
Reasoning as Axioms Change

Incremental View Maintenance Reconsidered

Jakub Kotowski, François Bry, and Simon Brodt

Institute for Informatics, University of Munich
http://pms.ifi.lmu.de

Abstract. We present a novel incremental algorithm to compute changes
to materialized views in logic databases like those used by rule-based rea-
soners. Such reasoners have to address the problem of changing axioms
in the presence of materializations of derived atoms. Existing approaches
have drawbacks: some require to generate and evaluate large transformed
programs that are in Datalog¬ while the source program is in Data-
log and significantly smaller; some recompute the whole extension of a
predicate even if only a small part of this extension is affected by the
change. The method presented in this article overcomes both drawbacks,
arguably at an acceptable price: a slight adaptation of the semi-näıve
forward chaining.

1 Introduction and Motivation

As the mostly read-only Web becomes a predominantly read/write social Seman-
tic Web [4,3], information becomes more volatile and systems that can handle
changes efficiently grow more important. Most Semantic Web applications make
use of the Resource Description Framework (RDF) [21] and the Web Ontology
Language (OWL) [37]. A large part of RDF semantics [19] and for example of
the OWL 2 RL profile [27], an OWL 2 sublanguage, can be axiomatized using
rules and implemented in logic databases [35,31]. The work presented in this
paper is part of the development of a social semantic platform one application
of which is a semantic wiki that employs RDF and OWL.1 Wikis are typically
affluent with user activity that creates and changes facts either directly or as
a side-effect. In a semantic wiki equipped with reasoning about metadata, this
trait poses high demands on the reasoner especially in terms of response times as
users expect a nimble user interface with up-to-date information. Hence the need
for materialization of views and their maintenance. Materialization of views, i.e.
storing atoms derived from rules and base facts, is a technique often used in
databases for improving the speed of query evaluation and it has been argued
feasible for Semantic Web data management systems [7,6] too. Efficient incre-
mental maintenance of materialized views is highly desirable as rules and base
facts change. This is true also for the Semantic Web as semantic wikis can be

1 This social semantic platform[29] is the outcome of the project KiWi http://
kiwi-project.eu/

http://pms.ifi.lmu.de
http://kiwi-project.eu/
http://kiwi-project.eu/


2

seen as a testbed for the Semantic Web or “Semantic Web in the small” [30].
The problem of incremental view maintenance has been studied in deductive
databases and is related to a wider range of fields, see related work in Section 3.
Let us now define the problem more formally.

2 Incremental View Maintenance

Let P be a definite range restricted logic program and D ⊆ P a subset of P . The
view maintenance problem is the problem of computing TωP\D given the fixpoint
TωP , where TP is the immediate consequence operator.

The view maintenance problem has a trivial solution which is computing the
fixpoint TωP\D directly from P \D, disregarding TωP . This solution is obviously
inefficient because it necessarily repeats much of the computation used to gener-
ate TωP . The view maintenance problem can also be seen as a version of the frame
problem[20] as noted in [28] and [9]. This paper studies how to solve the view
maintenance problem incrementally by leveraging information available from
from the fixpoint computed before axioms (that is, base facts or rules) change.
Here, this modified task is called the incremental view maintenance problem.

To solve the incremental view maintenance problem, it is necessary to decide
amongst other for each atom g ∈ TωP whether g ∈ TωP\D. This amounts to

deciding whether g can be derived from P \D. Any algorithm that decides this
question has to demonstrate that there is a derivation of g with respect to P \D.
In other words, the incremental maintenance problem can be solved for example
by keeping track of derivations of each atom. This focus of this paper is on
solving the view maintenance problem without keeping information other than
the view materialization TωP .

It is important to clearly distinguish the incremental view maintenance prob-
lem from the view update problem [15]. The view update problem is to change
a program so that a given formula cannot (resp. can) be derived from it.

3 Related Work

The view maintenance problem is essentially a problem of changing knowledge
and especially a problem of updating derived facts or beliefs upon changes in
base facts or assumptions. As such, the problem is related to a wealth of liter-
ature ranging from epistemology, to logic, to databases. One of the overarching
concepts is defeasible reasoning [22] which includes two subfields related to this
work: belief revision (an epistemological approach) and reason maintenance (a
logical approach). The problem, as described here, was studied mainly in the de-
ductive database community and recently also in the Semantic Web community.

Belief revision is developed as a formal theory by Alchourrón, Gärdenfors and
Makinson [1,2], often it is called the AGM theory. It views all formulas as equally
important in general and it aims at revising a theory so that only a minimal
change occurs in its deductive closure. In particular, it makes no distinction



3

between base and derived facts and thus it is more relevant for example to beliefs
in multi-agent systems than to views in databases. Indeed, databases typically
manage large sets of base facts and only a few views and the distinction between
base facts and derived facts is an important one.

Reason maintenance [13] (originally truth maintenance [12]) refers to a vari-
ety of knowledge base update techniques originally developed for use in problem
solvers which share a common conceptual design – they distinguish between an
inference engine and a separate reason maintenance system which communicate
via an interface [26] with each other and, in addition to derived atoms, they keep
a record of derivations in form of a “data dependency network”. In contrast, the
method developed in this paper assumes that only the atoms are stored. One of
the reason maintenance approaches has been specialized to RDF(S) reasoning
and implemented by Broekstra et al. [7] in the area of semantic web as part of
the Sesame triple store [5].

Belief revision and reason maintenance are closely related and are compared
in the literature for example by Jon Doyle [14], the founder of reason mainte-
nance, and by Alvaro Val [34].

The incremental view maintenance problem has been studied in the field of
deductive databases on and off since around 1980, see for example a survey article
[16] by Gupta and Mumick, authors of the probably most popular DRed algo-
rithm [17]. Most of the original algorithms do not directly handle rule changes
but they can be extended to do so. The method described in this paper auto-
matically handles rule changes too.

The most prominent incremental view maintenance algorithms are the DRed
(derive and rederive) algorithm [17] and the PF (propagate filter) algorithm [18].
Both work on the same principle of deriving an overestimation of deleted atoms
and then finding alternative derivations for them. The DRed algorithm first de-
rives the whole overestimation and only then finds alternative derivations. The
PF algorithm, which was originally developed in the context of top-down mem-
oing [10], finds alternative derivations (filters) as soon as an atom to possibly be
deleted is derived (propagated). Both algorithms perform the two steps by evalu-
ating a transformed version of the original rules (resulting in a bigger program).
In contrast, the method presented in this paper uses the original unchanged
program.

Staudt and Jarke developed in [32] a purely declarative version of DRed.
Their algorithm, however, transforms the original program into even more rules
than DRed itself. Also, the transformed program includes negation even if the
original program does not.

Recently, Volz, Staab, and Motik extended [36] Staudt and Jarke’s version
of DRed to handle rule changes and applied the resulting method to reasoning
on the semantic web. For example, the Volz, Staab, and Motik version of DRed
transforms 12 RDF semantics Datalog rules into a maintenance program of 60
rules [36]. Their method leads to complete recomputation for any change in base
triples in the case of a single (ternary) predicate axiomatization of RDF(S) which
is a significant disadvantage especially in the area of semantic web where this



4

kind of axiomatization is very common. In comparison, the algorithm presented
in this paper makes do with the original 12 rules, no modification is necessary to
handle general rule updates, and always only the relevant part of a predicate’s
extension is recomputed, including the case of a single predicate axiomatization
of RDF(S).

4 Preliminaries

Throughout this paper a Datalog [33] rule language is assumed, rules are assumed
to be range restricted, and the usual notation, e.g. h ← b1, b2, . . . , bn, is used
(we use a dot “.” as the rule separator where necessary). That is, it is assumed
that the logical language has no function symbols other than constants and it is
assumed that it includes a finite number of constants but at least one constant
and two formulas: > and ⊥ which respectively evaluate to true and false in all
interpretations, and all rules are range restricted, i.e. a variable occurring in the
rule head occurs in the rule body too. Rules with > as the body, e.g. h ← >,
are called base facts. A base atom is the head of a base fact. A program is a
finite set of rules. In addition, the usual definition of the immediate consequence
operator TP and of its ordinal powers is assumed. See for example [8] for details.
Let r = h← b1, . . . , bn be a rule. Then head(r) = h, body(r) = {b1, . . . , bn}, and
atoms(r) = body(r)∪{head(r)}. N denotes the set of natural numbers including
zero, N1 = N \ {0}.

Let a and b be two ground atoms, e.g. a, b ∈ HB , where HB is the Herbrand
base. We say that b directly depends on a in TωP (or with respect to P ) if there
is a a rule instance r of a rule in P such that atoms(r) ⊆ TωP , a ∈ body(r),
and a = head(r). We define the (indirectly) depends relation as the transitive
closure of the directly depends relation. We say that an atom a directly depends
on a rule r in TωP (or with respect to P ) if there is a ground rule instance s of r
such that atoms(s) ⊆ TωP and head(s) = a. We say that an atom a depends on
a rule r in TωP (or with respect to P ) if it directly depends on r in TωP or if it
depends on an atom b ∈ TωP that directly depends on r in TωP . Note that if P is
a recursive Datalog program then an atom may depend on itself in TωP .

Lemma 1. Let P be a definite range restricted Datalog program and a ∈ HB a
ground atom. Then a ∈ TωP iff a depends on a rule in P .

Proof. By induction on the power of TP , resp. the length of the sequence of rules
documenting the “depends on” relation.

Algorithm 1.1: Classical semi-naive forward chaining

1 Name

semi -naive -forward -chaining(P )

Input

4 P − a definite range restricted program



5

Output

Tω
P − the least fixpoint of TP

7 Variables

∆ − a set of atoms

Initialization

10 F := ∅; ∆ := TP (∅)
begin

while ∆ 6= ∅
13 begin

F := F ∪∆
∆ := TP (F,∆) \ F

16 end

return F
end

Note that in Algorithm 1.1, “TP ” denotes both the immediate consequence
operator and the corresponding semi-naive mapping TP (F,∆) : P(HB)×P(HB)→
P(HB).

Let us first examine the fixpoint of the TP operator with respect to program
updates.

5 An Analysis of the Fixpoint

Three sets of atoms can be distinguished in a fixpoint TωP with respect to a set
of rules D ⊂ P to remove: the set of atoms that do not lose any derivation after
D is removed, the set of atoms that lose a derivation after D is removed, and
the set of atoms that lose a derivation after D is removed but are still derivable
from P . The following introduces a notation for these three sets which is used
throughout the rest of the paper.

Notation 1 Let P be a definite range restricted Datalog program and D ⊆ P a
set of rules to remove. Then

– U = {a ∈ TωP | (∃d ∈ D) a depends on d with respect to P},
– K = TωP \ U
– O = U ∩ TωP\D

U is the set of [u]nsure atoms, i.e. the set of atoms lose at least one derivation
as a result of removing D. K is the set of atoms to [k]eep, i.e. the set of atoms
that do not lose any derivation after the removal of D. O is the set of [o]therwise
“supported” atoms, i.e. the set of atoms from U that have derivations which do
not include any rule from D.

TωP will also be referred to as the old fixpoint and TωP\D as the new fixpoint.

The following lemma and Figure 1 illustrate relationships between U,K, and
Os.

Lemma 2. The following holds:



6

Fig. 1: Illustration of how K, U , and O relate in the case that D is a set of base
facts. B is the set of all base facts in P . With removal of arbitrary rules, there
may be more “U” sets each having its own “O” subset, see Figure 2.

Fig. 2: Illustration of how K, U , and O relate in the general case. B is the set
of all base facts in P . D1 is a set of base facts to remove, D2 is a set of rules to
remove, D = D1 ∪D2. U1 is the set of atoms that depend on a fact from D1. U2

is the set of atoms that depend on a rule from D2. U = U1 ∪ U2.

1. U ∪K = TωP ,
2. U ∩K = ∅,
3. O ∩K = ∅.

Proof. Follows immediately from definition.

Lemma 3. The following holds:

1. K ⊆ TωP\D,
2. TωP\D = K ∪O,

3. TP\D(K) ⊆ TωP\D.

Proof. Point 1: Let a ∈ K = TωP \ U . Assume by contradiction that a /∈ TωP\D
then a does not depend on a rule in P \D (Lemma 1) which is in contradiction
with a ∈ TωP because (P \D) ⊆ P and Lemma 1.

Point 2: K ∪ O = (TωP \ U) ∪ (U ∩ TωP\D) ⊇ TωP\D, from Notation 1 and
because TωP\D ⊆ TωP for definite programs. K ∪ O ⊆ TωP\D by Point 1 and
because O ⊆ TωP\D by definition.



7

Point 3 follows from Point 1 and the fact that TωP\D is the least fixpoint of
TP\D.

Lemma 3 shows a way to compute the new fixpoint by determining the sets
K and O. The core of the problem lies in determining the set O, i.e. those atoms
that lose a derivation after removing D but are derivable with respect to P \D
nevertheless. The following two propositions show that the new fixpoint can be
computed by forward chaining on the set K.

Proposition 1. TωP\D = TωP\D(K).

Proof. TP\D(∅) ⊆ TP\D(K) by monotonicity of TP . Therefore also TnP\D ⊆
TnP\D(K), for all n ∈ N1, by monotonicity of TP .

⊆: Let a ∈ TωP\D =
⋃
{T βP\D | β < ω}. Then there is a β such that a ∈

T βP\D ⊆ T βP\D(K) ∈ {T βP\D(K) | β < ω}. Therefore a ∈ TωP\D(K). In summary

TωP\D ⊆ T
ω
P\D(K).

⊇: Let a ∈ TωP\D(K). There is an α such that a ∈ TαP\D(K). By Lemma 3,

it holds that K ⊆ TωP\D. Therefore there is a β such that K ⊆ T βP\D. Thus,

TαP\D(K) ⊆ T β+αP\D by monotonicity of TP . Together, a ∈ T β+αP\D ⊆ TωP\D. And in

summary, TωP\D(K) ⊆ TωP\D.

An immediate corollary of Proposition 1 is the following proposition which
states that all atoms in O are eventually derived by forward chaining on K.

Proposition 2. If a ∈ O then there is an n ∈ N1 such that a ∈ TnP\D(K).

Proof. Let a ∈ O. O = U ∩ TωP\D, therefore a ∈ TωP\D(K) by Proposition 1.

P (and therefore also P \ D) is a definite range restricted Datalog program.
Therefore the fixpoint is reached in a finite number of steps and therefore there
is an n ∈ N1 such that a ∈ TnP\D(K).

Let us now show how the set U can easily be determined by a slightly modified
semi-naive forward chaining algorithm.

6 Overestimation of Deletions

The set U of atoms possibly affected by a removal can be computed by a simple
modification of semi-naive forward chaining. In fact, only a different initialization
is necessary. The main advantage over existing approaches is that the computa-
tion fully exploits the already computed fixpoint as it is shown later.

Algorithm 1.2: Overestimation of atoms to delete.

Name

dependent -atoms(P , Tω
P , D)



8

3 Input

P − a definite range restricted program

D − a set of rules , D ⊆ P
6 Output

F − a set of atoms from Tω
P that depend on a rule from D in

Tω
P , i.e. the set U of Notation 1

Variables

9 ∆ − a set of atoms

Initialization

F := ∅; ∆ := TD(Tω
P )

12 begin

while ∆ 6= ∅
begin

15 F := F ∪∆
∆ := TP (Tω

P ,∆) \ F
end

18 return F
end

One difference in the initialization in comparison to classical semi-naive for-
ward chaining is that ∆ is initialized with immediate consequences of the rules
D to be removed with respect to the old fixpoint (notice the D in TD(TωP )). The
second difference is that the semi-naive TP mapping is applied to the fixpoint
instead of the set F . Using the fixpoint as the input to the mapping means that
the computation is faster than the original forward chaining, see the following
example, while the ∆ ensures that any derived atom depends on an atom from
the set of atoms with which ∆ was initialized and thus on a rule from D.

Example 1. Let P = {a ← >. b ← a. c ← a, b}. The atom c is derived only
in the second iteration of classical (semi-naive) forward chaining from scratch
while it is derived already in the first iteration of Algorithm 1.2 with the input
TωP , D = {a ← >}. Note that the difference increases with the length of the
minimal derivation of an atom.

Lemma 4. Algorithm 1.2 is correct in the sense that it computes exactly the
atoms from TωP that depend on a rule from D in TωP .

Proof. Let i be the iteration number and let Fi and ∆i be the F and ∆ computed
in the i-th iteration (i.e. after i executions of the while body). All uses of the
“depends” relationship are with respect to P in this proof.

We will show by induction on i that a ∈ Fi iff a ∈ TωP depends on a rule from
D and there is a sequence of at most ≤ i rules as evidence.

i = 0: Trivial because F0 = ∅.
i = 1: F1 = F0 ∪∆0 = ∅ ∪ TD(TωP ). That is if a ∈ F1 then a ∈ TD(TωP ) and

there is an instance of a rule in D the head of which is a and thus a depends on
it. Conversely, if a ∈ TωP depends on a rule from D and it is evidenced by a single
rule then the rule must be an instance of a rule in D, hence a ∈ TD(TωP ) = F1.

i i+ 1.



9

⇒: Let a ∈ Fi+1. Fi+1 = Fi ∪ ∆i. If a ∈ Fi then the statement holds by
induction hypothesis. If a ∈ ∆i then a ∈ TP (TωP , ∆i−1) \ Fi−1. Therefore there
is an instance r of a rule in P such that head(r) = a and there is an atom
b ∈ body(r) that is also in ∆i−1 ⊆ Fi and thus, by induction hypothesis, b
depends on a rule from D and there is a sequence of at most i rules that shows
it. Adding r to the end of the sequence creates one of length at most i+ 1 that
shows that a depends on a rule from D.
⇐: Let a ∈ TωP such that it depends on a rule from D and there is a sequence

of rule instances r1, . . . , ri, ri+1 that shows it. Then by induction hypothesis
head(ri) ∈ Fi. Therefore there is a j < i such that head(ri) ∈ ∆j (because Fi =⋃i
k=0∆k). Therefore a = head(ri+1) ∈ TP (TωP , ∆j), and thus either a ∈ ∆j+1 or

a ∈ Fj , in either case a ∈ Fj+1 ⊆ Fi+1.
The algorithm terminates because the Herbrand base is finite in the Datalog

case, the set of ground atoms F increases in each step, and each atom is added
to F at most once.

7 The Incremental View Maintenance Method

A incremental view maintenance algorithm to compute the new fixpoint based
on the above observations can be summarized as follows:

1. Determine U (and therefore K).
2. Compute TωP\D(K)

See Algorithm 1.3 for a complete specification.

Algorithm 1.3: Incremental view maintenance

Name

2 FP -update(P , Tω
P , D)

Input

P − a range restricted definite Datalog program

5 D − a subset of P , the set of rules to remove

Tω
P − the least fixpoint of TP

Output

8 Tω
P\D − the new least fixpoint

Variables

U,K,∆, F − sets of atoms

11 Initialization

U := dependent -atoms(P , Tω
P , D)

K := Tω
P \ U

14 ∆ := TP\D(K) \K
F := K

begin

17 while ∆ 6= ∅
begin

F := F ∪∆



10

20 ∆ := TP\D(F,∆) \ F
end

return F
23 end

Proposition 3. Algorithm 1.3 terminates and computes TωP\D.

Proof. The algorithm correctly computes the set K, by definition of K and
because the dependent atoms algorithm is correct (Lemma 4).

The algorithm computes T iP\D(K) where i is the i− th iteration of the while

loop in the algorithm. The algorithm computes TωP (K) by a similar argument as
for the correctness of classical semi-naive forward chaining. The Herbrand base
is finite for a Datalog language with a finite number of constants and the set
of ground atoms F increases in each iteration and each atom is added at most
once. Hence the algorithm terminates.

The rest follows immediately from Proposition 1.

Let∆i be the∆ in the i-th iteration of the algorithm. Notice that (
⋃n
i=0∆i) =

O, where n is the number of the iteration in which fixpoint is reached.
Algorithm 1.3 uses the original unmodified program to compute the new

fixpoint from the old one. It amounts to two consecutive semi-naive forward
chainings each time with a different initialization.

Notice that the first ∆ is computed naively in the initialization, the rest
of the computation continues semi-naively. The naive step can be avoided if
additional information such as the number of rule instances per atom is kept.
This is however out of the scope of this paper as the formal treatment requires
multiset semantics and distinguishing rule instances that are evidence of a proof
from those that are not, i.e. the concept of well-foundedness from the field of
reason maintenance [12,13,24].

Also note that this strategy of computing the new fixpoint relies on the
heuristic that the set U is small in comparison with the set K. This obviously
does not have to be always the case; a trivial example is when D = P .

7.1 Stratifiable normal programs

Algorithm 1.3 can be extended to stratifiable[8] normal programs. The analysis
from Section 5 does not hold for normal Datalog programs; for example point 2
of Lemma 3 depends on monotonicity of TP with respect to P : TP ′(F ) ⊆ TP (F )
for P ′ ⊆ P which does not hold for normal programs. However, it is easy to
see that the method can still be applied to stratifiable normal Datalog programs
stratum by stratum.

7.2 Rule updates

It is worth stressing that Algorithm 1.3 is applicable to both base fact and
general rule updates. In fact, if a rule, which is not a base fact, is to be removed



11

then all atoms that directly depend on it are determined in a single step of the
dependent−atoms algorithm. Indeed, this is the main purpose of computing a
view and keeping it materialized.

Atoms that indirectly depend on a rule to be removed can then be computed
by the usual semi-naive forward chaining algorithm. This situation is depicted
in Figure 2 by the sets with index 2 (D2 is not depicted there; it consists of rules
the rule instances of which “are on the border of U2 and K”).

8 Complexity

It is well-known [25] that TωP can be computed in O(nk) time for a range re-
stricted Datalog program P , where n is the number of terms (i.e. constants
because all atoms in B are ground) in B and k is the maximum over all rules
in P of the number of variables in that rule. To compute TωP in the given time,
one can generate all instances of all rules in P using the constants in B and
then apply the well-known algorithm for the deductive closure of a set of ground
Horn clauses [11], which runs in linear time (note that the satisfiability problem
is NP-complete for the general class of all propositions). The worst case time
complexity of Algorithm 1.2 can thus be estimated also as O(nk) because, in
the worst case, computing the set of dependent atoms is equivalent to comput-
ing them by semi-naive forward chaining from scratch (see the next section for
details). The worst-case time complexity of Algorithm 1.3 is the same as the
worst-case time complexity of running semi-naive forward chaining twice from
scratch, i.e. also O(nk).

While the worst-case time complexity of Algorithm 1.3 is likely the same as
that of DRed and Staudt and Jarke’s declarative DRed (and thus of the Volz,
Staab, and Motik algorithm too), the maintenance program of declarative DRed
creates longer rules and thus the k for a problem instance and declarative DRed
is bigger than the k for the same problem instance and Algorithm 1.3. Declara-
tive DRed also creates a maintenance program that is a Datalog program with
(stratified) negation even for a Datalog program P without negation and thus
it always requires stratum by stratum evaluation. Declarative DRed algorithms
require evaluation of a maintenance program that is substantially bigger than
the original program and for this reason too it can be reasonably expected that
Algorithm 1.3 will be faster than these algorithms in practice as it requires
evaluation of merely the original program.

Let us now compare compare Algorithm 1.3 with the existing methods in
more detail in the next section.

9 An Example Evaluation

In the Encyclopedia of database systems [23], there is a comparison of the DRed
and the PF algorithm [10] on a classic reachability example. Let us reproduce
the example here and let us evaluate Algorithm 1.3 on it as well.



12

Fig. 3: A reproduction of a diagram found in [10]. A graph depicting the (exten-
sional) edge predicate. There is a directed edge from x to y iff edge(x, y) holds.
The edge (e, f) is to be removed.

Example 2. Let P be a datalog program that consists of the following two rules
and of a set of base facts represented as a graph in Figure 3.

r1: reach(S,D)← edge(S,D)
r2: reach(S,D)← reach(S, I), edge(I,D)
Note that S can stand for “source”, D for “destination”, and I for “interme-

diate.”

Algorithm 1.3 first determines the set of possible deletions U by calling Al-
gorithm 1.2 and then it performs semi-naive forward-chaining on the set K (the
complement of U in the fixpoint) and thus computes, using the new updated
program, the new fixpoint. Figure 4 shows the old fixpoint of program P with
the sets U , K, and O marked. The number of a row corresponds to the forward
chaining iteration in which the atoms in the row are first derived. Atoms are
ordered alphabetically in each row.

Fig. 4: A diagram showing the relationship between sets U,K, and O as com-
puted by Algorithm 1.3 for Example 2. xy stands for reach(x, y), xEy stands for
edge(x, y). Atom eEf (i.e. edge(e, f)) is being removed.



13

Table 1 shows a run of Algorithm 1.3 on the example, see also Figure 4.

Table 1: A run of Algorithm 1.3 for Example 2. xy stands for reach(x, y), xEy
stands for edge(x, y). Atom eEf (i.e. edge(e, f)) is being removed.

Step 1 Overestimation (Algorithm 1.2)
F ∆

Initialization ∅ eEf
eEf ef
eEf ef bf af eg eh
eEf ef bf af eg eh bg bh ag ah
eEf ef bf af eg eh bg bh ag ah ∅

Step 2 The rest of Algorithm 1.3
Initialization U = {eEf ef bf af eg eh bg bh ag ah} K = TωP \U

∆ = {af bg eg ag} F = K
F = K ∪ {af bg eg ag} ∆ = {ah}
F = K ∪ {af bg eg ag ah} ∆ = ∅

Algorithm 1.3 directly computes the new fixpoint. It needs three rule eval-
uations to compute the overestimation. In comparison, DRed needs four rule
evaluations to compute the same result. As noted earlier, the difference becomes
more significant with increasing lengths of derivations of atoms in the fixpoint.
A similar comparison holds for the PF algorithm too because the overestimation
phase of the PF algorithm tends to be less efficient than the one of the DRed
algorithm (eager filtration may lead to redundant work).

The set of tuples deleted from the reach relation is of course the same for all
three algorithms: U \ (K ∪ {af bg eg ag ah}) = {ef eh bf bh}.

Algorithm 1.3 fully takes advantage of the already computed fixpoint when
computing the set U of possible deletions (in contrast to both DRed and PF). The
overestimation algorithm dependent−atoms performs the best when all derived
atoms directly depend on a base atom. Then the overestimation is computed in
a single iteration. The worst case occurs when for each rule instance r it holds
that body(r) ⊆ T iP and body(r) ∩ T i−1P = ∅, i.e. for each rule instance all its
body atoms are derived in the same forward chaining iteration when computing
from scratch. In such a case, the dependent−atoms algorithm runs only as fast
as normal forward chaining from scratch.

The decisive difference is that Algorithm 1.3 works with the original program
P while DRed and PF use a transformed program P ′. It is almost inevitable that
P ′-steps simulate P -steps and thus repeat work that was already done when
computing the fixpoint for P .



14

10 Conclusion

We have presented a novel method for incremental maintenance of materialized
recursive Datalog programs. Our method handles changes in both facts and rules,
works by evaluating the original and the target programs while fully using the
already computed fixpoint in the overestimation phase, and recomputes only the
affected part of a predicate’s extension. The method is applicable to important
Datalog-fragments of Semantic Web languages. The method cannot be directly
used in existing deductive databases due to the need for a modification of the
classical semi-naive forward chaining. The modification is however only small and
thus implementation is likely to be simple. While aggregation is not handled by
our current method, we are confident that the extension is possible.

Acknowledgements.

We would like to thank Norbert Eisinger for valuable insights and discussions
about the presented ideas. The research leading to these results is part of the
project “KiWi - Knowledge in a Wiki” and has received funding from the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement No. 211932.

References

1. Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change:
Contraction functions and their associated revision functions. Theoria 48 (1982)

2. Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. J. Symbolic Logic (1985)

3. Berners-lee, T., Hollenbach, J., Lu, K., Presbrey, J., Schraefel, M.: Tabulator redux:
Browsing and writing linked data. In: Proc. WWW2008 Workshop on Linked Data
on the Web. vol. 369 (2008)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5), 28–37 (May 2001)

5. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A generic architecture
for storing and querying RDF and RDF Schema. LNCS 2342 (2002)

6. Broekstra, J.: Storage, Querying and Inferencing for Semantic Web Languages.
Ph.D. thesis, Vrije Universiteit (2005)

7. Broekstra, J., Kampman, A.: Inferencing and truth maintenance in RDF schema –
exploring a naive practical approach. Workshop on Practical and Scalable Semantic
Systems (PSSS) (2003)

8. Bry, F., Linse, B., Furche, T., Ley, C., Eiter, T., Eisinger, N., Gottlob, G., Pich-
ler, R., Wei, F.: Foundations of rule-based query answering. Springer LNCS 4636
Reasoning Web, Third International Summer School 2007 (2007)

9. De Kleer, J.: Choices without backtracking. In: Proceedings of AAAI-84 (1984)
10. Dietrich, S.W.: Maintenance of Recursive Views. In: Encyclopedia of Database

Systems, pp. 1674–1679. Springer Verlag (2009)
11. Dowling, W., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of

propositional horn formulae. The Journal of Logic Programming 1(3) (1984)



15

12. Doyle, J.: Truth maintenance systems for problem solving. Tech. Rep. AI-TR-419,
Dep. of Electrical Engineering and Computer Science of MIT (1978)

13. Doyle, J.: The ins and outs of reason maintenance. Proc. IJCAI’83 (1983)
14. Doyle, J.: Reason maintenance and belief revision – Foundations vs. Coherence

theories. Cambridge University Press (1992)
15. Guessoum, A., Lloyd, J.: Updating knowledge bases. New Generation Computing

8(1), 71–89 (June 1990)
16. Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Tech-

niques, and Applications. Data Engineering Bulletin 18(2), 3–18 (1995)
17. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.

SIGMOD Rec. 22, 157–166 (June 1993)
18. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive

database: An update propagation approach. In: Workshop on Deductive Databases,
JICSLP. pp. 56–65 (1992)

19. Hayes, P.: RDF semantics. Tech. rep., W3C (2004)
20. Hayes, P.J.: The frame problem and related problems in artificial intelligence. Tech.

rep., Stanford, CA, USA (1971)
21. Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and

abstract syntax. Tech. rep., W3C (2004)
22. Koons, R.: Defeasible reasoning. In: Zalta, E.N. (ed.) The Stanford Encyclopedia

of Philosophy (Spring 2005)
23. Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems. Springer (2009)
24. Martins, J.P., Shapiro, S.C.: A model for belief revision. Artificial Intelligence 35

(1988)
25. McAllester, D.: On the complexity analysis of static analyses. J. ACM 49(4), 512–

537 (2002)
26. McAllester, D.A.: Truth maintenance. AAAI90 (1990)
27. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web

ontology language – profiles. Tech. rep., W3C (2009)
28. Nebel, B.: Reasoning and revision in hybrid representation systems. Springer-

Verlag New York, Inc., New York, NY, USA (1990)
29. Schaffert, S., Eder, J., Grünwald, S., Kurz, T., Radulescu, M., Sint, R., Stroka, S.:

KiWi–a platform for semantic social software. In: Proceedings of the 4th Workshop
on Semantic Wikis, ESWC (2009)

30. Schaffert, S., Bry, F., Baumeister, J., Kiesel, M.: Semantic wikis. IEEE Software
25 (2008)

31. Sintek, M., Decker, S.: Triple – a query, inference, and transformation language for
the semantic web. In: Horrocks, I., Hendler, J. (eds.) The Semantic Web – ISWC
2002, LNCS, vol. 2342, pp. 364–378. Springer (2002)

32. Staudt, M., Jarke, M.: Incremental Maintenance of Externally Materialized Views.
In: Proc. 22th Int. Conf. VLDB. San Francisco, CA, USA (1996)

33. Ullman, J.D.: Principles of database and knowledge-base systems. Computer Sci-
ence Press (1989)

34. Val, A.D.: On the relation between the coherence and foundations theories of belief
revision. In: Proc. 12th Nat. Conf. on AI. AAAI (1994)

35. Volz, R.: Web Ontology Reasoning in Logic Databases. Ph.D. thesis, Universitaet
Fridericiana zu Karlsruhe (TH) (2004)

36. Volz, R., Staab, S., Motik, B.: Incrementally Maintaining Materializations of On-
tologies Stored in Logic Databases. In: Journal on Data Semantics II, LNCS, vol.
3360. Springer, Berlin, Heidelberg (2005)

37. W3C: OWL 2 web ontology language. Tech. rep., W3C (2009)


	Reasoning as Axioms Change

