectionism and symbolic artificial intelligence
(Holldobler, 1993).

Until recently, neural-symbolic systems were not able to fully represent, reason and
learn expressive languages other than propositional and fragments of first-order
logic (Cloete & Zurada, 2000). However, in (d'Avila Garcez et al., 2002b; d'Avila
Garcez et al., 2002c; d'Avila Garcez et al., 2003), a new approach to knowledge
representation and reasoning in neural-symbolic systems based on neural networks
ensembles has been introduced. This new approach shows that modal logics can be
effectively represented in artificial neural networks.

In this paper, following the approach introduced in (d'Avila Garcez et al., 2002b;
d'Avila Garcez et al., 2002c; d'Avila Garcez et al., 2003), we move one step further
and show that temporal logics can be effectively represented in artificial neural

o Artur Garcez is partly supported by the Nuffield Foundation. Luis Lamb is partly
supported by CNPq. The authors would like to thank the referees for their comments.

networks. This is done by providing a translation algorithm from temporal logic
theories to the initial architecture of a neural network. A theorem then shows
that the translation is correct by proving that the network computes a fixed-point
semantics of its corresponding temporal theory (van Emden & Kowalski, 1976) . The
result is a new learning system capable of reasoning about knowledge and time. We
have validated the Connectionist Temporal Logic (CTL) proposed here by applying
it to a distributed time and knowledge representation problem known as the muddy
children puzzle (Fagin et al., 1995).

CTL provides a combined (multi-modal) connectionist system of knowledge and
time, which allows the modelling of evolving situations such as changing environ
ments or possible worlds. Although a number of multi-modal systems - e.g., com
bining knowledge and time (Halpern & Vardi, 1986; Halpern et al., 2003) and com
bining beliefs, desires and intentions (Rao & Georgeff, 1998) - have been proposed
for distributed knowledge representation, little attention has been paid to the inte
gration of a learning component for knowledge acquisition. This work contributes
to bridge this gap by allowing the knowledge representation to be integrated in a
neural learning system. Purely from the point of view of knowledge representation
in neural-symbolic systems, this work contributes to the long term aim of repre
senting expressive and computationally well-behaved symbolic formalisms in neural
networks.

The remainder of this paper is organised as follows. We start , in Section 2, by
describing the muddy children puzzle, and use it to exemplify the main features
of CTL. In Section 3, we formally introduce CTL's Translation Algorithm, which
maps knowledge and time theories into artificial neural networks, and prove that
the t ranslation is correct. In Section 4, we conclude and discuss directions for future
work.

2 Connectionist Reasoning about Time and Knowledge

Temporal logic and its combination with other modalities such as knowledge and
belief operators have been the subject of intense investigation (Fagin et al., 1995). In
this section, we use the muddy children puzzle, a testbed for distributed knowledge
representation formalisms, to exemplify how knowledge and t ime can be expressed
in a connectionist setting. We start by stating the puzzle (Fagin et al., 1995; Huth
& Ryan, 2000).

There is a number n of (truthful and intelligent) children playing in a garden. A
certain number of children k (k :S n) has mud on their faces . Each child can see if
the other are muddy, but not themselves. Now, consider the following situation: A
caret aker announces that at least one child is muddy (k 2': 1) and asks does any of
you know if you have mud on your own face? To help understanding the puzzle, let
us consider the cases in which k = 1, k = 2 and k = 3. If k = 1 (only one child is
muddy), the muddy child answers yes at the first instance since she cannot see any
other muddy child. All the other children answer no at the first instance. If k = 2,
suppose children 1 and 2 are muddy. At the first instance, all children can only
answer no. This allows 1 to reason as follows: if 2 had said yes the first time, she
would have been the only muddy child. Since 2 said no , she must be seeing someone
else muddy; and since I cannot see anyone else muddy apart from 2, I myself must
be muddy! Child 2 can reason analogously, and also answers yes the second time
round. If k = 3, suppose children 1, 2 and 3 are muddy. Every children can only
answer no the first two times round. Again, this allows 1 to reason as follows: if
2 or 3 had said yes the second time, they would have been the only two muddy
children. Thus, there must be a third person with mud. Since I can only see 2 and

3 with mud, this third person must be me! Children 2 and 3 can reason analogously
to conclude as well that yes, they are muddy.

The above cases clearly illustrate the need to distinguish between an agent's indi

vidual knowledge and common knowledge about the world in a particular situation.
For example, when k = 2, after everybody says no at the first round, it becomes
common knowledge that at least two children are muddy. Similarly, when k = 3,
after everybody says no twice, it becomes common knowledge that at least three
children are muddy, and so on. In other words, when it is common knowledge that
there are at least k -1 muddy children; after the announcement that nobody knows
if they are muddy or not , then it becomes common knowledge that there are at
least k muddy children, for if there were k - 1 muddy children all of them would
know that they had mud in their faces. I

In what follows, a modality K j is used to represent the knowledge of an agent j. In
addition, the term Pi is used to denote that proposition P is true for agent i. For
example, KjPi means that agent j knows that P is true for agent i. We use Pi to
say that child i is muddy, and qk to say that at least k children are muddy (k :s; n).
Let us consider the case in which three children are playing in the garden (n = 3).
Rule ri below states that when child 1 knows that at least one child is muddy and
that neither child 2 nor child 3 are muddy then child 1 knows that she herself is
muddy. Similarly, rule r~ states that if child 1 knows that there are at least two
muddy children and she knows that child 2 is not muddy then she must also be able
to know that she herself is muddy, and so on. The rules for children 2 and 3 are
interpreted analogously.

ri: K Iql!\KI ""'P2!\KI ""'P3 ---+KIPI
rj: K Iq2!\KI""'P3 ---+KIPI

d: K Iq2!\KI ""'P2 ---+KIPI
rl: K Iq3 ---+KIPI

Table 1: Snapshot rules for agent (child) 1

Each set of snapshot rules r~ (1 :s; I :s; n; mE N+) can be implemented in a single
hidden layer neural network Ni as follows. For each rule, a hidden neuron is created.
Each rule antecedent (e.g., KIql in ri) is associated with an input neuron. The rule
consequent (KIPI) is associated with an output neuron. Finally, the input neurons
are connected to the output neuron through the hidden neuron associated with
the rule (ri). In addition, weights and biases need to be set up to implement the
meaning of the rule. When a neuron is activated (i.e. has activation above a given
threshold), we say that its associated concept (e.g., KIql) is true. Conversely, when
a neuron is not activated, we say that its associated concept is false. As a result ,
each input vector of Ni can be associated with an interpretation (an assignment of
truth-values) to the set of rules. Weights and biases must be such that the output
neuron is activated if and only if the interpretation associated with the input vector
satisfies the rule antecedent. In the case of rule ri, the output neuron associated
with KIPI must be activated (true) if the input neuron associated with KIql, the
input neuron associated with K I ""'P2, and the input neuron associated with K I ""'P3
are all activated (true).

The Connectionist Inductive Learning and Logic Programming (C-ILP) System

(d'Avila Garcez et al., 2002a; d'Avila Garcez & Zaverucha, 1999) makes use of the
above kind of translation. C-ILP is a massively parallel computational model based
on an artificial neural network that integrates inductive learning from examples and
background knowledge with deductive learning through logic programming. Follow-

INotice that this reasoning process can only start once it is common knowledge that
at least one child is muddy, as announced by the caretaker.

ing (Holldobler & Kalinke , 1994) (see also (Holldobler et al. , 1999)) , a Translation
Algorithm maps any logic program P into a single hidden layer neural network N
such t hat N computes the least fixed point of P . This provides a massively parallel
model for computing the stable model semantics of P (Lloyd, 1987) . In addition,
N can be t rained wit h examples using, e.g., Backpropagation, and using P as back
ground knowledge (Pazzani & Kibler, 1992) . The knowledge acquired by training
can then be extracted (d'Avila Garcez et al. , 2001) , closing the learning cycle (as
in (Towell & Shavlik, 1994)).

For each agent (child) , a C-ILP network can be created. Each network can be
seen as representing a (learnable) possible world containing information about the
knowledge held by an agent in a distributed system. Figure 1 shows the implemen
tation of rules ri to d. In addition, it contains output neurons PI 2 and Kql , Kq2

and Kq3 , all represented as facts. 3 This is highlighted in grey in Figure 1. Neurons
that appear on both the input and output layers of a C-ILP network (e.g., Kqd

are recurrently connected using weight one, as depicted in Figure 1. This allows the
network to iterate the computation of truth-values when chains occur in the set of
rules. For example, if a ---+ b and b ---+ C are rules of the theory, neuron b will appear
on both the input and output layers of the network, and if a is activated then c will
be activated through the activation of b.

Figure 1: The implementation of rules {ri, ... , rn.

If child 1 is muddy, output neuron PI must be activat ed. Since, child 2 and 3 can

see child 1, they will know that PI is muddy. This can be represented as PI ---+ K 2PI

and PI ---+ K 3PI , and analogously for P2 and P3 . This means that the activation of
output neurons KI 'P2 and K I 'P3 in Figure 1 depends on the activation of neurons
that are not in this network (NI), but in N2 and N3 . We need, therefore, to model
how the networks in the ensemble interact with each other.

Figure 2 illustrat es the interaction between three C-ILP networks in the muddy
children puzzle. The arrows connecting the networks implement the fact that when
a child is muddy, the other children can see her . So if, e.g., neuron PI is activated
in N I , neuron KPI must be activated in N2 and N3 . For the sake of clarity, the
snapshot rules r;" shown in Figure 1 are omitted here, and this is indicated in Figure

2Note Pl means 'child 1 is muddy' while KPl means 'child 1 knows she is muddy'.

3 A fact is normally represented as a rule with no antecedents . C-ILP represents fact s by
not connecting the rule 's hidden neuron to any input neuron (in the case of fully-connected
networks, weights with initial value zero are used).

2 by neurons highlighted in black. In addition, only positive information about the
problem is shown in Figure 2. Negative information such as -'PI, K-'PI, K-'P2 and
K -'P3 would be implemented analogously.

I

I

I

I

Figure 2: Interaction between agents in t he muddy children puzzle.

Figure 2 illustrates well the idea behind this paper. By combining a number of
simple C-ILP networks , we are able to model individual and common knowledge.
Each network represents a possible world or an agent 's current set of beliefs (d' Avila
Garcez et al. , 2002b). If we allow a number of ensembles like the one of Figure 2 to
be combined, we can represent the evolution in time of an agent's set of beliefs. This
is exactly what is required for a complete solution of the muddy children puzzle, as
discussed below.

As we have seen, the solution to the muddy children puzzle illustrated in Figures 1
and 2 considers only snapshots of knowledge evolution along time rounds without
the addition of a time variable (Ruth & Ryan, 2000). A complete solution, however ,
requires the addition of a temporal variable to allow reasoning about the knowledge
acquired after each time round. The snapshot solution of Figures 1 and 2 should
then be seen as representing the knowledge held by the agents at an arbitrary time
t. The knowledge held by the agents at time t + 1 would then be represented
by anot her set of C-ILP networks, appropriately connected to the original set of
networks. Let us consider again the case where k = 3. There are alternative ways
of representing that , but one possible representation for child 1 would be as follows:

tl : -,KIPI /\ -,K 2P2 /\ -,K 3P3 ---+ O K I Q2

t2 : -,KIPI /\ -,K2P2 /\ -,K3P3 ---+ O K I Q3

Table 2: Temporal rules for agent(child) 1

Each temporal rule is labelled by a time point ti in which the rule holds. In addition,
if a rule labelled t i makes use of the next time t emporal operator 0 then whatever
o qualifies refers to the next time ti+l in a linear time flow. As a result , the first
t emporal rule above states that if, at tl, no child knows whether she is muddy or
not then, at t 2 , child 1 will know that at least two children are muddy. Similarly,
the second rule states that, at t2, if still no child knows whether she is muddy or
not then, at t3, child 1 will know that at least three children are muddy. As before,
analogous temporal rules exist for agents (children) 2 and 3. The temporal rules ,
together with the snapshot rules , provide a complete solution to the puzzle. This
is depicted in Figure 3 and discussed below.4

In Figure 3, networks are replicated to represent an agent's knowledge evolution in
time. A network represents an agent 's knowledge today (or at tl), a network repre-

41t is worth noting that each network remains a simple, single hidden layer neura l
network that can be trained with the use of standard Backpropagation or other off-the
shelf learning algorithm.

To Agents 2 and 3 (Kpl) at tl To Agents 2 and 3 (Kp1) at t2

$ "~;~~;'--- : -\)if~~;;;3) ~ \ o
• CL)(). CLX I

)) J, . 6 ~ o :s; (t:) .~~_~_) ;::~AgrnU(Kp3)
;' ' .! " --".. -- From Agent 2 (Kp2)

1 at t1~. / \ ~ , 1 at t2 ' ~K~' / /// at t1
-, ~K, ,.'" \ ~ . ~ I ,.

'" \:. '" ~// ",,"", __ ~ __ ~ _ l / ~/ From Agent 3 (p3)
- ____ ~ , -~~ / ~ att2

___ -- From Agent 3 (p3) at t1 '",,' _____ ->~ --- . From Agent 2 (p2)

- From Agent 2 (p2) at t1 at t2

Figure 3: Knowledge evolution of agent (child) 1 from time tl to time h

sents the same agent's knowledge tomorrow (t 2), and the appropriate connections
between networks model the relations between today and tomorrow according to
O. In the case of tl : ,KIPI 1\ ,K2P2 1\ ,K3P3 -+ OKl q2, for example, output
neuron KIPI of the network that represents agent 1 at t l , output neuron K 2P2 of
the network that represents agent 2 at tl, and output neuron K 3P3 of the network
that represents agent 3 at tl need to be connected to output neuron K l q2 of the
network that represents agent 1 at t2 (the next time) such that K l q2 is activated
if KIPI, K 2P2 and K 3P3 are not activated. In conclusion, in order to represent
time, in addition to knowledge, we need to use a two-dimensional C-ILP ensemble.
In one dimension we encode the knowledge interaction between agents at a given
time point, and in the other dimension we encode the agents' knowledge evolution
through time.

3 Temporal Translation Algorithm

In this section, we present an algorithm to translate temporal rules of the form

t : OKaLI' ... , OKbLk -+ OKcLk+I' where a, b, c ... are agents and 1 :s; t :s; n,5
into (two-dimensional) C-ILP network ensembles. Let P represent a number q of
ground6 temporal rules. In such rules, we call Li (1 :s; i :s; k + 1) a literal, and
call KjLi (1 :s; j :s; m) an annotated literal. Each Li can be either a positive
literal (p) or a negative literal ('p). Similarly, KjL i can be preceded by , . We
use Amin to denote the minimum activation for a neuron to be considered active
(true), Amin E (0,1). We number the (annotated) literals7 of P from 1 to v such
that, when a C-ILP network N is created, the input and output layers of N are
vectors of length v, where the i-th neuron represents the i-th (annotated) literal.
For convenience, we use a bipolar semi-linear activation function h(x) = l+e2- IlX -1,

and inputs in {-I, I}.

Let kz denote the number of (annotated) literals in the body of rule rl; f..L1, the
number of rules in P with the same (annotated) literal as consequent , for each
rule Tl; MAXrz (kl' f..L1), the greater element between kz and f..L1 for rule Tl; and
MAX p (kl' ... , kq, f..LI, ... , f..Lq), the greatest element among all kl's and f..Lz'S of P. We

5There may be n + 1 time points since, e.g., h : Kja, K k f3 -> OKj, means that if
agent j knows a and agent k knows f3 at time tl then agent j knows / at time t2.

6Variables such as ti are instantiated into the language's ground terms (tl, t2, t3 ...).
7We use ' (annotated) literals' to refer to any literal, annotated or not annotated ones .

-----+ -----+
also use k as a shorthand for (k1, ... , kq), and fJ, as a shorthand for (fJ,1, ... , fJ,q).

For example, for P = {r1 : b /\ c /\ ---,d ----+ a, r2 : e /\ f ----+ a, r3 : ----+ b}, k1 = 3,
k2 = 2, k3 = 0, fJ,1 = 2, fJ,2 = 2, fJ,3 = 1, MAXr 1 (k1,fJ,1) = 3, MAXr2 (k2,fJ,2) = 2,

-----+ -----+
M AXr 3 (k3, fJ,3) = 1 and M AXp(k , fJ,) = 3.

CTL Translation Algorithm:

1. For each time point t in P do: For each agent j in P do: Create a C-ILP Neural

Network Nj,t.

2. Calculate W such that W 2': 2. . In(l ±,~i n)-ln(l -Ami n) ;
(3 MAXp(k , M).(Amin-1)+Amin+1

3. For each rule in P of the form t : OK1L 1, ... , OKm- 1L k ----+ OKmL k+1,8 do:
(a) Add a hidden neuron LO to N m,t+1 and set h(x) as the activation function

of L O; (b) Connect each neuron OKjLi (1 ::; i ::; k) in Nj,t to LO. If Li is a
positive (annotated) literal then set the connection weight to W; otherwise, set the

connection weight to -W Set the threshold eO of L O to eO = (1+ A min)(k l -1)W'
. I I 2 '

(c) Connect L O to KmLk+1 in N m,t+1 and set the connection weight to W. Set the

threshold e;+l of KmLk+1 to e;+l = (1+ A mi;)(l-Md W ; (d) Add a hidden neuron L e

to Nm ,t and set h(x) as the activation function of L e ; (e) Connect neuron KmLk+1
in N m,t+1 to Le and set the connection weight to W; Set the threshold ei of Le to

zero; (f) Connect L e to OKmLk+1 in Nm ,t and set the connection weight to W.

Set the threshold et of K L to et = (1+Amin)(l-Md W ·
I m k+1 I 2 '

4. For each rule in P of the form t : OK1L 1, ... , OKm-1Lk ----+ KmLk+1 ' do:
(a) Add a hidden neuron L O to Nm, t and set h(x) as the activation function of

L O; (b) Connect each neuron OKjLi (1 ::; i ::; k) in Nj ,t to L O . If Li is a
positive (annotated) literal then set the connection weight to W; otherwise, set the

connection weight to -W Set the threshold eO of LO to eO = (1+ A min)(k l -1)W'
. I I 2 '

(c) Connect LO to K mL k+1 in Nm ,t and set the connection weight to W . Set the

threshold ei+1 of K mL k+1 to e;+l = (1+Ami;)(l-Md W;

5. If N ought to be fully-connected, set all other connections to zero.

In the above algorithm it is worth noting that, whenever a rule consequent is pre
ceded by 0, a forward connection from t to t + 1 and a feedback connection from
t + 1 to t need to be added to the ensemble. For example, if t : a ----+ Ob is a
rule of P then not only must the activation of neuron a at t activate neuron b at
t + 1, but the activation of neuron b at t + 1 must also activate neuron Ob at t .
This is implemented in steps 3(d) to 3(1) of the algorithm. The remainder of the
algorithm is concerned with the implementation of snapshot rules (as in Figure 1).
The values of Wand e come from C-ILP's Translation Algorithm (d'Avila Garcez
& Zaverucha, 1999), and are chosen so that the behaviour of the network matches
that of the temporal rules , as the following theorem shows.

Theorem 1 (Correctness of Translation Algorithm) For each set of ground tem

poral rules P, there exists a neural network ensemble N such that N computes the
fixed-point operator T p of P.

Proof. (sketch) This proof follows directly from the proof of the analogous theorem

for single C-ILP networks presented in (d 'Avila Garcez fj Zaverucha, 1999). This
is so because C-ILP's definition for Wand e values makes hidden neurons L O and

Le behave like and gates, while output neurons behave like or gates. D

8Note that 0 is not required to precede every rule antecedent. In the network, neurons

are labelled as OKILI or KILl to differentiate the two concepts.

4 Conclusions

In his seminal paper (Valiant, 1984), Valiant argues for the need of rich logic-based
knowledge representation mechanisms within learning systems. In this paper, we
have addressed such a need, yet complying with important principles of connec
tionism such as massive parallelism. In particular, a very important feature of the
system presented here (CTL) is the temporal dimension that can be combined with
an epistemic dimension. This paper provides the first account of how to integrate
such dimensions in a neural-symbolic learning system. The CTL framework opens
up several interesting research avenues in the domain of neural-symbolic integra
tion, allowing for the representation and learning of expressive formalisms. In this
paper, we have illustrated this by providing a full solution to the muddy children
puzzle, where agents reason about their knowledge at different time points. In the
near future, we plan to also apply the system to a large, real world case study.

References

C loete, 1., & Zurada, J. M. (Eds.). (2000) . Knowl edge-based neurocomputing. The MIT Press.

d'Avila Garcez, A. S., Broda, K., & Gabbay, D. M. (2001). Symbolic knowledge extraction from trained

neural networks: A sound approach. Artificial Intelligence , 125, 155- 207.

d'Avila Garcez, A. S., Broda, K., & Gabbay, D. M. (2002a) . Neural-symbolic learning systems: Foun

dations and applications. Perspectives in Neural Computing. Springer-Verlag.

d'Avila Garcez, A. S ., Lamb, L. C., Broda, K. , & Gabbay, D. M . (2003). Distributed knowledge rep

resentation in neural-symbolic learning systems: a case study. Accepted for Proceedings of 16th

International FLAIRS Conference. St . Augustine Florida.

d 'Avila Garcez, A. S., Lamb, L. C. , & Gabbay, D . M . (2002b). A connectionist inductive learning

system for modal logic programming (Technical Report 2002/6). Department of Computing, Imperial
College, London.

d 'Avila Garcez, A. S. , Lamb, L. C. , & Gabbay, D . M. (2002c). A connectionist inductive learning system
for modal logic programming. Proceedings of IEEE International Conference on Neural Information

Processing I CONIP'02 (pp. 1992-1997). Singapore.

d'Avila Garcez, A. S ., & Zaverucha, G. (1999) . The connectionist inductive learning and logic pro
gramming system. Applied Intelligence Journal, Special Issue on Neural N etworks and Structured

Knowledge, 11 , 59-77.

Fagin, R., Ha lpern, J., Moses, Y., & Vardi, M. (1995). R easoning about knowledg e. MIT Press .

Halpern, J . Y., van der Meyden, R., & Vardi , M. Y. (2003). Complete axiomatizations for reasoning
about knowledge and time. SIAM Journal on Computing. to appear.

Halpern, J . Y., & Vardi , M. (1986). The complexity of reasoning about knowledge and time I: lower
bounds. Journal of Computer and System Sciences , 38, 195- 237.

Holldobler, S. (1993). Automated inferencing and connectionist models. Postdoctoral Thesis , Intellektik,
Informatik , TH Darmstadt .

Holldobler, S., & Kalinke , Y . (1994). Toward a new massively parallel computationa l model for logic
programming. Proceedings of the Workshop on Combining Symbolic and Connectionist Processing,

ECAI94 (pp. 68-77).

Holldobler, S ., Kalinke , Y., & Storr, H . P. (1999). Approximating the semantics of logic programs by
recurrent neural networks. Applied Int ellig ence Journal, Special Issu e on N eural Networks and

Structured Knowledg e, 11, 45-58.

Huth, M. R. A., & Ryan, M. D. (2000). Logic in computer science: Modelling and reasoning about

systems. Cambridge University Press .

Lloyd, J. W. (1987) . Foundations of logic programming. Springer-Verlag.

Pazzani, M., & Kibler , D. (1992). The utility of knowledge in inductive learning. Machine Learning, 9,

57-94.

Rao, A. S., & Georgeff, M. P. (1998). Decision procedures for BDI logics. Journal of Logic and

Computation, 8, 293-343.

Towell, G. G ., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial Intelli

gence , 70, 119- 165.

Valiant, L . G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134- 1142.

van Emden, M . H. , & Kowalski, R. A. (1976). The semantics of predicate logic as a programming

language. Journal of the ACM, 23, 733- 742.

