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Abstract

The frontal lobes subserve decision-making and executive control—that is, the selection and coordination of goal-directed
behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday
environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational
model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the
proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model
reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and
infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is
chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is
tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to
subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral
strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown
situations promotes the exploration and creation of new behavioral strategies. The results support a model of human
frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive
behavior.
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Introduction

The ability to adapt to uncertain, changing, and open-ended

environments is a hallmark of human intelligence. In such natural

situations, decision-making involves exploring, adjusting, and

exploiting multiple behavioral strategies (i.e., flexible mappings

associating stimuli, actions, and expected outcomes [1–4]). This

faculty engages the frontal lobe function that manages task sets—

that is, active representations of behavioral strategies stored in

long-term memory—for driving action [5–10]. According to

reinforcement learning (RL) models [11,12], the task set driving

ongoing behavior (referred to as the actor) is adjusted according to

outcome values for maximizing action utility. Uncertainty

monitoring (UM) models [13,14] further indicate that the frontal

executive function infers online the actor reliability—that is, its

ability to infer action outcomes—for resetting the actor whenever

it becomes unreliable. Moreover, models combining RL and UM

suggest that given a fixed collection of concurrent task sets, the

frontal function monitors in parallel their relative reliability for

adjusting and choosing the most reliable actor [15–17].

These models, however, do not explain how the frontal

executive function controls an expanding repertoire of behavioral

strategies for acting in changing and open-ended environments:

that is, how this function decides to create new strategies rather

than simply adjusting and switching between previously learned

ones. For example, imagine you want to sell lottery tickets to

people. After a few trials, you have certainly learned a strategy that

appears to be successful for selling your tickets, but your strategy

then starts to fail with the next person. You then decide to switch

to a new strategy. After adjusting to the new strategy and several

successful trials, the new strategy fails again. You may then decide

to return to your first strategy or test an entirely new one, and so

on. After many trials you have probably learned many different

strategies and switch across them and possibly continue to invent

new ones. Moreover, among this large collection of behavioral

strategies, you may have further learned that several are

appropriate with young people, others with older people, some

with those wearing hats, others with those holding an umbrella,

and so on. How do we learn and manage such an expanding

collection of behavioral strategies and decide to create new ones

rather than simply adjusting and switching between previously

learned ones, possibly according to environmental cues? More

formally, little is known about how the frontal executive function

continuously arbitrates between (1) adjusting and staying with the

current actor set, (2) switching to other learned task sets, and (3)

creating new task sets for driving action. This issue raises a
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computational problem that statistical learning models based on

Dirichlet process mixtures address [18–20]. However, it remains

unclear how the frontal executive function may implement such

statistical models, because they critically rely on off-line Bayesian

inferences operating on expanding collections of sets that rapidly

become computationally intractable [21]. Thus, a fundamental

issue is to understand how with limited monitoring resources the

human executive function controls online the creation of new

behavioral strategies and consequently manages an expanding

collection of behavioral strategies for driving action.

To clarify this issue, we proposed a computational model of the

frontal executive function that controls the creation, learning,

storage, retrieval, and selection of behavioral strategies driving

action. The model constitutes a biologically plausible, online

algorithm. The algorithm approximates Dirichlet process mixtures

[19] by combining reinforcement learning, limited Bayesian

inferences, and hypothesis testing for arbitrating between adjusting,

switching, and creating actor task sets. Consistent with the capacity

limit of human working memory [22–24], the model assumes that

the frontal executive function forms and monitors in parallel only a

limited number of concurrent task sets: the executive function

monitors only a small part of behavioral strategies stored in long-

term memory [22,23,25]. As previously suggested [15–17], task set

reliability is inferred online for choosing the actor sets that drive

behavior and adjust to external contingencies. The key assumption

is that new task sets are tentatively created and probed as actors

whenever no current task sets appear to be reliable. Such probe

actors are partly formed by recombining the strategies stored in

long-term memory according to external cues [22,23,25]. Probe

task sets adjust to external contingencies, but may be subsequently

discarded when they ultimately appear unnecessary. In the converse

case, task set collection is updated with probe task sets: in case the

monitoring capacity would be reached, the least recently used task

sets are discarded but the associated strategies remain stored in long-

term memory. Thus, with limited computing resources, the

executive function manages an expanding repertoire of behavioral

strategies and controls the selection, learning, retrieval, and creation

of behavioral strategies that drive action.

We provided a proper computational formulation of this model,

named the PROBE model. We tested the model predictions in

behavioral experiments inspired from the standard neuropsycho-

logical test of frontal executive function, namely theWisconsin Card

Sorting Test [26,27]. We compared the PROBE model to

alternative models, ruling out successively key model assumptions:

the notion of hypothesis-testing on task set creation (MAX model),

that of task set creation (FORGET model, which encompasses

existing models), and the notion of task set monitoring (RL models).

We found that unlike these alternative models, the PROBE model

predicts human decisions and their variations across individuals.

Moreover, the PROBE model that best fits human data is endowed

with a monitoring capacity of three or four task sets.

Results

Standard Model Assumptions
We assumed that task sets represent behavioral strategies stored

in long-term memory. Each behavioral strategy consists of a selective

mapping encoding stimulus-response associations, a predictive

mapping encoding expected action outcomes given stimuli [13–

15], and a contextualmapping encoding external cues predicting task

set reliability (see Figure S1 and Materials and Methods).

The executive function builds and monitors at most N task sets,

a bound reflecting the capacity limit of human working memory

[22–24]. Consistent with previous studies [13–15], task set

reliability is evaluated online through forward Bayesian inference:

the reliability is inferred before acting according to the perceived

volatility of external contingencies [14] and the occurrence of

external cues (given contextual mappings) for choosing the actor

driving immediate behavior (see below). The actor selective

mapping then determines the response to stimulus using a softmax

policy (inverse temperature b and noise e) [11,15,28]. Thus, we

assumed that in agreement with previous studies (e.g., [6,29,30]),

selection happens at the level of task sets first, then at the level of

actions within task sets.

After action, selective mappings then adjust according to

outcome values through standard reinforcement learning (learning

rate as) [11,31], while predictive mappings update outcome

predictions [13]. Task set reliability is also updated according to

action outcomes (given predictive mappings) and serves to adjust

contextual mappings through a classical stochastic gradient

descent (contextual learning rate ac). Contextual mappings thus

learn the external cues predicting actual reliability (referred to as

contextual cues for clarity).

PROBE Model
The PROBE model assumes that external contingencies are

variable and generated from distinct external states. External states

are potentially infinite and not directly observable, thereby

reflecting variable, uncertain, and open-ended environments.

The PROBE model then builds task sets as instances of external

hidden states for appropriately driving behavior according to

inferred external states. The reliability of every task set then

measures the likelihood that the task set matches current external

states given all observable events (contextual cues and the history

of action outcomes). For inferring online the opportunity to create

new task sets, the PROBE model evaluates task set ‘‘absolute’’

reliability; by concurrently monitoring the reliability of ‘‘random

behavior,’’ the PROBE model estimates online the likelihood that

no task sets match current external states and, consequently, the

reliability of every task set conditional upon the history of action

outcomes (and contextual cues) but not upon the collection of

current task sets (see Materials and Methods).

Consequently, when a task set appears to be reliable (i.e., more

likely reliable than unreliable), it becomes the actor (i.e., the

exclusive action selector) because no others meet this criterion.

Author Summary

Reasoning, learning, and creativity are hallmarks of human
intelligence. These abilities involve the frontal lobe of the
brain, but it remains unclear how the frontal lobes function
in uncertain or open-ended situations. We propose here a
computational model of human executive function that
integrates multiple processes during decision-making,
such as expectedness of uncertainty, task switching, and
reinforcement learning. The model was tested in behav-
ioral experiments and accounts for human decisions and
their variations across individuals. The model reveals that
executive function is capable of monitoring three or four
concurrent behavioral strategies and infers online strate-
gies’ ability to predict action outcomes. If one strategy
appears to reliably predict action outcomes, then it is
chosen and possibly adjusted; otherwise a new strategy is
tentatively formed, probed, and chosen instead. Thus,
human frontal function has a monitoring capacity limited
to three or four behavioral strategies. The results support a
model of frontal executive function that explains the role
and limitations of human reasoning, learning, and creative
abilities in decision-making and adaptive behavior.

Frontal Lobe Function and Human Decision-Making
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Conversely, whenever no task sets appear to be reliable, a new task

set is created and probed as the actor. This actor initially consists

of new selective/predictive mappings, which are formed from

mixing selective/predictive mappings stored in long-term memory

and weighted according to contextual cues (given contextual

mappings) [22,23,25]. The mixture is prone to noise scaled by

parameter g named recollection entropy (0#g#1). Endowed with

prior reliability minimizing prior information [32], the probe actor

is initially unreliable, but its selective/predictive mapping adjusts

to external contingencies: when it becomes reliable, while the

other task set remains unreliable, task set creation is ‘‘confirmed’’;

task set collection is updated by possibly discarding the least recent

actor set in case the capacity limit would be reached. When

conversely another task set becomes reliable before the probe

actor, the latter is discarded and the former becomes the actor.

Thus, the PROBE model is an online, forward approximation of

Dirichlet process mixtures [19] based on hypothesis testing on task

set creation (i.e., on the critical no-parametric component of

Dirichlet processes) (see Text S1).

In the PROBE model, unselected task sets are inferred as being

unreliable (i.e., unrelated to current external states). The PROBE

model therefore assumes that unlike multiple actor models [15–

17], no learning occurs in selective and predictive mappings within

unselected task sets. Thus, only selective/predictive mappings of

actor task sets are adjusted according to action outcomes. This

assumption is consistent with empirical evidence that in task

switching, task set selection inhibits internal mappings of

unselected task sets (e.g., [6,29,30]).

Overall, the PROBE model has six free parameters. Standard

free parameters are: inverse temperature b scaling greediness in

action selection, noise e scaling lapses probability in action

selection, and learning rates as and ac scaling updating rates of

selective and contextual mappings. Additionally, we treated

bounds N and recollection entropy g as free parameters for

investigating multiple theoretical schemes. We also considered two

additional free parameters capturing possible human biases

(Materials and Methods): context-sensitivity bias d.0 increasing

transiently the perceived volatility of external contingencies (i.e.,

the tendency to switch actors whenever, besides stimuli, additional

external cues change between two successive trials) and confirmation

bias h enhancing prior reliability of newly formed task sets, thereby

restraining their immediate disengagement.

Alternative Models
The MAX model is identical to the PROBE model, except that

it removes the notion of hypothesis testing for creating task sets.

New task sets are created for acting only when no task sets appear

more reliable than ‘‘random behavior’’ (i.e., when it becomes more

likely that no task sets match current external states) (see Text S1).

Endowed with prior reliability corresponding to random behavior,

new task sets therefore appear initially as the most reliable ones, so

that task set creation is automatically confirmed. Thus, the most

reliable task set is the actor, provided that it remains more reliable

than random behavior. The MAX model creates new task sets only

when no current task sets are more reliable than chance, whereas

the PROBE creates new task sets once no current task sets appear

to be reliable. Conversely, the MAX model keeps new task sets in

the monitoring buffer when there are no more actors, whereas the

PROBE model keeps them provided that they have been reliable.

The MAX model corresponds to the one-particle filtering

approximation of Dirichlet process mixtures [21]. Otherwise, the

MAX and PROBE models are identical and have the same free

parameters.

The FORGET model further removes the notion of task set

creation (Text S1). The actor is chosen using a softmax policy

(inverse temperature b9) for possibly recycling task sets. Concom-

itantly, the strategies associated with unused task sets decay into

the random strategy (decay rate Q, 0,Q,1) [33,34], so that

unused task sets may be recycled as ‘‘new’’ task sets. Thus, the

collection of task sets is fixed and corresponds to monitoring

capacity N. As external states are potentially infinite, task set

reliability therefore represents relative evidence across distinct

behavioral strategies rather than external states. The FORGET

model therefore assumes that as in multiple actor models [15–17]

selective/predictive mappings are adjusted concurrently in every

task set in proportion to task set reliability. For consistency with

both the PROBE and MAX models, we also tested the FORGET

model with the assumption that learning occurs only for actor task

sets. In the present study, the two assumptions actually yield to

virtually the same predictions, so we ignore the distinction

henceforth.

The FORGET model encompasses existing models: basic RL

models when bound N=1 [11,12], UM models when N=2 and

decay rate Q is large relative to external volatility [13,14], and

finally, multiple actor models combining RL and UM when N.1

and Q=0 [15–17]. The FORGET model has the same free

parameters as the MAX and PROBE models, except that decay

rate Q and inverse temperature b9 replace recollection entropy and

confirmation bias, respectively.

Human Decisions With No Contextual Cues
We conducted the first experiment with 22 participants who

responded to successive visual stimuli (three possible digits) by

pressing one among four response buttons (see Figure S2A and

Materials and Methods). For each stimulus, one response led to a

positive outcome with a probability of 90% (audiovisual feedbacks

associated with extra monetary payoff), while the others led to a

positive outcome with a probability of 10% only. Unbeknownst to

the participants, the mapping between stimuli and best responses

shifted after an unpredictable number of trials, ranging from 36 to

54. No cues predicted such changes. We refer to a series of trials

occurring between two successive changes as an episode. Without

being instructed, moreover, participants performed two distinct

sessions. In the open session, every episode corresponded to new

stimulus response mappings, whereas in the recurrent session, only

three mappings reoccurred unpredictably; every episode corre-

sponded to one among these three mappings, so that participants

could reuse what they previously learned.

Following episode changes, participants then produced persev-

erative responses (best responses in the preceding episode), correct

responses (best responses in the ongoing episode), or exploratory

responses (neither perseverative nor correct). In both conditions,

correct response rates increased from ,2% at episode onsets to

,90% about 30 trials later (chance level: 25%). Exploratory

response rates increased from ,5% at episode onsets, peaked at

,40% about three or four trials later, and then gradually returned

to ,5% (chance level: 50%) (Figure 1A,B). Thus, in all episodes,

participants maximized pay-offs by learning the associations

between stimuli and correct responses. Critically, correct responses

increased and exploratory responses vanished faster in the

recurrent than open episodes (both ts.3.4, ps,0.005). Thus, in

recurrent episodes, participants retrieved the appropriate associ-

ations they had previously learned, although in the meantime they

learned incongruent associations.

Moreover, we found that in the first trials of recurrent episodes,

a positive feedback caused the production of a correct response in

the next trial even when the two successive stimuli differed.

Frontal Lobe Function and Human Decision-Making
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Indeed, the mutual dependence between two successive correct

decisions strongly increased in the first trials of recurrent

compared to open episodes (t=2.8, p=0.012, Figure 1C and

Text S1). In the following trials, by contrast, this mutual

dependence remained weak, approximately constant, and similar

in both recurrent and open episodes (t,1). This finding shows that

in the first trials of recurrent episodes, participants used feedbacks

to retrieve the appropriate stimulus-response mapping rather than

recollecting each stimulus-response association separately. Conse-

quently, participants built and stored multiple stimulus-response

mappings and monitored action outcomes for retrieving previously

learned mappings or learning new ones. This finding further

confirms that the improved performance in the recurrent

compared to open condition could not arise from faster learning

rates in recurrent than open episodes. Indeed, learning rates are

presumed to increase with uncertainty [35,36] and should instead

be faster in open episodes that feature increased uncertainty.

To understand this human ability, we computed for every

participant the models’ parameters that best predict his or her

choice in every trial given his or her previous responses (Figure 2,

legend). As expected, the three models fit participants’ responses

significantly better than a basic RL model adjusting for a single

actor, even when penalizing for increased model complexity

(Figure 2, left). However, neither the fitted FORGET, MAX, nor

RL model accounted for the differential performances observed

between the recurrent and open episodes (Figure 3). Indeed, the

best fitting FORGET model was obtained with bound N=2

(M=2.2; S.E.M.= 0.16) and large decay rate Q (M=14%,

S.E.M.= 0.9%) relative to the volatility of external contingencies

(3%). This model therefore reduces to a standard UM model

[13,14] that monitors only the actor reliability relative to chance

with no ability to retrieve previously learned mappings. Similarly,

the best fitting MAX model was obtained with bound N=1

(M=1.4; S.E.M.= 0.14). This model again monitors only the

actor reliability relative to chance; previously learned mappings

are retrieved only by creating new task sets from strategies stored

in long-term memory with no guidance from action outcomes.

The model therefore fails to account for the increased mutual

dependence of successive decisions made in the first trials of

recurrent episodes (Figure 3).

By contrast, the PROBE model predicts participants’ responses

and their successive dependence in both recurrent and open

episodes (Figure 3). Consistently, the PROBE model fits

participants’ responses significantly better than the other models

(Figure 2, left). The best fitting PROBE model was obtained with

bound N=3 (M=3.3; S.E.M.= 0.3); in recurrent episodes,

previously learned mappings are retrieved by selecting the

appropriate task sets according to action outcomes; this explains

the increased dependence of successive decisions made in the first

episode trials. In open episodes, by contrast, new task sets are

created for driving behavior and learning the new mappings, when

facing new external contingencies that cannot be reliably

predicted.

We then tested the hypothesis underlying the PROBE model

that action selection involves a two-stage process: first choosing the

actor task set and then selecting actions within the actor task set.

For that purpose, we considered a variant of the PROBE model

that rules out this hypothesis: actions are directly selected by

marginalizing over task sets on the basis of task sets’ reliability. In

this variant, consistently, concurrent learning occurs for every task

set in proportion to task set reliability. Again, the best fitting

variant was obtained with monitoring bound N=1, so that the

variant becomes equivalent to the best fitting FORGET and MAX

models and similarly fails to account for the differential

Figure 1. Human decisions with no contextual cues. Participants’
performances in recurrent (red) and open (green) episodes plotted
against the number of trials following episode onsets. Shaded areas are
S.E.M. across participants. (A) Correct response rates. (B) Exploratory
response rates. (C) Mutual dependence (i.e., mutual information) of two
successive correct decisions averaged over five-trial sliding bins (see
Text S1).
doi:10.1371/journal.pbio.1001293.g001

Frontal Lobe Function and Human Decision-Making
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performances observed between the recurrent and open episodes.

Thus, the data support the PROBE model assumption that action

selection is based on first choosing the actor task set according to

task set reliability and then selecting actions according to the actor

selective model.

Finally, we compared the PROBE model parameters that best

fit participants’ responses (see Table S1) to those optimizing

PROBE model performance in this protocol. Using computer

simulations, the optimal PROBE model parameters were

computed as those maximizing the proportion of correct responses

produced by the model over both sessions irrespective of

participants’ data (optimal PROBE model performance, 80%;

participants’ performance 6 S.E.M., 77%60.6%). As expected,

optimal bound N was equal to 3, and optimal recollection entropy

g was equal to 1 (the maximal value); because the optimal model is

able to monitor the exact number of recurrent mappings in the

recurrent condition, the recollection of behavioral strategies from

long-term memory becomes useless. As mentioned above, best

fitting bound N averaged across participants was similar to the

optimal value (M=3.3; S.E.M.= 0.3). Compared to the optimal

PROBE model, however, participants exhibited lower recollection

entropy g (gbest-fitting 6 S.E.M.= 0.7260.07) and positive confir-

mation bias (hoptimal=0; hbest-fitting=0.7460.12). This indicates that

participants retrieved learned behavioral strategies by relying more

on long-term memory recollection than optimally on working

memory retrieval (monitoring buffer). This is consistent with the

fact that in several participants, monitoring bound Ns were lower

than the number of recurrent mappings.

Regarding action selection within task sets, optimal inverse

temperature was large and equal to 30 and optimal noise e equal

to 0. As expected, the optimal model behavior is greedy and most

often selects best rewarding responses. Interestingly, participants

were as greedy as the optimal model behavior with similar best-

fitting inverse temperature b (3262) and virtually zero noise e

(0.0160.003). Optimal and best fitting learning rates of selective

mappings aswere also similar (as(optimal)=0.4; as(best-fitting)=0.4160.03),

indicating that participants efficiently stored behavioral strategies in

long-term memory.

Human Decisions with Contextual Cues
In a second experiment, we examined whether in the presence

of contextual cues predicting current external contingencies the

PROBE model remains the best predictor of participants’

decisions. Forty-nine additional participants first carried out the

same recurrent session as described above, except that unbeknownst

to them, stimulus colors informed current mappings between

stimuli and best responses. These contextual cues therefore

switched at episode onsets and sometimes within episodes, because

the same mapping could be associated with distinct color cues (see

Figure S2B and Materials and Methods).

In these cued recurrent episodes, participants roughly behaved

as in previous, uncued recurrent episodes (Figure 4A,B). Following

episode changes, however, correct responses increased and

exploratory responses vanished earlier in cued than in uncued

episodes. These effects were even observed in the first episode trial

before the first (adverse) feedback (both ts.4; p,0.001), indicating

that participants used contextual cues to switch behavior

proactively.

Participants then carried out a second session identical to the

first one, except that unbeknownst to them, the session intermixed

three types of cued episodes: control episodes corresponding to cued

recurrent episodes encountered in the first session, transfer episodes

corresponding to such recurrent episodes but associated with new

contextual cues, and open episodes corresponding to new mappings

and contextual cues.

Following episode changes, correct responses increased and

exploratory responses vanished similarly in control and transfer

episodes (both ts,1.5, ps.0.13) but faster and earlier in these

episodes than in open episodes (all ts.4.4, ps,0.001, Figure 4C,D).

Participants therefore performed without using a single ‘‘flat’’

actor directly learning stimulus-cue-response associations. Indeed,

in this case, the performance in transfer episodes would have been

similar to the performance in open rather than control episodes.

For every participant, as described above, we then computed

the models’ parameters that best predict the participants’

responses. Again, the PROBE model was the best fitting model,

Figure 2. Comparison of model fits. Models were fitted using the
standard maximum log-likelihood (LLH) and least squares (LS) methods.
Histograms show the LS and LLH as well as the Bayesian information
criterion (BIC) obtained for each model. The LLH method maximizes the
predicted (log-)likelihood of observing actual participants’ responses.
The LS method minimizes the square difference between observed
frequencies and predicted probabilities of correct responses. The
Bayesian information criterion (BIC) alters LLH values according to
model complexity favoring models with less free parameters (Text S1).
Larger LLH, lower LS, and lower BIC values correspond to better fits.
Left, first experiment with no contextual cues. Parameters that cannot
be estimated (i.e., contextual learning rate ac and context-sensitivity
bias d) were removed from the fitting. RL, basic reinforcement learning
model including a single task-set learning stimulus-response association
(free parameters: inverse temperature b, noise e, learning rate as). Right,
second experiment with contextual cues. RL, pure reinforcement
learning model learning a mixture of stimulus-response and stimulus-
cue-response associations (free parameters: inverse temperature b, b9
noise e, learning rates as and ac, and mixture rate v; see Text S1). Note
that in both experiments the PROBE model was the best fitting model
for every fitting criterion (LS, all Fs.3.8, p,0.001).
doi:10.1371/journal.pbio.1001293.g002

Frontal Lobe Function and Human Decision-Making
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even when compared to pure RL models learning mixtures of

stimulus-response and stimulus-cue-response associations (Figure 2,

right). Unlike the other models, the PROBE model predicts

participants’ performances in control, transfer, and open episodes

(Figure 5). Moreover, the best fitting PROBE model was again

obtained with bound N=3 (M=3.2; S.E.M.= 0.3). Other model

parameters were also similar to those obtained in the first

experiment with no contextual cues (mean 6 S.E.M.: recollection

entropy g=0.8460.02; confirmation bias h=0.7160.06; inverse

temperature b=2562; noise e=0.0560.01), except learning rate

as, which was lower (0.1860.1). Compared to the optimal PROBE

model, however, participants exhibited lower contextual learning

rates (ac(optimal)=0.1; ac(best- fitting)=0.00660.002) and large contex-

tual sensitivity bias d (doptimal=0; dbest fitting=0.5560.04). Unlike a

participant, the optimal PROBE model perfectly learns the

associations between contextual cues and behavioral strategies

and uses them to proactively select/retrieve learned behavioral

strategies. The discrepancy is consistent with the fact that in the

model only color cues were implemented as additional stimulus

attributes, whereas participants faced much more contextual

information and were not specifically informed about color cues.

Inter-Individual Variability
Knowing that adaptive behaviors are highly variable and may

even qualitatively differ across individuals [37–39], we examined

inter-individual variability by analyzing separately three groups of

participants identified from post-tests. Post-tests assessed partici-

pants’ ability to recollect the three stimulus-response mappings

they learned in recurrent sessions (Text S1). We found that only

two-thirds of participants recollected the three mappings (13/22

and 34/49 in the first and second experiment, respectively). We

refer to them as exploiting participants and to the remaining third as

exploring participants. Furthermore, in the second experiment, only

half of exploiting participants (19/34) recollected the contextual

cues associated with learned mappings. We refer to them as context-

exploiting participants and to the remaining half (15/34) as outcome-

exploiting participants.

Consistently, in both experiments, exploring participants

behaved without retrieving previously learned stimulus-response

mappings. Unlike exploiting participants, they performed identi-

cally across all episodes (Figures 6 and 7). Conversely, only

context-exploiting participants adjusted faster in control than

transfer episodes (Figure 7), indicating that unlike the others,

Figure 3. Predicted versus observed decisions with no contextual cues. Correct and exploratory response rates as well as mutual
dependences of successive correct decisions in recurrent (red) and open (green) episodes plotted against the number of trials following episode
onsets. Lines6 error bars (mean6 S.E.M.): performances predicted by fitted RL, FORGET, MAX, and PROBE models. RL, reinforcement learning model
including a single actor learning stimulus-response associations (details in Figure 2, legend). Correct and exploratory response rates were computed
in every trial according to the actual history of participants’ responses. Mutual dependence of successive correct decisions predicted by each fitted
model was computed as the mutual information between two successive correct responses produced by the model independently of actual
participants’ responses (one simulation for each participant). Stars show significant differences at p,0.05 (mutual dependences on the first eight
trials between recurrent and open episodes. t tests, RL & FORGET, all ts,1. MAX, all ts,2, ps.0.06; PROBE, all ts.3.2, ps,0.004). Lines6 shaded areas
(mean+S.E.M.): human performances (data from Figure 1). Insets magnify the plots for Trials 7, 8, and 9. See Table S1 for fitted model parameters. See
Text S1 for the discrepancy observed in Trial 5 between participants’ exploratory responses and model predictions (section ‘‘Comments on Model
Fits’’).
doi:10.1371/journal.pbio.1001293.g003
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context-exploiting participants further used contextual cues for

retrieving the appropriate mappings. Importantly, these individual

differences were unrelated to possible variations in fatigue,

attention, or motivation across participants. Indeed, in control

and transfer episodes, exploiting participants adjusted faster than

exploring participants, but in open episodes, the opposite was

observed: exploring participants adjusted faster than exploiting

participants (Figure 7, legend). Moreover, no groups ignored

contextual cues as shown in Figure S3.

In every group, the PROBE model precisely predicted

participants’ behavior (Figures 6 and 7) and strikingly remained

the best fitting model (Figure 8). In the best fitting PROBE model,

moreover, exploring participants featured only larger confirmation
biases h than exploiting participants (n=24 versus 34; Mann-

Whitney tests, p,0.001; all other parameters, ps.0.11). Notably,

bounds N and recollection entropy g were similar between the two

groups (M 6 S.E.M.: Nexploring=3.360.3; Nexploiting=3.060.3;

gexploring=77%62%; gexploiting=82%66%). With only larger

confirmation biases, exploring participants appeared simply more

prompt than exploiting participants to accept probe actors they

created especially when episodes changed. Consistent with their

post-test retrieval performances and large recollection entropy,

exploring compared to exploiting participants were thus modeled

as re-learning from scratch rather than retrieving the stimulus-

response mappings they had previously learned.

By contrast, context- compared to outcome-exploiting partici-

pants featured only larger context-sensitivity biases d, larger contextual

learning rates aC (M=1.1% versus 0.4%) and slightly lower

recollection entropy g (M=77%63% versus 86%62%) (Mann-

Withney tests, all ps,0.025; all other parameters, ps.0.1). Again,

bound N was virtually identical in the two groups (N=3.474 versus

3.467, S.E.M.s = 0.4). With larger context-sensitivity biases, context-

compared to outcome-exploiting participants appeared more

prompt to switch behavior whenever contextual cues shifted. In

this protocol, this bias along with slightly lower recollection

entropy strongly favored the learning of contextual models,

because cue changes were most often associated with episode

changes. Consistent with their post-test retrieval performances,

outcome-exploiting participants were thus modeled as learning

more efficiently the associations between contextual cues and

stimulus-response mappings.

Discussion

We found that the best account of human decisions is the

PROBE model combining forward Bayesian inference for

evaluating task set reliability and choosing the most reliable actor

set and hypothesis-testing for possibly creating new task sets when

facing ambiguous or unknown situations. Relaxing successively

these assumptions, namely hypothesis-testing (MAX model), task

set creation (FORGET model), and reliability monitoring (pure

RL models), fails to account for human decisions. In contrast to

these alternative models, the PROBE model predicts human

decisions and its variations across individuals in recurrent or open-

Figure 4. Human decisions with contextual cues. Participants’ performances are plotted against the number of trials following episode onsets.
Shaded areas are S.E.M. across participants. (A and B) Correct and exploratory response rates in uncued (red) and cued (blue) recurrent episodes.
Uncued recurrent episodes are from Experiment 1 for participants who performed the recurrent session before the open session (half of participants).
Cued recurrent episodes correspond to the first session of the second experiment. (C and D) Correct and exploratory response rates in control (blue),
transfer (orange), and open (green) episodes (second experiment, second session). In control episodes, the drop of correct response rates and the
peak of exploratory response rates visible on Trial 29 corresponded to contextual cue changes while external contingencies remained unchanged
(see Figure S3).
doi:10.1371/journal.pbio.1001293.g004
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ended environments, with variable external contingencies possibly

associated with contextual cues.

Critically, the PROBE model estimates the ‘‘absolute’’ reliabil-

ity of task sets and consequently involves binary decision-making for

selecting actors, even when multiple task sets are monitored in

parallel. Indeed, actor selection is based on a ‘‘satisficing’’ criterion

based on task set reliability [1]: either a task set appears to be

reliable, in which case it becomes the actor, because no other task

sets meet this criterion, or no task set appears reliable, in which

case a new task set is created and serves as an actor (Materials and

Methods). The results thus show that human executive control

(i.e., task set selection) involves binary decisions based on task set

reliability. This finding contrasts with action selection within task

sets, which in agreement with previous studies [28] involves multi-

valued decisions based on (soft-) maximizing expected utility of

actions.

The PROBE model further indicates that in both experiments

participants’ performances relied on forming and monitoring at

most three or four task sets in parallel. This capacity was

independent of individual differences in retrieving task sets but

might reflect the number of stimulus-response mappings used in

recurrent sessions (i.e., three). To examine this possibility, we fit

the PROBE model on participants’ performances in open sessions

only, which include no recurrent episodes. Again, we found that

the best fitting PROBE model was obtained with monitoring

bound N equal to three or four task sets (M=3.4, S.E.M.= 0.5,

with no significant differences between open sessions performed

first and second: N=2.960.6; N=4.060.8; Mann-Whitney test,

p.0.46). This capacity therefore appears to be independent of the

protocol structure. Furthermore, we conducted an additional

experiment with 30 additional participants that consisted of a

recurrent session identical to that used in Experiment 1, except

that four recurrent mappings between stimuli and correct responses

reoccurred pseudo-randomly across episodes. We found that the

best fitting monitoring bound N was virtually identical to that

found in Experiments 1 and 2 (M=3.4, S.E.M.= 0.3) (Figure S4,

legend). Thus, monitoring bound N was essentially unaltered by

the amount of information stored in long-term memory (selective

and predictive mappings). In this session, moreover, participants

performed as in open episodes (Figure S4), indicating that, on

average, participants monitored no more than three task sets.

Altogether, the results provide evidence that, on average, the

monitoring capacity of human executive function (also referred to

as procedural working-memory [23,24]) is limited to three

concurrent behavioral strategies (four with probe actors). We note

that this limit also matches that previously proposed for human

declarative working memory [22].

Despite this monitoring capacity, the binary structure of

executive control in the PROBE model predicts that humans

can flexibly switch back and forth between two task sets but with

more difficulty across three or more task sets. Indeed, when only

one task set is monitored along with the actor and with no

evidence that none fit external contingencies, then the unreliability

of the actor implies the reliability of the other task set and,

consequently, its selection as an actor (Materials and Methods). In

the other cases, however, especially when two or more task sets are

monitored along with the actor, the unreliability of the actor does

not imply the reliability of another one. In that event, a new actor

is created and probed until additional evidence will possibly reveal

the reliability of another task set and the rejection of the probe

actor. This prediction is consistent with previous studies showing

that humans are impaired in switching back and forth across three

compared to two task sets, irrespective of working memory load

[40]. According to the present results, this impairment reflects the

Figure 5. Predicted versus observed decisions with contextual cues. Correct and exploratory response rates in control (blue), transfer
(orange), and open (green) episodes plotted against the number of trials following episode onsets. Lines 6 error bars (mean 6 S.E.M.): performances
predicted by fitted RL, FORGET, MAX, and PROBE models in every trial according to the actual history of participants’ responses. The RL model
includes a single actor learning a mixture of stimulus-response and stimulus-cue-response associations (see Figure 2 legend for details). Lines
6shaded areas (mean+S.E.M.): human performances (data from Figure 4C,D). See Table S1 for fitted model parameters. Note the systematic
discrepancies between the predictions from RL, FORGET, and MAX models and human data.
doi:10.1371/journal.pbio.1001293.g005
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binary nature rather than the monitoring capacity of human

executive control.

It is worth noting that with monitoring bound N equal to three

(or more), both the FORGET and MAX models qualitatively

account for the differential performances and dependences of

successive responses we observed between recurrent and open

episodes. However, these differential effects result not only from

increased performances in recurrent episodes but mostly from

dramatic decreased performances in open episodes; both models

become much more perseverative than human participants in

open episodes. As shown in the Results section, both models

actually reach human performances in open episodes only by

monitoring a single actor task set against chance or ‘‘random

behavior’’ (which is obtained in the FORGET model through

large decay rate Q), thereby reproducing the binary control

inherent to the PROBE model. In contrast to the PROBE model,

however, they consequently fail to properly account for the

differential performances observed between recurrent and open

conditions. This provides further evidence that the binary

structure of task set selection combined with the monitoring of

alternative task sets are critical components of human executive

function.

Accordingly, human executive function monitors up to three or

four task sets and, when one appears reliable, selects it for driving

behavior. Otherwise, the executive function directly creates a new

task set and probes it as an actor rather than exploiting only the

collection of behavioral strategies associated with current task sets.

The probe actor forms a new strategy that recombines previously

learned strategies stored in long-term memory and collected

according to external cues (given contextual mappings). We found

that recollection entropy was large (.0.7), indicating that task set

creation especially prompts exploratory (random) behavior, at least

when no stored strategies are specifically cued by contextual

signals. In the converse case, task set creation comes to re-

instantiate such externally cued strategies from long-term memory

for driving behavior, even when they are not associated with

current task sets. However, the PROBE model further assumes

that task set creation is tested; probe actors may be discarded

when, despite learning, other task sets become reliable before such

probe actors. The results therefore reveal two fundamentally

distinct human exploration processes: first, uncontrolled exploration

stochastically selecting actions within actor task sets according to a

softmax policy for learning behavioral strategies that maximize

action utility [3,28,41], and second, controlled exploration occurring

whenever no task sets appear reliable for investigating the

opportunity to re-instantiate behavioral strategies stored in long-

term memory or to learn new ones depending upon contextual

cues.

For the sake of simplicity, the model described herein assumes

that no internal alterations of action outcome utility (e.g.,

devaluation due to satiety) have occurred when task sets are

created from behavioral strategies collected from long-term

memory. Consistently, no alterations of outcome utility were

induced in the present experimental protocol. To further account

for possible utility alterations, selective mappings that encode

action utility in behavioral strategies need to be recalibrated

according to the current utility of action outcomes when new task

sets are created. As previously proposed [42,43], this internal

recalibration is achieved through model-based reinforcement

learning before experiencing actual action outcomes; using

predictive mappings embedded in behavioral strategies for

anticipating action outcomes, associated selective mappings are

altered according to current outcome utility through standard

reinforcement learning [11].

Figure 6. Individual differences in decision-making with no
contextual cues. Correct and exploratory response rates as well as
mutual dependence of successive correct decisions in recurrent (red)
and open (green) episodes plotted against the number of trials
following episode onsets (data from Experiment 1). Lines 6 shaded
areas (mean+S.E.M.): participants’ performances. Lines 6 error bars
(mean 6 S.E.M.): predicted performances from the fitted PROBE model.
Predicted correct and exploratory response rates were computed in
every trial according to the actual history of participants’ responses.
Predicted mutual dependence of successive correct decisions was
computed as the mutual information between two successive correct
responses produced by the model independently of actual participants’
responses (one simulation for each participant). Left, exploiting
participants: Correct responses increased and exploratory responses
vanished faster in recurrent than open episodes (Wilcoxon-test, both
zs.2.8, ps,0.005). Right, exploring participants: performances were
similar in recurrent and open episodes (correct and exploratory
responses: Wilcoxon-test, both zs,1.4, ps.0.17). See Table S2 for fitted
model parameters in each group. See Text S1 for the discrepancy
observed in Trial 5 between exploiting participants’ exploratory
responses and model predictions in recurrent episodes (section ‘‘Data
Analyses’’).
doi:10.1371/journal.pbio.1001293.g006
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Accordingly, the PROBE model predicts that task set creation

involves model-based reinforcement learning based on action

outcome predictions, while task set execution involves model-free

reinforcement learning based on actual action outcomes. The

hypothesis is consistent with empirical findings: in extinction

paradigms suppressing actual action outcomes following training,

differential outcome devaluations were found to impact action

selection (e.g., [42,44]). In the PROBE model, suppressing actual

action outcomes consistently triggers task set creation because the

ongoing actor task set becomes unreliable. In the context of the

experiment, then, task set creation comes to re-instantiate and

recalibrate the learned behavioral strategy for acting (see above);

its predictive mapping recalibrates the associated selective

mapping according to actual outcome utility. Moreover, as

adjustments to external contingencies may be faster for predictive

than selective mappings (Bayesian updating versus reinforcement

learning, respectively), this hypothesis may also account for

contrasted devaluation effects occurring after moderate versus

extensive training [45]. Thus, the PROBE model predicts that

model-based reinforcement learning is involved in forming a new

behavioral strategy when ongoing behavior and habit formation

driven by model-free reinforcement learning become unreliable.

Interestingly, the prediction differs from previous accounts

assuming that the arbitration between behavioral strategies driven

by model-free versus model-based reinforcement learning is based

on their relative reliability [43].

We assumed that task sets represent behavior strategies comprising

selective mappings encoding stimulus-response associations according

to action utility, predictive mappings encoding expected action

outcomes given stimuli, and contextual mappings encoding external

cues predicting task set reliability. Neuroimaging studies suggest that

these internal mappings are implemented in distinct frontal regions: (1)

selective mappings in lateral premotor regions, because these regions

are involved in learning and processing stimulus-response associations

[10,46]; (2) predictive mappings in ventromedial prefrontal regions,

because these regions are engaged in learning and processing expected

and actual action outcomes [47–50]; and (3) contextual mappings in

lateral prefrontal regions, because these regions are involved in learning

and selecting task sets according to contextual cues [10,46,51].

Neuroimaging studies further show that dorsomedial prefrontal regions

evaluate the discrepancies between actual and predicted action

outcomes [17,52] and estimate the volatility of external contingencies

[14]. The PROBE model thus suggests that dorsomedial prefrontal

regions monitor task set reliability according to predictive mappings

implemented in ventromedial prefrontal regions and volatility

estimates. Lateral prefrontal regions then revise task set reliability

Figure 7. Individual differences in decision-making with contextual cues. Correct and exploratory response rates in control (blue), transfer
(orange), and open (green) episodes plotted against the number of trials following episode onsets (data from Experiment 2). Lines 6 shaded areas
(mean+S.E.M.): participants’ performances. Lines 6 error bars (mean 6 S.E.M.): performances predicted by the fitted PROBE model in every trial
according to the actual history of participants’ responses. Left, context-exploiting participants: Correct responses increased and exploratory responses
vanished faster in control than transfer episodes (Wilcoxon-tests, both zs.2.4, ps,0.015) and faster in transfer than open episodes (Wilcoxon-tests,
both zs.3.1, ps,0.002). Middle, outcome-exploiting participants: performances were similar in control and transfer episodes (correct and exploratory
responses: Wilcoxon-tests, both zs,1.4, ps.0.15), but correct responses increased and exploratory responses vanished faster in transfer than open
episodes (Wilcoxon-tests, both zs.2.3, ps,0.023). Right, exploring participants: performances were similar in control, transfer, and open episodes
(correct and exploratory responses: Friedmann-tests, both x2,5.3, ps.0.07). Note that in open episodes, exploring participants adjusted faster than
exploiting participants (correct responses: both ts.3.0, ps,0.004). See Table S2 for fitted model parameters in each group.
doi:10.1371/journal.pbio.1001293.g007
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according to contextual cues for choosing the task set driving

immediate behavior (i.e., the selective mapping in the premotor cortex

that specifies the responses to stimuli) [46].

The present study suggests that the prefrontal cortex monitors at

most three or four task sets. The frontal network described above

selects the unique task set appearing reliable for driving behavior

and adjusts it according to action outcomes. When none appear

reliable, this frontal network presumably enters in controlled

exploration; a new task set is probed but initially appears

unreliable, thereby requiring an additional control system to

enforce or discard this probe actor. This system needs to monitor

at least the second most reliable task set. When both the actor and

its best alternative appear unreliable (or no alternative sets are

monitored), the system enforces exploration; a new task set is

created from long-term memory in the frontal network described

above and drives behavior. Exploration then terminates when

either this probe actor or its current best alternative becomes

reliable. This putative system matches the function attributed to

frontopolar regions, usually referred to as cognitive branching

[53,54]: enabling the unexpected execution of a task, while

holding on and monitoring an alternative task for possible future

execution. Furthermore, consistent with the notion of controlled

exploration, frontopolar regions are engaged in exploratory

behavior [28], long-term memory cued retrieval [55], and in the

early phase of learning new behaviors [50,56]. The PROBE model

thus predicts that frontopolar regions monitor at least the

reliability of the best alternative to the actor, a prediction

supported by recent neuroimaging evidence [47,57]. Finally, we

found that individual variations in adaptive behavior primarily

result from confirmation biases in controlled exploration. Consis-

tently, the frontopolar function has been associated with individual

variations in fluid intelligence [58], suggesting that fluid intelli-

gence is associated with the ability to probe new strategies.

According to previous studies, ‘‘creativity is the epitome of

cognitive flexibility. The ability to break conventional or obvious

patterns of thinking, adopt new and/or higher order rules and

think conceptually and abstractly is at the heart of any theory of

creativity’’ ([59]; see also [60]). From this perspective, the PROBE

model that flexibly builds task sets as abstract mental constructs

referring to true or hypothetical ‘‘states of the world’’ for exploring

and storing new behavioral rules may help us to understand

creative processes underlying human adaptive behavior. In

particular, the distinction mentioned above between uncontrolled

and controlled exploration is similar to the distinction made in

artificial intelligence between exploratory creativity (generating

new low-level actions/objects) and transformational creativity

(generating new higher level rules) [61,62]. Critically, the PROBE

model suggests how the human executive function regulates the

exploration versus exploitation of behavioral rules and controls

creativity in the service of adaptive behavior.

In summary, the results support a model of frontal lobe function

integrating reasoning, learning, and creative abilities in the service

of executive control and decision-making. The model suggests how

the frontal lobes create and manage an expanding repertoire of

Figure 8. Comparison of model fits according to individual differences. Least square residuals (LS), maximal log-likelihoods (LLH), and
Bayesian information criteria (BIC) obtained for each model in exploring versus exploiting participants (left) and in context- versus outcome-
exploiting participants (right). RL, reinforcement learning; F, FORGET; M, MAX; P, PROBE model. See details in the Figure 2 legend. Note that in every
participants’ group, the PROBE model was the best fitting model for every fitting criterion (LS, all Fs.4.2, ps,0.001 in exploiting and exploring
groups; Wilcoxon tests in context- and outcome-exploiting groups, all zs.2.0, ps,0.047).
doi:10.1371/journal.pbio.1001293.g008
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flexible behavioral strategies for driving action in uncertain,

changing, and open-ended environments.

Materials and Methods

PROBE Model
To model uncertain, variable, and open-ended environments,

we assumed that in every trial t, there were external contingen-

cies—that is, the possibly stochastic relationships between stimulus

st, action at, and outcomes ot depend upon a hidden state TS�
t only.

Hidden states are countable, potentially infinite, and vary across

trials independently of stimuli and actions. Stimulus st may be

multidimensional and might include cues about current hidden

states, which we refer to as contextual cues for clarity. Hidden state

TS�
t is assumed to depend only upon the preceding hidden state

TS�
t{1 (Markov property) and contextual cues Ct to depend only

upon current hidden state TS�
t .

We describe below the PROBE model computations. In Text

S1, we present the statistical normative approach to the problem

of task set creation based on Dirichlet Processes (see also Figure

S5) and how the PROBE model approximates this statistical

optimal model for the sake of biological plausibility.

Task sets. Task sets TSi represent possible instances of external

hidden states. Each task set i indexes one strategy stored in long-term

memory and comprises (1) a selective mapping Qi(s,a)~E(r½o� s,a,j
TS�

~TSi:) encoding expected rewarding values r[o] of outcomes o

given action a and stimulus s; (2) a predictive mapping ci(o,s,a)~

P(o s,a, TS�
~TSij ) encoding the likelihood of outcome o given

action a and stimulus s; and (3) a contextual mapping F (i Cj )~

P(TS�
~TSi Cj ) encoding the likelihood that hidden state TS*

matches TSi when contextual cues C are observed (Figure S1).

Reliability. We assumed that the executive system monitors

the reliability of at most N task sets. Reliability of task set TSi is the

likelihood that in trial t, external hidden state TS�
t matches TSi

given observations. In every trial, task set reliability is estimated in

two time points: (1) before acting when stimulus st, possibly

including contextual cues Ct, is observed, and (2) after action when

action outcome ot is further observed. We refer to these two

reliability estimates as ex-ante reliability li(t) and ex-post reliability

mi(t), respectively. Thus, li(t) and mi(t) write as follows:

li(t)~P(TS�
t~TSi Ctj , past)

mi(t)~P(TS�
t~TSi ot,Ctj , past),

ð1Þ

where past refers to all other observations, including those from

preceding trials. The PROBE model estimates the ‘‘absolute’’

reliability of task sets (i.e., the likelihood that hidden state TS�
t

matches TSi conditionally upon observations but not upon the

collection of current task sets). Such estimates require computing

the likelihood that hidden state TS�
t actually matches no task sets

TSi. As task set reliability, this likelihood can be estimated before

acting and after action. These two estimates are denoted as l0(t)

and m0(t), respectively, and write as follows:

l0(t)~P(TS�
t 6[f1,:::,Ntg Ctj , past)

m0(t)~P(TS�
t 6[f1,:::,Ntg otj , Ct,past),

ð2Þ

where Nt is the current number of task sets (Nt#N) and {1,…, Nt}

denotes the current collection of task sets.

Note that uniform predictive mapping c0 corresponding to

random predictions over action outcomes is actually an estimate of

P(ot TS
�
t 6[f1,:::,Ntg, past

�

� ). Indeed, all outcomes observed with

the current collection of task sets remain equally probable, when

hidden state TS�
t is unknown. Consequently, mapping c0 is

constant and normalized according to the number of observed

outcomes: c0~
1=Noutcomes

, where Noutcomes counts outcomes o such

that
P

i[ 1:::Ntf g

P

s,a

ci(o,s,a)w0 (e.g., Noutcomes~
P

r

sigmoid½r
P

i[ 1:::Ntf g
P

s,a

ci(o,s,a)� with large inverse temperature r).

For clarity, we denote TS�
t~TS0 theevent TS�

t 6 [f1,:::,Ntg.
Consequently, we can write the following using Equations 1 and 2:

P(TS�
t~TSi pastj )

~

X

j[f0,1,:::,Ntg

P(TS�
t~TSi TS

�
t{1~TSj)

�

� P(TS�
t{1~TSj past)j

~

X

j[f0,1,:::,Ntg

tijmj(t{1),

ð3Þ

where tij are transition probabilities from states j to i. Using

standard Bayesian calculus and assuming that with no observa-

tions all task sets are presumed equally reliable (i.e., P(TS�
t~TSi)

is independent of i), we then obtain from Equation 3 the following

updating rule for ex-ante reliability:

li(t) ~

F (i Ct)j
P

j[ 0,1,...,Ntf g tijmj(t{1)

Zl
t

, ð4Þ

where indexes i[f0,1,:::,Ntg and Zl
t is the normalization term.

Finally, we obtain the following updating rule for ex-post

reliability:

mi(t) ~
ci(ot,st,at)li(t)

Z
m
t

, ð5Þ

where indexes i[f0,1, . . . ,Ntg and Z
m
t is the normalization term.

Finally, transition probabilities tij reflect the perceived volatility t

of hidden states (external contingencies) across successive trials:

typically tii~1{t, ti=j~
t

Nt{1
, with 0,t,1 and Nt the

current number of task sets. As previously proposed [14], volatility

t is estimated using a standard hidden Markov model.
Task set selection and creation. As described above, the

PROBE model estimates the ‘‘absolute’’ reliability of task sets.

Consequently, a minimal requirement is that the actor task set is

more likely reliable than unreliable (i.e., lactor(t).12lactor(t) or

equivalently, lactor(t).0.5). If a task set meets this reliability

criterion, it is necessarily unique, the most reliable one, and

therefore used as the actor. The criterion is necessarily fulfilled

when only two task sets are monitored and l0(t) is close to zero. In

the other cases, the criterion is highly restrictive, so that no task

sets may meet the criterion. In that case, a new task set is created

to serve as an actor with prior reliability lprior.

The new task set is created with initial selective/predictive

mappings Mnew forming a mixture of all selective/predictive

mappings stored in long-term memory and weighted according to

contextual cues Ct:

Mnew~gUz(1{g)

P

k

F (k Ctj )Mk

Z
, ð6Þ

where U denotes uniform mappings, Mnew and Mk are selective/

predictive mappings, and Z~
P

k

F k Ctjð Þ is the normalization
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factor. Index k runs over all behavioral strategies stored in long-

term memory and g scales recollection entropy (0,g,1), as uniform

mappings U reflect recollection noise. Note that internal mappings

with distinct index k may encode the same external contingencies;

mixture (Equation 6) thus favors external contingencies that

frequently re-occur. Given the approximations inherent to the

PROBE model, more precisely, mixture (Equation 6) derives from

the statistical optimal model based on Dirichlet processes (see Text

S1). The mixture forms a new probe actor that is adjusted in

subsequent trials through learning.

Prior reliability lprior of the probe actor is chosen as minimizing

prior information over task set reliability because no information is

available to estimate it [32]. Thus, prior reliability lprior maximizes

entropy Ht over reliability; that is:

Ht~{lprior log lprior{
X

j[ 1,:::,Ntf g
lj(t)(1{lprior) log lj(t)(1{lprior):

ð7Þ

Maximal entropy Ht is then obtained for:

lprior~ 1zexp htð Þ{1
, ð8Þ

where ht~{
P

j[ 1,:::,Ntf g lj(t) log lj(t) is the reliability entropy

over task sets. We can verify that prior reliability lprior ranges

between 1/(Nt+1) and 1/3, so that this new actor initially fails to

meet the reliability criterion (i.e., lprior#0.5).

Consequently, the new actor is probed because it initially fails to

meet the reliability criterion. When another task set subsequently

meets the criterion while the probe actor still fails, the latter will be

entirely discarded. When, conversely, learning allows the probe

actor to meet the criterion while the others still fail, the probe

phase terminates and the collection of task sets is updated as

described in the main text. Note that this model favors binary

compared to multiple alternative choices, because the reliability

criterion is automatically fulfilled only when two task sets are

monitored (and l0(t)<0; that is, the likelihood that none matches

external contingencies is close to zero).

Overall, the PROBE model is an online, forward approxima-

tion of Dirichlet process mixtures [19] based on hypothesis testing

on task set creation (that is, on the critical no-parametric

component of Dirichlet processes; see Text S1). Hidden states

TS�
t are provisionally assigned to new task sets as long as no task

sets meet the reliability criterion. Conversely, hidden states are

definitively assigned to task sets only when task sets meet the

reliability criterion. Thus, provisional versus definitive assignments

occur precisely when, in optimal statistical learning, offline

backward inference is likely versus unlikely to alter previous

assignments, respectively.

Action selection and learning. Ex-ante reliabilities li(t)

serve to choose the actor. The actor selective mapping then

determines the behavioral policy P(at|st) (i.e., the probability to

select action at in response to stimulus st based on an e-softmax

with inverse temperature b):

P(at stj )~(1{e)
exp bQactor(st,at)
P

a~1:::na

exp bQactor(st,a)
z

e

na
, ð9Þ

where na is the number of available actions and Qactor(st,at) are

normalized to 1 over actions (not shown in Equation 9 for clarity).

After observing action outcome ot, the actor selective mapping is

updated based on outcome values r[o] according to standard

reinforcement learning mechanisms [11] (e.g., the simple delta rule

[31]): Qtz1
actor(st,at)~as rtz(1{as)Q

t
actor(st,at), where as is the

learning rate. The actor predictive mapping simply regularizes

action outcome likelihood given stimulus [13]. Contextual

mappings F(i|Ct) of every task set then adjust to ex-post

estimates of reliability according to a standard stochastic

gradient descent: F tz1(i Ctj )~ac mi(t)z(1{ac)F
t(i Ctj ), where

ac is the learning rate.

Context-sensitivity bias. Whenever, besides regular stimuli,

additional external cues change between two successive trials,

participants might infer that external contingencies (i.e., hidden

external states) more likely shift between these trials than others.

To account for this possible bias, we considered that in every

model, perceived volatility t’ of external contingencies between

such trials might be enhanced: t’~tzd, where free parameter

d$0 is named context-sensitivity bias.

Confirmation bias. Participants might be reluctant to

unselect a newly created actor set for returning to another task

set. We then considered that prior reliability lprior of such actors

might be biased:

lbiased prior~h|0:5z(1{h)lprior, ð10Þ

where free parameter h is named confirmation bias (0.5 is used in

Equation 10 for consistency with the creation threshold).

Alternative models. See Text S1.

Experimental Protocol
Participants. Participants were healthy, right-handed

volunteers (age range, 18–35 years old) with no auditory and vision

deficits and no general medical, neurological, psychiatric, or addictive

history as assessed by medical examinations. Participants provided

written informed consent approved by the French National Ethics

Committee. Participants were paid for their participation.

Experimental set-up and instructions. Stimuli were

visually presented arabic numbers. Participants responded to each

stimulus by pressing one of four keys (Figure S2). The keys were

assigned to the index and middle finger of each hand. When key

presses occurred no later than 1,500 ms after stimulus onset, stimuli

disappeared 100 ms after key presses and participants received

audiovisual feedbacks (duration 300 ms). Feedbacks were positive or

negative. A positive feedback consisted of an ascending sound and

the apparition of the associated stimulus in a box representing the

pressed key at the bottom of the screen. Negative feedback consisted

of a descending sound only. Otherwise, stimuli were removed and no

feedback was delivered. Stimulus onset asynchrony was 2,000 ms.

Associations between actual stimuli, response fingers, and feedbacks

were orthorgonalized and counterbalanced across participants.

Participants were instructed that feedback could be uncertain

and variable and that payoffs increased with the total number of

received positive feedback. No additional instructions were

provided to participants.

Experiment 1. Experiment 1 included 22 participants (13

females). Unbeknownst to the participants, we made the following

manipulations: In every trial, a ‘‘correct’’ response was associated

with each stimulus (three possible stimuli) and led to positive

feedback with a probability of 90%. All other responses led to

negative feedback with a probability of 90%. Distinct stimuli were

associated with distinct correct responses. Correct responses to

stimuli remained unchanged over a series of successive trials,

ranging from 36 to 54, named episodes. All correct responses to

stimuli changed between two successive episodes.
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The experiment included two behavioral sessions administered

on 2 separate days. Each session included 25 episodes. Stimuli

were pseudo-randomly chosen from the set ({1,3,5} for one session

or {2,4,6} for the other session). In the open session, the mappings

between stimuli and best responses never repeated across 24

episodes. In the last episode, the mapping from the first episode

was used again, because from three stimuli and four possible

responses only 24 distinct mappings can be formed (with the

constraint that two distinct stimuli are associated with distinct

responses). Although the mappings were distinct, there were

considerable overlaps across the mappings. Every stimulus-

response association belongs to six distinct mappings, while every

pair of stimulus-response associations belongs to four distinct

mappings. In order to properly define episode onsets, mappings

were further organized across episodes so that there were no

overlaps between two successive mappings. In the recurrent session,

only three distinct mappings reoccurred over the episodes in a

pseudo-randomized order (8/8/9 repetitions). The three mappings

did not overlap (i.e., best responses to stimuli systematically

differed across mappings). Transition probabilities were equalized

across mappings.

Finally, episode and session order were counterbalanced across

participants. Episode durations were pseudo-randomized and

ranged from 36 to 54 trials, so that on average volatility of external

contingencies was identical in the open and recurrent sessions

(3%).

Experiment 2. Experiment 2 included 49 additional

participants (25 females) and comprised two behavioral sessions

administered on 2 consecutive days. Again, participants were not

informed about the following manipulations. Stimuli were pseudo-

randomly chosen from the set {1,2,3}. The first session was

identical to the recurrent session described above with only one

exception: stimulus colors predicted the mappings between stimuli

and best responses used in each episode with 100% reliability.

Two mappings were associated with unique color cues. The third

one was associated with two possible color cues for assessing the

effects of cue changes without episode changes (an event occurring

at most once in such episodes).

The second session included 13 rehearsal episodes correspond-

ing to the cued recurrent episodes used in the first session followed

by 12 intermixed test episodes: four control episodes corresponding

to the recurrent mapping associated with its two color cues, six

transfer episodes corresponding to the two other recurrent

mappings but now associated with new color cues, and two open

episodes corresponding to a new mapping associated with new

cues. All these mappings were fully incongruent; there were only

four possible instances of such mappings, which were used in these

12 episodes. Order of episodes was counterbalanced across

participants.

Data analyses, model fitting, and post-tests. See Text S1.

Supporting Information

Figure S1 Architecture of task sets. The monitoring buffer

comprises a limited number of task sets, each indexing a

behavioral strategy stored in long-term memory and comprising

a selective, predictive, and contextual mapping (M). The reliability

of each task set is monitored online at two time points: right before

acting (ex-ante reliability li) and right after perceiving action

outcomes (ex-post reliability mi); ex-ante reliability li is inferred

from ex-post reliability in the preceding trial according to

contextual cues C (given contextual models) and the perceived

volatility of external contingencies (not shown); ex-post reliability

mi is inferred from ex-ante reliability preceding action according to

action outcomes r (given predictive models). Ex-ante reliability

serves to choose the actor driving immediate behavior. The actor

selective mapping then determines the responses to stimuli. Actor

selective and predictive mappings learn according to action

outcomes. Contextual mappings of task sets adjust to ex-post

reliability and consequently learn contextual cues C predicting task

set reliability. Red indicates computations occurring within the

actor set only. Arrows indicate information flows occurring within

task sets. Broken arrows symbolize learning processes within

internal mappings (M). Blue lines represent the associations

remaining between internal mappings forming strategies stored

in long-term memory and previously indexed by a task set. See

Materials and Methods for notations.

(PDF)

Figure S2 Trial structure in Experiments 1 and 2. (A) First

experiment. Visual stimuli were pseudo-randomly drawn from a

set of three arabic numbers (e.g., (1, 3, 5)). Participants had to

respond by pressing one among four possible response keys.

100 ms after participants’ responses, stimuli were removed and

positive or negative feedback was presented during 300 ms;

positive feedback consisted of an ascending sound and stimuli

appeared in a box at the bottom of the screen corresponding to the

pressed key. Negative feedback consisted of descending sounds

only. Stimulus onset asynchrony was 2,000 ms. (B) Second

experiment. Same as Experiment 1, except that stimuli appeared

in different colors. Unbeknownst to participants, stimuli colors

were contextual cues associated with the different possible

mappings between stimuli and best rewarding responses occurring

across the experiment. Color cues changed infrequently. The

figure shows the only events and external signals participants could

observe in the experiments. In particular, participants had to infer

any other information regarding external contingencies, including

the associations between stimuli, color cues, response keys and

feedback, their occurrence structure, uncertainty, and variations in

the experiment.

(PDF)

Figure S3 Irrelevant contextual changes within episodes. Left,

proportions of correct responses produced by context-, outcome-

exploiting, and exploring participants on trials preceding and

following changes in contextual cues within control episodes

(Experiment 2). Contextual cues changed in Trial T, whereas the

mapping between stimuli and best responses remained unchanged.

Error bars are S.E.M. across participants. Right, proportions of

correct responses predicted by the PROBE model for each

group with parameters fitted on every participant. In every trial,

predicted proportions are computed according to actual

participants’ responses in previous trials. Error bars are S.E.M.

across participants. The model predicts that, in every group,

correct responses drop off in Trial T (decreases from Trial T-1 to

T, F=6.7, p,0.001; interaction with groups, F,1). In every

group, consistently, participants’ correct responses dropped off in

Trial T (decreases from Trial T-1 to T, main effect, F.4.9,

p,0.001; interaction with groups, F,1). This result shows that in

every group, participants were responsive to contextual cues as

predicted by the PROBE model.

(PDF)

Figure S4 Human performances and PROBE model fit with

four recurrent action sets. Shaded lines, performances from 30

healthy participants (16 females, aged 18–30 years old) in

recurrent episodes plotted against the number of trials following

episode onset. Shaded areas are S.E.M. across participants

(detailed legend in Figure 1). The experimental session consisted

of 24 recurrent episodes identical to that from Experiment 1 (see
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text), except that four mappings between stimuli and correct

responses re-occurred pseudo-randomly across episodes. The four

mappings were fully incongruent. Note that participants per-

formed as in open episodes in Experiment 1 (see Figure 1) with no

peaks of mutual dependence of successive decisions in the first

trials of episodes. Lines 6 error bars (mean 6 S.E.M.),

performances predicted by the fitted PROBE model (details in

Figure 2): correct and exploratory response rates were computed

in every trial according to the actual history of participants’

responses. Mutual dependence of successive correct decisions

predicted by the model was computed as the mutual information

between two successive correct decisions produced by the model

independently of actual participants’ responses (one simulation for

each participant). Best-fitting model parameters (mean(S.E.M.)):

inverse temperature b=35(2.3); noise e=0.04(.003); bound

N=3.4(.3); learning rate a=0.34(.04); recollection entropy

g=0.75(.03); and confirmation bias h=0.34(.06). Note that the

parameters are close to those from Experiment 1 (see Table S1).

See Text S1 (section ‘‘Comments on Model Fits’’) for additional

comments regarding model and participants’ behavior.

(PDF)

Figure S5 Performance of the statistical optimal model. Graphs

show the best achievable performance in terms of information

processing in Experiment 1. The statistical optimal model is

described in Text S1, 1-Normative approach to the PROBE

model, optimal statistical model. Red, recurrent episodes; green,

open episodes. The best achievable performance is obtained with

inferences involving at least 25 trials backwards and concentration

parameter g=10. Lower concentration parameters improve

model performance in recurrent episodes (increased correct

responses and decreased exploratory responses), but decrease

model performance in open episodes. Conversely, larger concen-

tration parameters decrease model performance in recurrent

episodes but improve model performance in open episodes. Inset,

human data from Figure 1 (see Figure 1 for detailed legend). In

both conditions, as expected, the statistical optimal model

outperforms human participants dramatically.

(PDF)

Table S1 Best fitting model parameters used in Figures 3 and 5.

Mean(S.E.M.) across participants. See Materials and Methods for

detailed parameter description.

(PDF)

Table S2 Best fitting parameters in the PROBE model across

participants’ group used in Figures 6 and 7. Mean(S.E.M.) across

participants. See Materials and Methods for detailed parameter

description. Boxes indicate significant differences across groups

(see text).

(PDF)

Text S1 Supplementary methods.

(PDF)
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