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Abstract. Generalized possibilistic logic (GPL) is a logic for rea-
soning about the revealed beliefs of another agent. It is a two-tier
propositional logic, in which propositional formulas are encapsu-
lated by modal operators that are interpreted in terms of uncertainty
measures from possibility theory. Models of a GPL theory represent
weighted epistemic states and are encoded as possibility distribu-
tions. One of the main features of GPL is that it allows us to ex-
plicitly reason about the ignorance of another agent. In this paper,
we study two types of approaches for reasoning about ignorance in
GPL, based on the idea of minimal specificity and on the notion of
guaranteed possibility, respectively. We show how these approaches
naturally lead to different flavours of the language of GPL and a num-
ber of decision problems, whose complexity ranges from the first to
the third level of the polynomial hierarchy.

1 INTRODUCTION

Possibilistic logic [7] (PL) is a logic for reasoning with conjunctions
of more or less certain propositional formulas. Formulas in PL take
the form (α, λ) where α is a propositional formula and λ is a cer-
tainty degree taken from the unit interval (or from another linear
scale). Inference is carried out by refutation using the following res-
olution principle

(α ∨ β, λ1), (¬α ∨ γ, λ2) � (β ∨ γ,min(λ1, λ2))

Inference in possibilistic logic thus remains close to inference in
propositional logic, and in particular, efficient reasoners can easily be
implemented on top of off-the-shelf SAT solvers. Possibilistic logic
can be seen as a tool for specifying a tentative ranking of proposi-
tional formulas. As such, it is closely related to the notion of epis-
temic entrenchment [11], as has been pointed out in [8]. This makes
PL a natural vehicle for implementing strategies for belief revision
[6] and managing inconsistency [3]. Along similar lines, there are
close connections between PL and default reasoning in the sense of
System P [14] and Rational Closure, which can be exploited to im-
plement several forms of reasoning about rules with exceptions [4].

In many applications, a PL theory encodes the epistemic state of
an agent. We then assume that all that the agent knows is contained
in the knowledge base and its logical consequences (with the weights
referring to the degree of epistemic entrenchment or the strength of
belief). However, as a tool for epistemic reasoning, possibilistic logic
is limited in at least two ways. First, given that a theory encodes a
single epistemic state, PL does not allow us to encode incomplete in-
formation about the epistemic state of an agent. For example, assume
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that the agent flips a coin and looks at the result without revealing it.
Then either the agent knows that the result was tails, which could be
encoded as {(tails, 1)} (where 1 indicates complete certainty), or the
agent knows that the result was heads, which could be encoded as
{(¬tails, 1)}. However, all we know is that one of these two situa-
tions holds, and in particular we know that the agent is not ignorant
about the outcome of the coin flip. To express this in PL we would
need to write a disjunction (tails, 1)∨(¬tails, 1) which is not allowed
in the language of PL. Second, PL does not allow us to encode infor-
mation about the absence of knowledge, as it only relies on the as-
sumption that the agent does not know α if α cannot be derived from
the given theory. When reasoning about the beliefs of another agent,
this assumption is not valid anymore, and we need to distinguish be-
tween situations where we know that the agent is ignorant about α
and situations where we do not know whether the agent knows α.

Recently, we have proposed a generalized possibilistic logic
(GPL) [10] which allows arbitrary propositional combinations of as-
sertions of the form (α, λ). This brings PL closer to modal logics for
epistemic reasoning, and to emphasize this we will use a slightly
different notation, writing e.g. N1(tails) ∨ N1(¬tails) instead of
(tails, 1) ∨ (¬tails, 1). The aim of [10] was to show how GPL can
naturally encode the semantics of answer set programming [12] and
equilibrium logic [17]. Our aim in this paper is to develop GPL as
a logic for reasoning about the revealed beliefs of another agent,
with a GPL theory corresponding to a set of epistemic states, each
of which is compatible with these revealed beliefs. In the classifica-
tion of Aucher [1], it corresponds to the imperfect external point of
view. This is similar to an auto-epistemic logic, except that in such
a logic, an agent is supposed to reason about its own beliefs. One
crucial difference, which has been pointed out in [13], is that when
reasoning about one’s own beliefs, it should not be possible to have
N1(α) ∨ N1(β) without either having N1(α) or N1(β). GPL is
closely related to modal logics for epistemic reasoning such as KD45
and S5. However, instead of using Kripke frames, the semantics of
GPL are based on possibility distributions, which explicitly represent
epistemic states. Apart from being a more intuitive way of capturing
revealed beliefs, this has the advantage that (the strength of) belief
can be naturally encoded as a graded notion. Another difference with
traditional modal logics for epistemic reasoning is that we do not
allow the modality N to be nested and we do not allow objective for-
mulas. In other words, we are not concerned with introspection nor
with relating what the agent believes to what is objectively true.

In this paper, we investigate a number of different approaches
for reasoning about the ignorance of another agent in GPL. After
presenting some basic notions from possibility theory in the next
section, Section 3 recalls the syntax and semantics of GPL, shows
the soundness and completeness of an axiomatization for GPL and
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shows that entailment checking in GPL is coNP-complete, as in
propositional logic. Then in Section 4, we analyse how a modality
based on the guaranteed possibility measure can be used for rea-
soning about ignorance. Adding this modality to the language does
not increase its expressivity, but allows us to encode some formu-
las more compactly. As a result the computational complexity goes
up to ΘP

2 , and to ΠP
3 if a context-sensitive version of the modality

is used. Then, in Section 5 we analyze how ignorance can be mod-
elled based on minimal specificity. This gives rise to cautious and
brave non-monotonic consequence relations, and a complexity of re-
spectively ΠP

2 and ΣP
2 , as in many formalisms for non-monotonic

reasoning, such as answer set programming [12], equilibrium logic
[17] and autoepistemic logic [16].

2 PRELIMINARIES

Consider a variable X which has an unknown value from some finite
universe U . In possibility theory [19, 9], available knowledge about
the value of X is encoded as a U → [0, 1] mapping π, which is called
a possibility distribution. The intended interpretation of π(u) = 1 is
that X = u is fully compatible with all available information, while
π(u) = 0 means that X = u can be excluded based on available in-
formation. Note that the special case where we have no information
about X is encoded using the vacuous possibility distribution, de-
fined as π(u) = 1 for all u ∈ U . Usually we require that π(u) = 1
for some u ∈ U , which corresponds to the assumption that the avail-
able information is consistent. If the possibility distribution π satis-
fies this condition, it is called normalized. A possibility distribution π
induces a possibility measure Π and a necessity measure N , defined
for A ⊆ U as

Π(A) = max
u∈A

π(u) N(A) = 1−Π(U \A)

Intuitively, Π(A) reflects to what extent it is possible, given the avail-
able knowledge, that the value of X is among those in A, while
N(A) reflects to what extent the available knowledge entails that the
value of X must necessarily be among those in A. Two other mea-
sures induced by π are the guaranteed possibility measure Δ and the
potential necessity measure ∇, defined for A ⊆ U as

Δ(A) = min
u∈A

π(u) ∇(A) = 1−Δ(U \A)

Intuitively, Δ(A) reflects the extent to which all values in A are con-
sidered possible, while ∇(A) reflects the extent to which some val-
ues outside A are impossible.

3 GENERALIZED POSSIBILISTIC LOGIC

Let L be the language of all propositional formulas, obtained from
a finite set of atomic propositions At = {a, b, c, . . . } using the con-
nectives ¬ and ∧. As usual, we also use the abbreviations α ∨ β ≡
¬(¬α ∧ ¬β) and α → β ≡ ¬(α ∧ ¬β). Let Λk = {0, 1

k
, 2
k
, ..., 1}

with k ∈ N \ {0} be the set of certainty degrees under consideration,
and let Λ+

k = Λk \ {0}. We define the language Lk
N of GPL with

k + 1 certainty levels as follows:

• If α ∈ L and λ ∈ Λ+
k , then Nλ(α) ∈ Lk

N.
• If γ ∈ Lk

N and δ ∈ Lk
N, then ¬γ and γ ∧ δ are also in Lk

N.

The semantics of GPL are defined in terms of normalized possibil-
ity distributions over propositional interpretations, where possibility
degrees are limited to Λk. Let Pk be the set of all such Λk-valued
possibility distributions. A model of a GPL formula is any possibil-
ity distribution from Pk which satisfies:

• π is a model of Nλ(α) iff N(α) ≥ λ;
• π is a model of γ1 ∧ γ2 iff π is a model of γ1 and a model of γ2;
• π is a model of ¬γ1 iff π is not a model of γ1;

where N is the necessity measure induced by π. As usual, π is called
a model of a set of GPL formulas K, written π |= K, if π is a model
of each formula in K. We write K |= Φ, for K a set of GPL formulas
and Φ a GPL formula, iff every model of K is also a model of Φ.

Intuitively, N1(α) means that it is completely certain that α is
true, whereas Nλ(α) with λ < 1 means that there is evidence which
suggests that α is true, and none that suggests that it is false (i.e.
it is considered more plausible that α is true than that α is false).
Formally, an agent asserting Nλ(α) has an epistemic state π such
that N(α) ≥ λ > 0. Hence ¬Nλ(α) stands for N(α) < λ, which,
given the finiteness of the set of considered certainty degrees, means
N(α) ≤ λ − 1

k
and thus Π(¬α) ≥ 1 − λ + 1

k
. We shall use the

notation ν(λ) = 1 − λ + 1
k

. Then, ν(λ) ∈ Λ+
k iff λ ∈ Λ+

k , and
ν(ν(λ)) = λ, ∀λ ∈ Λ+

k . We will also use the following abbreviation:

Πλ(α) ≡ ¬Nν(λ)(¬α)
Then Π1(α) means that α is fully compatible with our available be-
liefs (i.e. nothing prevents α from being true), while Πλ(α) with
λ < 1 means that α cannot be fully excluded (Π(α) ≥ λ).

Example 1. The six nations championship is a rugby competition
consisting of 5 rounds. In each round, every team plays against
one of the other 5 teams, such that over 5 rounds all teams have
played once against each other. Let us write playsi(x, y) to de-
note that x and y have played against each other in round i, and
woni(x) to denote that team x has won its game in round i. Let
T = {eng, fra, ire, ita, sco,wal}. To express that an agent knows the
rules of the championship, we can consider formulas such as:

N1(
∨

{playsi(x, u) |u = x, u ∈ T})

where x ∈ T . A formula such as N 3
4
(won1(wal)) means that the

agent strongly believes, but is not fully certain, that Wales (wal)
has won its first round game, while Π 3

4
(won1(wal)) means that the

agent cannot fully exclude Wales has won its first round game, but
lacks evidence suggesting their victory. We can also express compar-
ative uncertainty in GPL, e.g.:

k∨
i=1

Π i
k
(won1(wal)) ∧ ¬Π i

k
(won1(eng))

This formula expresses that the agent considers it more plausible that
Wales has won its first game than that England (eng) has won its first
game, i.e. ∃λ > 0 .Π(won1(wal)) ≥ λ > Π(won1(eng)).

The following axiomatization of GPL has been introduced in [10]:

(PL) The Hilbert axioms of classical logic
(K) Nλ(α → β) → (Nλ(α) → Nλ(β))
(N) N1(�)
(D) Nλ(α) → Π1(α)
(W) Nλ1(α) → Nλ2(α), if λ1 ≥ λ2

with modus ponens as the only inference rule. Note in particular
that when λ is fixed we get a fragment of the modal logic KD.
The case where k = 1 coincides with the Meta-Epistemic Logic
(MEL) that was introduced in [2]. This simpler logic, a fragment
of KD with no nested modalities nor objective formulas, can ex-
press full certainty and full ignorance only and its semantics is in

D. Dubois et al. / Reasoning About Uncertainty and Explicit Ignorance in Generalized Possibilistic Logic262



terms of non-empty subsets of interpretations. Note that in MEL,
we have Π1(α) ≡ ¬N1(¬α) whereas in general we only have
Π1(α) ≡ ¬N 1

k
(¬α).

Proposition 1 (Soundness and completeness). Let K be a GPL the-
ory and Φ a GPL formula. It holds that K |= Φ iff Φ can be derived
from K using modus ponens and the axioms (PL), (K), (N), (D), (W).

Proof. Soundness of the axioms can readily be verified. Complete-
ness was shown in [10] in a constructive way. Here, we present a
more elegant proof, which relies on the completeness of the Hilbert
axioms for propositional logic and extends the one given for the case
k = 1 in [2]. Let LCNF ⊆ L be a finite set of all formulas over
At which are in conjunctive-normal form. Since At is finite, it fol-
lows that LCNF is finite as well (if we disallow the same literal to
appear more than once in a clause and we disallow the same clause
to appear more than once in the formula). Without loss of generality,
we can assume that every sub-formula of the form Nλ(α) occurring
in K and Φ is such that α ∈ LCNF (since K, W and N imply that
Nλ(α) ≡ Nλ(β) if α ≡ β).

We can see formulas in GPL as propositional formulas which are
built from the set of atoms F = {Nλ(α) |α ∈ LCNF, λ ∈ Λ+

k }. Let
Ω∗ be the set of all propositional interpretations over F . Let K∗ be
the propositional knowledge base over F containing all formulas in
K, as well as:

{Nλ(cnf(α → β)) → (Nλ(α) → Nλ(β)) |α, β ∈ LCNF, λ ∈ Λ+
k }

∪ {N1(�)} ∪ {Nλ(α) → ¬N 1
k
(cnf(¬α)) |α ∈ LCNF}

∪ {Nλ1(α) → Nλ2(α) |α ∈ LCNF, λ1 ≥ λ2}
where cnf(α → β) is an arbitrary (but fixed) formula from LCNF

which is equivalent to α → β, and similar for cnf(¬α). We then
clearly have that Φ can be derived from K in GPL iff Φ can be de-
rived from K∗ in propositional logic.

To finish the proof, we show that there exists a bijection between
the set of propositional models of K∗ (seen as a theory in proposi-
tional logic) and the set of possibilistic models of K (seen as a GPL
theory). First note that with every model I of K∗, we can consis-
tently associate, due to axiom (W), a set-function gI : 2Ω → Λ+

k

defined for α ∈ LCNF as

gI(�α�) = max{λ | I |= Nλ(α)}
where we define gI(�α�) = 0 if {λ | I |= Nλ(α)} = ∅. From the
fact that K∗ contains every instantiation of the axioms (K), (N), (D)

and (W), we can derive the following properties for the function gI :

• We have gI(Ω) = 1 thanks to the fact that N1(�) ∈ K∗.
• We have gI(∅) = 0. Indeed, since K∗ contains N1(�) and

N1(�) → ¬N 1
k
(⊥) (as an instantiation of (D)) and Nλ(⊥) →

N 1
k
(⊥) (≡ ¬N 1

k
(⊥) → ¬Nλ(⊥)) for every λ ∈ Λ+

k (as an
instantiation of (W)) we know that {λ | I |= Nλ(⊥)} = ∅.

• We have that gI is monotone w.r.t. set inclusion. Indeed, if �α� ⊆
�β� then α |= β holds, which means that K∗ will entail Nλ(α) →
Nλ(β) for every λ ∈ Λ+

k (as an instantiation of (K), using N,

W). It follows that {λ | I |= Nλ(α)} ⊆ {λ | I |= Nλ(β)} and
gI(�α�) ≤ gI(�β�).

• We have that gI(�α ∧ β�) = min(gI(�α�), gI(�β�)) for every
α, β ∈ LCNF . Indeed from the monotonicity of gI we already
have gI(�α∧ β�) ≤ min(gI(�α�), gI(�β�)). Conversely, assume
I |= Nλ(α) and I |= Nλ(β). Using the instantiation of (K) on
the tautology β → (α → (α ∧ β)) we find I |= Nλ(cnf(α →

(α ∧ β))). Using another instantiation of (K) we find from I |=
Nλ(cnf(α → (α ∧ β))) and I |= Nλ(α) that I |= Nλ(cnf(α ∧
β)). It follows that {λ | I |= Nλ(α)} ∩ {λ | I |= Nλ(β)} ⊆
{λ | I |= Nλ(α∧β)} and gI(�α∧β�) ≥ min(gI(�α�), gI(�β�).

Every set-function satisfying these four criteria is a necessity mea-
sure [9], and this necessity measure uniquely identifies a normalized
possibility distribution π such that π(ω) = 1− gI(Ω \ {ω}), which
by construction will be a model of K. Conversely, it is easy to see
that every model π of K corresponds to a propositional model I of
K∗, defined as I |= Nλ(α) iff N(α) ≥ λ for N the necessity mea-
sure induced by π.

The following formulas can be proven as theorems in GPL:

Nλ1(α) ∧Nλ2(α → β) → Nmin(λ1,λ2)(β)

Πλ1(α) ∧Nλ2(α → β) → Πλ1(β), if λ2 ≥ ν(λ1)

The following GPL theorems are the counterpart of well-known
properties of necessity and possibility measures:

Nλ(α) ∧Nλ(β) ≡ Nλ(α ∧ β) Πλ(α) ∧Πλ(β) ← Πλ(α ∧ β)

Nλ(α) ∨Nλ(β) → Nλ(α ∨ β) Πλ(α) ∨Πλ(β) ≡ Πλ(α ∨ β)

Finally, we show that inference in GPL is not harder than inference
in classical logic. Let us define a meta-literal as an expression of the
form Nλ(α) or Πλ(α). A meta-clause is an expression of the form
Φ1 ∨ ... ∨ Φn with each Φi a meta-literal. Similarly, a meta-term is
an expression of the form Φ1 ∧ ... ∧ Φn with each Φi a meta-literal.

Proposition 2. The problem of deciding whether Φ |= Ψ, with Φ
and Ψ GPL formulas, is coNP-complete4.

Proof. Hardness: follows straightforwardly from the coNP-
completeness of entailment checking in propositional logic.
Membership: we show that checking the satisfiability of a GPL for-
mula is in NP. Each GPL formula Φ is equivalent to a disjunction of
meta-terms, and it is sufficient that one of these terms is satisfiable.
In polynomial time, we can guess such a term:

Nλ1(α1) ∧ ... ∧Nλn(αn) ∧Πμ1(β1) ∧ ... ∧Πμm(βm) (1)

We know from PL that Nλ1(α1)∧ ...∧Nλn(αn) has a unique least
specific model π if α1 ∧ ... ∧ αn is satisfiable. All that we need to
check is whether this is the case, and whether Π(βi) ≥ μi for each
i, with Π the possibility measure induced by π. In other words, for
each j and θ ∈ Λ+

k such that μj ≥ ν(θ) the following formula needs
to be consistent: ∧

{αi |λi ≥ θ} ∧ βj (2)

When guessing (1), we can also guess an interpretation for each of
the SAT instances (2). We can then verify in polynomial time that
they are indeed models of the corresponding propositional formulas.

As to the possible kinds of conclusions that can be inferred from
a GPL base K regarding a propositional formula α, with only two
certainty levels, one can already distinguish the following cases [2]:

• K |= N1(α) means that we know that the agent knows that α is
true.

4 As usual, complexity results are stated w.r.t. the size of the formulas in-
volved (i.e. the number of occurrences of atomic propositions).
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• K |= N1(¬α) means that we know that the agent knows that α is
false.

• K |= N1(α)∨N2(¬α), K |= N1(α) and K |= N1(¬α) means
that we know that the agent knows whether α is true or false, but
we do not know which it is.

• K |= Π1(α) ∧ Π1(¬α) means that we know that the agent is
ignorant about whether α is true or false.

• K |= N1(α)∨N1(¬α) and K |= Π1(α)∧Π1(¬α) means that
we are ignorant about whether the agent is ignorant about α.

These five cases can be contrasted with only three situations that can
be distinguished in classical logic (and in PL), i.e. we know that α is
true, we know that α is false, or we do not know whether α is true
or false. The underlying reason is that theories in classical logic cor-
respond to a single epistemic state, and in this sense, we can think
of classical logic as a mechanism for reasoning about the beliefs of
a given agent, or indeed about one’s own beliefs. In contrast, a GPL
theory corresponds to a set of epistemic states, and is useful for rea-
soning about what is known about the beliefs of another agent.

4 GPL WITH GUARANTEED POSSIBILITY

Using the modalities N and Π we can model constraints of the form
N(α) ≥ λ, N(α) ≤ λ, Π(α) ≥ λ and Π(α) ≤ λ. So far, how-
ever, we have not considered the guaranteed possibility measure Δ
and potential necessity measure ∇. Counterparts of these measures
can be introduced as abbreviations in the language, by noting that
Δ(α) = minω∈�α� Π({ω}). For a propositional interpretation ω let
us write conjω for the conjunction of all literals made true by ω, i.e.
conjω =

∧
ω|=a a ∧∧

ω|=¬a ¬a. Then we define:

Δλ(α) =
∧

ω∈�α�

Πλ(conjω) ∇λ(α) = ¬Δν(λ)(¬α)

Some useful theorems using the modalities Δ and ∇ include:

Δλ1(α ∧ β) ∧Δλ2(¬α ∧ γ) → Δmin(λ1,λ2)(β ∧ γ)

∇λ1(α ∧ β) ∧Δλ2(¬α ∧ γ) → ∇λ1(β ∧ γ), if λ2 ≥ ν(λ1)

Δλ(α) ∧Δλ(β) ≡ Δλ(α ∨ β) ∇λ(α) ∧∇λ(β) ← ∇λ(α ∨ β)

Δλ(α) ∨Δλ(β) → Δλ(α ∧ β) ∇λ(α) ∨∇λ(β) ≡ ∇λ(α ∧ β)

Using the modality Δ, for any possibility distribution π over Ω,
we can easily define a GPL theory which has π as its only model. In
particular, let α1, ..., αk be propositional formulas such that �αi� =
{ω |π(ω) ≥ i

k
}. Then we define the theory Φπ as:

Φπ =
k∧

i=1

Nν( i
k
)(αi) ∧Δ i

k
(αi). (3)

In this equation, the degree of possibility of each ω ∈ �αi� is de-
fined by inequalities from above and from below. Indeed, Δ i

k
(αi)

means that π(ω) ≥ i
k

for all ω ∈ �αi�, whereas, Nν( i
k
)(αi) means

π(ω) ≤ i−1
k

for all ω /∈ �αi�. It follows that π(ω) = 0 if ω /∈ �α1�,
π(ω) = i

k
if ω ∈ �αi� \ �αi+1� (for i < k) and π(ω) = 1 if

ω ∈ �αk�. In other words, π is indeed the only model of Φπ . If we
view the epistemic state of an agent as a possibility distribution, this
means that every epistemic state can be modelled using a GPL theory.
Conceptually, the construction of Φπ relates to the notion of “only
knowing” from Levesque [15]. For example, assume that we want

to model that all the agent knows is that β is true with certainty j
k

.
Then we have π(ω) = 1 for ω ∈ �β� and π(ω) = k−j

k
for ω /∈ �β�.

This means that in the notation of (3), αk−j+1 = ...αk = β and we
obtain Φπ ≡ Δ1(β) ∧N j

k
(β) ∧Δ k−j

k
(�).

In practice, we will often have incomplete knowledge about the
epistemic state of another agent. Suppose we only know that the epis-
temic state is among those in S ⊆ P . This can be encoded as a GPL
theory ΦS =

∨
π∈S Φπ with Φπ defined as above. As a consequence

any GLP base is semantically equivalent to a formula of the form ΦS .
Since the modality Δ was introduced as an abbreviation, allow-

ing this modality has no impact on the expressivity of the language
or on the completeness of the axiomatization. However, the formula
Δλ(α) abbreviates a GPL formula which may be of exponential size,
and allowing the modality Δ in the language is thus essential if we
want to capture our knowledge about an agent’s epistemic state in
a compact theory ΦS . This is reflected in the following complexity
result. We will call formulas in which the modalities Δ and ∇ oc-
cur GPLΔ formulas. It is not hard to see that Nλ(α) ∧Δμ(β), with
μ ≥ ν(λ) is consistent iff α is consistent and β |= α. Hence, check-
ing the satisfiability of an arbitrary GPLΔ formula cannot be in NP
(unless the polynomial hierarchy collapses), which means that entail-
ment checking cannot be in coNP. Recall that ΘP

2 coincides with the
class of decision problems which can be solved in polynomial time
on a deterministic Turing machine by using a polynomial number of
parallel queries to an NP-oracle (i.e. such that the result for one query
to the NP-oracle cannot be used to formulate another query for the
NP-oracle [18]). Moreover, allowing two rounds of parallel queries
does not lead to an increased complexity ([5], Theorem 9). We will
show that Φ |= Ψ can be decided in this way.

Proposition 3. The problem of deciding whether Φ |= Ψ, for Φ and
Ψ two GPLΔ formulas, is ΘP

2 -complete.

Proof. Hardness: A standard ΘP
2 -complete problem is the follow-

ing. Let α1, ..., αn be propositional formulas. Decide whether the
smallest i for which αi is unsatisfiable is an odd number. Without
loss of generality, we can assume that n is odd. Now consider the
following GPLΔ formula:

Ψ ≡¬Π1(α1) ∨ (Π1(α1) ∧Π1(α2) ∧ ¬Π1(α3))

∨ ... ∨ (Π1(α1) ∧ ... ∧Π1(αn−1) ∧ ¬Π1(αn))

It is easy to show that Δ1(�) |= Ψ iff the smallest i for which αi is
unsatisfiable is odd.
Membership: Since Φ |= Ψ iff Φ ∧ ¬Ψ is unsatisfiable, it is suffi-
cient to show that satisfiability checking of GPLΔ formulas is in ΘP

2 .
Let Ψ be a GPLΔ formula. Without loss of generality, we can assume
that no implications occur in Ψ and that all negations occur inside a
modality, i.e. the meta-literals in Ψ are connected using conjunction
and disjunction only. Assume that the meta-literals occurring in Ψ
are:

N 1
k
(α1

1), ...,N 1
k
(α1

n1
),N 2

k
(α2

1), ...,N1(α
k
1), ...,N1(α

k
nk

)

Π 1
k
(β1

1), ...,Π 1
k
(β1

m1
),Π 2

k
(β2

1), ...,Π1(β
k
1 ), ...,Π1(β

k
mk

)

Δ 1
k
(γ1

1), ...,Δ 1
k
(γ1

p1),Δ 2
k
(γ2

1), ...,Δ1(γ
k
1 ), ...,Δ1(γ

k
pk )

∇ 1
k
(δ11), ...,∇ 1

k
(δ1r1),∇ 2

k
(δ21), ...,∇1(δ

k
1 ), ...,∇1(δ

k
rk )

Using a first round of parallel calls to an NP-oracle, we check
γu
i |= αv

j for all 1 ≤ i ≤ pu, 1 ≤ j ≤ nv , and u+ v ≥ k + 1. Note
that the number of calls to the oracle is at most quadratic in the num-
ber of meta-literals appearing in Ψ. Using the result of these oracle
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calls, we can decide the satisfiability of Ψ in NP, i.e. by making one
additional call to the NP-oracle, as follows. Note that Ψ is equivalent
to a disjunction of meta-terms. In polynomial time we may guess
such a meta-term of the following form:

Θ ≡Nv1(α1) ∧ ... ∧Nvn(αn) ∧Πw1(β1) ∧ ... ∧Πwm(βm)

∧Δu1(γ1) ∧ ... ∧Δup(γp) ∧∇z1(δ1) ∧ ... ∧∇zr (δr)

We will further refine the meta-literals of the form Πwi(βi) and
∇zi(δi) in Θ. To refine a meta-literal of the form Πwi(βi) we
need to replace βi by a more restrictive formula. To this end, for
each βi we guess a specific model ωβi ∈ �βi�, and we define
β∗
i =

∧
ωβi

|=l l, i.e. β∗
i is chosen such that �β∗

i � = {ωβi}. It fol-
lows that Πwi(β

∗
i ) ≡ Δwi(β

∗
i ). To refine a meta-literal of the form

∇zi(δi), we need to replace δi with a less restrictive formula. In par-
ticular, we guess a world ωδi /∈ �δi� and choose the formula δ∗i such
that �δ∗i � = Ω \ {ωδi}. It then holds that ∇zi(δ

∗
i ) ≡ Nzi(δ

∗
i ).

Clearly, the term Θ is satisfiable iff such refinements can be found
that make the following term Θ∗ satisfiable

Θ∗ ≡Nv1(α1) ∧ ... ∧Nvn(αn) ∧Δw1(β
∗
1 ) ∧ ... ∧Δwm(β∗

m)

∧Δu1(γ1) ∧ ... ∧Δup(γp) ∧Nz1(δ
∗
1) ∧ ... ∧Nzr (δ

∗
r )

This latter formula is satisfiable when α1 ∧ ... ∧ αn ∧ δ∗1 ∧ .... ∧ δ∗r
is satisfiable, and the following entailment relations are valid:

• β∗
i |= αj for every i, j such that wi ≥ ν(vj)

• β∗
i |= δ∗j for every i, j such that wi ≥ ν(zj)

• γi |= αj for every i, j such that ui ≥ ν(vj)
• γi |= δ∗j for every i, j such that ui ≥ ν(zj)

The entailment relations of the form γi |= αj can be verified by
looking up the result of the first round of calls to the NP oracle. Given
that β∗

i and ¬δ∗j have a unique model, it is clear that the remaining
conditions can be verified in polynomial time.

The modality Δ allows us to express limits on what an agent
knows. However, it does not readily allow us to explicitly encode
the ignorance of an agent on a particular topic.

Example 2. Consider again the scenario from Example 1 and sup-
pose we want to encode that “all the agent knows about the games
in round 3 is that Wales has won its game”. We cannot represent
this as N1(won3(wal))∧Δ1(won3(wal)), as that would entail e.g.
¬N1(won2(wal)), which is not warranted.

To encode limitations on the knowledge of the agent on a particular
topic, we propose the following variant of the Δ modality:

ΔX
λ (α) =

∧
ω∈�α�

Πλ(conjXω )

where X ⊆ At is a set of atoms and conjXω is the restriction of conjω
to those literals about atoms in X , i.e. conjXω =

∧{x |x ∈ X,ω |=
x} ∧ ∧{¬x |x ∈ X,ω |= ¬x}. Note that Δλ(α) ≡ ΔAt

λ (α).
For example, in the scenario from Example 2, instead of assert-
ing Δ1(won3(wal)), we can assert ΔX

1 (won3(wal)), with X =
{plays3(x, y) |x, y ∈ T} ∪ {won3(x) |x ∈ T} the set of all atoms
about round 3 of the championship.

The extra flexibility of the ΔX modality comes at the price of
a higher computational complexity. Recall that a decision problem
is in ΣP

i (i > 1) if it can be solved in polynomial time on a non-
deterministic Turing machine using a ΣP

i−1-oracle, where ΣP
1 = NP.

A decision problem is in ΠP
i if its complement is in ΣP

i . We will call
formulas in which modalities of the form ΔX occur GPLΔ

R formulas.

Proposition 4. The problem of deciding whether Φ |= Ψ, for Φ and
Ψ two GPLΔ

R formulas, is ΠP
3 -complete.

Proof. Hardness: Let X ∪ Y ∪ Z be a partition of the set
of atoms. We can show that checking the validity of the QBF
∃X∀Y ∃Z . φ(X,Y, Z) is equivalent to checking whether the fol-
lowing GPL formula is satisfiable:∧

x∈X

(
N1(x) ∨N1(¬x)

) ∧ΔY
1 (�) ∧N1(φ(X,Y, Z))

This means that satisfiability checking in GPLΔ
R is ΣP

3 -hard, from
which it follows that entailment checking is ΠP

3 -hard.
Membership: We provide a ΣP

3 procedure for verifying that a
GPLΔ

R formula Ψ is satisfiable. Similarly as in the proof of Proposi-
tion 3, we can guess an implicant of Ψ of the following form:

Θ ≡Nv1(α1) ∧ ... ∧Nvn(αn) ∧ΔX1
w1

(β1) ∧ ... ∧ΔXm
wm

(βm)

where X1, ..., Xm are sets of atoms. We give a ΣP
2 procedure for

checking that Θ is not safisfiable: select a βi, guess a model ω of βi,
and verify that conjXω ∧ {αj | vj ≥ ν(wi)} is inconsistent. It follows
that checking the satisfiability of Θ is in ΠP

2 , and can thus be done
in constant time using a ΣP

2 -oracle.

5 IGNORANCE AS MINIMAL SPECIFICITY

A possibility distribution π1 in a universe U is called less specific
than a possibility distribution π2 in U , written π1 � π2 if π1(u) ≥
π2(u) for all u in U . The relation � defines a partial order on the set
of models of a GPL theory K in a natural way, which allows us to
introduce two non-monotonic entailment relations:

• We say that Φ is a brave consequence of K, written K |=br Φ iff
Φ is satisfied by a minimally specific model of K.

• We say that Φ is a cautious consequence of K, written K |=cau Φ
iff Φ is satisfied by all minimally specific models of K.

In standard possibilistic logic, every theory K has a least specific
model πK . Moreover, it holds that K |= (α, λ) iff NK(α) ≥ λ, for
NK the necessity measure induced by πK . In other words, in stan-
dard possibilistic logic, the entailment relations |=, |=br and |=cau

coincide. In GPL, this is no longer the case.

Example 3. The formula N1(a) ∨N1(b), for two atomic variables
a and b, has two minimally specific models πa and πb defined as:

πa(ω) =

{
0 if ω |= ¬a
1 otherwise

πb(ω) =

{
0 if ω |= ¬b
1 otherwise

(4)

This already shows that |= and |=br do not coincide, as e.g. N1(a)∨
N1(b) |=br N1(a) while clearly N1(a) ∨N1(b) |= N1(a). To see
why |= and |=cau do not coincide, note that N1(a) ∨ N1(b) |=cau

Π1(c) ∧Π1(¬c) while N1(a) ∨N1(b) |= Π1(c) ∧Π1(¬c).
Reasoning about what is true in all minimally specific models, as

opposed to all models, is similar to making a closed world assump-
tion. Intuitively, it amounts to assuming that the agent is ignorant
about a formula α unless it has been asserted that the agent knows
whether α is true or false. For example, in the scenario from Exam-
ple 2, we can simply assert N1(won3(wal)), as the knowledge that
the agent is ignorant about anything else related to round 3 is implicit
in the fact that no other knowledge has been asserted. However, even
under this assumption, there may be situations in which we are igno-
rant about whether the agent knows whether α is true, as illustrated
in the next example.
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Example 4. Consider the following GPL theory

K =
(
N1(α)∧Π1(β)∧Π1(¬β)

)∨(
N1(β)∧Π1(α)∧Π1(¬α)

)
This corresponds to a scenario in which we know that the agent either
knows α and is ignorant about β, or knows β and is ignorant about
α. It holds that K |=cau N1(α)∨N1(¬α), i.e. we cannot conclude
that the agent knows about α, and K |=cau Π1(α) ∧ Π1(¬α), i.e.
we cannot conclude that the agent is ignorant about α either.

Reasoning about minimally specific models is more expensive
than reasoning about what is true for all models of a GPL theory
(unless the GPLΔ

R formulas are allowed in the latter case).

Proposition 5. Let Φ and Ψ be two GPL formulas. The problem of
checking whether Φ |=cau Ψ is ΠP

2 -complete.

Proof. Hardness: it is easy to show that checking the validity of the
QBF formula ∀X∃Y . φ(X,Y ) is equivalent to checking whether
Φ |=cau Ψ for Φ and Ψ defined as follows:

Φ ≡
∧
x∈X

(
N1(x) ∨N1(¬x)

)
Ψ ≡ Π1(φ(X,Y ))

Membership: We now present a ΣP
2 algorithm for checking that β

is false in at least one minimally specific model of α.
The GPL formula Φ is equivalent to a disjunction of meta-terms.

In polynomial time, we can guess such a term:

Nλ1(α1) ∧ ... ∧Nλn(αn) ∧Πμ1(β1) ∧ ... ∧Πμm(βm) (5)

Using an NP-oracle we can check that this formula is consistent. We
then know that it has a unique least specific model π1, and we can
check using our oracle that Ψ is false in this model. Indeed, a meta-
literal Nθ(γ) occurring in Ψ is true in π1 if it can be derived from
Nλ1(α1)∧ ...∧Nλn(αn). Similarly, a meta-literal Πθ(γ) occurring
in Ψ is true in π1 unless Nν(θ)(¬γ) can be derived from Nλ1(α1)∧
... ∧Nλn(αn).

What remains to be verified is that there does not exist another con-
sistent meta-term which has a model π2 that is strictly less specific
than π1. To check this, we define a GPL theory K′ as follows. With-
out loss of generality, we can assume that K does not contain any
occurrences of → and that all negations in K occur inside a modal-
ity. For each meta-term Nν(γ) occurring in K, we test whether

Nλ1(α1) ∧ ... ∧Nλn(αn) |= Nμ(γ) (6)

If this is not the case, we replace Nν(γ) by ⊥. Note that the resulting
theory K′ is consistent, since none of the meta-literals occurring in
(5) will have been replaced. By replacing a meta-literal Nν(γ) by
⊥, we potentially reduce the set of models of the knowledge base.
However, because (6) by construction does not hold, none of these
models can be less specific than π1.

Finally, we test whether K′ |= Nλ1(α1) ∧ ... ∧Nλn(αn). If this
is the case, then none of the models of K′, and by extension of K,
can be less specific than π1. If this is not the case, the guess in (5) did
not induce a minimally specific possibility distribution of K. Indeed,
because (6) holds for all the meta-literals Nμ(γ) in K′, any model
of K′ which is not a model of Nλ1(α1) ∧ ... ∧Nλn(αn) has to be
strictly less specific than π1.

We can also show that checking Φ |=cau Ψ is ΠP
2 -complete for

GPLΔ formulas, and ΠP
4 -complete for GPLΔ

R formulas. We omit the
proofs due to space constraints. To characterize the complexity of
brave reasoning, note that Φ |=cau Ψ iff it is not the case that Φ |=br

¬Ψ. Hence we immediately get the following result.

Corollary 1. Let Φ and Ψ be two GPL formulas. The problem of
checking whether Φ |=br Ψ is ΣP

2 -complete.

6 CONCLUSION

Generalized possibilistic logic allows us to reason about the epis-
temic state of another agent. A particular feature of this type of rea-
soning is that we can draw conclusions about what that agent does
not know. This requires that we encode information about the limits
of the agent’s knowledge. We have discussed several ways in which
this can be accomplished in possibilistic logic, based on guaranteed
possibility measures and on the principle of minimal specificity. We
have shown that this leads to a range of decision problems, which are
complete for the classes coNP, ΘP

2 , ΠP
2 , ΣP

2 and ΠP
3 .
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