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Abstract 
In the last years, the investigation on Description 
Logics (DLs) has been driven by the goal of apply­
ing them in several areas, such as, software engi­
neering, information systems, databases, informa­
tion integration, and intelligent access to the web. 
The modeling requirements arising in the above 
areas have stimulated the need for very rich lan­
guages, including fixpoint constructs to represent 
recursive structures. We study a DL comprising the 
most general form of fixpoint constructs on con­
cepts, all classical concept forming constructs, plus 
inverse roles, n-ary relations, qualified number re­
strictions, and inclusion assertions. We establish 
the EXPTIME decidability of such logic by pre­
senting a decision procedure based on a reduction 
to nonemptiness of alternating automata on infinite 
trees. We observe that this is the first decidability 
result for a logic combining inverse roles, number 
restrictions, and general fixpoints. 

1 Introduction 
Description Logics (DLs) allow one to represent a domain of 
interest in terms of concepts and roles, where concepts model 
classes of individuals, and roles model relationships between 
classes [Woods and Schmolze, 1992; Donini et al., 1996; 
Borgida and Patel-Schneider, 1994J. A knowledge base ex­
pressed in a DL is constituted by inclusion assertions that 
state the properties of concepts and roles. Various reason­
ing tasks can be carried out on a k* >wledge base. The most 
fundamental one consists in checking whether a certain asser­
tion is logically implied by a knowledge base. A DL is char­
acterized by three aspects: the language used to form com­
plex concepts and roles, the kind of assertions that are used 
to express properties of concepts and roles, and the inference 
mechanisms provided for reasoning on the knowledge bases 
expressible in the system. 

In the last years, the investigation on DLs has been driven 
by the goal of applying them in several areas, such as plan­
ning [Weida and Litman, 19921, action representation [Ar-
tale and Franconi, 1994), software engineering [Devanbu and 
Jones, 1997], information systems [Catarci and Lenzerini, 
1993], databases [Borgida, 1995; Bergamaschi and Sartori, 
1992; Sheth et al, 19931, information integration [Calvanese 

et al, 1998c|, and intelligent access to the web [Levy et al, 
1996; Blanco et al, 19941. The modeling requirements aris­
ing in the above areas have stimulated the need for incorpo­
rating increasingly expressive representation mechanisms: 

• The goal of capturing the semantics of database mod­
els and reasoning about data schemas has stressed the 
importance of number restrictions, n-ary relations, and 
cyclic assertions in the knowledge base [Calvanese et 
al., 1994]. 

• Information integration systems require inclusion asser­
tions not only on concepts, but also on relations lUllman, 
1997]. 

• Semi-structured data, used in applications such as digital 
libraries, internet information systems, etc., require the 
ability to represent data whose structure is not rigid and 
strictly typed as in conventional database systems. Mod­
els for semi-structured data represent data as graphs with 
labeled edges, and adopt flexible typing schemes in or­
der to classify data [Buneman, 19971. A special case of 
such models is X M L [Bray et al., 1998], which is be­
coming the standard for exchanging data on the web. In 
general, correctly modeling such typing schemes calls 
for the use of fixpoints in the representation formalism 
iCalvanese et. al., 1998b]. 

• UML [Booch et al., 1998] is nowadays the standard lan­
guage for the analysis phase of software and information 
system development. CASE tools that perform auto­
mated reasoning on U M L schemas (for example, to test 
consistency or redundancy) would be of great interest. 
Fully capturing U M L schemas in DLs requires inverse 
roles, n-ary relations, number restrictions, and general 
fixpoints on concepts for modeling recursive structures 
(both inductive and coinductive), such as lists, trees, 
streams, etc.. 

DLs that capture all requirements above except fixpoints 
arc known (sec e.g. I Calvanese et al., 1998c]). However, 
fully capturing fixpoints in DLs has been an open problem 
for a long time. Fixpoints incorporated directly in the seman­
tics have been first studied in [Nebel, 1991; Baader, 1996] 
for simple DLs. DLs with regular expressions, which can 
be seen as a form of fixpoints, have been studied in [Baader, 
1991], and exploiting the correspondence with Propositional 
Dynamic Logics in [Schild, 1991; De Giacomo and Lenz­
erini, 1994]. In [Calvanese et al., 1995] another form of 
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fixpoints, capturing well-foundedness, has been considered. 
While such logics got increasingly expressive, they all in­
clude fixpoint of a limited form only. Fixpoints on concepts in 
their full generality have been investigated in [Schild, 1994; 
De Giacomo and Lenzerini, 19971 developing a correspon­
dence with modal //-calculus [Kozen, 1983]. However these 
logics lack inverse roles (and number restrictions on them) 
which are essential to deal with n-ary relations. 

The work presented in this paper closes the gap between 
the two lines of research, presenting a logic with general fix-
points on concepts that includes all the constructs mentioned 
above. Specifically, we consider a DL, called that 
includes: 

• a very rich language, comprising all classical concept 
forming constructs, plus inverse roles, -ary relations, 
and the most general form of number restrictions; 

• the most general form of inclusion assertions, without 
any limitations on the presence of cycles; 

• the most general form of fixpoint on concepts. 

We characterize reasoning in such a DL as EXPTIME-
complete1, by presenting a decision procedure based on re­
ducing inference to nonemptiness of two-way alternating au­
tomata on infinite trees [Vardi, 1998]. We observe that this 
is the first decidability result for a logic combining inverse 
roles, number restrictions, and general fixpoints. 

2 The Description Logic 
Traditionally, description logics (DLs) allow one to represent 
a domain of interest in terms of concepts and roles, which 
model classes of individuals and binary relationships between 
classes, respectively. More recently DLs comprising relations 
of arbitrary arity have been introduced, e.g., Cal vanese 
et a/., 1998cI. We present the DL which extends 

by least and greatest fixpoint constructs. 
We make use of the standard first-order notions of scope, 

bound and free occurrences of variables, closed formulae, 
etc., treating and as quantifiers. 

Concepts and relations (of arity between 2 and are 
built according to the following syntax: 

where P and .4 denote atomic relations and atomic concepts 
respectively, R and C denote arbitrary relations and concepts, 
i denotes components of relations, i.e., an integer between 1 
and denotes the arity of a relation, i.e., an integer 
between 2 and denotes a nonnegative integer, de­
notes the top concept, denotes the 
top relation of arity X denotes a concept variable, and the 
restriction is made that every free occurrence of X in pX,C 
is in the scope of an even number of negations 
counts as one negation). 

Concepts and relations must be well-typed, which means 
that (i) only relations of the same arity can be combined to 

'The same computational complexity of reasoning with inclu­
sion assertions in the basic DL ACC. 

Figure 1: Semantic rules for 

form expressions of type (which inherit the arity 
and (ii) i whenever , denotes a component of a relation 
of arity 

We make use of the standard abbreviations, including 
where denotes the 

concept obtained from C by substituting all free occurrences 
of A" with C. We use to denote either 

An interpretation consists of an interpre­
tation domain and an interpretation function , which 
maps every atomic concept to a subset of and every 
atomic relation of arity to a subset of . The presence 
of free variables does not allow us to extend • directly to ev­
ery concept and relation. For this reason we introduce valua­
tions. A valuation on is a mapping from concept variables 
to subsets of . Given a valuation we denote by 
the valuation identical to except for 

Let be an interpretation and a valuation on . We as­
sign meaning to concepts and relations of the logic by associ­
ating to and an extension function , mapping concepts 
to subsets of and relations of arity to subsets of 
as shown in Figure 1. Observe that the semantics assigned to 

A . C i s 

The expression can be seen as an operator from sub­

sets to subsets of and, by the syntactic restric­
tion enforced on variables, such an operator is guaranteed to 
be monotonic wrt . The constructs and de­
note respectively the least fixpoint and the greatest fixpoint 
of the operator (sec [Dc Giacomo and Lenzerini, 1997] for 
a discussion on the use of fixpoints in DLs). The extension 
of closed concepts and relations is independent of the valu­
ation, and therefore for closed concepts and relations we do 
not consider the valuation explicitly. A closed concept or re­
lation L is satisfiable if there exists an interpretation such 
that 

A knowledge base is a finite set of assertions of 
the form where and are either two closed 
concepts of VCR^uor two closed relations of the same arity. 
We use , 2 as an abbreviation for the assertions 

and . An interpretation satisfies an assertion 
is a model of a knowledge base 
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Figure 2: An U M L diagram 

if it satisfies all assertions in An assertion 
is logically implied by a knowledge base 
every model 

Example 2.1 Figure 2 shows an U M L diagram which is part 
of a Telecom Italia application monitoring departments. De­
partments other than Main Departments are controlled by 
other departments, in a purely hierarchical fashion (see the 
use of the concept T r e e ) . Moreover, Departments can be 
sold to companies for a certain amount of money. There 
are further constraints in the application (not shown in the 
diagram): First, if a Main Department is sold, then all De­
partments directly or indirectly controlled by it are also sold. 
Second, if a Department is sold, then its controlling Main De­
partment is also sold. 

We provide the formalization in of the U M L dia­
gram in Figure 2. Tree[ /V, L] represents a concept param­
eterized on N and L, to be used as a template, according to 
the following inductive definition of tree: (i) an empty tree 
is a tree; (ii) a node with at most one predecessor, at least 
one successor, and such that all successors are trees, is a tree; 
(i i i) nothing else is a tree. T r e e [ D e p t , CONTROLS] repre­
sents the concept obtained by syntactically substituting Dep t 
and CONTROLS for the parameters N and L in Tree[ iV , L] . 

The additional constraints mentioned above are formalized as 
follows: 

3 The DLs and 
Below we also consider the DL which extends 

studied in [De Giacomo and Lenzerini, 1997], by 
the inverse operator on roles. Concepts in are built 
as follows (R is an atomic or inverse atomic role): 

Figure 3: Mapping a(-) from 'DC'Ru. to iiACCQl 

can be viewed as a syntactic variant of modal fi-
calculus [Kozen, 1983] extended both with graded modalities 
(see e.g., [Van der Hoek and De Rijke, 19951) and with back­
ward modalities [ Vardi, 1985]. 

We observe that can also be considered as a sub­
language of by restricting relations to be binary and 
allowing their use only according to the following abbrevia­
tions: 

Finally, we call the restriction of ob­
tained by forcing all atomic and inverse roles to be functional. 

4 Encoding into 
Next we turn to reasoning in In particular, we present 
a technique to decide logical implication in In this 
section we show how to encode into and 
then into In Section 5 we study reasoning in 

by adopting automata theoretic techniques. 
Since we can define an atomic relation to be equivalent to 

any complex relation, we assume wlog that all qualified num­
ber restrictions are of the form where P is an 
atomic relation. We also use the standard abbreviations. 

To reduce logical implication in to logical impli­
cation in we extend the technique in [Calvanese 
el ai, 1998a.|. We make use of the mapping defined in 
Figure 3, and define the knowledge base by 
applying a to all assertions in /C and adding: 

Intuitively, makes use of reification of 7i-ary relations, 
i.e. a tuple in a model of is represented in a model of 
by an individual having one functional role Fi for each tuple 
component 

Although atomic roles in are functional their inverses 
are not. Next we further transform to get a 
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Figure 4: Mapping 

knowledge base (in which also all inverse roles are 
functional). Intuitively, following [De Giacomo and Lenz-
erini, 1995], we represent the role by 
the role , where arc new functional roles and 
is the reflexive-transitive closure of Now qualified num­
ber restrictions can be encoded as constraints on the chain 

. Formally, we make use of the mapping defined 
in Figure 4. 

We define as the knowledge base ob­
tained by applying ft to all assertions in and adding the 
assertion 

Theorem 4.1 Given knowledge base and 
assertion 

Since the mappings and are polynomial we get the 
following result. 

Theorem 4.2 Logical implication in can be polyno-
rnially reduced to logical implication in 

Finally we observe, that since has the connected-
model property, we can internalize assertions and polyno-
mially reduce logical implication to concept satisfiability. 
Namely, iff 

is unsatisfiable, where and 
are the atomic roles in and C2. Therefore, 

in the following we concentrate on concept satisfiability in 

5 Automata Techniques for 
We now study concept satisfiability in following 
the techniques based on two-way alternating automata on 
infinite trees (TWAA) introduced in fVardi, 1998]. Indeed, 
Vardi used TWAAs to derive a decision procedure for modal 
//-calculus with backward modalities. Here we exploit them 

2Under the usual assumption that numbers in number restrictions 
are coded in unary. 

to derive a reasoning procedure for which corre­
sponds to a modal calculus with backward modalities in 
which both forward and backward modalities are functional. 

5.1 Automata on Infinite Trees 

Infinite trees are represented as prefix closed (infinite) sets of 
words over N (the set of positive natural numbers). Formally, 
an infinite tree is a set of words such that if 
where and then also '. The tree in full 
if also The elements of T arc 
called nodes, the empty word is the root of T, and for every 

the nodes with are the successors of 
By convention we take and The 

branching degree denotes the number of successors of 
for all nodes , then we say that the tree is k-

ary. An infinite path P of T is a prefix-closed set such 
that for every i 0 there exists a unique node with 

A labeled tree over an alphabet £ is a pair (T, V) 
where T is a tree and 

Alternating automata on infinite trees are a generalization 
of nondeterministic automata on infinite trees, introduced 
in iMuller and Schupp, 19871. They allow for an elegant re­
duction of decision problems for temporal and program log­
ics [Emerson and Julia, 1991; Bernholtz et ai, 1994]. Let 
B+ (1) be the set of positive boolean formulas over 7, includ­
ing also t r u e and false. For a set I and a formula 

, we say that ./ satisfies iff assigning t rue to 
the elements in ./ and false to those in / \ ./ makes true. 
Let A two-way alternating automa­
ton over infinite ary trees is a tuple A = 
where is the input alphabet, Q is a finite set of states, 

is the transition function, r/(j Q 
is the initial state, and F specifies the acceptance condition. 

The transition function maps a state Q and an input 
letter to a positive boolean formula over . In­
tuitively, if i , then each pair appearing in 

corresponds to a new copy of the automaton going to the 
direction suggested by c and starting in state . For example, 
if k = 2 and 
when the automaton is in the state q{ and is reading the node 

labeled by the letter a, it proceeds cither by sending off two 
copies, in the states q2 and q3 respectively, to the first succes­
sor of or by sending off one copy in the state -
to the predecessor of and one copy in the state 

itself (i.e., xO). 
A run of a TWAA A over a labeled tree is a labeled 

tree in which every node is labeled by an element of 
T x Q. A node in labeled by describes a copy of 
A that is in the state and reads the node x of T. The labels 
of adjacent nodes have to satisfy the transition function of A. 
Formally, a run -labeled tree satisfying: 
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A run is accepting if all its infinite paths satisfy 
the acceptance condition. Given an infinite path P , let 
inf(P) Q be the set of states that appear infinitely often in 
P (as second components of node labels). We consider here 
parity acceptance conditions. A parity condition over a state 
set Q is a finite sequence with G\ 
G2 _ and a path P satisfies F if there is an 
even i for which inf and inf\ 

5.2 Reasoning in 

First we observe that has the tree model property. 
which states that if a concept C is satishable then 
it is satisfied in an interpretation which has the structure of 
an infinite tree of bounded degree. In particular, the degree 
is bounded by 2 • where is the number of atomic roles 
appearing in C. The tree model property can be shown fol­
lowing the lines of the proof in [Vardi, 19981 for the modal 
calculus with backward modalities. Next we define a TWA A 
that accepts exactly the trees that are models of a concept. 

The closure cl(C) of a concept C (which extends 
the one in (Kozen, 1983] for the modal -calculus) is defined 
as the smallest set cl(C) of closed concepts that satisfies: 

Note that the cardinality of cl(C) is linear in the length of C. 
Let C be the concept we want to check for satisfi­

ability, which wlog we assume to be in negation normal form. 
Let A be the set of atomic concepts, and 
the set of atomic roles appearing in C. We construct from 
C a TWAA Ac which checks that C is satisfied at the root 
of the input tree. For technical reasons it is useful to con­
sider trees where all nodes have the same branching degree 
2n. To this end we introduce dummy nodes in the tree. We 
use the symbols and to distinguish nodes that corre­
spond to elements of the model from those that do not. We 
also represent in the nodes of the tree the information about 
the labeling of the edges by introducing for each role four 
symbols , and .Intuitively, labels 

and-- labels if not. Similarly labels 
and - labels if not. 

Since all roles (both direct and inverse) are deterministic, 
we can assume that for each node each and each 
successor appears in a fixed position. In particular, is 
labeled with and is labeled with . Let del 
and ini be two new symbols, and 

The automaton where 
the acceptance 

condition F is as in | Vardi, 1998] and the transition function 
is defined as follows. For all for all .4 

we have t r u e if false if 

Intuitively, the automaton starts in the initial state ini and 
spawns two copies of itself: one verifies that the tree has the 
right structure wrt functionality, and one checks C on such 
structure. 

Theorem 5.1 A concept C is satisfiable iff the set 
of trees accepted by Ac in not empty. 

Since nonemptiness of TWA A can be decided in EXP-
T1ME [Vardi, 1998] we get the following upper bound. 

Corollary 5.2 Concept satisfiability in can be de­
cided in EXPT1ME. 

Since the reduction in the previous section is polynomial, 
we get a worst case deterministic exponential time decision 
procedure for logical implication in . Moreover, since 
logical implication in is EXPTIME-hard (it is so al­
ready for we get the following tight complexity bound. 

Theorem 5.3 logical implication in is EXPTIMin­
complete. 

6 Conclusions 
By addressing general fixpoints on concepts, in addition to 
more standard constructs, DLs finally meet the modeling re­
quirements of advanced applications. The EXPTIME reason­
ing procedure for is the first decidability result for a 
logic combining inverse roles, number restrictions, and gen­
eral fixpoints. In particular, since modal -calculus extended 
both with graded and backward modalities corresponds to 

, the result here applies to such logic as well. 
We observe that reasoning in the presence of extensional 

information (ABox) remains an open problem for 
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