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Abstract 

Finding the I Most Probable IJxplanations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(MPE) of a given evidence, Se, in a Bayesian belief 

network is a process to identify and order a set of com- 

posite hypotheses, His, of which the posterior probabil- 

ities are the I largest; i.e., Pr(Hii&) 2 Pr(H21&) 2 

. . . L Pr(&ISlz)~ A composite hypothesis is defined 

as an instantiation of all the non-evidence variables in 

the network. It could be shown that finding all the 

probable explanations is a NP-hard problem. Previ- 

ously, only the first two best explanations (i.e., I = 2) 

in a singly connected Bayesian network could be effi- 

ciently derived without restrictions on network topolo- 

gies and probability distributions. This paper presents 

an efficient algorithm for finding d (2 2) MPE in singly- 

connected networks and the extension of this algorithm 

for multiply-connected networks. This algorithm is ba- 

sed on a message passing scheme and has a time com- 

plexity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(lkn) for singly-connected networks; where I 

is the number of MPE to be derived, k the length of the 

longest path in a network, and n the maximum num- 

ber of node states - defined as the product of the size 

of the conditional probability table of a node and the 

number of the incoming/outgoing arcs of the node. 

Whenever a variable in a Bayesian network is ob- 

servable, this variable is referred to as an evidence vari- 

able. The set of evidence variables is represented by S,. 

Given a Se, an instantiation of all the non-evidence 

variables - H - in a Bayesian belief network is referred 

to as a composite hypothesis. Each H is said to be a 

probable explanation of the given observation, S,, in 

a Bayesian belief network if Pr(HjS,) > 0. Finding 

the I Most Probable &xplanations (MPE) of a given 

evidence, Se, in a Bayesian belief network is to iden- 

tify and order a set of composite hypotheses, His, of 

which the posterior probabilities are the 2 largest; i.e., 

J+(&]S,) 2 Pr(HzlS,) L . . . L P+&]SJ. 

1. Introduction 

A Bayesian belief network [Pearl, 19861 is a graph- 

theoretic approach for the representation of probabilis- 

tic knowledge about the inter-dependencies among a set 

of random variables. This kind of knowledge represen- 

tation technique has recently been applied to various 

problem domains [Charniak & Goldman, 19911 [Dean, 

1990][Andreassen et al, 19911, and particularly in the 

domain of diagnosis [Shwe, et al 19911. A problem to be 

addressed in this paper is related to the generation of 

the most probable explanations to an observation from 

a Bayesian network. We believe that the solution of 

this problem will be very useful to the development of 

probabilistic inference algorithms for solving diagnos- 

tic problems which are modeled using Bayesian belief 

network representation. 

Since the number of composite hypotheses expo- 

nentially increases with respect to the number of non- 

evidence variables, finding all the probable explana- 

tions is generally NP-hard. [Santos, 19911 proposed a 

linear programming approach to solve this problem but 

the complexity is found to be subexponential. Even if 

we are interested in only the few most probable compos- 

ite hypotheses, there is still exponential number of com- 

posite hypotheses to consider. It is possible to reduce 

the search space if certain probability distributions of 

the variables in a network are assumed. [Cooper, 19841 

demonstrated that if Pr(E;IS,) 2 Pr(EjlS,) holds 

for all Eis and Ejs whenever the number of instan- 

tiated variables in Ej is larger than that in Ei, then 

finding the most probable composite hypotheses can 

be formulated as a search problem, and the best-first 

search strategy with branch and bound pruning can be 

applied. Although this approach is efficient and per- 

mits reasoning on hypotheses which do not include all 

the non-evidence variables, [Henrion, 19901 pointed out 

that the assumption is too strong and such an assump- 

tion is hardly valid in any real world problem. An- 

other approach being explored by [Shimony & Char- 

niak, 19901 is to transform a Bayesian network into 

a Weighted Boolean Function Directed Acyclic Graph 

(WBFDAG) which p ermits the application of the best- 

first search strategy. The major distinction of this ap- 

proach in comparison to Cooper’s approach is that no 
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assumption is made about the probability distributions. 

However, the spatial complexity of a WBFDAG is in 

an exponential order of the original DAG; where the 

spatial complexity is defined in terms of the size of a 

network. Although the time complexity is shown to be 

linear with respect to the size of a graph, the exponen- 

tial complexity problem remains. Another approach 

being taken is to take advantage of the structure of a 

network. [Pearl, 19881 h as shown a message passing 

algorithm which can efficiently derive two most prob- 

able composite hypotheses in a singly-connected net- 

work. In a singly-connected network, any pair of nodes 

is connected by at most one unique path. Unfortu- 

nately, Pearl’s algorithm has two limitations. First, 

it cannot be applied to multiply-connected networks 

(i.e., non-singly connected networks). Second, Pearl’s 

message passing scheme cannot be extended to find- 

ing more than the first two most probable composite 

hypotheses. 

The objective of this paper is to introduce a mes- 

sage passing scheme for the derivation of the most prob- 

able composite hypotheses. The mechanism of our mes- 

sage passing process, in essence, is similar to Pearl’s 

algorithm [Pearl, 19881. However, our method differs 

from Pearl’s and others’ algorithms in four ways. First, 

the message passing in our method is unidirectional as 

opposed to bidirectional in Pearl’s algorithm. Second, 

each “message stream” in our method is a vector but 

not a value as in [Pearl, 19881. Third, we retain all pro- 

cessed information to permit their reusage in a system- 

atically ordered fashion for the successive derivation of 

the most probable composite hypotheses. Finally, our 

message passing scheme can be applied to a tree-type 

hypergraph which is critical in dealing with multiply- 

connected networks. 

In section 2 we will discuss the formalism of Bayes- 

ian belief networks and the realization of our message 

passing scheme as an unidirectional path traversal in a 

hierarchically organized graph. In section 3 we will de- 

tail the mathematical formulation of our message pass- 

ing scheme. The treatment of multiply-connected net- 

works will be discussed in section 4. In section 5 we 

will conclude this paper with a discussion of the rela- 

tionship of this research with others in the field and 

future research work. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. Formalism of Bayesian belief networks 

A Bayesian network [Pearl, 19861 is a Directed 

Acy-clic Graph (DAG) within which a set of nodes are 

connected by a set of arcs. Each node in a graph rep- 

resents a random variable, and an arc connecting two 

nodes indicates the dependency between them. In par- 

ticular, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhead- to-head, head- to- tail, and tail-  to- tail are 

three configurations to specify the marginal and condi- 

tional independencies among 3 adjacent nodes. These 

three configurations, together with the definitions of 

“joint” and “separate” discussed in [Pearl, 19861, per- 

mit the joint distribution of a Bayesian belief network 

shown in Fig. 1 to be re-written as below: 

Pr (abcdefghij) 

= PT(a)PT(bla)PT(clb)P~(d)PT(elcd)Pr(flb) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P~(slf>P~(hls>Pr(;lfj)Pr(j) (1) 

Note that the Right Hand Side (RHS) expression 

of (1) is in a form of III,ENPr(z;]J,,); where N is the 

set of nodes in a Bayesian belief network, and JZi is the 

set of immediate parents of xi. This expression is a sim- 

plified form of the Bayes expression obtained from the 

marginal and conditional independency characteristics 

of the distribution of the network. The realization of 

the RHS expression of equation (1) signifies two impor- 

tant characteristics. First, the spatial complexity of the 

RHS expression is in the linear order of the sum of the 

number of states in each probability term, as opposed 

to the exponential order (with respect to the number of 

variables) as the expression in the LHS. Second, each 

probability term in the RHS, PT(x;]J,~), can be con- 

ceptualized as a local probability term associated with 

the node x;. Each of these local probability terms con- 

stitutes the basis of the information to be passed to its 

neighbors in our proposed message passing scheme. 

Let’s first consider the singly-connected network 

shown in Fig. 1. The idea of our message passing 

scheme is to propagate the minimum amount of infor- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n a 

i” __...... ___________.___ . . . . . . . . _ ..__ _ ___.: 
i message i 

1 propagation / 

h 

ii 

Fig. I: A ten-node singly connected Bayesian 

network. 
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Direction 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Message 

Fig. 2 Message Flow Graph 

mation needed towards a designated node via a set 

of unique paths which cover all the nodes in a net- 

work. For example, suppose node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is selected as a 

designated node (i.e., a sink) to absorb the incom- 

ing information from every other node in the network. 

Then three unique paths can be identified; namely, 

d + e - -) c - -) b + a, h + g + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ---) b 3 a, and 

j+i-- ,f-- ,b-,a. 

For the sake of discussion, each variable in Fig. 1 

is represented by a lower case letter and is assumed 

to be binary-valued - true or false. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn upper case 

letter represents the value of a variable. For example, 

X and X represent x = X (i.e., true) and x = X (i.e., 

false) respectively. In addition, each node in the three 

unique paths discussed previously can be replaced by 

the probability terms of all its possible instantiations, 

and the three unique paths can now be represented in 

terms of the probability terms’ of the nodes as shown 

in Fig. 2. The purpose of conceptualizing these three 

unique paths as a graph is for the realization of our 

proposed message passing scheme to be discussed in 

’ Only consistent terms are connected. 

the next section. 

3. Message passing using local propagation 

To illustrate the local computation involved in our 

proposed message passing scheme, let’s suppose we are 

interested in finding the most probable composite hy- 

potheses without evidence (S, = 0) in Fig. 1; i.e., 

ArgMax[Pr(abcdefghij)]. Finding the most probable 

composite hypothesis is equivalent to finding the opti- 

mal setting for each of the local probability terms in 

the RHS of equation (1). Since Fig. 1 is a singly- 

connected network, any two non-adjacent nodes are 

conditionally independent given that at least one node 

in the unique path connecting the two nodes is (un)inst- 

antiated to separate them. This conditional indepen- 

dency property implies that the identification of the 

optimal setting of a particular local probability term 

depends on only the ascendant terms. For example, 

in order to determine the optimal setting for the term 

Pr(clb), it depends only on the terms Pr(elcd) and 

Pr(d), but not Pr(bla), B(a) (the descendant terms in 

Fig. 2), or ~+lg), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf+(glf), W f 1% P(j), P+l.Lf) 
(the out-of-branch terms in Fig. 2). This permits the 
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optimal setting of each local probability term to be 

searched locally in an unidirectional downward propa- 

gation (in Fig. 2). An important question to ask now 

is the kind of information which should be carried in 

the message passing process. One of the considerations 

is to anticipate the possible settings of the immediate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

descendant terms in Fig. 2. For example, the infor- 

mation that should go from Pr(h]g) to pr(g]f) would 

be all the possible settings of g. That is, the informa- 

tion to be passed from node h to g would be Mh,, = 

[Illazh[Pr(h]G)], Mazh[Pr(!@)]]. The next message 

propagation from node g to f, however, should con- 

sider both [lMazg[Pr(g]F)], MuxSIPr(gIp)]] as well 

as Mb-s. In order to integrate the information prop- 

erly, a convolution operation, *, and a Belief matrix 

are defined for this purpose. 

Definitionl: Given &-+2 = [n&+,x1 md-& . . . 

??&&+X,], and Pr(a]J,) = [Pr(Xi]z11,) Pr(Xr]v2,) . . . 

Pr(XT,]&)] ( w h ere vi, is an instantiation of the vari- 

ables in J,), the convolution of Md-2 with Pr(s]JZ) is 

defined as the product of every single term in Pr(z]J,) 

with a consistent md+Z in Mdde; where J:, is the set 

of immediate parent nodes of x in a Bayesian belief 

network. Pr(x]J,) and m&,Z are consistent with each 

other if the instantiation of x in md-+Z and that in 

PT (x IJz) are identical. 

Definition2: A Belief Matrix of a node x, BeZ(x), 

is defined as the convolution of all Md+z with pT(x]J,) 

-- n&J,,, * _&&jZ-+Z * . . . * M&-+3 * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT(X1J,); where di 

are the nodes which propagate Mdi-+2 to x for i = l...b. 

To illustrate the definitions of convolution and be- 

lief matrix, let’s suppose 

A&+, = [mh-+G m&G] = [(HG 0.6) (HG 0.8)] and 

Pr(glf) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I;; ;*;; . 
then we have 

Del(g) = 

A&.-+, * Pr(g]j) = 
[ 

(HGF 0.18) (HGF 0.27) 

(HCF 0.56) (HGE 0.44) I 
Remark: Pr(h]g) in &?h_,g is represented by a 2- 

tuple. The first tuple is the settings of h and g, and 

the second tuple is Pr(hlg). For example, (HG 0.6) in 

MfZ-s is equivalent to Pr(H]G) = 0.6. 

With these two definitions, M,,f can be formu- 

lated as M’uxg[BeZ(glF) BeZ(glF)]; i.e., M,,f = 

[(WCF 0.56) (HGF 0.44)]. Lemma1 summarizes the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fOrIdati0~ Of a message Stream .ktb-a: 

Lemmal: A message stream that a node b propagates 

to a node a in a Bayesian belief network (in Fig. 1 but 

not Fig. 2) is defined as 

Muxb[Bet(blA) Bel(blii)] 

i&-w = 
if a is ,an immediate parent of b; 

Mux[BeZ(B) Bel(B)] 

if b is an immediate parent of a; 

ikf&-+b * . . . * &&-+b * Pr(blqh...Pk) 
if a is an immediate parent of b; 

*i&-b * P+‘ln...pk) 

if b is an immediate parent of a; 

dl . . . dl, = are the immediate descendent nodes 

of b, and pr . . . pl are the immediate ascendent nodes of 

b. 

Remark: If node b is a root node, Mb+.* is simply 

[(B Pr(B)) (B wm1~ 

It is possible that the instantiation of a variable 

for the maximal value of BeZ(e) is not unique. In this 

case, all such instantiations must be included in a mes- 

sage vector in order to find all the MPEs. However, 

if we are interested in only one of the MPEs, then we 

can break tie arbitrary. Due to the unidirectional mes- 

sage propagation, the arbitrarily selected instantiation 

is guaranteed to be one of the solutions. This elimi- 

nates the need of carrying all instantiatious via explicit 

pointers, which is required in the Pearl’s bidirectional 

message propagation [Pearl, 19881. 

Note that 2Mb-a described in Lemma1 is a prun- 

ing process illustrated in Fig. 2 that, at each level, 

all the links, except one, in each group of the vari- 

able instantiations are pruned (marked by “x”). For 

example, Fig. 2 illustrates part of the pruning pro- 

cess2. If we look at the message passing from node e 

to c, only one link from e to c remains for each pos- 

sible instantiation of c; i.e., from Pr(e = EIC,d = 

D) + Pr(Clb = B), and from Pr(e = El6’,d = 

D) ---) P@lb = B). Similarly, only the links from 

Pr(c = C]B) + Pr(B]u = A) and Pr(c = C]B) -+ 

Pr(B]u = A) remain unpruned. When the informa- 

tion from each node reaches the designated sink (node 

a), the most probable composite hypotheses can be re- 

alized from ArgMux,[BeZ(A) BeZ(~)]. 

Once the most probable composite hypothesis is 

found, let’s say, ABCDEF~l?rJ, the path correspon- 

ding to this instantiation in Fig. 2 is marked (those 

marked with “0”). To find the second most probable 

composite hypothesis, the candidate must be from one 

2 The actual spatial complexity of Fig. 2 is only 

proportional to the total number of unpruned links be- 

cause only unpruned links are stored. 
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of the unpruned links, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAundeleting some of the pre- 

viously pruned links in which variable instantiation is 

exhausted. For example, once the link from Pr(E]CD) 

-+ Pr(C]B) (in Fig. 2) is marked after the most prob- 

able composite hypothesis is identified, the informa- 

tion to be passed from node e to c with node c be- 

ing instantiated to C is exhausted. In this case, the 

links, Pr(elCd) -+ Pr(Clb) (i.e., A&,,), are undeleted 
(indicated by “Q”); e.g., Pr(EjCn) + Pr(CIB) and 

Pr(ElCD) -+ Pr(qB) are undeleted. These two piec- 

es of new information are used in Pr(ejCd) * Pr(Clb) to 

update the belief matrix Bel(c), and the second largest 

of BeZ(C) is added to the previous message stream to 

be propagated for the next local computation. Such 

an updating is then repeated at each level, and at each 

iteration for identifying the next most probable com- 

posite hypothesis. 

In essence, we need to keep track at most n terms 

for each instantiation xi of a given variable, X, in 

computing the n most probable composite hypotheses. 

When an instantiation ~i of a variable X and some in- 

stantiation yj of a variable Y in A&x-y are identified 

as the settings for the most probable interpretation in, 

let’s say, L-jth iteration, then the k-largest term with 

the instantiation of the variable X to be xi (and some 

instantiation of Y) is the only additional information 

to be included in the Ith iteration. Therefore, the size 

of the message vector will grow incrementally as the 

number of iteration increases. Such a linear increment 

is the worst case in which the size of a message vector 

will grow per iteration. In the best case, the size of a 

message vector will remain the same as the one in the 

previous iteration. Due to the page limit, the readers 

are referred to [Sy, 1992a] for the detailed discussion. 

We have also proved in [Sy, 1992a] that the information 

propagated at each level and at each iteration accord- 

ing to the process just described is complete and is the 

minimal amount which is needed in identifying the next 

most probable composite hypothesis. The following is 

the algorithm of this message passing scheme: 

Step 1: Define I + length of partial ordering (i.e., 

number of most probable composite hypotheses to be 

sought), and Se c the evidence. 

Step 2: Designate a node as a sink, identify the paths 

for the propagation of message streams, and construct 

the corresponding flow graph using the (instantiated) 

local probability terms associated with each variable. 

Initialize the iteration count, i = 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Step 3: Compose Mb_,+, using Lemmal, and propa- 

gate messages along the proper paths identified in step 
3 I. 

Step 4: Perform convolution operation to integrate 

incoming messages and update Belief matrix, Bel(x), 

at each node traversal. 

Step 5: Identify the setting of the composite hypothe- 

sis with the i-largest Pr(H;ISB) in the designated sink 

node at the ith iteration. 

Step 6: Mark the path which corresponds to the most 

probable composite hypothesis just found. 

Step 7: Undelete the previously pruned paths in which 

variable instantiations are exhausted. 

Step 8: Repeat steps 3 to 8 until i reaches 1. 

Noted that the algorithm shown above is based on 

the propagation of quantitative vector streams towards 

a designated sink node in a network. In a complete 

iteration of propagating the vector streams to the sink 

node, one composite hypothesis of the ordering can be 

identified. To obtain the I most probable composite 

hypotheses, I iterations will be needed. 

When parallel processing is permitted, the amount 

of time required for each iteration will be at most the 

amount of time required for the convolution operations 

in the longest path (i.e., length k stated in the theo- 

rem). Note that the node states, n - defined as the 

product of the size of the conditional probability table 

of a node and the number of incoming/outgoing (de- 

pends on the direction of message flow) arcs of the node 

in a Bayesian belief network (Fig. 1) - is the worst 

case of the time complexity of one convolution opera- 

tion. The time complexity for one iteration is O(h), 
and for 2 iterations, the time complexity is O(Zkn). The 

details of a formal proof of this complexity order and 

the completeness of the message passing scheme are 

referred to [Sy, 1992a]. 

5. Coping multiply-connected network 

The message passing scheme discussed and illus- 

trated in the previous sections fails to produce correct 

inference when the Bayesian belief network is multiply 

connected, One of the main reasons is that a common 

parent node or a common daughter node (such as nodes 

a and d in Fig. 3 respectively) may receive conflicting 

messages along the paths of propagation. For example, 

suppose the propagation paths relevant to nodes a, b, 
c, and d are d + b + a and d ---) c + a in Fig. 3. 

Node a may receive different values of b and c when 

the maximum of Pr(bja)Pr(dlbc) and Pr(cla)Pr(d\bc) 
are considered via different paths. 

In order to apply the message passing algorithm to 

a multiply connected network, the knots in a multiply 

connected network must be broken up; for example, a- 
b-d-c-a in Fig. 3. Clustering and cutset conditioning 

are two techniques [Pearl, 1988][Neapolitan, 1990][Peot 

& Shachter, 19911 for resolving these knots. The basic 

idea of clustering is to lump variables together to form 

compound variables as a method of eliminating knots. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Multiply Connected Network 

Fig. 4. Singly Connected Compound-Variable Network 
For example, nodes b and c in Fig. 3 can be lumped 

together as a compound variable bc. However, a disad- 

vantage of this approach is that the belief relevant to 

a compound variable explains less in terms of the be- 

lief accrued by each individual variable in a compound 

variable. The other technique - cutset conditioning - 

is based on the idea that a parent node can be absorbed 

into one or more of its immediate descendant nodes for 

the purpose of breaking up knots. For example, node 

a in Fig. 3 can be absorbed into node b to obtain a 

singly connected network once node a is instantiated 

to have a fixed value. This approach, however, renders 

an expensive computation because all possible values 

of the absorbed nodes (node a in this case) have to be 

considered in the process of local computation. 

The technique that we employ to resolve knots is 

a combination of clustering and cutset conditioning. 

There are two major steps in our proposed technique in 

breaking up knots. The first step is the formulation of a 

singly connected version of the multiply connected net- 

work. The second step is the construction of the density 

function. Whenever a parent node, x, is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabsorbed by its 

immediate descendant nodes, this parent node and the 

compound variable are marked as special nodes where 

all possible values of x must be propagated in the mes- 

sage passing process. For example, the multiply con- 

nected network shown in Fig. 3 can be formulated to 

have a singly connected version (Fig. 4) after node a is 

absorbed by node b to form a compound-variable node 

ub, and node ub is absorbed by node e to form ube. 

These compound-variable nodes are marked as special 

nodes and all the possible values of a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAub, and ube must 

be included as the messages during the message prop- 

agation. In order to illustrate the necessity of this, 

let’s suppose the message propagation paths are from 

a + c + d + ub and ube + e -+ d + ub. Since nodes 

a, ub, and ube will all influence the setting of a in find- 

ing the most probable composite hypotheses, all possi- 

ble values of a and b must be carried along the message 

propagation. This step has the same effect as creating 

multiple copies of the absorbed nodes and keeping track 

of their values to ensure consistency. Before we can ap- 

ply our proposed message passing scheme, the density 

function of the network in Fig. 4 can be realized as 

P’(u)P’(clu)P’(dlub, c)P’(ub).P’(ube)P’(flube, d) 

which has a form II?: P’( xlJX). Since the product of 

must equal to the product of all PT( , each 

be realized as the product of the evant 

erms with proper scalings. Each term, Pr(o), 

is scaled to be Z%(e)&; where n is the number of occur- 

rences of Z+(s) in the singly connected version of the 

network4. For example, 

P’(u) = Z+(u)? P’(ube) = Pr(elb)Pr(blu)~P~(u)~ 

P’(ub) = Pr(blu)*Pr(u)~ P’(clu) = Pr(clu) 

P’(dlub, c) = Pr(dlbc)Pr(u)~ 

P’(flube, d) = Pr(flde)Pr(blu)~Pr(u)* 

There are two important points about the treat- 

ment of multiply connected networks. First, the terms 

)s are not necessarily probability functions. Never- 

theless, the product of all P’(r)s yields the same values 

of the probability density function of the network. This 

property is similar to the concept of potential func- 

tion introduced in [Lauritzen & Spiegelhalter, 19881 for 

dealing with multiply connected networks through tri- 

angulation techniques [Kjaerulff, 19901. Second, if a 

P’(xly) is related to only one Pr(xJy) term, the or- 

dering of P’(xly), with respect to different instantia- 

tion of x and y, is the same as that of Pr(zl?~) even 

though Pr(xl~) is scaled. If a P’(e) is related to several 

) terms, the influence of non-immediate parent or 

daughter nodes are brought to the scope in the case of 

compound-variable node such as P’(dlub, c) shown in 

Fig. 4. These two properties ensure the sufficiency of 

the information required for the message passing and 

the correctness of the belief computation. 

6. Conclusion 

In this paper we have presented a message passing 

algorithm for the derivation of the first I most proba- 

ble explanations. If a network is singly connected, the 

first I most probable explanations can be found in or- 

der of O(kZn); where 1 is the number of most probable 

4 The purpose of scaling R(o) is to reduce the prob- 

lem arising from the non-unique instantiations of vari- 

ables which share the same maximal BeZ value. 
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explanations to be derived, k the length of the longest 

path in a network, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn the maximum number of node 

states. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe believe that this result is important in the 

domains such as diagnosis because previously we were 

able to only efficiently derive the first two (I = 2) most 

probable explanations. 

If a network is multiply-connected, the computa- 

tional complexity is generally NP-hard and there is 

no algorithm which could efficiently derive the I most 

probable explanations. In this paper we have intro- 

duced a technique based on the idea of clustering and 

cutset conditioning to obtain a singly connected ver- 

sion of a multiply connected network in which our mes- 

sage passing scheme can be applied to identify the 1 

MPE. Although the computational complexity is still 

NP-hard, we argue that our message passing algorithm 

only deals with exponential complexity proportional to 

the maximum number of node states of the compound 

variables. 

Finally, we need to point out that an explanation is 

viewed as a composite hypothesis in this paper; where 

a composite hypothesis is defined as an instantiation 

of all non-evidence variables. Apparently an explana- 

tion can be viewed as an instantiation of any subset of 

non-evidence variables. This raises the issue of what 

it is meant by an explanation, which was discussed to 

some extent in [Peng & Reggia, 198’71. Unfortunately 

finding the I MPE of this kind would require the sum of 

those variables that are neither in the explanation nor 

in the evidence. This results in an exponential number 

of terms to be dealt with in such a summation. A chal- 

lenging problem, as a follow-up to this research, is the 

development of an efficient algorithm for finding the 1 

MPE of this kind and the preliminary results can be 

found in [Sy, 1992b]. 
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