
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

REASONING BY ANALOGY AS A PARTIAL IDENTITY
BETWEEN MODELS

Haraguchi, Makoto
Research Institute of Fundamental Information Science, Kyushu University

Arikawa, Setsuo
Research Institute of Fundamental Information Science, Kyushu University

https://doi.org/10.5109/13381

出版情報：Bulletin of informatics and cybernetics. 22 (3/4), pp.131-147, 1987-03. 統計科学研究
会
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics Vol. 22, No. 3-.4, 1987

REASONING BY ANALOGY AS A PARTIAL

 IDENTITY BETWEEN MODELS

 By

Makoto HARAGUCHI* and Setsuo ARIKAWA*

 Abstract

 We present in this paper a formal theory of reasoning by analogy.
We are mainly concerned with three subjects : a formal definition of
analogy, a formalization of the reasoning in terms of deduction, and
a method for realizing the reasoning in a logic programming system.
First we assume that each domain for the reasoning is the least
model for logic program. Then we consider an analogy as a partial
identity between the models. Secondly we introduce a notion of rule
transformation which transforms rules in one domain into those in
the other. Then we can formalize the reasoning as a system with
three inference rules : instantiation of rules, modus ponens, and the
rule transformation. Finally, based on the formalization, we present
an extended pureProlog interpreter which performs the detection of
analogy and the reasoning by the partial identity at the same time.

 1. Introduction

 We often make use of analogy in solving various problems over various domains.
Generally we have two domains. One is concerned with the current problem in inquiry,

and the other is assumed to be wellknown. Given such domains, we first attempt to

detect some analogies between the domains, and to transform the knowledge of the
well-known domain into those of the other. The transformed knowledge is not always

true. However the detected analogy suggests that the knowledge may be true and that

it can be used to infer some facts.

 In the present paper, we are mainly concerned with the problem of formalizing the

reasoning by analogy so that we can realize it by a computer. Some computational
methods for the reasoning have been discussed from various viewpoints. However,

since each of them has been developed for and depending on its own domain, any

common framework to consider fundamental concepts about the reasoning has not been

discussed. It seems to the authors that this should come from the lack of mathematical

formulation of the reasoning.

 From this viewpoint, one of the authors has tried to formalize the reasoning [4, 5].

The studies are considered to be a step to reasoning by analogy by a computer.
However it is true that there have still remained some problems to be overcome.

 * Research Institute of Fundamental Information Science, Kyushu University 33, Fukuoka 812,
 Japan.

132M. HARAGUCHI and S. ARIKAWA

 In the previous papers [4, 5], the domains for the reasoning are represented by

finite sets of facts (ground atoms). Given such representations, we have discussed an

analogy as a partial identity between the domains. Moreover we have defined a notion

of rule transformation [5] by which some ground rules in one domain are transformed

to those in the other. The transformed rules are used to derive some facts. The
notion of partial identity thus defined was purely syntactic, and hence it was not suited

for considering the semantic aspects of analogy.

 The purpose of the present paper is to modify and extend the notion of partial

identity so that we can consider the semantic aspects of analogy to some extent. The

new formulation is summed up as follows :

 (1) The domain for the reasoning is represented by a logical formula, and is an
intended model for it. In this paper, the logical formula and the intended model are

assumed to be a logic program and the least (Herbrand) model for it, respectively.

 (2) Given two logic programs, an analogy we consider is a partial identity between
their least models. The partial identity consists of a pairing of ground terms and a

one-to-one relation of facts in the domains. The paired terms are treated just like a

single term in order to put two domains together.

 (3) To define the reasoning based on the partial identity, we consider Winston's
analogy-based reasoning [10, 11], in which "similar " reasons are assumed to lead to
" similar " effects . We introduce a notion of rule transformation to deal with the
reasoning in a framework of deduction. In fact, we can formally define the analogy

based reasoning in terms of logic programming with the function of transforming rules.

Then we precisely define the set of ground atoms which are reasoned based on some

partial identity.
 To realize the reasoning as in the above, we must design a procedure to detect a

partial identity. Such a procedure plays an important role in the reasoning, since the
reasoning is dependent on the chosen analogy. Here it should be noticed that the

process for detecting the desired partial identity generally requires a large amount of
computation. To avoid the increases of computational complexity, it is considered

better to have a reasoning procedure which detects and reasons at the same time.

Such a reasoning procedure has no information about the partial identity at the

beginning of its computation, and it will partially get the information concerning the

partial identity at each stage of reasoning process. In fact, we present a Prolog

program, which is an extension of pureProlog interpreter, to carry out the reasoning
in such a way.

 In Section 2, we define the notion of partial identity and present a condition for a

pairing of terms to define the partial identity. In Section 3, we formally define the
reasoning based on the partial identity in terms of logic programming. In Section 4,

we introduce the notion of reasoning procedure. Finally, in Section 5, we present an

extended Prolog interpreter which carries out the reasoning.

Reasoning by analogy as a partial identity between models133

 2. Analogy as a Partial Identity

 We define in this section a notion of partial identity. Since we assume that each
domain for the reasoning is represented by a logic program, we first give some
necessary definitions concerning logic programs.

 A definite clause is a clause of the form

 ••• , B. (n>_O) ,

where A and B, are positive literals. We call the definite clause a rule. A logic

program is a finite set of rules, and is simply called a program.
 Since a program P is a set of clauses, any model for P can be considered as the

corresponding Herbrand model. (For instance, see [8].) All Herbrand models for P have
the same domain U(P), called the Herbrand universe, and the same meaning of function
symbol appearing in P. U(P) is defined to be the set of all ground terms whose
symbols are all in P. Moreover the set of all terms consisting of symbols in P is
denoted by L(P). The meaning of n-ary function symbol f is defined to be a function
If: U(P)n-*U(P), where

I1(t1, ••• , tn)—J (tl, ••• , t.).

 We also need the notion of Herbrand base. The Herbrand base B(P) of a program
P is defined as

B(P)= { p(tl, • • • , tn) I p is an n-ary predicate symbol
 appearing in P, and t; E U(P) } .

An element in B(P) is called a ground atom.
 Then, each Herbrand model (interpretation) is specified by a subset of B(P). The

subset consists of all ground atoms which are true under the model (interpretation).
By the model intersection property [1], the intersection of all Herbrand models for P
is also a model for P. This model is called the least model for P, and is denoted by
M(P).
 PROPOSITION 2.1. ([1, 8]) M(P) is the set of all ground atoms which are logical

consequences of P.
 From Proposition 2.1, we take M(P) as the formal meaning of P, and call an

element in M(P) a fact. In what follows, we consider only the Herbrand models, and
simply call them models.

 We define the correspondence of analogy by a pairing of elements in domains.
 DEFINITION 2.1. Let Pl and P2 be logic programs. We call a finite subset of

U(P1) x U(P2) a pairing of terms. For a pairing 0, we define the set 0+ to be the
smallest set satisfying the following conditions :

0-S0+,(2.1)

 if <t1, ti>, ••• , <t., t;,>ESl+, then

<f (ti, ... , tn), Pt;, ... , tic)> E.ci+, (2.2)

134M. HARAGUCHI and S. ARIKAWA

where f is a function symbol appearing in both P1 and P2,
 Then relation 0+ is not always one-to-one. For example, consider the following

pairing 0 :

0={<a, a'>, <b, b'>, <c, on(a', b')>},

where " on " is a binary function symbols, and the other symbols appearing in 0 are
constant symbols. Then we have

 <c, on(a', b')>, <on(a, b), on(a', b')>E0+,

which means that two distinct terms on(a, b) and c in P1 are related to the same term
on(a', b') in P2.

 As mentioned in the introduction, we consider an analogy as a partial identity.
The partial identity is a function of putting together two distinct domains for the
reasoning. To put them together, we first identify some paired elements, one from
each domain, and treat them just like a single element. According to such an identifi
cation of elements, we identify some paired facts which hold in each domain. Thus,
by the partial identity, two distinct elements in one domain are never paired with the
same element in another domain. Since our domains for the reasoning are Herbrand
models, distinct terms denote distinct elements. Hence the set 0+ of paired terms should
be one-to-one. The pairing 0 in the example above is not allowed as a pairing of

partial identity. In what follows, a pairing of partial identity is simply called a partial
identity.
 DEFINITION 2.2. A pairing 0 is called a partial identity if 0+ is a one-to-one
relation of terms.

 The paired atoms identified by the partial identity are defined as follows :
 DEFINITION 2.3. For a partial identity cb, two ground atoms a E B(131) and a' E B (P2)

are said to be identified by 0, denoted by acjba', if a and a' are compatible, that is,

they can be written as

a=p(t1, ... , tn)

C'=0;, ••• , tn) ,

for some predicate symbol p, and a and a' are syntactically the same up to the pairing

0, that is, <ti, t'i> E c+.
 Then the set of paired facts which are identified by 0 is

WWII P2 ; 0)-= { <a, a'> I a E M(P1), a' E M(P2), «0(1'1.

 PROPOSITION 2.2. ID(P1i P2 ; 0) is a one-to-one relation of facts.
 Now we present a condition for a pairing to define a partial identity. The condition

is called Extended Partial Identity Condition (EPIC, for short).
 DEFINITION 2.4. A pairing 0 is said to violate EPIC if there exist <t, t'>, <ti, tj> E l'

and a term T (X1, • • • , Xn) in L(P1)f L(P2), that contains no constant symbols, such that

t=T(t1, ••• , tn) and t'�T(tl, ••• , t;,)
or

t � T (ti, • • • , tn) and t' =T (ti, • • • ,

Reasoning by analogy as a partial identity between models135

Moreover, if otherwise, 0 is said to satisfy EPIC.
 THEOREM 2.1. A pairing 0 is a partial identity iff 0 satisfies EPIC.

 To prove the theorem, we need a definition.
 DEFINITION 2.5. A pairing cb c U(P1) x U(P2) is said to be a generator if there exist

no <t, t'>, <t;, t;> in 0 and a nonvariable term T (X1i • • • , Xn) containing no constant
symbols such that

t=T (t1i ••• , tn) ,

C=T (t;, ••• , tn) .

 PROOF OF THEOREM 2.1. It is clear that 0+ is not one-to-one if 0 violates EPIC.
Hence we prove only that 0 violates EPIC if 0+ is not one-to-one.

 First we prove this for a generator 0. Assume that 0 violates EPIC, and assume
that 0+ is not one-to-one. Then there exist pairs <ti, tD in 0+ (i=1, 2) such that

t1=t2 and ti # t2 ,(2.3)
or

t1 � t2 and ti =t2 .(2.4)

Assume that (2.3) holds and <ti, t;> E O+\cb (j=1, 2). The proofs for the other cases
are similar, and therefore omitted. From the assumption, there exist <s;, si>, <uk, uk>
in 0 and a nonvariable term Ti containing no constants such that

 t1=T1

/(s1, •.• , s,) ,tl—T1(S1,•.• , s), t2T2(— u1, ••• , um) ,t—T2(ul, ••• , u)

 Case 1: T1 and T2 are variant. In this case, si=u; holds for each j, and there
exists i such that si�ui. This implies that 0 is not one-to-one, and therefore 0 violates
EPIC.
 Case 2 : T, and T2 are not variant. Let

T1=T1(X1, ..., Xn), T2=T2(Y1, ..•, Y.).

There exists a disagreement <V1, V2>. Here the disagreement is a symbol position at
which T, and T2 have distinct symbols. Vi is the subexpression extracted from Ti at
that symbol position. Since ti =t2i one of V; is a variable and the other is a nonvariable
term. Without loss of generality, we assume that V1 is the variable Xq. Let

V2= V 2(Y21, ••• , Y2k)

where 1Y 21/ , Y2k } {371/ , Y,n, } . Then, t1=t2 implies

sq=V2(u21, ••• , u2k) •

Since ci' is a generator, this implies that

sq V2(u21, ••• , u2k) .

Thus 0 violates EPIC.
 Finally, for a pairing 0 which is not a generator, we consider the following

generator 00:

136M. HARAGUCHI and S. ARIKAWA

 ~o C (2.5)

 c+=c,+•(2.6)

 o Let 0+=0i be not one-to-one. Since 00 is a generator, 00 violates EPIC. From (2.5),
this implies that 0 violates EPIC, which completes the proof.

 The condition EPIC concerns unifiability of terms, and plays an essential role in
realizing the reasoning in a logic programming system. The details are discussed in
Section 5.

 3. Reasoning Based on Partial Identity

 In this section, we present a formal reasoning based on a partial identity. First
we state the principle of reasoning by analogy :

 Assume that, in P1i the premises j31, •••, P. logically imply a fact a. Assume
 also that the analogous premises 131, • • • , jn hold in P2. Then we reason an

 atom a' in P1 which is analogous to a.

 The reasoning above is conceptually due to Winston's analogy-based reasoning [11]
based on the causal structures of domains. Since our analogy between M(P1) and
M(P2) is a partial identity, we can restate the statement as follows :

 Assume that j31i ••• , pn in M(P1) logically imply a in P1i and assume that there
 exist j3i, • • • , j3n in M(P2) such that 1;013; for all j. Then we reason an atom a'

 in B(P2) such that acfba'.

 The reasoned ground atom a' is not always a logical consequence of P2. Hence
the reasoning is beyond the usual deduction. Our goal is to describe the reasoning in
terms of deduction. We need the following definition :

DEFINITION 3.1. Let

 R1=(cv-j31, •.• ,jAn),
 ~+

be two ground rules (n �1) whose symbols are all appearing in P1 and P2i respectively.
Let 0 and I; be a partial identity and an Herbrand interpretation of P;, respectively.
Then the rules R1 and R2 are called 0analogous w. r. t. I1 and I2f if j3; E I1, j3; E I2i
acfba', and j,i j3;. In this case, R1 (R2) is called a 0analogue of R2 (R1) w. r. t. I1 and I2.

 We call the conversion of R1 into R2, or R2 into R1, a rule transformation. In
what follows, we represent the transformation by the following schema :

 at-3 ..., Rn
 a!f--------------------------------(0,Il,12) ,

where acba', /3,013;, j3; I1i /3; E I2 and the dotted line shows that the upper rule is
transformed into the lower rule. By using this schema, we can represent the reasoning
as follows :

Reasoning by analogy as a partial identity between models137

 A~B1i .•• , Bn (8)

 13;, , p;,a'~Q1i...-------------------------------,13, (0, M(Pi), M(P2))
 a' ,

where A —B1, • • • , B m is a rule in P1, 8 is a ground substitution to obtain a logically
true ground rule aE— j31, , pn, and the second real line shows modus ponens. Thus
the reasoning is a combination of the usual deductions and the rule transformations.
This schema is said to be basic.

 In general, reasoning is a process of applications of inference rules. Thus it is
natural to consider a process in which the rule transformations and modus ponens are
applied successively. Let us consider an example :

 EXAMPLE 3.1. Let P1 and P2 be the following programs :

P1={p(a, b),

q(b)—p(a, b),

r(b),

s(b)<—q(b), r(b)},

P2={p(a', b'),

 r(b')}.

Then we have the following basic schema :

4(b) <—p(a, b) ~'
' (M(Pi),(P2)) p(a' , b') q(b')<—p(a', b')M

 q(b')

where cb={<a, a'>, <b, b'>}. q(b') is not a logical consequence of P2. However we use

q(b'), as if it is a fact, to derive some additional ground atoms. In fact, we can derive
s(b') by a basic schema

 s(b) `—q(b), r(b)(0
, M(Pi), M(P2)U{q(b')}) q(b'), r(b') s(b)<—q(b), r(b')

 s(b')

Thus the successive uses of the basic schemata allow a monotonic extension of models
for P2.

DEFINITION 3.2. For a given partial identity 0, we define a set Mi(* ; 0) for i=1, 2
as follows :

Mi(* ; cb)=U.Mi(n),

Mi(0)=M(Pi)={a B(Pi) I P I -a} ,

Mi(n+1)={aEB(Pi) I Ri(n)UMi(n)UPif—a},

where SHr denotes that r is a logical consequence of S, Ri(n) is the set of all ground
rules which are 0analogues of ground instances of rules in P; (j � i) with respect to
M1(n) and M2(n).

138M. HARAGUCHI and S. ARIKAWA

 The set Mi(* ; 0) is an Herbrand model for P. (See [7].) Hence we can assert that
the reasoning based on the partial identity gives us an admissible method to extend the
least model for Pi.

 4. Reasoning Procedure

 In this section, we define a reasoning procedure, and discuss some computational
aspects of the reasoning based on partial identities. First we give a definition of
reasoning procedure.

DEFINITION 4.1. A reasoning procedure is an effective procedure which takes a

ground atom a as its input and satisfies the following properties :
 (1) a E Mi(* ; 0) for some partial identity cf', if it returns an answer "yes ", and

 (2) a E Mi(* ; 0) for any partial identity ci', if it returns an answer " no ".
 DEFINITION 4.2. A reasoning procedure M is complete if it returns the answer

" yes" whenever a E Mi(* ; 0) for some partial identity 0.
 To consider a complete reasoning procedures, we present, without proof, a theorem

which characterizes the reasoning defined in Section 3 in terms of deducibility. The

proof is found in [7]. For a program Pi, and a partial identity 0, we introduce a new
predicate symbol pi for each predicate symbol p in Pi. Moreover we define a program
copy(Pi) which is obtained from Pi by simultaneously replacing each occurrence of p in
Pi by the corresponding pi. Then we have

 THEOREM 4.1. ([7]) Given Pi and cfi, there exists a program P, denoted by P1cbP2i
such that

(1)copy(Pi) P for i=1, 2,
{{and (2) p(t1,..., tn)EMi(* ; 0)iJJP~pi(t1,..., tn).

 Based on this theorem, we present a complete reasoning procedure MG. Let 01, 02,
be an effective enumeration of all partial identities. Let <dovl(n), dov2(n)> be the n-th

pair of natural numbers in an effective enumeration. Moreover, for a program Q and
an atom 9, Q I-,m B denotes that p is proved to be a logical consequence of Q in at
most m steps of computations. Note that, in order to realize I—,n, it suffices to consider
a complete SLDrefutation procedure [1, 8] with a stepcounting function.

Reasoning Procedure MG
input: ground atom a=p(t1i ••• , tn) in B(P1)UB(P2)

 begin
 a' :=if aEB(P1) then p1(t1f ••• , tn)

 else p2(t1, ••• , tn) ;
n:=1 ;

 while P1cbdov1(n)P2Vdov2(n)a' do n=n+1;
 output the answer " yes" with c~dovl(n)
 end

Then it is clear that MG is complete and that the set defined as

Reasoning by analogy as a partial identity between models139

 succ(P, ; P2)=Un{ 8 I PichnP21--P}

is recursively enumerable.
 In the next section, we present a more concrete reasoning procedure, but it is not

complete.

 5. Realization of Reasoning in a Logic Programming System

 In this section, we present a reasoning procedure which is an extension of pure
Prolog interpreter. Given P, and P2, the set Mi(* ; 0) of atoms includes the least model
Mi for Pi, and is the smallest set which is closed under applications of rules in Pi and
Ri(n). The rules in Ri(n) are obtained by transforming some rules in P; (j�i).

 Hence it suffices to have the reasoning procedure satisfying the following properties :

 (P1) It interpretes each rule in Pi procedurally.
 (P2) It performs the rule transformation based on some partial identity.

 Since the domains for the reasoning are represented by logic programs Pi, a pure
Prolog interpreter satisfies (P1). For this reason, we design the reasoning procedure
as an extension of pureProlog interpreter. A standard interpreter generally takes a

goal of the form

and tries to refute it by successively deriving subgoals. The rules used in the refutation
are usually those in Pi. To perform the reasoning, our extended interpreter is allowed
to use additional rules which should be 0analogues of rules in P; (j # i).

 As mentioned in the introduction, a reasoning procedure should be designed so that
it has no information about the partial identity 0 at the beginning of its computation.
Hence it must find a possible partial identity 0 such that aEMi(*;c,).

 However, given P, and P2, the set (search space) of all partial identities is generally
very large. Moreover, even if we introduce an ordering of partial identies, and even
if we use an optimal partial identity, we still have the problem of choosing one of them.

 To avoid this difficulty, we design our interpreter not to precompute any partial
identity, but to compute it partially during the whole reasoning process. The basic
idea of realizing such a reasoning process by the interpreter is briefly summed up in
Section 5.1 below.

 5.1. Behavior of the extended interpreter
 Let a' be a ground atom to be verified that a' E M2(* ;0) for some partial identity

0. The purpose is to find a rule in P1, a substitution 0, and a partial identity 0 in
the basic schema

 AE B~, ••• , B, (0)

 ,~ •••,pn(~,M1(* ; 0) ; M2(* ; 0)) 3...'aR 1,...,fln NN
a'Nr ,

 To obtain 0, we give the interpreter a goal

140M. HARAGUCHI and S. ARIKAWA

 ~[B1i ••• , B. in Pi]

which means the question : " Is there 0 such that B;0 E M1(*, 0) for some 0 ? ".
 Suppose that our interpreter has found 0. It should be noticed that , to show

B;9 E M1(*, 0) for some 0, some partial identity 01 is also computed as a side effect of
the interpreter. 01 is empty only if B;e E M(P1). Let

a=Ae=p(t1, ••• , t.,),

 ar=p(ti, ••• , t,m) ,

B1e=~~=41(t,1, ••• , t;k(1))•

Since a partial identity 0 has not been computed yet, we introduce variables Xi; and
consider the following transformation schema :

P(t1, ••• , tm)<41(t11 , ••• , tik(1)) , ... , 4n(tn1 , ••• , tnk(n))
 P(t(rr 1, ••• ,tm)+-41(X11,, Xik(1)), ••• , 4n(Xni, ••• , Xnk(n))

 The variable Xi; denotes something in U(P2) to be paired afterward with ti; U(P1).
It can be instantiated by using the constraint that a set of paired term

C=cb1U{<t;, t,j> I n>j>_1}

lJ{<ti;, 2q;> I k(i)?j>-1, n>_i?1} (5.1)

should satisfy the condition EPIC. Details of checking EPIC are discussed in Section
5.2. Let a be a substitution thus obtained. Then we now have a pairing 02=Co which
is an extension and a refinement of 01. From the definition of the reasoning , the next
thing to do is to prove that there exists a substitution e2 such that

41(Xj1o02i ••• , X;k(;)Qe2)EM2(*, 0) •

For this purpose, we generate a goal

'—[41(Xiia, ••• , X1k(1)U) in P2]

and continue the whole process we have just described.
 As a result, we obtain a sequence {0,1 of sets of paired terms such that 0i+1 is an

extension and a refinement of 0i. The last 0= in the sequence is the desired partial
identity.

 5.2. Checking the condition EPIC

 As we have discussed in Section 2, EPIC is a condition for a pairing (Definition
2.4). For the sake of simplicity, we assume here that all the function symbols but

constants are unary. Then EPIC can be restated as follows :

 EPIC under the assumption: Given a pairing B, let <ti, t?> E B, term(X) E L (P1) (1 L (P2).
Then

 (EPIC1) term(to)=ti whenever <term(to), ti> E B ,

 (EPIC2) term(t0)=--ti whenever <t1, term(to> E B .

 To check the condition (EPIC1), we consider the following nondeterministic

Reasoning by analogy as a partial identity between models141

procedure which computes an equation from B. It is completely similar to check
(EPIC2), so the details of checking (EPIC2) is omitted.

Procedure mkeg1

input : a finite set B of paired terms, and a term t such that <t, t'> B for

 some t;

 begin
 choose a subterm to of t such that

t=term(to) for some term(X) e L(Pi) f1 L (P2), and <t0, to> B for some tO;

 if such a subterm is not found

 then do nothing
 else output an equation t'=term(t)

 end

 Let Eg1(t, B) be the set of all equations in U(P2) obtained by the executions of
mkeg1(t, B), and let

EQ1(B)=U{Eg1(t, B) I t appears in the first argument of some pair in B} .

Eq2(B) is similarly defined by scanning the second arguments of pairs in B.
 EXAMPLE 5.1. Suppose that L(Pi)=L(132), and let

B= {< f (h(a)), f (V)>,(5.2)

 <g(b), g(b')>,(5.3)

 <a, X>,(5.4)

<h(a), Y>}.(5.5)

From (5.2) and (5.5), we have f(Y)=f (V). From (5.2) and (5.4), we have f (h (X)) = f (V).
Finally, from (5.4) and (5.5), we have h(X)=Y. As a result, we have

Egi(B)={h(X)=Y, f(h(X))=f(Y)=f(V)} .

Note that Eg2(B)=0 in this case.
 Since we consider Herbrand interpretations, the predicate symbol "=" denotes the

identity relation (on each Herbrand universe). Formally we say that Eqi has a solution
if there exists a ground substitution 0 such that, for any equation t=t' in Eqi, tO and
t'B are the same term in U(P;), where i � j. Then we have

PROPOSITION 5.1. If there exists a substitution 0 such that B9 E U(P1) X U(P2) and
that BO is a partial identity, then both Eg1(B) and Eq2(B) have solutions.

 PROOF. Let B and 0 be a set of paired terms and a substitution as in the condition

part of the proposition, respectively. Without loss of generality, suppose that there
exist two equations in Eg1(B) :

t'=term1(to) ,(5.6)

s'=term2(so) ,(5.7)

where <t, t'>, <to, to>, <s, s'>, <so, so>EB, t=term1(to), and s=term2(so). Since BO
satisfies (EPIC1),

142M. HARAGUCHI and S. ARIKAWA

t'8=term1(toO) .

s'B =term2(soO)

hold. This completes the proof.
 The converse of Proposition 5.1 does not hold in general. In fact, consider a set

B= {<a, b>, <g(X), Y>, <f (g(X)), Z>} ,

where we assume that P1 has only a, g and f as its function symbols and that P2 has
only b and f. Then we have

Eg1(B)={Z=f (Y)} .

This equation has a solution

0n= { f (n+1)(b)/Z, f °' (b)/Y}

For any 0 such that BO E U(P1) x U(P2),

 <g(X0), f `n'(b)>, <f (n)(a), f (n)(b)> E (B0)+

for some n. Thus BO is not partial identity.
 We use Proposition 5.1 to compute a partial identity. Let C be the set of paired

terms in (5.1), CO be a partial identity, and Eg1(iZ) = { ss =ti I 1 <i <_ n } . From the proof
of Proposition 5.1, the following two lists

lists=[sl, ••• , sn] ,

list1=[t1i ••• , tn]

are unifiable by the substitution 0. Let O=ar, where a is the most general unifier of
list, and lists. Then it is clear that finding 0 from C is reduced to finding r from Ca,
which is the next set of paired terms in the sequence {0z}.

 Conversely, if list, and lists are not unifiable, then there exist no 0 such that CO
is a partial identity. Hence we can reject C, and we must find another set of paired
terms. The search of alternative sets of paired terms is realized in our extended
interpreter by using Prolog's backtracking.

 5.3. An example of the whole reasoning process

 Now let us exemplify the whole reasoning process carried out by our extended
interpreter. For this purpose, consider the following logic programs :

P, = { f (b, c),

 m(a, b),

gf(X, Z)4—p(X, Y), f(Y, Z),

p(X, Y)—f (X, Y),

p(X, Y)F--m(X, Y)},

 P2={m(a', b'),

f (b', c')}.

Reasoning by analogy as a partial identity between models143

The initial goal fed to the interpreter is

 *–Cgf(a', c') in P2] .

For this goal, the interpreter firstly tries to prove

 gf(a', c') M2=M(P2) •

Clearly the interpreter fails to prove it, and therefore tries to find some 0-analogue of
a rule in P1. In this case,

 gf(X, Y), f(Y, Z)

is chosen, since the head has the predicate symbol gf. The interpreter then generates
a subgoal

4—Cp(X, Y), f(Y, Z) in Pj

to find the values of variables X, Y and Z. It turns out that X, Y and Z are instan
tiated to a, b and c, respectively, since p(a, b), f (b, c) E M1. Hence, at this point, the
first set 01 of paired terms is empty. Based on the substitution above, the interpreter

produces a rule transformation.

gf(a, c)~-p(a, b), f(b, c)
gf(a', c')—p(X1, X2), f (X3, X4)

where the variables X; are introduced to compute a partial identity. Then we have a
set

B1= {<a, a'>, <c, c'>, <a, X1>, <b, X2>, <b, X3>, <c, X4>},

and ask then the existence of a substitution 9 such that B10 is a partial identity. Our
extended interpreter computes

Eq1={a'=X1, X2=X3, c'=X4},

 Eq2=~

from B1. From these equations, we have two lists

[a', X2, c'] , [X1, X3, X4].

Unifying them, we have the most general unifier

X3/X2, c'/X4}•

Hence the next set 02 of paired terms is

02={<a, a'>, <b, X3>, <c, c'>}.

We now have a rule transformation

gf(a, c)÷–p(a, b), f(b, c)
gf(a', c')E–p(a', X3), f (X3, c')

The value of X3 is still unknown, so the interpreter generates the next subgoal

144M. HARAGCCHI and S. ARIKAWA

E--[p(a', X3), f (X3, c') in P2] (5.8)

to find the value. Since there exist no instance of X3 such that p(a', X3) G M2i the
interpreter similarly tries to find 0analogue of a rule in P1. In this case, there exist
two rules

(R1) : p (X, Y)<-f (X, Y) ,

(R2) : p(X, Y)<-m(X, Y)

which have the predicate symbol p in their head parts. These two possibilities are
examined alternatively. First suppose that (R1) is chosen. Our interpreter instantiates
X and Y, and a rule transformation:

p(b, c)<—f (b, c)
p(a', X3)4--f (X4, X5)

where X4 and X5 are new variables. From the schema above, we have

61={<b, a'>, <c, X3>, <b, X4>, <c, X5>},

and the next set of paired terms

a1UO2={<a, a'>, <b, X3>, <c, c'>, <b, a'>, <c, X3>, <b, X4>, <c, X5>}.

In this case,

a=bEg2(c1Ucb2),

which is not unifiable. Hence our extended interpreter goes back to (5.8). Now it
chooses (R2) instead of (R1).

 Similarly we have a rule transformation:

 p(a, b)<—m(a, b)
p(a', X3)*-m(X4, X5)

with the new set of paired terms

a2={<a, a'>, <b, X3>, <a, X4>, <b, X5>}.

Then we have

Cb2 J r2={<a, a'>, <b, X3>, <c, c'>, <a, X4>, <b, X5>},
and

Egi(02Ua2)={a'=X4, X3=X5}.

Unifying [a', X31 and [X4, X5], we have a rule transformation

 p(a, b)—m(a, b)
 p(a', X5)<—m(a', X5),

and

03=1<a, a'>, <b, X5>, <c, c'>1.

To find the value of X5i the goal

<—[m(a', X5) in P2]

Reasoning by analogy as a partial identity between models145

is generated, and it succeeds with b'/X5i since m(a', b') M2. Thus we have a partial
identity

0.={<a, a'>, <b, b'>, <c, c'>}

and complete to prove gf(a', c') E M2(* ; cb).

 5.4. Control structure of the extended interpreter
 We now present our interpreter called "ana" in a form of Prolog program. First

suppose that a fact of assertion A and a rule C<—B1i • • • , Bn in P1 are represented by
Prolog's clauses

fact1(A).

fact1(C) : fact1(B1), ••• , facti(B,) • ,

respectively, and stored in Prolog database, where fact, is a reserved symbol to show

that the fact and the rule are in P1. For a clause in P2, we assume a similar repre
sentation using a symbol fact2. Now we list the Prolog program ana.

(C1) an a (Goal) :—reason (Goal, [], Epic) .
(C2) reason (true, Epic, Epic) :— ! .
(C3) reason ((Goal, Goals), Epic, Epic2)

:— !, reason (Goal, Epic, Epicl) ,
reason (Goals, Epicl, Epic2) .

(C4) reason (Goal, Epic, Epicl)
 :—clause (Goal, Goals) ,

reason (Goals, Epic, Epicl) .

(C5) reason (Goal, Epic, Epic3)
:—prematch (Goal, Sgoal, Sgoals) ,

reason (Sgoal, Sgoals, Tgoals, Bind) ,
trans (Goal, Sgoal, Sgoals, Tgoals, Bind) ,
epic (Bind),
append (Epicl, Bind, Epic2) ,

 epic (Epic2) ,
reason (Tgoals, Epic2, Epic3) ,

 epic (Epic3) .

 A goal 4—EAin P1] fed to our interpreter is represented by a Prolog's term facti(A).
Hence the initial goal to the Prolog interpreter is

4-ana (f act i(A)).

 Some set of paired terms are to be assigned to the second and the third arguments
of the predicate reason. A set of paired terms { <t;, t;> I 1 < j < n } is represented by a

pair-list [[t1, ti], ••• , [t., tn]]. The empty list is denoted by []. Given a goal and a
pair-list listo assigned to the variable Epic, reason computes a pair-list list, which is
an extension and a refinement of listo. The third variable Epic' of reason is instan
tiated to Usti, when the goal reason (Goal, Epic, Epic') succeeds. The process of find
ing the sequence of {0k1 is thus realized by a recursion.

146M. HARAGUCHI and S. ARIKAWA

 The ordered set of clauses (C2), (C3) and (C4) works as a pureProlog interpreter.
The last clause (C5) carries out the rule transformation and the construction of pair

list. The predicate prematch in the body of (C5) searches a possible rule in P; (j # i)

to be transformed.

 The predicate trans produces a pair-list necessary to perform transformations.

The produced pairing is assigned to the variable Bind.

 The predicate epic computes a set of equations, and tries to unify them, as we

have discussed. Hence, after the execution of epic (Bind), some variables in Bind are
instantiated to terms as long as Bind does not violate the condition EPIC. If it turns

out that Bind violates EPIC, reason goes back, and tries to find another pair-list and
another rule to be transformed.

 Finally we present an example (due to Winston [11]) of the reasoning performed

by the Program "ana". In the example, the question asked to ana is

<—[kill (X, noble_a) in PA.

Equivalently it has the form

 ana (f act, (kill (X, noble_ a)))

as an initial goal to the Prolog interpreter. The underlying logic programs for the

reasoning are as follows :

P1= {greedy (ladymac) .

 marry (mac, ladymac) .

 weak (mac) .
 wtbqueen (ladymac) .

 king (duncan) .

 loyal (macduff, duncan) .

 evil (mac) :—weak (mac), marry (mac, X), greedy (X) .

infl (X, Y) :—marry (Y, X), weak (Y), greedy (X) .

wtbking(mac) :—infl(ladymac, mac), wtb queen (ladymac).

 murder (Murder, King) :—king (King), wtbking (Murder), evil (Murder) .

 kill (Loyal, Murder) :—murder (Murder, Someone), loyal (Loyal, Someone) .
P2= {noble (noble_a) .

 lady (lady _a) .

 king (king_ a) .

noble (noble _ b) .

 loyal (noble_b, king _a) .

 marry (noble_a, lady _a) .

 weak (noble_a) .

 greedy (lady _a) .
 wtbqueen (lady _a) .1.

The extended interpreter has been developed for DCL Ustation in CProlog, and

returned the answer

 X=noble_b

Reasoning by analogy as a partial identity between models147

for the question above after about 15 seconds.

 References

 [1] APT, K. R. and VAN EMDEN, M. H. : Contribution to the theory of logic programming,
 JACM, 29, 3 (1982) , 841-862.

[2] CLARK, K. L.: Negation as Failure, Logic and Databases, H. GALLAIRE and J. MINKER
(Eds.) , Plenum Press, New York (1978) , 293-322.

[3] GENTNER, P. : Are scientific analogies metaphors?, Metaphor : Problems and Perspectives,
 D. S. MIALL (Ed.), The Harvester Press, Sussex (1982), 106-132.

[4] HARAGUCHI, M.: Towards a mathematical theory of analogy, Bull. Inform. Cybernetics,
 21 (1985), 29-56.

[5] HARAGUCHI, M. : Analogical reasoning using transformations of rules, LNCS 221 (1986),
 56-65.

[6] HARAGUCHI, M. and ARIKAWA, S. : A formulation and a realization of analogical reason
 ing, Journal of JSAI, 1, 1 (1986), 132-139 (in Japanese).

[7] HARAGUCHI, M. and ARIKAWA, S. : Analogical Union of Logic Programs, Proc. Logic
 Programming Conference '86 (1986), 103-110.

[8] LLOYD, J. W.: Foundations of logic programming, SpringerVerlag (1984) .
[9] POLYA, G. : Induction and analogy in mathematics, Princeton University Press (1954) .
[10] WINSTON, P. H. : Learning and reasoning by analogy, CACM, 23 (1980), 689-703.
[11] WINSTON, P. H. : Learning new principles from precedents and exercises, Artificial Intelli

 gence, 19 (1983), 321-350.

Received September 29, 1986

