
Reasoning and Identifying Relevant Matches
for XML Keyword Search ∗

Ziyang Liu Yi Chen
Arizona State University
{ziyang.liu, yi}@asu.edu

ABSTRACT
Keyword search is a user-friendly mechanism for retrieving XML
data in web and scientific applications. An intuitively compelling
but vaguely defined goal is to identify matches to query keywords
that are relevant to the user. However, it is hard to directly evalu-
ate the relevance of query results due to the inherent ambiguity of
search semantics. In this work, we investigate an axiomatic frame-
work that includes two intuitive and non-trivial properties that an
XML keyword search technique should ideally satisfy: monotonic-
ity and consistency, with respect to data and query. This is the first
work that reasons about keyword search strategies from a formal
perspective.

Then we propose a novel semantics for identifying relevant matches,
which, to the best of our knowledge, is the only existing algorithm
that satisfies both properties. An efficient algorithm is designed for
realizing this semantics. Extensive experimental studies have ver-
ified the intuition of the properties and shown the effectiveness of
the proposed algorithm.

1. INTRODUCTION
Keyword search provides a simple and user-friendly query inter-

face to access XML data in web and scientific applications, where
users may not know XPath/XQuery, or the data schema is unavail-
able, complex, or fast-evolving. As a result, keyword search has
recently attracted more and more research interests [5, 6, 21, 14,
21, 8, 13, 10].

To identify relevant results for an XML keyword query, different
systems use different underlying principles and heuristics, leading
to different query results in general. How to guide the design and
evaluate XML keyword search strategies is becoming a critical re-
search problem. However, due to the inherent ambiguity of search
semantics, it is hard, if not impossible, to directly assess the rele-
vance of query results and reason about various strategies.

Interestingly, we discover that by examining query results pro-
duced by the same XML keyword search strategy for similar queries
or on similar documents, sometimes abnormal behaviors can be
∗This material is based on work partially supported by NSF grant
IIS-0740129 and IIS-0612273.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

team
0

name
0.0

Grizzlies
0.0.0

players
0.1

player
0.1.0

name
0.1.0.0

nationality position
0.1.0.2

Gasol
0.1.0.0.0

Spain forward
0.1.0.2.0

player
0.1.1

nationality
0.1.1.1

position
0.1.1.2

Miller USA
0.1.1.1.0

guard
0.1.1.2.0

name
0.1.1.0

player
0.1.2

nationality
0.1.2.1

position
0.1.2.2

Brown
0.1.2.0.0

USA
0.1.2.1.0

name
0.1.2.0

forward
0.1.2.2.0

D1

D2

Figure 1: Sample XML Document

Q1 Gasol, position
Q2 Grizzlies, Gasol, position
Q3 Grizzlies, Gasol, Brown, position
Q4 forward, name
Q5 forward, USA, name
Figure 2: Sample Keyword Searches

clearly observed, which exhibit the pitfalls that a good search strat-
egy should avoid. Let us start with some examples.

Example 1.1: Consider XML tree D1 in Figure 1, where each node
is associated with a unique ID (some IDs are not shown), and the
keyword searches listed in Figure 2.

[Q1, D1]:Processing query Q1 (Gasol, position) which searches
for the position of Gasol on D1, a reasonable result is shown in the
box annotated with R(Q1, D1) in Figure 3(a), where the matches
in the subtree rooted at the player node with ID 0.1.0 are included in
the result, but not the match node position 0.1.1.2 of player Miller.
Such a query result will be produced by many existing XML key-
word search systems [21, 6, 14, 5, 13, 15].

[Q2, D1]: To search for the position of Gasol within team Griz-
zlies, the user would issue Q2 (Grizzlies, Gasol, position), con-
taining one more keyword Grizzlies than Q1. A query result as
produced by [21, 6, 5, 15] is shown in Figure 3(b). One difference
between these two results is: the position node 0.1.1.2 of player
Miller is now included, which is unlikely to be justifiable.

A reasonable result would be the one shown in the box annotated
with R(Q2, D1) in Figure 3(a).

Example 1.2: [Q3, D1]: Consider Q3 (Grizzlies, Gasol, Brown,
position) on XML tree D1, searching for the position of player
Gasol and Brown within Grizzlies. A reasonable query result is
shown in the box annotated with R(Q3, D1) in Figure 3(c), as pro-

921

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

team
0

name
0.0

Grizzlies
0.0.0

players
0.1

player
0.1.0

name
0.1.0.0

position
0.1.0.2

Gasol
0.1.0.0.0

forward
0.1.0.2.0

R(Q1,D1)

R(Q2,D1)

team
0

name
0.0

Grizzlies
0.0.0

players
0.1

player
0.1.0

name
0.1.0.0

position
0.1.0.2

Gasol
0.1.0.0.0

forward
0.1.0.2.0

R(Q2,D1) (undesirable)

player
0.1.1

position
0.1.1.2

guard
0.1.1.2.0

team
0

name
0.0

Grizzlies
0.0.0

players
0.1

player
0.1.0

name
0.1.0.0

position
0.1.0.2

Gasol
0.1.0.0.0

forward
0.1.0.2.0

player
0.1.2

position
0.1.2.2

forward
0.1.2.2.0

Brown
0.1.2.0.0

name
0.1.2.0

R(Q3,D1)

R(Q3,D2)

(b) Undesirable Result of Q2 on D1(a) Results of Q1 and Q2 on D1 (c) Results of Q3 on D1 and D2

Figure 3: Sample Query Results

duced by many existing XML keyword search systems [21, 6, 14,
5, 15].

[Q3, D2]: Suppose the position information of player Brown is
now inserted to the XML tree D1 as represented by the dotted line,
which results in an XML tree D2, shown in Figure 1. Now D2 has
position information for both players, as requested by Q3.

An empty result, as produced by [14, 13, 5], is unlikely to be
desirable. When AND semantics is considered, a keyword search
is a positive query. A search strategy that outputs one query result
for Q3 but outputs nothing when a new data node is inserted is
abnormal. A more reasonable query result is shown in the box
annotated with R(Q3, D2) in Figure 3(c).

From these examples we can observe that there should be some
logical correlation of the query results generated by a desirable
XML keyword search engine for two similar queries on the same
document or the same query on two similar documents. Since
abnormal behaviors can be more easily identified when checking
query pairs or document pairs than considering a single query on a
single document, we attempt to assess the quality of XML keyword
search engines from a new angle: capturing desirable changes to a
query result upon a change to the query or data in a general frame-
work.

Indeed, the approach that formalizes broad intuitions as a collec-
tion of simple axioms and evaluates various solutions based on the
axioms has been successfully used in many areas, such as math-
ematical economics [17],1 clustering [11], discrete location the-
ory [7], and collaborative filtering [18].

In light of the success of an axiomatic approach in those areas,
we initiate an investigation of a formal axiomatic framework to
express valid changes to a query result upon an addition to the
user query or to the data.2 This is, nevertheless, very challeng-
ing. As we can see, when a new keyword is added to a query or
when a new data node is inserted, some keyword matches should
become relevant and be added to the query result, such as Grizzlies
0.0.0 for [Q2, D1] and position 0.1.2.2 for [Q3, D2]; but not all
the matches, such as position 0.1.1.2 for [Q2, D1]. Some keyword

1A striking case is the axioms on social choice functions [3], which
can not be simultaneously satisfied by any solution, proposed by
Kenneth Arrow, a co-recipient of the 1972 Nobel Prize in Eco-
nomics.
2The desirable behaviors of an algorithm are symmetric for dele-
tions, whose details are omitted for space reasons.

matches should become irrelevant and be removed from the query
result, such as the position of a player Gasol in a team other than
Grizzlies (not shown in the figure); but not all the matches, such as
the case in [Q3, D2].

After an in-depth analysis of valid changes to query results, inde-
pendently of any particular algorithm, we identify two intuitive and
elegant properties that an XML keyword search algorithm should
ideally possess: data monotonicity, query monotonicity, data con-
sistency and query consistency. An algorithm that shows the ab-
normal behaviors illustrated in the above examples violates at least
one of the properties, as will be analyzed in Example 2.2 through
2.6.3

After reviewing the existing strategies on XML keyword search,
we find that, surprisingly, none of them satisfies all these properties.
We then design a novel XML keyword search strategy, MaxMatch,
which possesses all these properties and efficiently processes user
queries.

The contributions and outline of this paper are:
1. To the best of our knowledge, this is the first work that rea-

sons about keyword search strategies from a formal perspec-
tive, and proposes the desirable properties that an XML key-
word search strategy should ideally satisfy.

2. Four properties, data monotonicity, query monotonicity, data
consistency and query consistency are presented in Section 2,
capturing the reasonable connection between an original query
result and a new query result obtained after an update to the
query or to the data. These properties are non-trivial, non-
redundant, and satisfiable.

3. We have reasoned about existing XML keyword search ap-
proaches for identifying relevant matches with respect to these
properties in Section 3.

4. We have designed and implemented a novel technique, Max-
Match, to identify relevant keyword matches (Section 4). To
the best of our knowledge, this is the only algorithm that sat-
isfies all properties.

5. Experimental evaluation have verified our intuition about the
properties, and demonstrated the improved precision and re-
call of MaxMatch over existing approaches as well as its ef-
ficiency, as presented in Section 5.

We close by discussing related work in Section 6 and future di-
rections in Section 7.
3However, the proposed properties may not be complete, i.e. a sys-
tem that satisfies these properties is not necessary a perfect system.

922

2. PROPERTIES FOR IDENTIFYING REL-
EVANT MATCHES

2.1 Data Model and Query
We model XML data as a rooted, labeled, unordered tree. Every

internal node in the tree has a name, and every leaf node has a data
value. XML attributes are treated as subelements, i.e., children of
the associated element nodes. A user query is expressed as a set of
keywords, each of which may match name and/or value nodes in
the XML tree.

In this paper, we consider AND semantics in defining query re-
sults, similar as existing approaches [21, 14, 9, 8, 6]. Evaluating a
keyword search on an XML tree returns a set of subtrees, each of
which contains at least one match to each keyword in the query.

Definition 2.1:[Matches] If a keyword k is contained in the name
or value of a node m, then m is a match to k.

Definition 2.2:[Query Results] Processing query Q on XML data
D returns a set of query results, denoted as R(Q, D). Each query
result is a tree defined by a pair r = (t, M), where t is the root,
M is a subset of matches in the tree, consisting of all the matches
in the tree that are considered as relevant to Q. Every keyword in
Q has at least one match in M . A query result is a tree consisting
of the paths in D that connect t to each match in M (as well as its
value child, if any). The number of query results, |R(Q, D)|, is the
number of (t, M) pairs.

Note that one query result should not be subsumed by another,
therefore the root nodes t should not have ancestor-descendant re-
lationship.

Example 2.1: [Q2, D1]: Consider Q2 (Grizzlies, Gasol, position)
on D1 in Figure 1, which searches for the position of Gasol who is a
player in team Grizzlies. There is only one meaningful query result:
t= team, M = { Grizzlies, Gasol, position (0.1.0.2) }. Note that
match node position (0.1.1.2) in the subtree rooted at team should
be considered as irrelevant and not be included in M , as it is the
position of player Miller, not Gasol. The query result is a tree con-
sisting of the paths from team to each node in M , including their
value children, as shown in the box of R(Q2, D1) in Figure 3(a).

In this paper we reason about identifying relevant matches to
generate a query result. Instead of directly assessing the relevance
of match nodes, we propose an axiomatic framework that charac-
terizes the valid connections between the original query results and
the new query results generated by the same algorithm when an up-
date is performed on the query and/or the data. Specifically, prop-
erty monotonicity captures reasonable changes to the number of
query results (i.e., |R(Q, D)|); and consistency captures reasonable
changes to the content of query results (i.e., M sets in R(Q, D)).

Note that the our approach is independent of any particular algo-
rithm, therefore in this section we present some meaningful query
results to illustrate the proposed properties, without considering
how to design an algorithm that generates those results.

2.2 Monotonicity
Monotonicity describes the desirable change to the number of

query results with respect to data updates and query updates.

Data Monotonicity. If we add a new node to the data, then the
data content becomes richer, therefore the number of query results
should be (non-strictly) monotonically increasing. Analogous to
keyword search on text documents, adding a word to a document
that is not originally a query result may qualify the document as
a new query result. Similarly, for keyword search on XML trees,

adding a node to the data may enable an XML subtree that is not
originally a query result to be a new query result. Let us look at an
example before defining data monotonicity formally.

Example 2.2: Adding a new data node may increase the number
of query results. [Q4, D1]: Consider Q4 (forward, name) on XML
data D1 shown in Figure 1, which searches for the name of a for-
ward. Ideally, there should be one query result, rooted at player
(0.1.0) with the matches in its subtree: name (0.1.0.0) and for-
ward (0.1.0.2.0), and the paths connecting them. [Q4, D2]: Now
consider an insertion of a position node (0.1.2.2) and its value for-
ward (0.1.2.2.0) to D1, which results in XML tree D2. Ideally, we
should have one more query result: a tree rooted at player (0.1.2),
the matches in its subtree name (0.1.2.0) and forward (0.1.2.2.0),
and the paths connecting them.

The number of query results may also stay the same after a data
insertion. Consider Q3 (Grizzlies, Gasol, Brown, position), search-
ing for the position of Gasol and Brown in Grizzlies, on D1 and
D2, respectively. For each document there should be a single query
result tree, rooted at team, as this subtree contains at least one rel-
evant match to each keyword. Though the set of relevant matches
in the subtree rooted at the team node are different for D1 and D2

as shown in Figure 3(c),4 yet the number of query result is one
for both XML documents. On the other hand, if R(Q3, D2) has
an empty set of query results as discussed in Example 1.2, it vio-
lates data monotonicity. This is undesirable as the positions of both
Gasol and Brown in Grizzlies indeed present in D2.

Definition 2.3:[Data Monotonicity] An algorithm satisfies data
monotonicity if for a query Q and two XML documents D and D′,
D′ = D ∪ {n}, where n is an XML node, n /∈ D, the number
of query results on document D′ is no less than that on D, i.e.,
|R(Q, D)| ≤ |R(Q, D′)|.

Query Monotonicity. If we add a keyword to the query, then the
query becomes more restrictive, therefore the number of query re-
sults should be (non-strictly) monotonically decreasing. Analogous
to keyword search on text documents, adding a keyword to the
query can disqualify a document that is originally a query result to
be a result of the new query. Similarly, for XML keyword search,
adding a new keyword can disqualify a query result of the original
query if it is far away from any match to the new keyword.

Example 2.3: Adding a new keyword may decrease the number
of query results. [Q4, D2]: Recall that there are two query re-
sults when processing Q4 on the XML data D2, rooted at player
(0.1.0) and player (0.1.2) respectively. [Q5, D2]: Now suppose we
add one more keyword USA to Q4, which results in Q5 in Fig-
ure 2, searching for the name related to forward and USA. The
query result rooted at node player (0.1.2) is still a relevant query
result. However, the one rooted at player (0.1.0) becomes invalid,
as it does not contain any match to USA in its subtree. To satisfy
the AND semantics of the query, one would think of replacing the
query result rooted at player (0.1.0) with the one rooted at play-
ers (0.1) which contains at least one match to each keyword in its
subtree. However, since match node USA (0.1.2.1.0) belongs to
a different player than match nodes forward (0.1.0.2.0) and name
(0.1.0.0), they are unlikely to be meaningfully related to define a
relevant query result. Therefore, the number of query results of Q5

is reduced to one.
The number of query results may stay the same after a query in-

sertion. Consider Q1 and Q2 on D1. The query result R(Q1, D1)

4We discuss the desirable changes of relevant matches in consis-
tency property.

923

would be player (0.1.0) along with the match nodes in the sub-
tree; the query result R(Q2, D1) would be team (0) along with the
match nodes Grizzlies, Gasol, and position (0.1.0.2), as shown in
Figure 3(a). Though the results of Q1 and Q2 are different, both
queries have the same number of query result: one.

Definition 2.4:[Query Monotonicity] An algorithm satisfies query
monotonicity if for two queries Q and Q′ and an XML document
D, Q′ = Q ∪ {k}, where k is a keyword, k /∈ Q, the number of
query results of Q′ is no more than that of Q, i.e., |R(Q, D)| ≥
|R(Q′, D)|.

2.3 Consistency
Monotonicity describes how the number of query results should

change upon an update to the data or query. Consistency describes
how the content of query results should change upon an update to
the data or query. Intuitively, the delta of two sets of query results
can be defined as the biggest subtrees that are in one set of query
results but not in the other, named as delta result trees.

Example 2.4: Consider R(Q3, D1) and R(Q3, D2) in Figure 3(c).
The subtree rooted at position (0.1.2.2) is a biggest subtree that is in
R(Q3, D2) but not in R(Q3, D1), i.e., a delta result tree. Indeed,
every node in this subtree is in R(Q3, D2), and none of them is
in R(Q3, D1). On the other hand, the subtree rooted at its parent
node player (0.1.2) is not a delta result tree, as some nodes, e.g.
player (0.1.2), name (0.1.2.0) are in R(Q3, D1).

Now we formally define a delta result tree in XML keyword
search as the subtree that newly becomes part of the set of query
results upon an insertion to the data or query. Note that a delta re-
sult tree could be a query result itself, or could be part of a query
result.

Definition 2.5:[Delta Result Tree (δ)] Let R be a set of query re-
sults of processing query Q on data D, and R′ be the set of updated
query results after an insertion to Q or D. A subtree rooted at a
node n in a query result tree r′ ∈ R′ is a delta result tree if desc-or-
self(n, r′)∩R = ∅ and desc-or-self(parent(n, r′), r′)∩R 6= ∅,
where parent(n, r′) and desc-or-self(n, r′) denotes the parent,
and the set of descendant-or-self nodes of node n in a tree r′, re-
spectively. The set of all delta result trees is denoted as δ(R, R′).

Data Consistency. After a data insertion, each additional subtree
that becomes (part of) a query result should contain the newly in-
serted node. Analogous to keyword search on text documents, after
we add a new word to the data, if there is a document that becomes
a new query result, then this document must contain the newly in-
serted word. Similarly, for keyword search on XML trees, after
we add a new node to the XML data, if there exists a delta result
tree in the new query result, then this delta result tree should con-
tain the newly inserted node to be qualified (because otherwise, this
sub-tree should not be part of the new query result in order to be
consistent with the original query result). Let us look an example
before defining data consistency formally.

Example 2.5: [Q4, D1]: Consider Q4 (forward, name) on XML
data D1 shown in Figure 1, which searches for the name of a for-
ward. There is one query result, consisting of player (0.1.0) and the
matches in its subtree. [Q4, D2]: Now consider D2 obtained after
an insertion of a position (0.1.2.2) node along with its value forward
to D1. This insertion qualifies a new query result in R(Q4, D2),
consisting of player (0.1.2) and the matches in its subtree. This new
query result is a delta result tree, as it is the biggest subtree that is in
R(Q4, D2), but not in R(Q4, D1). It is valid with respect to data

consistency since the delta result tree contains the newly inserted
match node forward (0.1.2.2.0).

Consider Q1 (Gasol, position) on D1 and D2, searching for
the position of Gasol. Although the newly inserted node position
(0.1.2.2) is a match of Q1, the query result should not change. In-
tuitively, this match refers to the position of a player other than
Gasol, and therefore is irrelevant. In this case, there does not exist
a delta result tree, and data consistency holds trivially.

It is easy to verify that the changes to the query results in the
above examples also satisfy data monotonicity.

Definition 2.6:[Data Consistency] An algorithm satisfies data con-
sistency if for query Q and two XML documents D and D′, D′ =
D∪{n}, where n is an XML node, n /∈ D, if δ(R(Q, D), R(Q, D′))
is not empty, then every delta result tree contains n (so there can
only be one delta result tree).

Query Consistency. If we add a new keyword to the query, then
each additional subtree that becomes (part of) a query result should
contain at least one match to this keyword. Analogous to keyword
search on text documents, after we add a new keyword to the query,
if a document remains to be a query result, then it must contain a
match to the new keyword. Similarly, for keyword search on XML
trees, after we add a new keyword to the query, if there exists a delta
result tree in the new query result, then this delta result tree must
contain at least one match to the new keyword (because otherwise,
this sub-tree should not be part of the new query result in order to
be consistent with the original query result).

Example 2.6: [Q4, D2]: Consider again Q4 on XML data D2

in Figure 1. We have two query results: player (0.1.0) and the
matches in its subtree; player (0.1.2) and the matches in its sub-
trees. [Q5, D2]: If we add one more keyword USA to Q4, which
results in Q5, then player (0.1.0) should no longer be a query re-
sult (which satisfies query monotonicity). On the other hand, the
query result related to player (0.1.2) should add the subtree rooted
at nationality (0.1.2.1), which is a delta result tree. This is valid
with respect to query consistency since this subtree contains a node
0.1.2.1.0 matching the new keyword USA.

Now consider Q1 and Q2 on D1, where Q2 has one new key-
word Grizzlies compared with Q1, whose query results are shown
in Figure 3(a). These are valid with respect to query consistency
since the delta result tree rooted at name (0.0) contains a match
(0.0.0) to the new keyword Grizzlies. On the other hand, if R(Q2, D1)
is the one shown in Figure 3(b) as discussed in Example 1.1, then
there is another delta result tree compared to R(Q1, D1) in Fig-
ure 3(a): the subtree rooted at player (0.1.1). However, since this
delta result tree does not contain any match to the new keyword
Grizzlies, it violates query consistency. This query result is indeed
undesirable as position (0.1.1.2) is irrelevant to player Gasol.

Definition 2.7:[Query Consistency] An algorithm satisfies query
consistency if for two queries Q and Q′ and an XML document D,
Q′ = Q∪{k}, where k is a keyword, k /∈ Q, if δ(R(Q, D), R(Q′, D))
is not empty, then every delta result tree contains at least one match
to k.

Monotonicity and consistency properties with respect to data and
queries are non-trivial, non-redundant, and satisfiable. They are not
trivial, as to the best of our knowledge, there is no existing XML
keyword algorithm that satisfies all of them. They are not redun-
dant since we can find algorithms that satisfy one property but fail
another. Detailed analyses will be presented in Section 3. Further-
more, we show that these properties are satisfiable by proposing a
keyword search semantics that satisfies all of them in Section 4.

924

3. ANALYZING EXISTING ALGORITHMS
Several approaches have been proposed for identifying relevant

matches for XML keyword search, including XKSearch [21], XRank
[6], XSEarch [5], Compact Valuable Lowest Common Ancestor
(CVLCA) [13] and Meaningfully Lowest Common Ancestor (MLCA)
[14]. In this section, we review and analyze these approaches in
terms of monotonicity and consistency with respect to data and
query.

XKSearch [21]. XKSearch proposes a concept of Smallest Lowest
Common Ancestor (SLCA). For a query Q on data D, an XML
node is an SLCA if it contains matches to all keywords in Q in its
subtree, and none of its descendants does. For each SLCA, all its
descendant matches are considered as relevant to Q.

However, not all such matches are necessarily relevant. For ex-
ample, consider Q2 (Grizzlies, position, Gasol) on D1, where the
SLCA node is team. Although node position (0.1.1.2) is a match
in the subtree rooted at the SLCA node, it is irrelevant to the query
as it is not the position of Gasol. This undesirable behavior can be
detected by analyzing consistency property.

XKSearch does not satisfy query consistency. Consider Q1 and
Q2 on D1. The query results produced by XKSearch are shown in
the box annotated with R(Q1, D1) in Figure 3(a), and R(Q2, D1)
in Figure 3(b). As we can see, the subtree rooted at player (0.1.1)
is a delta result tree in δ(R(Q1, D1),
R(Q2, D1)). However, it doesn’t contain matches to the new key-
word Grizzlies, and thus violates query consistency.

XRank [6]. In XRank, an XML node is the root of a query result
if it contains at least one occurrence of each keyword in its subtree,
after excluding the occurrences of the keywords in its descendants
that already contain all the keywords. All descendant matches of
such nodes are considered relevant.

XRank does not satisfy query consistency. For Q1 and Q2 on
D1, XRank produces the same results as XKSearch.

The following approaches, XSEarch, CVLCA, and MLCA, use
a group of matches containing exactly one match to each keyword,
referred as pattern match, to identify relevant matches. For a query
Q on data D, these approaches find qualified pattern matches ac-
cording to their specific metrics. In our analyses, we consider a
match in a qualified pattern match as a relevant match. For exam-
ple, consider Q2 on D1 in Figure 1, there are two pattern matches,
{Grizzlies, Gasol, position (0.1.0.2)}, and {Grizzlies, Gasol, posi-
tion (0.1.1.2)}. Suppose the first pattern match is identified to be
qualified, but not the second. Then the matches in the first pattern
match are considered as relevant.

XSEarch [5]. XSEarch defines more expressive search terms than
keywords. There are three types of search terms. A node n satisfies
term l : k if n’s name contains l and n has a descendant leaf node
whose value contains k; a node n satisfies term l : if n’s name
contains l; a node n satisfies term : k if it has a child leaf node
whose value contains k. In the analyses, we consider each word in
a search term as a query keyword, and a node that satisfies a search
term as a match.

To identify relevant matches, XSEarch defines interconnection
relationship among two matches, and uses two semantics, namely
all-pair semantics and star semantics, to identify relevant pattern
matches. Two matches n and n′ are interconnected if the shortest
path between n and n′ (through LCA(n, n′)) does not have two dis-
tinct nodes with the same name, except n and n′. All-pair seman-
tics considers a pattern match P to query Q on data D as qualified
if any two nodes in P are interconnected. Star semantics considers
a pattern match P as qualified if there is a node in P such that ev-
ery other node in P is interconnected with it. As we can see, for a

team

players

player

name

Gasol

manager

Wallace

team

players

player

name

Gasol

manager

Wallace

name

(a) D3 (b) D4

Figure 4: D3 and D4

query containing two search terms, all-pairs and star semantics are
equivalent.

XSEarch may fail to recognize relevant matches. Consider query
(:Gasol, :Brown) on D1. The nodes that satisfy the search terms
are name (0.1.0.0) and name (0.1.2.0), composing a pattern match.
However, this pattern match is not qualified since the two match
nodes are not interconnected: there are two distinct nodes (0.1.0,
0.1.2) with the same name player on the shortest path connecting
them. Thus XSEarch gives an empty result for this query. This
is unlikely to be desirable as the user may be interested in finding
the relationship among two persons whose names are specified in
the query. Such a behavior can be captured by analyzing query
monotonicity.

XSEarch, either all-pair semantics or star semantics, does not
satisfy query monotonicity. For query (:Gasol, :Brown) on D1,
XSEarch has an empty query result, as discussed above. Now
consider query (player:Gasol, player:Brown), which has one more
keyword than the previous query. There is one qualified pattern
match: {player (0.1.0), player (0.1.2)}, which constitutes a query
result. After adding a keyword player, the number of query results
produced by XSEarch increases, thus it violates query monotonic-
ity.

XSEarch star semantics does not satisfy query consistency. Con-
sider query (:Gasol, position:) (corresponding to Q1) on D1. po-
sition (0.1.1.2) is not considered as a relevant match, as it is not
interconnected with node name (0.1.0.0) that matches term :Gasol.
Now if we add one more search term to form a new query (:Griz-
zlies, :Gasol, position:) (corresponding Q2), then position (0.1.1.2)
is considered as relevant. This is because there is a qualified pat-
tern match {name (0.0), name (0.1.0.0), position (0.1.1.2)}, where
name (0.0) is interconnected with the other two nodes. Note that
the relevant matches identified by XSEarch for this query is the
same as those identified by XKSearch and XRank. As discussed,
such behavior is undesirable and violates query consistency.

Compact Valuable LCA (CVLCA) [13]. This approach proposes
the concept of Compact Valuable LCA. For a keyword query Q on
data D, a node u is considered a valuable LCA (VLCA) if there is a
pattern match P that satisfies XSEarch all-pair semantics, and u is
the LCA of the nodes in P . A node u is a CVLCA if it is a VLCA
of pattern match P , and dominates every node in P . u dominates
a node v in P if for any other pattern match P ′ that contains v, the
LCA of nodes in P ′ is an ancestor-or-self of u.

CVLCA does not satisfy data monotonicity. Consider query
(Wallace, Gasol) on D3 in Figure 4. Pattern match (Wallace, Gasol)
is qualified as the two nodes are interconnected. Now we insert a
name node between nodes manager and Wallace, resulting in the
XML tree D4. Nodes Wallace and Gasol are no longer intercon-
nected, thus the query result on D4 is empty. Since this data in-

925

sertion results in fewer query results, it violates data monotonic-
ity. Such a behavior is indeed unintuitive. If Wallace and Gasol
are considered to be relevant to each other in D3, adding the de-
scription that Wallace is a name in D4 should not disqualify their
relevance.

Meaningfully LCA (MLCA) [14]. The concept of MLCA is pro-
posed as part of Schema-free XQuery which allows users to query
XML with arbitrary knowledge of the underlying schema 5. MLCA
can be used to identify qualified pattern matches and thus relevant
matches in XML keyword search. Two XML nodes n1 and n2 that
match keywords k1 and k2 are meaningfully related if there does
not exist n′1 ad n′2 that match k1 and k2, such that LCA(n1, n2) is
an ancestor of LCA(n′1, n′2). For a keyword search Q on data D, a
pattern match P is qualified if every two nodes in P are meaning-
fully related. If P qualifies, the LCA of all nodes in P is defined as
an MLCA of Q on D, and the matches in a qualified pattern match
are considered relevant.

MLCA does not satisfy data monotonicity. Consider Q3 on D1

and D2. The query result produced by MLCA on D1 is shown in
the box annotated with R(Q3, D1) in Figure 3(c). The query result
R(Q3, D2) produced by MLCA is empty, since we are not able to
find a pattern match in which every pair of nodes is meaningfully
related. No matter which position match we choose in a pattern
match, it is not related to at least one other node. For instance, if
we choose position (0.1.0.2), it is not related to Brown (0.1.2.0.0).
This is because they have an LCA node players (0.1). However,
the LCA node of position (0.1.2.2) and Brown (0.1.2.0.0) is player
(0.1.2), which is a descendant of players (0.1). Similarly, we can-
not choose the other two position matches to compose a qualified
pattern match. Thus MLCA violates data monotonicity as the num-
ber of query results decreases when we add a new node to the data.
Such a behavior is not desirable. Q3 is likely to search the position
of both Gasol and Brown in team Grizzlies. Since this information
is present in the data, the query result should not be empty.

In summary, none of the existing approaches for identifying rel-
evant matches in XML keyword search satisfies all four properties.

4. MAXMATCH
In this section, we show that the properties proposed in Section 2

are satisfiable by presenting MaxMatch, an effective and efficient
XML keyword search technique. We first introduce the semantics
of MaxMatch for identifying relevant matches, then propose an ef-
ficient algorithm to achieve it.

4.1 Definitions
Recall that a query result tree is defined by a pair, r = (t, M),

where t is the root, M is the set of matches in the tree that are
considered as relevant to Q, and every keyword in Q has at least one
match in M (Definition 2.2). We adopt a commonly used approach
in the literature [14, 21, 8], namely SLCA, to identify t, as to be
reviewed in this section. We address the challenge of identifying
relevant matches M within t in Section 4.2 and 4.4.

The intuition of SLCA is that only the matches in a smallest
subtree in the XML data that contains matches to every keyword in
a query are possibly relevant. A tree rooted at node n1 is smaller
than the one rooted at node n2 if n1 is a descendant of n2. Let us
look at an example.

Example 4.1: [Q1, D1]:. For Q1 (Gasol, position), node position
5Note that Schema-free XQuery [14] is an XQuery like engine, not
a keyword search engine. We are not directly using and comparing
with the query engine, but instead applying the MLCA semantics
to keyword search.

(0.1.0.2) and Gasol (0.1.0.0.0) are relevant matches since they refer
to the same player. Indeed they are in the subtree rooted at player
(0.1.0), which is a smallest subtree that contains matches to both
keywords. On the other hand, irrelevant match position (0.1.1.2)
can be detected since the subtree that contains this match and a
match to Gasol is rooted at players (0.1), which is not a smallest
subtree that contains matches to both keywords.

As can be seen from the example, matches that are not in a small-
est subtree that contains matches to all keywords are unlikely to be
relevant, such as position (0.1.1.2). Choosing such smallest sub-
trees can prune some irrelevant matches.6

Given the intuition of such smallest subtrees, now we formally
define Descendant Matches and SLCA [21].

Definition 4.1:[Descendant Matches] For query Q on XML data
D, the descendant matches of a node n ∈ D, denoted by dMatch(n),
is a set of keywords in Q, each of which has at least one match in
the subtree rooted at n.

Definition 4.2:[SLCA] A set of smallest lowest common ancestor
(SLCA) of matches to Q on D, denoted by SLCA(Q, D), consists
of nodes t ∈ D that satisfy the following: (i) the set of descendant
matches of t is Q, i.e., dMatch(t) = Q, and (ii) there does not
exist a node t′ which is a descendant of t, such that dMatch(t′) =
Q.

Example 4.2: [Q1, D1]: Continuing the previous example, there
are three nodes in D1 that contain matches to both keywords in Q1

in their subtrees, dMatch(0.1.0) = dMatch(0.1) = dMatch(0) =
Q. Therefore we have SLCA(Q1, D1)={0.1.0}.

In MaxMatch, a query result tree is identified as r = (t, M),
where t ∈ SLCA(Q, D) is the root. Next we discuss how to
select relevant matches M in the subtree rooted at t, which satisfies
both monotonicity and consistency.

4.2 Semantics of Selecting Relevant Matches
Not all matches in the subtrees rooted at SLCA nodes are rele-

vant. Recall [Q2, D1]: in Example 2.1, where match node position
(0.1.1.2) in the subtree rooted at the SLCA node team (0) in D1 is
irrelevant to Q2 (Grizzlies, Gasol, position) since it corresponds to
player Miller.

To identify irrelevant matches, we observe that not every descen-
dant of an SLCA node is equally important in contributing to query
results. A node in the subtree rooted at an SLCA node may pro-
vide strictly less information than its sibling nodes. Continuing
the example [Q2, D1], player (0.1.1) provides strictly less informa-
tion than its sibling node player (0.1.0), since the set of descendant
matches of player (0.1.1) ({position}), is a proper subset of that
of player (0.1.0) ({Gasol, position}). Therefore player (0.1.1) is
considered to be inferior than player (0.1.0) and the matches in its
subtree are considered as irrelevant.

Definition 4.3:[Contributor] For an XML tree D and a query Q,
a node n in D is a contributor to Q if (i) n has an ancestor-or-
self n1 in the SLCA set, n1 ∈ SLCA(D, Q), and (ii) n does not
have a sibling n2, such that dMatch(n2) ⊃ dMatch(n), where
dMatch(n) is the set of descendant matches of node n (Defini-
tion 4.1).

By Definition 4.3, an SLCA node is a contributor. Furthermore,
there is at least one contributor among sibling nodes. Now we de-
fine relevant matches based on contributors.

6Additional irrelevant matches need to be pruned as will be dis-
cussed in Section 4.2 and 4.4.

926

Definition 4.4:[Relevant Match] For an XML tree D and a query
Q, a match node m in D is relevant to Q if (i) m has an ancestor-
or-self n, n ∈ SLCA(D, Q), and (ii) every node on the path from
n to m is a contributor to Q.

In the above example [Q2, D1]:, every node on the path from
SLCA team to Gasol is a contributor, therefore Gasol is a rele-
vant match. Similarly, Grizzlies and position (0.1.0.2) are relevant
matches.

Note that we consider the partial order among sibling nodes in-
duced by the⊂ relationship of the sets of their descendant matches,
therefore a contributor is a maximal node among its siblings. A
match is considered to be relevant if its ancestors are all maximal
nodes among the siblings.

Proposition 4.3: (t, M) qualifies to be a query result according
to Definition 2.2, where node t ∈ SLCA(Q, D), M is the set of
relevant matches in the subtree rooted at t.

PROOF. We need to prove that M contains at least one match to
every keyword in Q. Let M ′ be the set of all the match nodes in
the subtree rooted at t in D. According to the definition of SLCA
(Definition 4.2), M ′ contains at least one match to each keyword
in Q. Removing the irrelevant matches from M ′ results in set M .
If an irrelevant match m1 to keyword k is pruned, then it must
have an ancestor-or-self n1 that is not a contributor. That is, n1

has a sibling contributor node n2, dMatch(n1) ⊂ dMatch(n2).
Therefore k ∈ dMatch(n2). By induction, there still exists at
least one match to keyword k in the subtree of t, for every keyword
k ∈ Q, and finally M contains at least one match to each keyword.

Definition 4.5:[Query Results of MaxMatch] For an XML tree D
and query Q, each query result generated by MaxMatch is defined
by r = (t, M) for every t ∈ SLCA(Q, D), where M is the set
of relevant matches to keywords in Q in the subtree rooted at t.
A query result tree r consists of the paths from t to each relevant
match in M .

4.3 Property Analysis
We prove that MaxMatch satisfies both monotonicity and con-

sistency with respect to data and query.

Proposition 4.4: MaxMatch satisfies data monotonicity.

PROOF. Consider query Q and two XML documents D and D′,
D′ = D ∪ {n}, where n is an XML node, n /∈ D. According to
Definition 4.5, the number of query results generated by MaxMatch
is equal to the number of SLCA nodes. For any t ∈ SLCA(Q, D),
there are two possibilities.

• t ∈ SLCA(Q, D′).

• t /∈ SLCA(Q, D′). We still have dMatch(t) = Q, but t is
no longer the root of a smallest subtree that contains matches
to all keywords. Then there must exist at least one descen-
dant of t that qualifies to be in SLCA(Q, D′).

Therefore, we have |SLCA(Q, D′)| ≥ |SLCA(Q, D)|, and
|R(Q, D′)| ≥ |R(Q, D)|.
Proposition 4.5: MaxMatch satisfies query monotonicity.

PROOF. Consider two queries Q and Q′ and an XML document
D, Q′ = Q ∪ {k}, where k is a keyword, k /∈ Q. For any t ∈
SLCA(Q, D), there are two possibilities:

• t ∈ SLCA(Q′, D)

• t /∈ SLCA(Q′, D). This is because t no longer contains
matches to all keywords in its subtree, i.e. k /∈ dMatch(t),
dMatch(t) 6= Q′. It is not possible for a descendant of t
to be in SLCA(Q′, D). At most one ancestor of t can be
in SLCA(Q′, D), since SLCA nodes do not have ancestor-
descendant relationship by Definition 4.2.

Therefore, we have |SLCA(Q′, D)| ≤ |SLCA(Q, D)|, and
|R(Q′, D)| ≤ |R(Q, D)|.
Proposition 4.6: MaxMatch satisfies data consistency.

PROOF. Consider query Q and two XML documents D and
D′, D′ = D ∪ {n}, where n is an XML node, n /∈ D. If
δ(R(D, Q), R(D′, Q)) is empty, then MaxMatch trivially satisfies
this property.

If δ(R(D, Q), R(D′, Q)) is not empty, let n1 be the root of a
delta result tree in δ(R(D, Q), R(D′, Q)), and n2 be the parent
of n1. By Definition 2.5 and 4.3, n2 is a contributor of both (D,
Q) and (D′, Q); n1 is a contributor of (D′, Q), but not a contrib-
utor of (D, Q) (because otherwise, since all ancestors of n1 up to
the SLCA node are contributors, we must have n1 ∈ R(D, Q)).
Therefore, there must exist a node n3 which is a sibling of n1, such
that dMatch(n1) ⊂ dMatch(n3) holds for D, but not for D′.
This shows that the delta result tree rooted at n1 must contain the
newly inserted node n (which must match a keyword in Q).

Proposition 4.7: MaxMatch satisfies query consistency.

PROOF. Consider two queries Q and Q′ and an XML document
D, Q′ = Q ∪ {k}, where k is a keyword, k /∈ Q. The proof is
similar to that of Proposition 4.6. If δ(R(D, Q), R(D, Q′)) does
not exist, then MaxMatch trivially satisfies the property. Otherwise,
for the root n1 of each delta result tree in δ(R(D, Q), R(D, Q′)),
n1 must contain at least one match to the new keyword k in its
subtree.

4.4 Algorithm
The algorithm of realizing the semantics of MaxMatch is pre-

sented in Figure 5. There are four stages in the process. First,
we retrieve the matches to each keyword in the query using pro-
cedure findMatch. Then we compute the set of SLCA nodes
from the matches using procedure findSLCA. We group all key-
word matches according to their SLCA ancestors using procedure
groupMatches. Each group group[i] = {t, M} consists of an
SLCA node t, and the set of matches M that are descendants of
t. Finally, the pruneMatches procedure identifies and outputs
contributors and relevant matches in M .

Next we illustrate each stage of the algorithm using Q3 (Griz-
zlies, Gasol, Brown, position) on D2 in Figure 1 as a running ex-
ample, which searches for the position of player Gasol and Brown
in team Grizzlies.
Matching Keywords. For a set of input keywords keyword[w],
procedure findMatch retrieves the list of data nodes sorted in the
order of their ID, kwMatch[j], that match keyword keyword[j], 1 ≤
j ≤ w. To enable efficient retrieval, an inverted index is built from
a word to the XML name or value nodes that contain this word.

Example 4.8: We start with retrieving the list of nodes matching
each keyword in Q3: Grizzlies, Gasol, Brown, position (0.1.0.2,
0.1.1.2, 0.1.2.2), respectively.

Computing SLCA. The procedure findSLCA computes the SLCA
nodes from kwMatch according to the algorithm proposed in [21].
To facilitate the computation, each XML node is assigned a Dewey

927

MAXMATCH(keyword[w])
1: kwMatch ← findMatch(keyword)
2: SLCA ← findSLCA(kwMatch) {adopted from [21]}
3: group ← groupMatches(kwMatch, SLCA)
4: for all group[j] do
5: pruneMatches(group[j])

GROUPMATCHES(kwMatch[w], SLCA[u])
1: {merge kwMatch in Dewey ID order to a list match in DeweyID

order}
2: match[v] ← merge(kwMatch[0], ..., kwMatch[w − 1])
3: {group matches}
4: i ← 0, j ← 0
5: while (i 6= u) or (j 6= v) do
6: group[i].t ← SLCA[i]
7: if isAncestor(group[i].t, match[j]) then
8: group[i].M = group[i].M ∪match[j]
9: j ← j + 1

10: else if group[i].M 6= ∅ then
11: i ← i + 1
12: else
13: j ← j + 1

PRUNEMATCHES(group = (t, M))
1: {identify relevant matches in M and output query result trees}
2: i ← M.size
3: start ← t
4: {set dMatch and dMatchSet during a post-order tree traversal}
5: while i ≥ 0 do
6: for each node n on the path from M [i](exclusively) to start do
7: if n matches keyword[j] then
8: set the jth bit of n.dMatch to 1
9: np ← n.parent, nc ← n.child on this path

10: if nc 6= Null then
11: n.dMatch ← n.dMatch OR nc.dMatch
12: n.last ← i {record the last descendant match of n}
13: np.dMatchSet[num(n.dMatch)] ← true {num is the

function converting a binary number to a decimal number}
14: i ← i− 1
15: start ← LCA(M [i], M [i + 1])
16: {print query result during a pre-order tree traversal}
17: i ← 0
18: start ← t
19: while i ≤ M.size do
20: for each node n from start to M [i] do
21: if isContributor(n) = false then
22: i ← n.last + 1 {skip the matches in the subtree rooted

at n}
23: break
24: else
25: output n
26: i ← i + 1
27: start ← LCA(M [i− 1], M [i])

ISCONTRIBUTOR(n)
1: {return true if n is a contributor, otherwise false}
2: np ← n.parent
3: i ← num(n.dMatch)
4: for j ← i + 1 to 2w − 1 do
5: if np.dMatchSet[j] = true && AND(i, j) = i then
6: return false
7: return true

Figure 5: Algorithm of MaxMatch

label [20] as a unique ID. We record the relative position of a node
among its siblings, and then concatenate these positions using dot
‘.’ starting from the root to compose the Dewey ID for the node.
For example, the player node with Dewey ID 0.1.2 is the 3rd child
of its parent node 0.1. Dewey ID can be used to determine the low-
est common ancestor (LCA) of two XML nodes: the Dewey ID of
nodes n1 and n2’s LCA is equal to the longest common prefix of
Dewey(n1) and Dewey(n2).

To efficiently retrieve the information of a node by its Dewey ID,
we build a Dewey index using B-tree structure, clustered by Dewey
ID.

Example 4.9: In our example, the SLCA node is team (0), as this
is a lowest (in fact, the only) node that contains matches to all the
keywords.

Grouping Matches. Then the groupMatches procedure groups
keyword matches kwMatch, such that the matches in each group
are descendants of the same SLCA node.

First we merge kwMatch[j] ordered by Dewey ID, 1 ≤ j ≤ w,
to produce a match list ordered by Dewey ID. Then we build
groups according to match and the SLCA nodes, such that for each
t ∈ SLCA, we have group[i] = (t, M), M is the set of matches in
the subtree rooted at t. According to Definition 4.2, M 6= ∅. Fur-
thermore, SLCA nodes do not have ancestor-descendant relation-
ship, a match can have at most one SLCA ancestor, and therefore
belong to at most one group. Due to these two properties and the
fact that SLCA and match are sorted by Dewey ID, the grouping
can be achieved by a single traversal of SLCA and match, during
which matches that do not belong to any group (i.e. do not have an
SLCA ancestor) are discarded. We set the cursors to the beginning
of SLCA, group, and match (i = 0, j = 0). For each SLCA[i],
we set group[i].t = SLCA[i]. If the current node match[j] is a
descendant of group[i].t, then it is added into group[i].M . Oth-
erwise, if group[i].M is not empty, then match[j] is either a de-
scendant of SLCA[i + 1] or does not have an SLCA ancestor. In
other words, we have already processed all the descendant matches
of SLCA[i], and thus move the cursor of SLCA and group (i.e.
i = i + 1). If group[i].M is empty, then match[j] does not have
an SLCA node as its ancestor and does not belong to any group,
therefore it is discarded.

Example 4.10: Continuing our running example, we merge four
lists of kwMatch and produce match: Grizzlies (0.0.0), Gasol
(0.1.0.0.0), position (0.1.0.2), position (0.1.1.2), Brown (0.1.2.0.0),
position (0.1.2.2). We group match based on the SLCA nodes.
In this example, there is only one SLCA node: team (0), there-
fore we have group[0], where group[0].t is the SLCA node, and
group[0].M is equal to match.

Pruning Matches. Each group = (t, M) defines a tree Tg com-
posed of the nodes on the paths from t to each match in M . Pro-
cedure pruneMatches identifies and outputs the contributors and
relevant matches in Tg as query results.

According to Definition 4.3, a node n is a contributor if n does
not have any sibling whose descendant match set is a proper su-
perset of that of n. We use a boolean array n.dMatch of size w
to record the set of descendant matches of node n with respect to
query keyword[w]. This array is represented as a binary number
that has 1 at position j if and only if keyword[j] has a match in
the subtree rooted at n, 1 ≤ j ≤ w. Let num(n.dMatch) be the
decimal value of n.dMatch.

Example 4.11: In the running example of processing Q3 (Griz-
zlies, Gasol, Brown, position), node player (0.1.0) contains matches
to Gasol and position in its subtree, therefore its dMatch is 0101.

928

Similarly, the dMatch of player (0.1.1), player (0.1.2) and name
(0.0) are 0001, 0011, 1000, respectively.

Instead of checking n.dMatch with respect to each of its sib-
lings, we associate its parent node np a boolean array dMatchSet
of size 2w to record the dMatch information of np’s children.
Specifically, np.dMatchSet[i] = true if and only if np has a
child n, such that num(n.dMatch) = i.

If the values of dMatch and dMatchSet are set, procedure
isContributor determines that a node n is a not a contributor if
there exists a number j that subsumes i, and we have np.dMatchSet[j]
= true. A number j subsumes i if bitwise AND(i, j) = i, j 6= i.

Example 4.12: Continuing our running example, let n be the node
player (0.1.1), n.dMatch = 0001. Let np be its parent: players
(0.1). Since the dMatch of np’s three children are 0101, 0001 and
0011, respectively, we set np.dMatchSet[1] = np.dMatchSet[3]
= np.dMatchSet[5] = true. Since 0011 subsumes 0001 and
np.dMatchSet[3] = true, n is not a contributor. On the other
hand, both player nodes 0.1.0 and 0.1.2 are contributors.

To set the values of dMatch and dMatchSet for each group =
(t, M), the procedure pruneMatches performs a post-order traver-
sal of the tree Tg . For each node n ∈ Tg , if n matches a key-
word keyword[j], 1 ≤ j ≤ w, then we set the jth position of
n.dMatch to be 1. If n has children, we further set n.dMatch
according to the bitwise OR of the dMatch of n’s children. Then
we set dMatchSet(np)[num(dMatch(n))] = true, where np is
the parent of n.

To identify relevant matches, recall that a match in M is relevant
if and only if all its ancestors up to SLCA node t are contributors
(Definition 4.4). Equivalently, if a node is disqualified as a contrib-
utor, then none of the matches in its subtree can be relevant. The
pruneMatches procedure performs a pre-order traversal of tree Tg

in identifying relevant matches. If a node reached is not a contrib-
utor, then we skip its subtree, discarding all its descendant-or-self
matches. The matches that remain in the traversal are considered
to be relevant and are then output.

Example 4.13: In the running example, tree Tg consists of the
paths in D2 from group[0].t, team (0), to each match in group[0].M .
We perform a pre-order traversal on Tg . We start with outputting
the root team (0). Then since name (0.0) is a contributor, it is out-
put. So does its child, a relevant match Grizzlies (0.0.0). Simi-
larly we output the nodes on the path from players (0.1) to rele-
vant matches Gasol (0.1.0.0.0) and position (0.1.0.2) (along with its
value child). When we visit player (0.1.1), since it is not a contribu-
tor, we move to the next match in group[0].M that is not a descen-
dant of player (0.1.1): Brown (0.1.2.0.0). Then we reach player
(0.1.2), which is a contributor. Finally, we output the nodes on
the path from player (0.1.2) to relevant matches Brown (0.1.2.0.0)
and position (0.1.2.2) (along with its value node), as shown in box
annotated with R(Q3, D2) in Figure 3 (c).

Now we analyze the complexity of MaxMatch. We use Mmax

and Mmin to denote the maximum and minimum number of matches
to a keyword, and M , |D|, d, w to denote the total number of key-
word matches, the XML tree size, the depth of the XML tree and
the number of keywords, respectively. Procedure findMatch re-
trieves keyword matches from the inverted index, with cost bounded
by O(M). We adopt [21] for procedure findSLCA with cost
O(MminwdlogMmax). Procedure groupMatches merges the
lists of matches in a merge-sort manner, which takes O(M logw)
time. Then it traverses the match list and the SLCA list to group
them, costing O(Md). Finally, procedure pruneMatches tra-
verses the tree Tg consisting of the paths from SLCA to each match

Baseball
QB1 Jim, Abbott, Outfield
QB2 Jim, Abbott, James, Baldwin, Starting Pitcher
QB3 player, Abbott, Baldwin
QB4* Tigers, Starting Pitcher, surname
QB4 Tigers, Starting Pitcher, surname
QB5 Tigers, Starting Pitcher, Outfield, surname
QB6 Cordero, First Base
QB7 Cordero, First Base, Tigers
QB8 1998 Abbott Team
Mondial
QM1 United States, Birmingham, Population
QM2* United States, United Kingdom, Birmingham, Population
QM2 United States, United Kingdom, Birmingham, Population
QM3 Tasmania, Sardinia, Gotland, Area
QM4 Ethnicgroups, Chinese, Indian, Capital
QM5 Mondial, Country, Muslim
QM6 Country, Muslim
QM7 Asia, China, Government
QM8 Organization, Name, Member

Figure 6: Part of Query Sets (36 Queries in Total)

twice, one post-order and one pre-order, which takes O(min{|D|, Md}·
2w) time. 2w is the cost of the for loop in isContributor. There-
fore, the overall complexity of MaxMatch is O(min{min{|D|, Md}·
2w), MminwdlogMmax}).

5. EXPERIMENTS
To evaluate the effectiveness of MaxMatch, we tested three met-

rics: search quality measured by precision, recall and F-measure
compared with the relevant query results obtained from user stud-
ies, processing time and scalability.

5.1 Experimental Setup
Equipment. The experiments are performed on a 3.0GHz AMD
Athlon (TM) dual-core CPU running Microsoft Windows Server
2008 Enterprise operating system with 4.0GB memory. The al-
gorithms are implemented in Microsoft Visual C++ 8.0. We use
Oracle Berkeley DB [1] as the tool for creating inverted index and
Dewey index.

The test data and part of the query sets are shown in Figure 6.
Data Set. We have tested two data sets: Baseball and Mondial.
Baseball is a data set about the teams and players of North Ameri-
can baseball league.7 Mondial is a world geographic data set.8

Query Set. Our query set consists of two parts with 36 queries in
total. First we pick eight distinct queries for each data set, which
are shown in Figure 6. These queries are chosen to represent a
variety of cases, where both tag names and values are used.

To test the validity of data monotonicity and data consistency,
the queries in Figure 6 with a ‘∗’ in their names are evaluated on
the modified data sets. QB4* is evaluated on the Baseball data set
after removing a Starting Pitcher node within team Tigers. QM2*
is evaluated on the Mondial data set after removing the Birmingham
node of United Kingdom.

To test the validity of query monotonicity and query consistency,
we design some query pairs, such that one contains one more key-
word than the other, including QB4 and QB5, QB6 and QB7,
QM1 and QM2, QM5 and QM6.

In addition, ten test queries for each data set are issued by stu-
dents who are not involved in this project, which are omitted due to
limited space.
7http://www.ibiblio.org/xml/books/biblegold/examples/baseball/.
8http://www.cs.washington.edu/research/xmldatasets.

929

0

20

40

60

80

100

QB1 QB2 QB3 QB4* QB4 QB5 QB6 QB7 QB8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

0

20

40

60

80

100

QB1 QB2 QB3 QB4* QB4 QB5 QB6 QB7 QB8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

(a) Precision (b) Recall

Figure 7: Precision and Recall on Baseball Data Set

0

20

40

60

80

100

QM1 QM2* QM2 QM3 QM4 QM5 QM6 QM7 QM8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

0

20

40

60

80

100

QM1 QM2* QM2 QM3 QM4 QM5 QM6 QM7 QM8

XKSearch XRank XSEarch(A) XSEarch(*) CVLCA MLCA MaxMatch

(a) Precision (b) Recall

Figure 8: Precision and Recall on Mondial Data Set

5.2 Search Quality
To measure search quality, we need to assess the relevance of

query results. We have conducted user surveys on the test data and
queries to set the ground truth of relevant matches of each query.
Thirteen students participated in the survey. Each participant was
asked to specify relevant matches for each query. The ground truth
of relevant matches are the ones selected by at least seven out of
the thirteen users.

Perception of the Proposed Properties. For the queries designed
to test the proposed properties, user study results confirm our in-
tuition. Whenever we add a new keyword to a query, the number
of relevant query results should not increase; and if a delta result
tree exists, it should contain at least one match to the new keyword.
Whenever we add a new data node, the number of relevant query
results should not decrease; and if a delta result tree exists, it should
contain the new data node.

System Analysis. We compared the search quality of MaxMatch
with XKSearch [21], XRank [6], XSEarch [5] (including all-pair
semantics and star semantics), CVLCA [13] and MLCA [14] based
on the semantics described in those papers.

To measure the search quality, we use precision, recall, and F-
measure. Precision measures the percentage of the output nodes
that are desired, recall measures the percentage of the desired nodes
that are output. F-measure is the weighted harmonic mean of pre-
cision and recall, and is computed as:

F =
(1 + α)× precision× recall

α× precision + recall

The precision and recall of each approach on test queries in Fig-
ure 6 are shown in Figure 7 and Figure 8 respectively.

Now we analyze each approach. XKSearch always has a perfect
recall except QM4 (which will be discussed later), but generally

0

20

40

60

80

100

α=0.5 α=1 α=2

XKSearch
XRank
XSEarch(A)
XSEarch(*)
CVLCA
MLCA
MaxMatch

Figure 9: F-measure of All 36 Test Queries

has a very low precision as it outputs all the match nodes under
each SLCA node, which are not necessarily relevant. Take QB4 for
example, XKSearch outputs the surname nodes of all the players,
including the ones who are not Starting Pitchers, and therefore has
a low precision.

The query result of XRank, for a given query and document,
is a superset of that of XKSearch. For many test queries, XRank
has the same query results as XKSearch, such as QB4, where the
surname nodes of all the players (including the ones who are not
Starting Pitchers) are output. It has a different precision and recall
from XKSearch for queries like QM4. The semantics of QM4 is
to find capitals of the countries that have ethnicgroups Chinese or
Indian. In the data, some countries have both Chinese and Indian,
some have one of them, and some have neither. XKSearch outputs
the countries that have both. On the other hand, besides outputting
all such countries, XRank additionally considers the LCA that con-
tains all query keywords of the remaining keyword matches, which
is the document root. Therefore all keyword matches are consid-
ered to be relevant, and the information of the countries that have
either ethnicgroups of Chinese or India are output, achieving a bet-

930

0.0001

0.001

0.01

0.1

1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8

T
im

e
(s

)

XKSearch MaxMatch MLCA

0.0001

0.001

0.01

0.1

1

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

T
im

e
(s

)

XKSearch MaxMatch MLCA

0

30

60

90

120

150

250 500 750 1000

T
im

e
(s

)

Data Size (MB)

XKSearch MaxMatch

(a) Processing Time on Baseball (b) Processing Time on Mondial (c) Scalability

Missing bars or lines denote error reports during query evaluation.

Figure 10: Processing Time and Scalability

ter recall than XKSearch. Both approaches have a low precision
as XKSearch outputs all ethnicgroups nodes within the countries
that have both Chinese and Indian, and XRank outputs capital and
ethnicgroups nodes that are not related to Chinese or Indian.

XSEarch star semantics has the same precision and recall as XK-
Search on some queries such as QB4 and QM5. Take QB4 for
example. Keyword Tigers is a team name, and all Starting Pitcher
and surname nodes within the team are interconnected with Tigers,
and are considered relevant, which gives the same set of relevant
matches as XKSearch. XSEarch star semantics has a zero recall on
several queries, for example, QB1. In the data, the player named
Jim Abbott is not an outfield, and the semantics of the query is to
find the players that play with Jim Abbott whose position is out-
field. However, since the matches of Jim and Abbott are not inter-
connected with those of Outfield, XSEarch star semantics gives an
empty result, leading to zero recall.

XSEarch all-pair semantics and CVLCA have zero recall on more
queries than XSEarch star semantics, as they require that in a quali-
fied pattern match, every two nodes must be interconnected. XSEarch
all-pair and CVLCA have the same result for test queries except
QB3. For this query, XSEarch all-pair semantics correctly iden-
tifies relevant matches, as the match nodes are two player nodes
which are interconnected. However, CVLCA generates empty re-
sult as the matches to Abbott and Baldwin are not interconnected.

The query result output by MLCA, for a given query and docu-
ment, is a subset of that output by XKSearch. Some query results
generated by MLCA are the same as XKSearch, such as QB6 and
QM6. MLCA has a better precision on many queries such as QB4,
where irrelevant surname matches of players other than Starting
Pitcher that are output by XKSearch are avoided. MLCA has a
low recall for queries like QB5, where an empty result is returned
since there is no surname node that is meaningfully related with
both Starting Pitcher and Outfield. In general MLCA has a high
precision and a low recall.

MaxMatch has perfect precision and recall for most of the test
queries, especially when the data structure is regular, such as the
Baseball data set. However, there are queries where its performance
can further be improved.

For QM2∗, since the Birmingham of United Kingdom is re-
moved from the data, all population nodes under country United
Kingdom is output by MaxMatch, leading to a low precision.

For QM4, according to user study, the user would like to find
the capitals of the countries that have ethnic group of Chinese or
Indian. MaxMatch has a low recall because it only outputs the
captials of the countries that have both Chinese and Indian ethnic
groups. MaxMatch also has a low precision as it outputs not only
the capital of each country, but also the capital of each province,
which is irrelevant to the query.

For QM5, the user would like to search the countries with reli-
gion Muslim. However, in the Mondial data set, a Province and a
City node can have a child Country. All the approaches output these
Country nodes of a Muslim country and thus have a low precision.
In fact, for QM5, XKSearch, XRank and XSEarch star semantics
output all the Country nodes in the data set, which leads to a lower
precision.

QM6 searches for the country with Muslim. Since each province
and city has a country child, and all these country nodes are output
by all approaches, thus they all suffer from low precision.

Figure 9 shows the F-measure of all 36 test queries (including
the 20 queries issued by users and 16 queries in Figure 6) with
α = 0.5, 1 and 2. As we can see, overall MaxMatch outperforms
other approaches.

5.3 Processing Time and Scalability
We have implemented XKSearch/SLCA [21] and MaxMatch,

both of which use the approach in [21] for computing SLCA of
keyword matches. We use Timber [2] with default setting for iden-
tifying relevant matches under MLCA semantics. MLCA is pro-
posed as a constructor of Schema-free XQuery, and can only be
applied on tag names in Timber. To simulate its effect on keyword
search, we convert the values in the test data into tag names with
dummy value children (e.g., Frank is converted to <Frank/ >).
Then we use the keywords as parameters of the MLCA function
provided by Timber to obtain relevant matches under MLCA se-
mantics. Since XML keyword search systems XSEarch, XRank,
CVLCA are not available online, we compare MaxMatch with XK-
Search and MLCA using the revised data set.

We use the Baseball data of size 1014KB, and a portion of the
Mondial data of size 515KB. The processing times of XKSearch,
MLCA, and MaxMatch over the queries on Baseball and Mondial
data sets are shown in Figure 10 (a) and (b).

Both XKSearch and MaxMatch retrieve keyword matches and
compute the SLCA nodes. XKSearch additionally needs to out-
put all the matches in the trees rooted at SLCA nodes. MaxMatch
additionally needs to group matches according to their SLCA an-
cestors, traverse subtrees rooted at SLCA nodes, identify relevant
matches according to the descendant matches of each node in these
subtrees. Therefore MaxMatch has processing overhead compared
with XKSearch. For queries like QM6, there are a lot of match
nodes that are not descendants of any SLCA node, therefore the
time for pruning irrelevant matches in the subtrees rooted at SLCA
nodes is small, and the keyword match retrieval and SLCA com-
putation time is the bottleneck. In this case, the processing time
of XKSearch and MaxMatch are close. For queries where most
of the keyword matches have an ancestor SLCA node, MaxMatch
is slower than XKSearch. MLCA retrieves pattern matches to a

931

query, and then checks whether the nodes in the pattern matches
are pairwise meaningfully related, which is usually expensive.

We have tested the scalability of MaxMatch and XKSearch with
respect to the increase of data size. The result is shown in Fig-
ure 10(c), which represents the processing of QB1 on the Baseball
data with size increased from 1MB to 1GB by replicating the origi-
nal data set. The scalability of processing other queries are similar.
It can be observed that the processing times of MaxMatch and XK-
Search both increase linearly with the increase of the data size.

In summary, MaxMatch achieves improved search quality com-
pared with existing XML keyword search engines in identifying
relevant matches with efficiency.

6. RELATED WORK
We have reviewed the literature of XML keyword search on iden-

tifying relevant matches in Section 3. There are several orthogonal
problems in XML keyword search.

Identifying Relevant Non-matches. Besides returning relevant
matches as well as the paths connecting them, other data nodes
that are not keyword matches may also be relevant to the query and
should be returned. For example, consider keyword search Gasol
on the XML data in Figure 1. This paper discusses which matches
to Gasol are relevant and should be output. Besides matches, it
would be desirable to output other nodes associated with this player,
such as the position and nationality nodes, despite that they are not
matches to keywords. To determine relevant non-matches, XKey-
word [9] and Précis [12] allow a system administrator and/or users
to specify them on a schema graph. [15] automatically infers rele-
vant non-matches based on the characteristics of XML data and the
pattern of input keywords.

Ranking Schemes. Ranking schemes have been studied for key-
word search on XML documents. [9, 4] propose to rank query re-
sults according to the distance between different keyword matches
in the document. In the presence of XML schema, efficient algo-
rithms to compute top k results are presented in [9]. XSEarch [5]
employs a ranking scheme in the flavor of information retrieval,
considering factors like distance, term frequency, document fre-
quency, etc. XRank [6] extends the page-rank hyperlink metric
to XML.

This paper focuses on the problem of identifying relevant key-
word matches. The techniques of determining relevant non-matching
nodes and ranking query results are orthogonal issues and can be
incorporated into MaxMatch.

Most of the work on XML keyword search including this paper
considers AND semantics, except [5] and [19], which allow both
AND and OR operators. Techniques for optimizing XML keyword
search by exploiting materialized views have been studied [16].

7. CONCLUSIONS
This paper addresses an open problem of reasoning about XML

keyword search algorithms. We take an axiomatic approach and
have identified the properties that an XML keyword search algo-
rithm should ideally possess in identifying relevant matches to key-
words. Monotonicity states that data insertion (query keyword in-
sertion) causes the number of query results to non-strictly monoton-
ically increase (decrease). Consistency states that after data (query
keyword) insertion, if an XML subtree becomes valid to be part of
new query results, then it must contain the new data node (a match
to the new query keyword). We have shown that these properties
are non-trivial, non-redundant, and satisfiable. To the best of our
knowledge, this is the first work that introduces properties to char-

acterize reasonable behaviors of determining relevant matches for
XML keyword search.

We have proposed MaxMatch, a novel semantics for identifying
relevant matches and an efficient algorithm to realize this seman-
tics, which is the only known algorithm that satisfies all properties.
Experimental studies have verified the intuition of the properties
and shown the effectiveness of our approach. MaxMatch is incor-
porated as part of the XSeek system [15] for XML keyword search,
which intelligently identifies not only relevant matches to keywords
but also relevant nodes that do not match keywords as query results.

This work initiates an investigation of reasoning about keyword
search from a formal perspective. We have proposed four proper-
ties that are helpful to detect abnormal behaviors. They can serve
as necessary conditions for a search engine to produce desirable
query results, but may not guarantee a perfect search engine. For
example, returning an entire XML database that contains matches
to all the keywords in the query trivially satisfies these properties.
The presence of additional desirable properties to further evaluate
keyword search engines is an open problem. Consider another ex-
ample, adding a new keyword Tom in a query Cruise may change
the query semantics. A system that satisfies the proposed propen-
sities will return information of star Tom Cruise and possibly the
information about a tourist Tom in a Cruise. In this case, a good
ranking scheme is important, which is part of our future work.

8. REFERENCES
[1] Oracle berkeley db.

http://www.oracle.com/technology/products/berkeley-db/index.html.
[2] Timber project. http://www.eecs.umich.edu/db/timber/.
[3] K. Arrow. Social Choice and Individual Values. 1951.
[4] M. Barg and R. K. Wong. Structural proximity searching for large

collections of semi-structured data. In CIKM, 2001.
[5] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic

Search Engine for XML. In VLDB, 2003.
[6] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:

Ranked Keyword Search over XML Documents. In SIGMOD, 2003.
[7] P. Hansen and F. S. Roberts. An impossibility result in axiomatic

location theory. In Mathematics of Operations Research, 1996.
[8] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava.

Keyword Proximity Search in XML Trees. IEEE Transactions on
Knowledge and Data Engineering, 18(4), 2006.

[9] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
Proximity Search on XML Graphs. In ICDE, 2003.

[10] Y. Huang, Z. Liu, and Y. Chen. Query Biased Snippet Generation in
XML Search. In SIGMOD, 2008.

[11] J. Kleinberg. An Impossibility Theorem for Clustering. In NIPS,
2002.

[12] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Précis: The essence of
a query answer. In ICDE, 2006.

[13] G. Li, J. Feng, J. Wang, and L. Zhou. Effective Keyword Search for
Valuable LCAs over XML Documents. In CIKM, 2007.

[14] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In VLDB,
2004.

[15] Z. Liu and Y. Chen. Identifying Meaningful Return Information for
XML Keyword Search. In SIGMOD, 2007.

[16] Z. Liu and Y. Chen. Answering Keyword Queries on XML Using
Materialized Views. In ICDE, 2008.

[17] M. J. Osborne and A. Rubinstein. A Course in Game Theory. In MIT
Press, 1994.

[18] D. M. Pennock, E. Horvitz, and C. L. Giles. An Impossibility
Theorem for Clustering. In AAAI, 2000.

[19] C. Sun, C.-Y. Chan, and A. Goenka. Multiway SLCA-based
Keyword Search in XML Data. In WWW, 2007.

[20] V. Vesper. Let’s Do Dewey.
http://www.mtsu.edu/ vvesper/dewey.html.

[21] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for
Smallest LCAs in XML Databases. In SIGMOD, 2005.

932

