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Abstract

We introduce a temporal model for reasoning on disjunctive metric constraints on intervals and
time points in temporal contexts. Thistempora model is composed of alabeled temporal algebra
and itsreasoning algorithms. The labeled temporal al gebra defineslabel ed disjunctive metric point-
based constraints, where each disjunct in each input disjunctive constraint is univocally associated
to a label. Reasoning algorithms manage labeled constraints, associated label lists, and sets of
mutually inconsistent disjuncts. These algorithms guarantee consistency and obtain a minimal
network. Additionally, constraints can be organized in ahierarchy of aternative temporal contexts.
Therefore, we can reason on context-dependent disjunctive metric constraints on intervals and
points. Moreover, the model is able to represent non-binary constraints, such that logical
dependencies on disjuncts in constraints can be handled. The computational cost of reasoning
algorithms is exponential in accordance with the underlying problem complexity, although some
improvements are proposed.

1. Introduction

Two main lines of research are commonly recognized in the temporal reasoning area. The first
approach deals with reasoning about temporal constraints on time-dependent entities. The goal isto
determine what consequences (T) follow from a set of tempora constraints, "{Temporal-
Constraints}|=T?", or to determine whether a set of temporal constraints is consistent, with no
assumptions about properties of tempora facts. The second approach deals with reasoning about
change, events, actions and causality. Here, the goal is to obtain the consequent state from a set of
actions or events which are performed on an initial state: "[S, {As, Ay ..., A}llF §?". Both these
approaches condtitute active fields of research with applicationsin several artificia intelligence areas
such as reasoning about change, scheduling, temporal planning, knowledge-based systems, natural
language understanding, etc. In these areas, time plays a crucid role, problems have a dynamic
behavior, and it is necessary to represent and reason about the temporal dimension of information.

In this paper, we deal with the first of these approaches. Our goal is reasoning on qualitative and
guantitative constraints between intervals or time-points in tempora contexts. Moreover, specia
cases of non-binary constraints are also managed. These tasks are pending issues in the temporal
reasoning area, as well asimportant festures to facilitate modeling of relevant problemsin this area
(including planning, scheduling, causal or hypothetical reasoning, etc.).

Several temporal reasoning models have been defined in the literature, with a clear trade-off
between representation expressiveness and complexity of reasoning algorithms. Qualitative Point
Algebra (PA) (Vilain, Kautz & Van Beek, 1986) is alimited subset of interval-based models. Interval
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Algebra (I1A) introduced by Allen (1983) represents symbolic (qualitative) constraints between
intervals but metric information, such as 'interval; starts 2 seconds before interval,’, cannot be
included. Metric (quantitative) point-based models (Dechter, Meiri & Pearl, 1991) include the 'time
line (metric) in their constraints, but they can only represent a limited subset of digunctive
constraints between intervals. Thus, congtraints like ‘interval, {bef, aft} interval,’ cannot be
represented (Gerevini & Schubert, 1995).

Some efforts have been made to integrate quaitative and quantitative temporal information on
points and intervals (Kautz & Ladkin, 1991; Drakengren & Jonsson, 1997; etc.). Particularly, Meiri
(1996) introduces Qualitative Algebra (QA), where each interval is represented by three nodes (one
representing the interval and the other two representing its extreme points) such that QA can
represent qualitative and metric constraints on points and intervals. Badaoni and Berati (1996) define
the Interval Distance Sub Algebra (IDSA), where nodes are intervals. These intervals are related by
digunctive 4-tuple-metric constraints between their ending time points { (I, 15), (I";, 17), (15, 1), (%,
1"})}. Staab and Hahn (1998) propose amodel for reasoning on qualitative and metric boundaries of
intervals. However, these models cannot handle constraints on interval durations, which were
identified earlier by Allen (1983). Condtraints such as 'interval, lasts 2 seconds more than interval,
require a high-order expression (Dechter et a., 1991), or a duration primitive which should be
integrated with interval and point congtraints (Allen, 1983; Barber, 1993). Particularly, Barber (1993)
proposes two orthogonal networks to relate constraints on durations and time points. Navarrete
(1997) and Wetprasit and Sattar (1998) relate digunctive constraints on durations and time points,
but only alimited subset of interval congtraints is managed. More recently, Pujari and Sattar (1999)
propose a framework for reasoning on points, intervals and durations (PIDN). Here, variables
represent points or intervals, and constraints are an ordered set of three intervals representing (Start,
End, Duration) subdomains. However, no specialized agorithms for management of PIDN
constraints are proposed.

In relation to the complexity of reasoning agorithms, the consistency problem is polynomial in
PA (Vilain, Kautz & Van Beek, 1986) and in non-digunctive metric networks (Dechter et al., 1991).
However, Vilain, Kautz and Van Beek (1986) also showed that determining the consistency of a
general-case tempora network (i.e.: digunctive qualitative and metric constraints between points,
intervals or durations) is NP-hard. Thus, in previous quditative or quantitative models, the
consistency problem is tractable only under some properties on constraints, relationships between
variable domains and congtraints, or by using restricted subsets of constraints (Dechter et a., 1991,
Dechter, 1992; van Beek & Detcher, 1995; Wetprasit & Sattar, 1998; Jeavons et d., 1998; etc.). For
instance, tractable subclasses of A have been identified by Vilain, Kautz and Van Beek (1986),
Nebel and Burckert (1995), Drakengren and Jonsson (1997), etc. Moreover, some interesting results
have been obtained in identification of tractable subclasses of QA. Specifically, Jonsson et a. (1999)
identified the five maximal tractable subclasses of the qualitative point-interval algebra. However,
to my knowledge the maximal tractable subclass of PIDN model (maximal tractable subclass of
quditative and quantitative point, interval and duration constraints) is till not identified. In any case,
these restricted tractable subclasses are not able to obtain expressiveness of full models, and the
problem of reasoning on digunctive constraints on points and intervals remains NP-compl ete.

On the other hand, these qualitative and metric temporal models do not manage certain types of
non-binary constraints, which are important for modeling some problems (scheduling, causal
reasoning, etc.). For instance, disjunctive assertions like * (interval, {bef, meets} intervak) U (time-
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point; is [10 20] from time-poing)’, or tempora-causal relations like ‘If (interval, {bef, meets}
interval,) then (time-point; is [10 20] from time-point)’ should be incorporated in these models
(Meiri, 1996). Moreover, the globa consistency property introduced by Dechter (1992) is an
important property in temporal networks, since it allows us to obtain solutions by backtrack-free
search (Dechter, 1992; Freuder, 1982). In particular, a global consistent network would alow usto
handle conjunctive queries like ‘does * (interval, {bef, meets} interval,) U(time-point is[10 20] from
time-point,) hold?" without propagation of the query, asit is required in (van Beek, 1991).
Stergiou and Koubarakis (1996), Jonsson and Béckstrom (1996) dealt with the representation of
temporal constraints by means of digunctions of linear constraints (linear inequalities and
inequations) also named Digunctive Linear Relations (DLRs). These expressions are a unifying
approach to manage digunctive constraints on points, intervals and durations, such that these
expressions subsume most of the formalism for temporal congtraint reasoning (Jonsson & Backstrom,
1998). Moreover, DLRs are able to represent digunctions of non-digunctive metric constraints (X, -
y1£C; Uxo-yo£C, U....Ux,-y.£C,), where x and y; are time points, ¢ real numbers and ré 1 (Stergiou
& Koubarakis, 1998). Obvioudly, the satisfiability problem for an arbitrary set of digunctions of
linear congtraints is NP-complete. Interesting tractable subclasses of DLRs and conditions on
tractability are identified in (Cohen et al., 1996; Jonsson & Backstrom, 1996; and Stergiou &
Koubarakis, 1996). The two main tractable subclasses are Horn linear and Ord-Horn linear
constraints (Stergiou & Koubarakis, 1996; Jonsson & Béackstrém, 1998). However, these subclasses
subsume tempora agebras whose management is aso polynomial.

The management of a set of digunctions of linear congtraints is mainly based on genera methods
from linear programming, athough some specific methods have been defined for tractable subclasses
(Stergiou & Koubarakis, 1998; Cohen et d., 1996; etc.). As Pujari and Sattar outline (1999), the
linear programming approach, though expressive, does not take advantage of the underlying
structures (e.g., domain constraints) of tempora constraints. In addition, usua concepts in temporal
reasoning, as composition and intersection operations on constraints, minimal constraints, k-
consistency (Freuder, 1982), decomposability (Montanari , 1974), globally consistency (Dechter,
1992), etc., and their consequences should be adapted to reasoning on digunctive linear constraints,
which isnot atrivia issue.

In spite of the expressive power of the previous models, some problems (including planning,
scheduling, hypothetical reasoning, etc.) also need to reason on alternative contexts (Situations,
intentions or causal projections) and to know what holds in each one of them (Dousson et d., 1993;
Gerevini & Schubert, 1995; Garcia& Laborie, 1996; Srivastava & Kambhampati, 1999). This gives
rise to the need to reason on context-dependent constraints. This feature is not supported in the usua
temporal models in a general way, nor described in the usual expressive power of congraints
(Jeavons et d., 1999). Therefore, ad-hoc methods should be used when reasoning on temporal
contextsis required.

These issues will be addressed in this paper. We describe a temporal model, which integrates
gualitative and metric digunctive constraints on time-points and intervals. The temporal mode is
based on time-points as primitive, such that intervals are represented by means of their end time-
points. However, the representation of interval constraints seems to imply some kind of relation
among endpoint congtraints (Gerevini & Schubert, 1995). The proposed tempora mode introduces
labeled constraints, where each elemental constraint (digunct) in a digunctive point-based metric
congtraint is associated to one unique label. In this way, point-based congtraints can be related among
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them without using hyper-arcs. Therefore, metric and symbolic constraints among intervals and time-
points can be fully integrated, represented and managed by means of a labeled metric point-based
Temporal Constraint Network (TCN). Particularly, the model proposed here handles constraints
proposed in QA (Meiri, 1996), IDSA (Badaoni & Berati, 1996), and Distance Constraint Arrays
mode (Staab & Hahn, 1998). Moreover, several added functionalities are also provided:

Management of aternative temporal contexts. Each input constraint can be associated to a
given context. A hierarchy of aternative temporal contexts can be defined, such that
constraints between points and intervals are dependent on each context. To my knowledge,
these features improve existing temporal models, where contexts are not managed.

Reasoning algorithms on labeled constraints are based on a closure process. These processes
guarantee consistency and obtain aminimal digunctive context-dependent TCN. Additionadly,
aspecial type of globally labeled-consistent TCN is obtained. This property alows usto obtain
solutions by backtrack-free search (Freuder, 1982).

Management of a special type of non-binary constraints. Reasoning agorithms are able to
manage digunctions of digunctive constraints. This supposes an extension of digunctions of
non-digunctive metric constraints proposed by Stergiou and Koubarakis (1998). Moreover,
given a set of digunctive congraints, the model can handle logical relations among
digunctions of different congtraints. Thus, we can express that a set of atomic digunctsin
digunctive constraints are mutualy digunctive among them. Therefore, a specia type of
and/or TCN can be managed as a conjunctive (and) TCN. Likewise, the model can dso handle
specia non-binary constraints representing implications among tempora constraints as were
identified by Meiri (1996).

With these features, the proposed tempora model is suitable for modeling problems where these
requirements appear. The computational cost of reasoning methods is non-polynomial, given the
complexity of the underlying problem. However, severa improvements are also proposed.

A brief revision of the main temporal reasoning concepts is presented in Section 2. In Section 3,
atemporal agebrafor labeled point-based digunctive metric constraints is described. This temporal
algebra introduces the concept of labeled constraints and their temporal operations. Reasoning
agorithms for guaranteeing aminima (and consistent) TCN are specified in Section 4. By using this
model, the integration of interval and point-based constraints and management of non-binary
congtraints are respectively described in Sections 5 and 6. Association of constraints to temporal
contexts and management of context-dependent constraints are detailed in Section 7. Findly, Section
8 concludes.

2. Basic Temporal Concepts

Tempora reasoning deals with reasoning on tempora constraints. The syntax and semantics of
constraints are defined by an underlying temporal algebra, which is the basis for performing the
reasoning processes. A tempora algebra can be defined according to the following elements:

Temporal primitive (or variable) 'x;', usualy time-points (t;) or intervals (1;).

Interpretation domain D for primitives . The interpretation domain represents the time line.
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Time points are instantiated on D (41 D), and temporal intervals can be modelled as pairs of
ending time points that can be instantiated on D: |; = (I, I;), I;T DxD, I;£l;".

Temporal constraints between primitives, where each constraint relates n primitives. ¢, (X1,
X2, ..y Xn). AS particular cases, the 'empty constraint' { A} is named the Inconsi stent-Constraint
and 'U' isthe Universal-Congtraint. Unary-constraints restrict the interpretation domain D for
variables. They are not usualy used in symbolic agebras, where an infinite domain is
assumed. Binary-constraints are temporal constraints between two variables (x; ¢; x;), and n-
ary-congtraints represent tempora constraints among n variables. By default, binary congtraints
are assumed in this paper. We can aso have qualitative (relative relation) or quantitative
(metric relation) constraints, as well as digunctive (c; is aset of digunctive basic constraints,
c;|® 1) or non-digunctive constraints.

Operations between constraints. Mainly, Temporal Composition (A), Temporal Intersection
(A), Tempora Union (E+), and Temporal Inclusion (I -).

A tempora problem is specified by a set of n variables X={x;}, an interpretation domain D and
afinite set of tempora constraints between variables { (x c; x;)}. A temporal problem givesrise to
a Temporal Constraint Network (TCN) which can be represented as a directed graph where nodes
represent temporal primitives (x;) and |label ed-directed edges represent the binary constraints between
them (c;;). The Universal Constraint U is not usually represented in the graph, and each direct edge
(representing G;) between x and x implies an inverse one (representing G;) between x and x.
According to the underlying Tempora Algebra, we mainly have IA-TCNs based on the Interva
Algebra (Allen, 1983), PA-TCNs based on the Point Algebra (Vilain et al., 1986), or Metric-TCNs
based on the Metric Point Algebra (Dechter et a., 1991; Dean & McDermott, 1987). In this later
case, digunctive metric point-based constraints give rise to a Tempora Constraint Satisfaction
Problem (TCSP) (Dechter et a., 1991).

Reasoning on temporal constraints can be seen as a Constraint Satisfaction Problem (CSP). An
instantiation of the variables X isan-tuple (vi, Vo, Vs, ...,V) / vil D which representsthe assgnments
of vaues{v;} tovariables{x;}: (X,=V1, Xo=Va, ...X,=V,). A (global) solution of aTCN isa consistent
instantiation of the variables X in their domains such that al TCN congtraints are satisfied. A vaue
v isaconsistent (or feasible) valuefor x if there exisssa TCN solution in which x;=v. The set of all
feasible values of a variable x is the minimal domain for the variable. A constraint (% cj; X;) is
consistentif there exists asolution in which (x ¢; x;) holds. A constraint ¢; is minimal iff it consists
only of consistent elements (or feasible values) that is, those which are satisfied by some
interpretation of TCN constraints. A TCN is minimal iff dl its constraints are minimal.

A TCN isconsistent (or satisfiable) iff it has at least one solution. Freuder (1982) generalizes the
notion of consistency as. 'a network isk-consistent iff (given any instantiation of any k-1 variables
satisfying al the direct congtraints among those variables) there exigts at least one instantiation of any
kqn variable such that the k values taken together satisfy al the constraints among the k variables. As
consequences: (i) al (k-1)-length pathsin the network are consistent, (i) for each pair or nodes, there
exists an interpretation that satisfies each (k-1)-length path between them, and (iii) each sub-TCN of
k-nodes is consistent. As particular cases, 1-consistency, 2-consistency and 3-consistency are called
node-congistency, arc-consistency and path-consistency, respectively (Mackworth, 1977; Montanari,
1974).
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Path-consistency is a common concept in congtraint networks. From Montanari (1974) and
Mackworth (1977), *a path of k-length through nodes (X;, X, ..., %, X) iS path-consistent iff for any
valuevil d, and vl d such that (x=v; ¢; x=V;) holds, there exists a sequence of valuesv,l o, v4l 05,
.y Vil e such that (v; G2 V2), (V2Cas V3),...., and (Vi G; ;) hold". A TCN is path-consistent iff dl its
paths are consistent. Moreover, Montanari (1974) proves that to ensure path-consistency it suffices
to check every 2-length path. Thus, path-consistency and 3-consistency are equivalent concepts.
Alternatively, Meiri (1996) outlines a path of k-length (X, X, Xz, ....Xk, %) iS path-consistent iff ¢; I +
(ci1 A ci,A ... A cj). However, this definition disregards domain congtraints, such that it is equivaent
to the former definition if variable domains are infinite or the TCN is aso node and arc-consistent,
asthe usud case in symbolic agebras. In metric algebras, path-consstency usualy assumes node and
arc-consistency. Therefore, taking into account that it is only necessary to test 2-length paths to
assure path-consistency, a TCN is path-consistent iff " ¢;,Ci,Gql TCN, ¢ I + (ck A cy). This
condition gives rise to the more usua path-consistent algorithm: the Transitive Closure Algorithm
(TCA) which imposes loca 3-consistency in each sub-TCN of 3 nodes, such that al 2-length paths
become consistent paths (Mackworth, 1977; Montanari , 1974). The TCA agorithm will obtain an
equivalent path-consistent TCN if it exists. Otherwisg, it fails.

" Cij,Cik,Q(ji TCN: Gij— Cj A (CikA ij)

A network isstrong k-consistent iff the network is j-consistent for al j£k (Freuder, 1982). An n-
consstent TCN isaconsstent TCN, and a strong n-consistent TCN isaminima TCN. Alternatively,
Dechter (1992) introduces the concepts of local and global consistency: A partia instantiation of
variables (X;=Vy, X=Vs, ..., Xk=W) / 1Ek<n islocally consistent if it satisfies al the constraints among
these variables. A subTCN is globally consistent if any locally consistent instantiation of the
variables in the sUbTCN can be extended to a consistent instantiation of al TCN. A globally
consistent TCN is one in which al its subTCNs are globally consistent. Thus, a TCN is strong n-
consistent iff it is globally consistent (Dechter, 1992).

The first reasoning task on a TCN is to determine whether the TCN is consistent. If the TCN is
consistent, we can then obtain the minimal-TCN, al TCN solutions (by assuming a discrete and finite
mode of time), only one solution, a partial solution (consistent instantiation of a subset of TCN
variables, which is a part of aglobal solution), etc.

Deductive closure, or propagation, is one of the basic reasoning algorithms. The closure process
is a deductive process on a TCN, where new derived congtraints are deduced from the explicitly
asserted ones by means of the composition (A) and intersection (A ) operations. Thus, the process of
determining the consistency and the minimality of a TCN isrelated to a sound and complete closure
process (Vilain et d., 1986). Alternatively, CSP-based methods (with severd heuristic search criteria)
are also used for guaranteeing consistency and obtaining TCN solutions. In this paper, we are mainly
interested in TCN closure processes.

Determining the consistency of a general-case TCN is NP-hard, and Minima TCNs can be
obtained by a polynomia number of consistency processes (Vilain et d., 1986). Particularly, Dechter,
Meiri and Pearl (1991) showed that determining consistency and obtaining a minimal digunctive
metric TCN can be achieved in O(?* F), where ‘n’ is the number of TCN nodes, ‘€ is the number of
explicitly asserted (input) constraints, and ‘I’ is the maximum number of intervals in an input
congtraint. However, specific levels of k-consistency can guarantee consistency and obtain aminimal
TCN, depending on the TCN topology or the underlying tempora algebra. For example, path-
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consistency guarantees consistency and obtains a minimal non-digunctive metric TCN (Dechter et
a., 1991). The path-consistency TCA Algorithm has an O(rr) cost (Allen, 1983; Vilain, Kautz & Van
Beek, 1986). However, assuring path-consistency can become a complex task in digunctive metric-
TCNs if the variable domain D is large or continuous. As was stated by Dechter, Meiri and Pearl
(1991), the number of intervalsin |g; A c;«| is upper bounded by |c;|X|G|. Thus, the total number of
diguncts (subintervals) in a path-consistent TCN might be exponentia in the number of diguncts per
congtraints in the initia (input) TCN. Schwalb and Dechter (1997) cdl this the fragmentation
problem, which does not appear in non-disjunctive metric TCNs. Thus, the TCA agorithm is O(r
R®) in digunctive metric-TCNsif timeis not dense (Dechter et al., 1991), where therange ‘R’ isthe
maximum difference between the lowest and highest number specified in any input constraints.

3. A Labeled Temporal Algebra

The main elements of the point-based digunctive metric tempora algebra are (Dechter et al., 1991):
Time-point (t;) as primitive variable. A continuous variable domain (like Q or A) is usualy
assumed.

Each tempora congtraint Gl U is a finite set of | mutualy exclusive subdomains (or
subintervals) of D.
ci®{[d,d"], [d, d], ..., [di d'4], ..., [di d"1]}, where d £d", and d,,d".l D,
and digunctively restricts the temporal distance between two time-points, t; and t;:
t-t1 {[dyd4], [d2d], ..., [d) ']},

meaning that (d.£t-t£ d"y) U.... U (d /£ 4-t£ d")). Similar conditions can be applied to open
(d d) and semi-open intervals (dy d'y], [d d'x). The Universa-Constraint U is{(-¥ +¥)}.
Unary constraints restrict the associated subdomain of atime-point 1 {[d; d"], [d, d"], .....,
[d, d"]}. A specia time-point T, is usually included, which represents 'the beginning of the
world' (usudly, T¢=0). Thus, each unary constraint on t; can be represented as a binary one
between t; and To:

ti-Tol {[dyd"y], [dd], ... [dd]} © tf [dy, d] Ut [dy, d2] U, ..., Ut [d, d7]
and, by default: " t;, (To {[0¥)} t).
The agebra operations, mainly A, A, Erand | 1. From (Meiri, 1996), given two temporal
constraints S={[ds;, ds"1]} and T={[dr}, dr'j]},

SAT={d/$dl SUS$I T/d=d+d}.

Thatis, " [ds;, il S," [drj, ] T, Ef{[dsi+dyj, ds"+d7]}. Here, resulting subdomains
inSA T may not be pairwise digoint. Therefore, some additional processing may be required
to compute a digoint subdomain set.

SA T={d/dl SUAJ T}. That is, the set-intersection of their subdomains.
SE;T={d/dd SUdI T}, asthe set-union of their subdomains.
S (T=iff " dJ S $dJ T.
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On the basis of the point-based digunctive metric temporal algebra and its operations, we
introduce a labeled point-based digunctive metric tempora agebra, which gives rise to a labeled-
TCN.

3.1 Labeded Constraints and Inconsistent L abdl Sets

An elemental constraint (ec) is one digunct in a digunctive constraint. Similar terms are atomic,
basic or canonical constraints. However, let’s use this term due to the specia structure of labeled
elemental constraints which are introduced further on. Thus, a digunctive constraint G; can be
considered as a disunctive set of | mutually exclusive elemental constraints { G} .

eCik= [k dix] 1 "ijk dijEdix
GCij 0{3:”_1, €Cij2y wny &ij.l} i u /" k,pi (1,..,'), kt P, (eCij.k A eCi,-_p):/E

Definition 1 (Labeled constraints). A labeled elemental constraint lec;; is an elementa constraint
€Cijx associated to a set of labels {Iabel; «}, where each label;  isasymboal. A labeled congtraint Ic;;
isadigunctive set of labeled elemental constraints {lec;}. That is,

ci;© {lecj1, leg,, ..., lecj,}, where
lec; «© (ecif{labelj«}), and {label;}°{label;, labeb, ..., label} isaset of symbolsa

Each label in a labeled-TCN can be considered as a unique symbol. The following cases can
occur:

i) If aninput (or explicitly asserted) constraint Ic;; has only one elemental constraint, that is,
only one digunct, this elemental constraint has the label 'R,". The labeled Universal-
Constraintis{U;rg}. INnagiven TCN, the set of all elemental constraints labeled with 'Ry’
is the *common context’. Thus, the label R, represents the set of elemental constraints which
have no other dternatives (diguncts). All elementd constraints labeled only with R, should
hold since they have no other dternative diguncts.

i) If an input constraint Ic;; has more than one elemental constraint, each elemental constraint
lec; I Ic;; has asingle and exclusive label associated to it (J{ label; } |=1). Thus, each label
in the TCN represents bi-univocally an elemental constraint in an explicitly asserted
constraint.

i) Each derived elemental constraint (obtained by combining (A,.) or intersecting (A ¢) two
labeled lemental congtraints) has a set of |abels associated to it. This set of labelsis obtained
from the labdl sets associated to the combined (or intersected) |abeled elemental constraints.
It will be detailed in the later specification of operations @, A, in Section 3.2. In
consequence, the label set associated to a derived elemental constraint represents the
conjunctive support-set of explicitly asserted elemental constraints that imply this derived
elemental constraint.

Let's see a smple example on labeled constraints, which was introduced by Dechter, Meiri and
Pearl (1991).
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{([60%)rn) (30 40L;r)}

@ {([60 70}ro))} @
{([40 50];r=) ([20 30);ra)} " { ([10 20];r})}
@)

{(110 20);rer )}
" J

Figure 1. The labeled point-based digunctive metric TCN of the Example 1

Example 1: "John goesto work either by car [30'-407, or by bus (at least 60"). Fred goesto work
either by car [20'-30, or in a carpool [40'-50']. Today John left home (t1) between
7:10and 7:20, and Fred arrived (t4) at work between 8:00 and 8: 10. We also know
that John arrived (t2) at work about 10'-20" after Fred left home (t3)."

In this example, we have the digunctive labeled constraints in Figure 1, where T, represents the
initial time (7:00) and where the granularity is in minutes. A label 'Ry’ is associated to el emental
constraints belonging to constraints with only one digunct. In constraints with more than one,
mutually exclusive diguncts, each digunct is labeled with an exclusive label R, (n>0). Thus,

Thelabel R, is associated to "John left home between 7:10 and 7:20", "Fred arrived at work
between 8:00 and 8:10", and "John arrived a work about 10'-20' after Fred left home'. This
is the common context

The label R, isassociated to "John goes by bus', and R, to "John goes by car".
The label R; is associated to "Fred goesin a carpool”, and R, to "Fred goes by car".
Definition 2 (Inconsistent-Label-Sets). An Inconsistent-Label -Set (I-L-Set) isa set of |abels {1abel}

and represents a set of overal inconsistent elemental constraints. That is, they cannot al
simultaneoudly hold. a

Theorem 1. Any label set that isasuperset of an I-L-Set isaso an I-L-Set. The proof isobvious. If
aset of lemental condtraints is inconsistent, any superset of it is also inconsistent. a

Definition 3. Elementa congtraints {lec;} of an input digunctive condraint Ic;; are pairwise digoint.
Thus, each 2-length set of labels from each pair of {lec;x} isadded to the set of I-L-Sets. Thet is, for
each |npUt condtraint ICij ° {leCij_l, I&ijz; ey IeCi“}, where quj,ko (eqjk{labeluk}) and |{|abe|.,k} |=1:

“kpl (L)) /K p, I-L-Sets- I-L-SetsE ({label;} E{labek,}) a

In the example of Figure 1, {R; R,} and{R; Ry} arel-L-Sets. Other |-L-Sets existing in alabeled
TCN will be detected in the reasoning processes later detailed in Section 4.
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3.2 Operationson Labeled Constraints

The following points define the main operations on labeled congtraints.

3.2.1 TEMPORAL INCLUSIONT .

The tempora inclusion operation | . should take into account the inclusion of temporal intervals and
the inclusion of associated label sets.

lec « e leci, = (€Gj« {Iabelij.k})i ic (6Gjp {1abEk p}) =ger eCij.ki TECijp U {Iabelij.k}i {label; o} .

3.2.2 TEMPORAL UNION E .

Operation E,. performs the digjunctive tempora union of labeled constraints as the set-union of their
demental congtraints. However, dl labeled e emental constraints whose associated |abels are |-L-Sets
should be rejected.
ICij E|C IC’ij =def " IeCIJkT ICij, E|C [{Ia:”k} IC,ij] , where
Eic [{lecjk} Ic'ij] = (ecijf labelj}) Eic 1C"ij =ger

Inconsistent({ label; x}) : I’

$lecypl Ic'y / legpl iclecyy 1 Ic'y (s1)

Other:  ({Ic'y} E {lec;i}) - ({legip}, " legl Ic'; Uleciul degyp) ().

Thefunction Inconsistent({|abel; }) returnstrue if the set {1abe; } isan I-L-Set or a superset of
any existing I-L-Set (Theorem 1). Otherwise, it returns fal se:
I nconsistent({label;; }) =aer
If ${label}1 Inconsistent-Label-Sets/ {label} i {label;} Then True Else False.

The operation E,. smplifies the resulting constraint. Equal or less-restricted demental constraints
with equal or bigger associated label sets are removed. For instance:

{([10 30](r1r3R5R9), ([40 40] (rer7})} Eic {([10 20] {r1r3), ([40 4Q] (rer7Rep)} =
{([10 20];r1 r3), ([40 40] ks r7y)} -

In the resulting constraint, ([10 30] (g1 rs rs rey) @Nd ([40 40] (rer7rgy) are €liminated, as examples
g)f the cases s, and s, respectively. That is, ([10 20] (r1rs) I e ([10 301 {r1r3rsRe) aNd ([40 40](rer7})
I 1c ([40 40](rsr7rey)- These smplifications can seem counter-intuitive. However, note that the label
set associated to each derived-labeled elementa constraint represents the support set (composed of
input elemental constraints) from which the derived-labeled elemental constraint is obtained. Thus,
only the minimal associated label set should be represented, for reason of efficiency. Moreover, the
more labels are in the associated label set {1abel;«}, the elementa constraint (eg;«) should be equal
or more restricted.

3.2.3 TEMPORAL COMPOSITION A ¢

Operation A performs the temporal composition of labeled constraints. It is based in the operation
A of the underlying disjunctive metric point-based algebra.
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For instance: { ([0 10] (ry), ([20 30]r2)} A {([100 200](rs)), ([300 400] (rs))} =
{([320 430] (rarz), ([300 410] (rary), ([100 210](rs ryy), ([120 230]rsra)} -

Note that elemental constraints in a labeled derived constraint may not be pairwise digoint.
However, these labeled derived elementa constraints cannot be smplified. This is related to the
fragmentation problem of the digunctive metric algebra (Schwab & Dechter, 1997). We have that
each derived-labeled elemental constraint should have its own associated label set. In the example,
(([320 430] r4 r2p), ([300 410];r4 r1y)) cannot be smplified to ([300 430] (rs r2 r1;) SiNCe each
subinterval depends on a different set of labels (that is, on a different support-set of elemental
congtraints). If the label set {Rs R,} becomes an I-L-Set, only ([320 430] (r4 r2;) Should be removed.
On the other hand, if [300 410] becomes an inconsistent interval between the implied time points,
only {R; R} should be asserted as an |-L-Set.

3.2.4 TEMPORAL INTERSECTION A
Operation A . performs the temporal intersection of labeled constraints and is based on the operation
A.
Ic;; A|c ICij =get " |9Cij.kT Ici;, ™ |9Cij.pT Ic, Elc [lecix Alc legp)
where, lec; A leGjp =der
If ecijx A ecip,= & Then {/&} ; The Inconsistent-Constraint is returned.
Else [(ecix A ec;p) ({labek;,} E{labelj })]
Asexample:

{([020](ry), (20 25] ()} Aic {([030](rg), ([40 50w} = {([20 25](rsra)s ([0 10] (raruy)}

In the operations A\ and A, the label set {label;,} associated to each derived |abeled-elemental
constraint (ec;,) is obtained from the set-union of labels associated to combined (A,) or intersected
(A ) labeled-dlemental congtraints. Therefore, {label;,} represents the support set (composed of input
elemental congtraints) that implies the derived elemental constraint (ecj.,).

Definition 4. A set of I-L-Sets is complete if it represents all inconsistent sets of TCN elemental
constraints. A set of 1-L-Sets is sound if each I-L-Set represents an inconsistent set of elemental
constraints. a

Theorem 2. Assuming a complete and sound set of I-L-Sets, a labeled elementa constraint is
consistent iff it has an associated label set which is not an I-L-Set. The proof istrivial, since the label
set associated to each labeled elemental constraint represents its support-set. a

Theorem 3. Assuming a complete and sound set of |-L-Sets, no inconsistent labeled elemental
condtraint is obtained in operations A, and A..

Proof: The operations A, and A, use the operation E,. to obtain their results. This operation E,.
rejects all labeled elemental constraints whose associated labels are I-L-Sets. Thus, al eemental
condgiraints derived in operations A\ and A . are consistent (Theorem 2). a
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3.3 Distributive Property A,.Over A in Digunctive Labeled Constraints

Operations A and A aredistributive (i.e.: A distributes over A) in non-digunctive metric TCN, but
this property does not hold in digunctive metric constraints. Dechter, Meiri and Pearl (1991) show
the following example. Given the digunctive metric constraints:

a{[01],[1020]}, b={[2550]}, c={[030],[4050]},
we have:
(aA (bA c) = {[2531],[3570]} (@A b)A (@A c) = {[2570]}.

Thus, clearly (@A (bA c)* (aA b) A (aA c). However, the distributive property holds for
operations A and A | in labeled TCN.

Theorem 4. By using labeled constraints and I-L-Sets, A, distributes over A,..
Proof: Let’s consider the labeled constraints Ic;, Ic; and Ic. Thus,
(ICi A|c IC]') A|C (ICi A|C ICk)
can be expressed, according to the definition of operation A, as:
(" IeCpT Ici, " |quT Ic;, Elc[(lecp A lecy)]) A ("lecl Ic, " lecd loy, Ef(lec A lec)]) =
"lec,l lc, " legl g, " lecl Ic;, " lecd lo, (Ei[(leg, Arclecy)] A Eif(lec Aclecs)])
which, according to the definition of A, can be expressed as:
! |eCpT Ici, " |quT Ic;, " lecT lci, " lecd lcy (Elc[(lecp A|c|qu)A|c (lec A lecs)]) (e1)
In this expression, lec, and lec, are elemental constraints of the same-labeled constraint Ic;.
However, the set-union of label sets associated to each pair of elementa constraints in any (input or
derived) labeled congtraint is an I-L-Set (Definition 3). That is, if lec,! lec,, then {label} E{label}
isan I-L-Set. Thus, if lec,! lec,, the label set associated to (lec, Ay lecy) Aj. (lec, A lec)) isan I-L-
Set. In consequence, (lec, A, lecy) A. (lec; A, lec) isrejected in operation E .. That is,
"lec,l Ici, " legyl I, " lecT Ici, " lecd lcy /lect lec, (EiJ[(lec, A lecy) A (lec, A lecy)]) = £
Thus, the above expression (el) results:
"lec,l Ici," legyl I, " lecd lce (Eic [(lec, A lecy) A (lec, Ay lecy)]).

In this expression, A, clearly distributes over A for elemental constraints (i.e.: non-disunctive
constraints). Therefore:

"lecyl i, " legl Ic, " lecd e (Erc [(lec, A (lecg Al lecy)]) =

"lec,l Ici, Eic [lec, A (" lecy Ig, " lecd Ic, Eic [lecgAc lec])] = lci A (I A Icy).
That is, A, distributes over A . for labeled congtraints.a
For instance, following the previous example:

& {[0 1(ry, [10 20)(ry}, b={[2550](re}}, C={[030](ras} [40 30| (ra}
and {R; R}, {R: Ry} arel-L-Sets. Thus, we have:
(@A (A 0) ={[0 Ly, [10 20](rey} Aic ({[25 50](rey} Al {[030](rs, [40 50] (ray}) =
{[0 1](ry, [10 20) (rg} Aic {[25 30] (s ro}, [40 50] (ra roy} =
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{[25 31](r1Rr3R0}, [40 51] {r1 rRa RO} [35 50](R3R2 RO}, [90 70] (R4 R2RO}} -
Also,
(@aAcb)Ac(@Aic) =
({[0 Uyry, [10 20 (ray} Aic {[2550] (ror}) A

({[0 Lry, [2020] (ry} Aic {[0 30];ra}, [40 50](rap}) =

{[25 51]r1ra}, [35 70] (r2ro}} A {[0 31 (rirg, [40 51] (rire [10 50](r2 Ry, [50 70]¢rora} =

Elc ([25 31]{R1 R3 RO} [40 51]{R1 R4 RO} 5 [25 50] {R1R2R3 R0}
[505]] {R1R2R4 RO} s [40 51] {R1R2 R4 R0} s [35 50] {R3R2R0} s [S0 70]{R4 R2 RO})-

Howa/er, { Rl Rz} s {R3 R4} a’e\l-L-%S ThUS, ([25 50]{R1 R2R3 RO} 1 [50 51]{Rl R2RA4RO0}, [40 51] {(RL
R2R4R0}) &€ removed in operation E,.. Therefore,

(aAIc b) Alc (aAm C) = {[25 31]{r1r3Rrap [40 51]r1 rara}: [35 50] (rsr2R0}s [50 70 (rar2 RO} -
Thatis, (@A (bA.c)=(@Ab)A.(@Ac).

4. Reasoning Algorithms on Labeled Constraints

Severa agorithms for reasoning on digunctive constraints can be applied for the management of
labeled temporal congtraints, by using the A, A\, E;cand [ . operations. For instance, the well-
known Trangtive Closure Algorithm, generd closure algorithms as in (Dechter, 1992; Dechter et dl.,
1991; van Beek & Dechter, 1997), CSP-based approaches, etc. However, Montanari (1974) shows
that when composition operation distributes over intersection, any path-consistent TCN isadso a
minimal TCN. From Theorem 4, we have that A, distributes over A .. Thus, gpplication of a path-
consistent algorithm on the proposed-labeled TCN will obtain a minima TCN. Thus, the TCA
algorithm could be used as the closure process on labeled congtraints, in a smilar way as Allen
(1983) usesit. However, an incremental reasoning processis proposed on the basis of the incremental
path-consistent algorithm for non-digunctive metric constraints described by Barber (1993). An
incremental reasoning process is useful when temporal congtraints are not initially known but are
successively deduced from an independent process, for instance, in an integrated planning and
scheduling system (Garrido et a., 1999). The proposed reasoning algorithm is similar to the TCA
agorithm. However, updating and closure processes are performed at each new input constraint.
Thus, each new input constraint is updated and closured on a previously minimal TCN (Figure 9.
Therefore, no further propagation of modified constraints in the closure process is needed. Moreover,
the proposed reasoning agorithms will obtain a complete and sound set of |-L-Sets.

The specification of reasoning processes is described in Section 4.1. The properties of these
processes will be described later in Section 4.2.

4.1 The Updating Process

Given a previous labeled-TCN, composed by a set of nodes{n}, a set of labeled congtraints {Ic;;}
among them, and a set of |-L-Sets, the updating process of each new c'j; between nodes n and n
congraint is detailed in Figure 2.
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Updating (n; ¢’ n;) ;Cj°{eC’j, eC’jj2, ..., €C’jj; }, a digunctive metric constraint.
Ich; = Put-Labels(c’;), ;Anexclusivelabel isassociated to each elemental constraint
€C’jjx in Cj;

If Consistency-Test (Ic;; , Ic) ;Consistency test of Icj. The previoudy existing
constraint between n; and ny islc;. Moreover, new |-L-Sets
are detected.

Then (*Inconsistent Constraint*)
Return (false)
Else (*Consistent Constraint*)
ICij_l ICijA|C IClij, ICji - Inver'%c (ICij),
Closure (n Ici; i), ;Closure algorithmfor the updated constraint.
Return (true)

End-If
End-Updating
Figure 2: Updating process on labeled constraints
The function Put-Labels(c’;;) returns a labeled-constraint Ic';°{lec’j1, lec’jz, ..., leC’},

associating an exclusive label to each elemental constraint in ¢';. If thereis only one digunctin c’y;,
the [abel in the unique elemental constraint is { Ro} . Otherwise, each pair of labelsin Ic’; is added to
the set of I-L-Sets, since dementa congtraintsin ¢'j; are pairwise digoint (Definition 3). By using the
Inverse function on non-labeled constraints, the Inverse. function is:

Inversa. ({ (eci.{ labekjx})}) =wer {(INverse (ecix) {1abek;})}

The described updating process is performed each time that one new input constraint ¢’; is
asserted on aprevious TCN. Thus, aninitidd TCN with no nodes, no congtraints, and no I-L-Sets is
assumed (Figure 9). At each new input constraint (C';), the TCN is incrementally updated and
closured. That is, if ¢'j; is consistent (Consistency-Test function), the constraint ¢';; is added to the
TCN, the closure process (Closure function) propagates its effectsto all TCN, and the new TCN is
obtained. A new updating process can be performed on this new TCN, and so on successively.

4.1.1. THE CONSISTENCY-TEST FUNCTION

The Consistency-Test function (Figure 3) is based on the operation A .. A new input congtraint Ic;
between nodes n; and ny is consistent if it temporally intersects with the previoudly existing constraint
ci; between these nodes. Moreover, the Consistency-Test function can detect new |-L-Sets:

i) If the new constraint Ic;; is consistent with the existing constraint Ic;;, and two elemental
congtraints ec;,l ICy, egl lc; do not intersect (egjx A ec;,=/&), then the label set
{Iabel; } E{label;,} isan I-L-Set and should be added to the current set of 1-L-Sets

i) If an existing elemental constraint between nodes n and 1y (leg;l Ic;;) does not intersect with
the new constraint Ic';, then {label;«} isan I-L-Set and should be added to the current set of
|-L-Sets.
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COhSiﬂency—TeSt (ICij, |C1ij) =
If (lCij A|C IC’ij) = {,CE}

Then Return (False)

Else

If $|eCij.kT Icij, $|€Cij_pT Ic’j / leg;jx Alclecij.P:{/CE} .
Then |-L-Sets— |-L-SetsE ({|abel;} E{label;}),
If $|ecij.kT Ici; / lecjx A Icy = {4}
Then |-L-Sets— |-L-SetsE {label;,},

End-If
Return (True)
End- Consistency-Test

Figure 3: Consistency-Test function

For example,
Consistency-Test ({ ([0 10](ry), ([20 25] (), ([100 110](rq)},
{([0 30]rg), ([40 50] (ra)), ([-50 -40] roy)}) = True
snce
{{([0 10 rs), ([20 25] rz), ([200 110]ra)} Asc {([0 3] (rs), ([40 50] (ray), ([-50 -40](ry)} =
{([20 25](rs r2}), ([0 10) (r3r1))} * {AE}.

In this function, the labdl sets{R4 R,}, { R4 R} and { Ra} are detected as |-L-Sets and should be
added to the current set of |-L-Sets, since:
{[20 25](rzy} A1c{[40 50]ray} ={ A}, {[010](ry)} Ac{[40 50]ra))} ={ A},
{([100 110] (ray)} Ac { ([0 30](rs), ([40 501 (r4y), ([-50 -40] (rey)} ={ A} .

Note that {R,} does not need to be detected as an I-L-Set, since the label R, is not included in the
final congtraint { ([20 25];r3r2), ([0 10](rsr1})} tO be added to the TCN.

Any superset of an I-L-Set isalso an |-L-Set (Theorem 1). Moreover, note that { R, Ro}, { R4 Ry}
do not need to be added to the set of 1-L-Sets, since the label R, is not included in the final congtraint.
Therefore, the following simplifications can aso be performed each time anew |-L-Set is added to
the current set of 1-L-Sets. These simplifications do not modify the results of reasoning processes,
but minimize the size of the set of I-L-Sets and improve its management efficiency.

i)  Nonew I-L-Set that is superset of an existing I-L-Set is added to the set of |-L-Sets.
i) If anexisting I-L-Set is superset of the new |I-L-Set, then the existing I-L-Set is removed.

i)  No new I-L-Set that contains alabel of Ic’;, which does not appear in the labeled constraint
(Ici; A Ic;) to be added to the TCN, should be added to the set of I-L-Sets.

Let’s see an example of the updating and consistency-test processes. Let’stake the labeled-TCN
that results from Example 1 once the following constraints have been updated and closured:
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Set of Inconsistent-Label-Sets: {{R, R,}, {R; R }}

60 70] { RO
{((60 70] {RO})} @

{([4050] {R3})] {([40 60] {R2 Ro})
(20301 {R4})} {([40¥) {RLR3R0}) (70 ¥) {R1RO})}
([20¥) {R1R4RO})

([-10 30] {R2 R4 RO})
([1050] {R2 R3 RO} )}

{([-10 20] {R3 RO})
([10 40] { R4 RO} )}

{((-¥ O {R1R0})
[0 30] {R2 RO} )}

{([10 30] {R3 RO})

3050] {R4 RO {([60*¥){R1})
([3050] { DI} ((3040) {RA)}

{([1020] {RO})]} y

Figure 4: The resulting labeled-TCN of Figure 1 before updating (t; {[10 20]} t,)

(t. {[60 ¥)rs, [3040] o} 1), (& {[40 S0 s, [20 0] ra} ), (To {[10 20]ro} 1), (To {[60 70Jro} L).

The resulting labeled-TCN is shown in Figure 4 and the set of I-L-Set is {{R; Ry}, {Rs R4} }.
Now, we update (t; {[10 20]ro} t,). The previoudy existing constraint between t; and t, is (Figure 4):

{ ([40 ¥ ){ R1R3 RO}) ([20 ¥ ){ R1R4 RO}); (['10 30] {R2R4 RO}) ([lo 50]{R2 R3 RO})}
The Consistency-Test function performs:

{[10 20](roy} Ac {([40 ¥ )iriraro}) ([20 ¥ )irirarey)s ([-10 30] (r2raroy) ([1050](r2r3ro})} =
{[20 20]{r1Raro}, [10 20] (roroy [AEl(R1R3R0}} * {AE} (el)

Thus, (t2-t31 {[10 20](rg}) is consistent. Moreover, {R; R; Ry} is detected as an I-L-Set. The
elemental congtraints associated to { Ry Rz Ro} are an inconsistent set of diguncts that cannot hold
simultaneoudly. That is:

"If today John left home between 7:10 and 7:20 (R,), Fred arrived at work between 8:00
and 8:10 (Ry) and John arrived at work about 10'-20" after Fred left home (R,), then it is
impossible for John to have gone by bus (R;) and Fred to have gonein a carpool (Rz)."

The set of 1-L-Sets obtained in the reasoning process can be considered as specia derived
constraints, which express the inconsistency of a set of input elementa congtraints. For ingtance, the
I-L-Set { Ry Ry Ra} represents (Figure 1):

@ ((To [10 20] T) U (T5[10 20] T) U(To [60 70] T4) U (Ts [40 50] Ta) U (T, [60 ¥) T2)).

This expression is a non-binary constraint. This type of constraints could be represented as a
digunctive linear congtraint, as Jonsson and Béckstrém (1996), Stergiou and Koubarakis (1996)
show. However, input elemental constraints should be represented in derived constraints to be able
to derivethese inconsistent sets of input elementa constraints. In this model, this is done by means
of the label sets associated to labeled elemental constraints.
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4.2 TheClosure Process

The closure process (Figure 5) is gpplied each time a new input constraint (Icj;) is updated, such that

the effects of Ic}; are propagated to all TCN.

ClOSUI’e(ni ICij nj)
(* Firstloop: Closuren; ® n;® nc*)
" nkT TCN/ ICjkl {U{RO}}:
ICik - ICikA|C (ICij A|c ICjk), ICki - |nve$(lcik)
(* Second loop: Closuren;® n ® n *)
" n|T TCN/ IC" 1 {U{RO}}:
ICJ'| - ICj| A|C (l nVG’%(ICij) A|C IC"), |C|j - InVH%(IC“)
(* Third loop: Closuren ® n® ny® n*)
"n, r](T TCN/ |C|i 1 {U{RO}}1 ICjk 1 {U{RO}}:
|C|k - |C|kA|C (IC” A|c ICij A|C ICjk), ICk| - InVG'%(ICW)
End-Closure

Figure 5: The closure process on labeled constraints

Figure 6: Loops in the Closure Process

The closure process has three loops (Figure 6). In these loops the process obtains:

i)

i)

Derived condraints Ic;x between n and any nodeny, if n. is previously connected with n
(edge 1 of Figure 6).

Derived congtraints Ic;;between np and any noden, if n is previously connected with n
(edge 2 of Figure 6).

1 Thisloop could be simplified as:

(*n| ® n; ® nk*): " n,, nkT TCN /|C|i 1 {U{Ro}}, lekl {U{RO)}:
(*n| ® n; ® nk*): "n, nkT TCN /ICIi N {U{Ro}}, |Cjkl {U{RO}}:
since Ici (or Icy) has already been closured in thefirst (or in the second loop). Moreover, the efficiency of the third loop

le— e A (Iey A 16

can beimproved if only modified constraintsin thefirst (or in the second loop) are considered.
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(40 60];rarzrap)

~N
( Set of Inconsistent-Label-Sets: {{R, R)}, {R; R}, {R, R; Rj}}
{([60 70frz2ry) ([ 70 70];rar1r})} @
{([40 50rs Rz r0y) { ([40 50];r2r3roy)
([20 30]¢rar2Ro}) ([40 60](r2 Ra Ro})
{ ([60 60]{ R4RL RO}) 20 20]{ R4R1 RO))} ([70 70]f R1 R4 RO} )}

([50 60];rsrzror)} {([10 20)rzr0)) ([20 20](rars Ro})}b@' {%gg] | S]l R4RO}) )
{R2R3R0}
( 1%} , {([10 30);rarzro) [0 20];ro rRaron)}
([10 20]{R3 R2 RO}) { ([50 50]{ R4R1 RO}) { ([30 40]( R2 RO})
([40 40];ra r1 roy)} ([20 30];rsreroy) ([60 60];r1rara})}
(130 50]rar2ret)} :
\ {([210 20); rorey) ([10 10]{rar1Re})} y

Figure 7: The Labeled-Minimal TCN of the Example 1

iii) Derived congraints Ic,, between any pair of nodes n and n, if n and n are previoudy
connected with n and n, respectively (edge 3 of Figure 6).

Let's see the previous Example 1 represented in Figure 1 and Figure 4, when the consistent
constraint (expression el):
(ts {[20 20] (r1Rrara}, [10 20](R2 Ro} t2)

is closured. In the first loop of the closure process, we have:
Iczo = Ica0 Are ({[20 20 (r1rarap, [10 20] (r2 roj} Ay lcy =
{[-30 -10]trs ro} [-50 -30 (reror} A )
({ [20 20]{R1 R4 RO} 1 [10 20] {R2 RO}} A {['60 _40]{R2 RO} ('¥ '70]{R1 RO}}) =
{[-30 -10]rs roy} [-50 -30]rarcy} Al
{[-40-20] {R1R2 R4 R0} » (-¥ ‘50]{R1 R4 R0} [-50-20] {R2 R0} (-¥ '50]{R1 R2 RO}} .

However, {{R; R:}, {Rs Rs} {Ro R: Rs}} arel-L-Sets. No labeled elementa constraints whose
associated label setisasuperset of these I-L-Sets will be derived (Theorem 3). Thus:
|030 - {['30 '10]{R3 RO}} ['50 '30] {R4 RO}} A|c { ('¥ '50]{R1 R4 RO} ['50 —20] {R2 RO} }=
{ ('30 '20] {R2 R3 RO} ['50 —50] {R4 R1 RO} ['50 '30] {R4R2 RO}} .
Similarly,
ICay = 131 Al ({[20 20] (r1 raray [10 20] (2 Rop} Aiclcy =
{ ['20 '10]{R3 R2 RO} ['40 '40]{R4 R1 RO} ['30 '10] {R4 R2 RO}}

ICas = Icas Arc ({[20 20](r1raroy+ [10 20] (r2 Ro}} A lco =
{ [40 50]{R3 R2 RO} [20 30] {R4 R2 RO} [20 20]{R4 R1 RO}} .

After the second and third loaps, the final labeled-TCN is obtained (Figure 7). Thefinal set of I-L-
Setsis{{R: R}, {Rs Ry} {Ro R1Rs}}. These setsrepresent all sets of mutually inconsistent input-
elemental congtraints that exist in the TCN of Figure 1
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4.3 Properties of Reasoning Algorithms

In this section, the main properties of the proposed reasoning agorithms are described.

Theorem 5. The proposed updating and closure processes (Sections 4.1 and 4.2) guarantee a
consistent TCN if they are applied on a previous minimal (and consistent) TCN.

Proof: The updating congtraint Ic’;; is asserted in the TCN if it is consistent with the previous minimal
condraint Ic;; (Consistency-Test function).a

Theorem 6. The proposed closure agorithm obtains a path-consistent TCN, if it is applied over a
previous minima TCN.

Proof: Thiswas detailed by Barber (1993) for non-digunctive TCNs and it is applied here to labeled
TCNs. We have:

i)

i)

ii)

No derived constraint can exist between apair of nodesif no path between them combines
the asserted congtraint Icj;.

The closure process computes a derived constraint between any pair of nodes (n, ny) that
become connected by a path across the closured congtraint Icj;. Let’s assume an exigting path
between the nodes n,, ny; that includes|c;;:

Nty M2y Mz, evene , N (Nl n), Ny, N2, Ny
such that a derived constraint between n, n,; should be computed. However, a minimal
constraint between (n., n) and between (n;, n,;) should aready exist in the previous minimal
TCN. In consequence, a derived constraint between (n,, n,;) is computed in the third loop
of the process.

If the previous TCN isminimal, all possible derived constraints that can exist between any
pair of nodes (n, n¢) are aready computed in the constraint Ic',, derived between these nodes
in the proposed closure process. In the third loop, this process obtains:

|C1|k: |C|k A|C (|C|i A|C ICij A|c ICjk).

Let’s suppose there exists another path between (n, ny) across the updated Ic;; constraint: (n,
Ny, N, N, Ny, N). This path computes another derived constraint between (n, ny):

Ic"= I A (Icip A (o A Ic; A Iciq A ICqw)-

However, since the previous TCN is minimal, the previoudy existing minimal constraints
lc;; and Ic; imply (Icip, A Icyi) and (Icjq A Icgy), respectively. That is, Icy; (¢, Ay kcy) and
Icj I 1e(lcy A Iege) Thus, 1"y is dso implicitly implied by Ic' (IC' il Ic"y). Here, we have
assumed the associative property for A, which is obvious from its definition.

Derived constraints obtained in the closure process do not need to be closured again if the
previous TCN isminimal. That is, no constraint in the TCN would become more restricted
if derived constraints were also closured. Let suppose Ic,, is modified in the third loop of
closure process:

Ic =l A (Ici A Icij Ase Icik)

such that it should be propagated to the (n, n, n,) SUbTCN (Figure 8). Thus, the following
derived constraints should be obtained:
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I p=1cip A e (IC 1 Al Ickp) 1€ pg= ICoq Aic (ICp A IC ).
For congraint Ic',,, we have,
I\, = lcip Are (IC 1 A lc) = leip A (e A (Ioi A Iej A Ici)) Are Icip).
However, since A, distributes over A,
I, =lcip A (i A leg) A (Ici A Iey A Igi Aje Icyy)).

Since the previous TCN is minimal, the minimal constraints Ic,,; and Ic,; should previoudly
EXISt, such that |C|pi |C(IC|k A|C ICkp) and Iiji Ic(ICjk A|C ICkp). ThUS,

I T i lcip Are (Ici Arcle A Icp).

However, in the third loop of the closure process, the following derived constraint is
computed: ) )
Ic"ip, =Icip A (Ici A lcij A Icip).

Thus, I, is aready represented in the obtained congtraint Ic", (that is, Ic, T ¢ IC)p). Ina
smilar way,
IC"pq = ICpq A|C (ICpi A|C ICij A|c Iqu)

is also obtained in the proposed closure process, such that 1"y, [ 1 1C)pg.

Therefore, each derived constraint (any combinable path across Ic;;) between any pair of nodes
in the TCN is computed, so that the closure process obtains a path-consistent TCN. a

qu @ Icpk

|G

n,
HOS=OM

Figure 8: Ic, is aso propagated to Ic,, and Ic

Theorem 7. The proposed reasoning processes obtain a minimal TCN, if the previous TCN is a
minimal TCN.

Proof: Montanari (1974) shows that when composition distributes over intersection (i.e.. A
distributes over A), any path-consistent TCN is aso a minimal TCN). This is the case in non-
digunctive metric TCNs (Dechter et a., 1991). In our case, A, distributes over A, (Theorem 4) and
the closure process obtains a path consistent TCN (Theorem 6). Therefore, the proposed reasoning
processes also obtain aminimal TCN. a
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No nodes, No constraints, No |-L-Sets

>

v

Input Constraint
(nlc;n)

New input
constraint

¢If (n lc; n) is consistent

Reasoning Process: Updating + Closure processes
Consistency-Test: Consistent TCN
Closure Process. Path-Consistent TCN.
Distributive Property (A, over A,): Minimal

\ 4

New consistent and minima TCN
New complete and sound set of |-L-Sets

Figure 9: An incremental reasoning process

Theorem 8. At each updating process, reasoning agorithms obtain a complete and a sound new set
of I-L-Sets (Definition 4), if they are applied on a previous minimal TCN and a previous sound and
complete set of I-L-Sets.

Proof:

i) Thenew set of I-L-Setsis complete. The consistency test of the updated constraint Ic’; obtains
al possible new I-L-Sets that can appear when ICj; is added to the TCN, except those |-L-Sets
which are related to the mutua exclusion of the digunctsin Icj; (which are determined in the
Put-Label function):

a)

b)

No new I-L-Sets can appear in which some label of Ic; does not participate. Otherwise,
they would have been detected in a previous updating process, since the previous set of
I-L-Sets is assumed complete. Thus, some labdl of Ic’;; should always participate in any
new |-L-Set that appears when IC’;; is updated.

All new I-L-Sets (in which some label of Ic’;; participates) are detected in the consistency
test of Ic’;. Let's assume that a new and undetected I-L-Set existS{ Ry, Ry, Ry, ....., Rg} in
which some new eemental constraint ecqrgl IC; takes part. Thus, the elemental
congtraints associated to { Ry, R, ....., R,} compute a derived elemental constraint ec,
between the nodes n and n;:

(€Cx(ruRr2 ..y | (ECx(RuR,...R}) A|c (Gqry) =FE
This elemental constraint ec, is aready represented in the previoudy existing congtraint |c;;
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between n and ny since the previous TCN is minimaf’. Thus, ecAec, =4, such that the |-L-
Set {R, Ry, Ry, ..., Ry} is detected in the consistency test of Ic';;. In conclusion, al new
inconsistent sets of elemental congtraints in which |c;; participates are detected and no other
new |-L-Sets can exist. Therefore, the new set of I-L-Setsis complete if the previous set
of I-L-Sets is complete.

ii) The new set of I-L-Sets is sound. All new |-L-Sets obtained represent inconsistent sets of
elemental congtraints. Thisistrivial, given the consistency test function. a

In conclusion, the proposed reasoning agorithms obtain a minimal (and consistent) TCN if they
are applied to a previous minimal-TCN (Figure 9). Therefore, the reasoning algorithms guarantee
TCN consistency and obtain a minima TCN and a complete and sound set of |-L-Sets at each new
input assertion.

4.4 Global Labeled-Consistency

In a minimal (binary) digunctive network, every subnetwork of size two is globally consistent
(Dechter, 1992). Therefore, any loca consistent instantiation of a subset of two variables can be
extended to afull consistent instantiation. However, to assure that alocal consistent instantiation of
a subset of more that two variablesis overall consigtent, the partid instantiation should be propagated
on the whole TCN (van Beek, 1991). Thus, assembling a TCN solution can become a costly
propagation process in digunctive TCNs, even though a minimal TCN was used. The proposed
reasoning processes maintain a complete and sound set of I-L-Sets (Theorem8). Thus, we can deduce
if alocaly consistent set of elemental constraints is overall consistent by means of label sets
associated to labeled elemental constraints and the set of I-L-Sets. Specificaly, we can deduce
whether any locally consistent instantiation of k variables (1<k<n) is overall consistent. Let’s see the
following example, which is based on a previous one proposed by Dechter, Meiri and Pearl (1991):

Example 2: "Dave goes walking to workin [25' 50']. John goes to work either by car
[10° 307, or by bus[45 60']. Fred goesto work either by car [15' 207,
or inacarpool [35' 407, or walking [55' 60']. Today, they all |eft their
home between 6:50 and 7:50 (at t;, t, and t; time-points), and arrived at
work at just the same time (t,) before 8:00."

Here, we have the following labeled digunctive constraints where, T, represents the initia time
(6:50) and granularity isin minutes:

t1-Tol {[060Jro},  t2-Tol {[060Jro},  ts-Tol {[060]ro}, ta-Tol {[O 70Jro},
ta-tal {[2550lro}, ta—tal {[1030lr1, [4560]ro},  ta—tal {[1520]rs, [35 40]ra, [55 60]s} -
The minimal TCN of Example 2 is represented in Figure 10. Here, the binary constraints between

each time-point and T, represent unary constraints and restrict interpretation domains for variables
(t;, &, &, ). Obvioudy, this minima TCN is not a globaly consistent TCN. For instance,

2 The elemental constraintec, is already representedin an explicit way, or by means of another elemental constraint egy
(ecyi tecy {1abel}i {Ry, Ry, ....., Rp}) due to the simplification process performed in the operation E;.. In both cases,
ecAec=A, ecAec, =/
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instantiations { (,=0), (,=0), (t:=0)} are consistent with the existing constraints involved among (To,
t1, 1, t3), but this partial solution cannot be extended to the overall TCN.

{[25 501}

{10 30] [45 60]}

{[25 70

Figure 10: Minima TCN of Example 2

Let’'s consider the TCN with labeled constraints. For reasons of smplicity, we only denote the

labeled constraints among (To, ty, t, t3):
(To {[5 45];rors}: [0 45];roRra, [0 45](roR3)} t1),
(To {[0 25];r2 R} [5 60];r1 RO R4} [25 60](R1RORS}: [0 60](R1RORS} t2),
(To {[25 55]tror2r3}: [0 15] troRs}, [0 35]¢roR1R4Y [5 55ltRoR1R3) [5 35 ROR2R4}} 13),
(t2 {([-5 35]roRz}, [-40 5] {rory} t2),
(t1 {[-15 15);roRa4}: [-35 -5]{roR3}, [5 35];RoRs}} t3),

(t2 {[5 30] {r1 RO R4} [-45 -25](R2 ROR3}s [25 SOR1RORS}: [-15 10](R1 RO RS}, [-25 -5](R2ROR4}, [-5 18)iR2RORS}} 3)-

The set of I-L-Setsis{{R; R} {Rs Ry} {R:s Rs} {R4 Rs}}. From thislabeled TCN and the set of
I-L-Sets, we can deduce that instantiations { (t;=0), (t,=0), (t=0)} are not overall consistent. These
instantiations are not locally consistent with the labeled constraints in the sUbTCN (T, ty, b, t3): All
label sets associated to possible simultaneous fulfillment of

(To{[001} t1), (To {[00]} t2) and (To {[0 O]} t3)
are|l-L-Sets. That is, all 1abd sets in the Cartesian product
{{RoRi}{RoRs}} C {{R:R}{RiRoRs}} C {{RoRs} {RoRiRu}}

are |-L-Sets. Thus, the set of 1-L-Sets can be used to deduce consistency of a set of labeled elemental
constraints and to obtain a globally consistent labeled-TCN.

Theorem 9. Let’s assume alabeled-TCN of n nodes (and the corresponding complete and sound set
of 1-L-Sets) and alocal set of k (1£kE(3)) labeled elemental constraints in the TCN, each one of
which is between any pair of nodes:

{lecy, 16C,,....., lec} © {(ec, {labeh}), (ec, {Iabeb}), ..., (ecy {labei})} .
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The local set of labeled dementd congtraints {lec,, lec,, ..., lec}is overal consistent iff the set-
union of their associated label sets (E;-y{label}) is not an I-L-Set.

Proof: The label set (Ei-,{label}) is the support-set of the simultaneous fulfillment of {lec,, lec,,
---, lec}. Moreover, the sat of I-L-Setsis complete and sound with respect to overal TCN (Theorem
8), such that any label set not in the set of I-L-Set is overall consistent. Therefore (Theorem 2),
(Ei-{label}) and {lecy, lec,, ..., lec} are overal consistent iff E-,{label} isnot an |-L-Set. &

Definition 5 (Labeled-consistency’): Let’ sassumealabeled-TCN of n nodes (and the corresponding
complete set of I-L-Sets) and aset of k (1£kE(3)) congtraints, each one of which is between any pair
of nodesin the TCN:
{cij} 1 1EiEN, IEJEN, it ).
The set of constraints {c;} is |abeled-consistent with respect to the nodes involved in these
congtraints, iff:

i)  For each constraint c;, there exists an elemental labeled congtraint elc;; x between (n, n) in
the TCN such that dCij_x satisfies Gij. Thatis " Cij, $dCij_XT |Cij / Cij A €Cij x 1 E

i)  Theresulting set of the union of label sets associated to these elemental [abeled constraints
(which satisfy {c;;}) isnot an I-L-Set: U ¢i{ladiid js not an I-L-Set. Note that this is the
condition of Theorem 9. &

Theorem 10. Let'sassume alabeled-TCN of n nodes (and the corresponding complete set of 1-L-
Sets) and a set of k (1£kE(3)) constraints, each one of which is between any pair of nodes in the
TCN:
{cij} 1 1£iEN, 1£JEN, it ).
The set of constraints { ¢;} isoverall consistent iff {c;} is labeled-consistent with respect to the
nodes involved in constraints { c;;} .

Proof: The proof is trivial according to Definition 5 and Theorem 9. We have that the set of
constraints { c;;} is consistent iff there exists alocal set of elemental constraints in the TCN { elc;.}
that makes {c;} |abeled-consistent (Definition 5). Thus, thelocal set {elc .} is consistent (Theorem
9), such thet {c;;} isaso consistent. a

For instance, we can determine whether any pair of constraints ¢’ and ¢y can hold smultaneoudy
(that is, they are overall consistent) if:

$dCij_xT ICij /C'”'A eq,—,xlﬁE U $de|_yT Ca / Cl A EGKLyl/CE U {labeI|JX}E{|abe|k|y}

isnot an I-L-Set.

Moreover, any local instantiation of any k-1 (1<kEn) variables { t;=v, t,=V,, ..., tx.)=Vk-} can
be extended to a global solution if:

$eCioxl IC1o/ Vil ECioxy.n.n.. , $eC 10yl ICK-1)0 / Vi)l ECr0xs

where Ic;; is the congtraint between n and To, and {labeho,} E{labeho,} E ... E{labely10,}is not
and |I-L-Set.

3We need to introduce the concept of label ed-consistency sinceit is a different concept from theconsistency concept.
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For instance, in Example 2 of Figure 10, the partial instantiation {(t;=0), (t=5), (z=5)} is
consistent. We have:

([0 45](rorap)l Ic10/ 01 [045], ([0 60kriroRa) IC20/ 51 [060],  ([555]ror1rap)l ICs0/ 51 [5 55],

and { Ry R} E{Ry R, R} E{Ry R Ra}={Ry Ry Ry} isnot an IL-Set. Thus, this partia solution can be
extended to a global solution. For instance, { (t;=0), (t.=5), (ts=5), (t=25)}.

Therefore, alabeled-TCN can be considered as a globally labeled-consistent TCN. That is, on the
basis of the concepts introduced by Dechter (1992):

Definition 6. (Local Labeled-consistency): A partial instantiation of variables (1£k<n) {t;=v;, b=V,,
.., i=v} isloca labeed-consstent if it islabeled-consistent with respect to (T, t3, to, ..., tk) hodes.
Thisalso holds for k=n. &

Definition 7. (Global Labeled-consistency): A labeled sub-TCN (with the global set of I-L-Sets) is
global labeled-consistent if any partia instantiation of variables in the sub-TCN, which is local
labeled-consistent, can be extended to the overall TCN. A globally labeled-consistent TCN isonein
which al its sub-TCNs are globally labeled-consistent. a

Theorem 11. At each new assertion, the proposed reasoning processes obtain a globally labeled-
consistent TCN, if they are applied on a previous minima TCN and a previous sound and complete
set of |I-L-Sets.

Proof: The proof istrivia according to the previous definitions (Definition 6 and Definition 7) and
to the properties of the reasoning processes (Theorem 7 and Theorem 8). Any partia instantiation
in any subTCN, which is labeled-consistent with respect to the nodes involved in the partia
instantiation, is overall consistent (Theorem 10). a

Similar expressions can be made for k-label ed-consistency and strong k-label ed-consistency on
the basis of the concepts provided by Freuder (1982). Therefore, the set of |-L-Setsin alabeled-TCN
provides a useful way to assure whether a local instantiation of variables can be part of a global
solution. Moreover, Freuder (1982) shows that in a strong k-consistent TCN, consistent instantiations
of variables of any subnetwork of size k can be found in a backtrack-free manner and in any variable
ordering. Thisis aso a consequence of the decomposability (Montanari, 1974; Dechter et d., 1991)
or globally consistency (Dechter, 1992) properties. Obvioudy, this feature also holds for labeled
TCNs.

45 Analysisof Temporal Complexity

Let’'s analyze the computational cost of the proposed reasoning processes. These processes are,
basicaly, an incremental path-consistent algorithm (Barber, 1993). At each updating process of a
new input constraint on a TCN with n nodes, the computational cost of updating and closure
processes is bounded by 'n® (O(A ) + O(A,))". In the proposed reasoning process, the path-consistent
agorithm obtains a minimal digunctive metric TCN. This is possible due to the management of
labeled constraints, associated label sets, and I-L-Sets. Thus, the complexity of reasoning processes
ismainly due (instead of a complex closure process) to the management of complex data structures
(labeled congtraints, associated label sets, and 1-L-Sets). That is, the complexity of the proposed
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reasoning processes is mainly due to the complexity of operations A, and A ..

The computational cost of A, and A . depends on the number of elemental congiraints in labeled
constraints, the size of associated label sets, and the size of I-L-Sets in the previous minimal |abeled
TCN. Let 'n' be the number of nodes, 'I' the maximum number of diguncts (or labels) in input
constraints, and ‘€' the number of updated input constraints in the previous TCN. The maximum
number of labelsin the TCN isI*e, since each digunct in each updated input labeled constraint has
its own, unequivocal label. Moreover, any |-L-Set can have as maximum one labdl from each input
labeled congtraint Ic;;, Since: (i) elemental congtraintsin Ic;; are pairwise digoint, such that each pair
of labelsin Ic;; is added to the set of I-L-Sets, and (i) any superset of an existing I-L-Set isaso an
I-L-Set. Thus, the maximum number of labelsin any I-L-Set is e. Furthermore, each label inan I-L-
Set should be from a different input labeled congtraint. There aree input labeled congtraints, and each
input labeled congtraint has as maximum | labels. Thus, the maximum number of I-L-Sets of g-length
(1£c£€) is ((§) 1. |

Therefore, the number of i-length (1£ife) I-L-Sets isSi-1. ((F) ) = O(2° 1°). However, any
superset of an I-L-Set is aready known as inconsistent, such that supersets are not stored in the set
of I-L-Sets. Thus, the number of I-L-Set is bounded by O(1°). Additionally, we aso have e* (5) I-L-
Sets of 2-length, since the | diguncts in each updated congtraint are mutualy exclusive among them.
Similarly, the maximum number of associated label setsis also bounded by O(1°), each one with a
maximum of e labels. Thus, the number of elemental constraints (or labeled subintervals) in any
labeled constraint is bound by O(1°), since each elemental constraint in a labeled constraint has its
own associated label set.

According to these parameters, the computational cost of each updating process is bounded by
O(rf I*®). The recovery process of constraints has a constant cost, since a minimal-TCN is always
maintained. The computational cost of the proposed agorithms agreed with the computationa cost
inherent to the problem of the management of digunctive metric constraints (Dechter, 1991). In fact,
the closure process could be considered as an integrated management of the F aternative non-
digunctive TCNs in which adigunctive TCN can be split, asit is shown by Dechter, Meiri and Pearl
(1991). It should be noted that | can be bounded in some typical problems like scheduling, where
usualy E2 (Garrido et al., 1999), or by restricting domain size (range or granularity) in metric
algebras. On the other hand, severa improvements can be made on the described processes. For
example, an efficient management of label sets has a direct influence on the efficiency of the
reasoning processes. Thus, each label set for instance, {R; Rs Rg}) can be considered as a
unidimensiona array of bits, which is the binary representation of an integer number (for instance
(2*+2°+2%)). Therefore, each associated label set is represented by a number and the set of I-L-Sets
becomes a set of numbers. Matching and set-union processes on label setsin operations A, and A,
can be efficiently performed by means of operations on integer numbers with a constant cost.
Therefore, the computational cost can be bounded by O(n” 1%°).

Other dternative implementations are under study. Two different approaches exist for temporal
constraint management (Brusoni et al., 1997; Y ampratoom, Allen, 1993; Barber, 1993). The first
approach isto maintain a closured TCN by recomputing the TCN at each new input constraint and
making the derived congtraints explicit. Here, queries are answered in constant time, athough this
implies a high spatid cost. The second approach is to explicitly represent only input constraints, such
that the spatial requirements are minimum. However, further computation is needed at query time
and when consistency of each new input constraint is tested. The proposed reasoning methods hold
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in the first gpproach, which seems more appropriate for problems where queries on the TCN are more
usual tasks than updating processes.

In addition, the proposed reasoning algorithms obtain a sound and complete set of |-L-Sets and
a globally labeled-consistent TCN. Regrettably, assembling a solution in a labeled TCN, athough
backtrack free, isaso costly due to the exponentia number of 1-L-Sets. However, these features offer
the capability of representing and managing specid types of non-binary digunctive constraints (later
detailed in Section 6).

Other reasoning agorithms for query processes on a non-closured TCN, as well as CSP
approaches can be defined on the basis of the labeled temporal algebra described. Less expensive
agorithms can be applied on labeled constraints by using the specified operations A, A, Eqc and
| 1. For instance, the TCA agorithm asis applied by Allen (1983), and the k-congistency agorithms
like those described in (Cooper, 1990; Freuder, 1978). Moreover, a minima TCN of labeled
congtraints can be obtained without enforcing globa consistency; for example, by applying the naive
backtracking algorithm described by Dechter, Meiri and Pearl (1991), which is O(n°1°).

5. Interval-Based Constraints Through Labeled Point-Based Constraints

The integration of quantitative and qualitative information has been the goal of severa tempora
models, as was described in Section 1. When intervals are represented by means of their ending
points I;" I, integration of constraints on intervals and points seems to require some kind of non-
binary constraints between time-points (Gerevini & Schubert, 1995; Schwalb & Dechter, 1997,
Drakengren & Jonsson, 1997). In this section, the proposed tempora model is applied in order to
integrate interval and point-based constraints. Constraints on intervals are managed by means of
congtraints on ending points of intervals and I-L-Sets. Likewise, metric information can aso be added
to interval congtraints such that an expressive way of integrating qualitative and quantitative
constraints is obtained.

5.1 Symboalic Interval-Based Constraints

Symbolic constraints on intervals express the qualitative temporal relation between two intervals.
Each symbolic congtraint is a digunctive subset of 13 elementa congtraints, which are mutually
exclusive among them (Allen, 1983). For example, the following constraint

I, {ecy, ey} Iy, ec, ec,1 {b,m,0,d,s,f, e bi,mioai,di s, fi},

really means'l, [ (ec, Uec,) U@ (ec, Uec,) ] I, since ec, and ec, are mutualy exclusive, and one and
only one dementd congtraint should hold. For reasons of smplicity, we only consider two diguncts
in the symbolic constraint. However, these expressions can be easily extended for managing from
2 to 13 diguncts. The above expression can be expressed as.
I, [ (ec, UDec,) U (@ec, Uecy) 11, ©
I, [ (ec; U@ec,) U(ec, UPec,) UB(eq, Uec,) UD (Pec, UDec,) | 12 (€2).

In this way, we have:
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i)  Thecongraints[l, (ec; U@ec,) I,] and [I1 (ec, UDec,) | ,] can be expressed as diunctive
metric constraints on the same pairs of time-points,

i)  The constraints I, @(ec, U ;) |,] and [I, @(@ec; U @ec,) I] can be expressed as a mutual
exclusion among the associated labels of the above point-based constraints. That is, as a set
of I-L-Sets.

We present a simple example to illustrate these conclusions. For instance, (I, { before after} 1)

can be expressed by means of constraints among the time points |47, 1, 1, and I,", as:
[li{ba 12] ° (1" {(0¥)iron} 12) U (Il {(¥ O)ran} I2").

Thus, when intervals are represented by means of their ending points |, 1,7, an interval-based
constraint gives rise to digunctive constraints between different pairs of time points (i.e.: non-binary
constraints). These non-binary constraints can be represented as I-L-Sets. Thus, according to the
above expression (e2),

[li{ba} 13 ° [l.(bUBb) 1] U[l: (@UBa) I,] U[l,@(bU8) I,] U[l, B(@b Ua) 1],
we have:

I beforel; U 15" {(0¥)ron} 12, loafterl; U 1y {(-¥ Oyray} 12",
|, Dbeforel, U 1" {(-¥ Olrogy} 12, | @after LU 11 {[0¥)rag} 2.

Therefore, [I;{ba} 1,] can be expressed as.

[ { (0¥ )trony (¥ Olgrogy} 1210 [I1 {(¥ O)rayy [0 ¥)ires} 127U
B[ (12" {(0¥)ron} 12) U(lx {(¥ Orey} 12) ] U
B[ (1" {(¥ Orog} 1)U {[0¥)ras} 12) ],
which is equivalent to (by using the labels associated to each elemental constraint):

[11" { (0¥ )rony (¥ Olrozp} 121 U [11 {(-¥ O)rayy [0 ¥ )y} 12]
and {Ry; Ru}.{Re Ry} are I-L-Sets, such that one and only one digunctive symbolic constraint
holds.

Thus, symbolic congtraints between intervals can be represented by means of: (i) a set of
digunctive metric constraints between time-points, and (ii) a set of I-L-Sets. In Table 1 the
equivaent metric constraints between interval ending time points for each elemental interval-based
congtraint are detailed. According to this table, the following steps allow us to represent digunctive
symbolic constraints between intervals by means of digunctive metric constraints between interval
ending points and |-L-Sets:

i) Eachintervd I; is represented by meens of its ending points I;*, 1. By default, (I { (0, ¥ )ro}
;") holds.

i) A symbolic constraint between two intervals (I; ¢ I;) is composed of a digunctive set of
(from 1 to 13) elemental symbolic congtraints ¢;={ g} {b, m, 0, d, s, f, €, bi, mi, i, di,
g, fi}.

i) Each elementa symbolic congtraint ecl {b, m, 0, d, s, f, €, bi, mi, oi, di, 5, fi} is represented
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by a conjunctive set of digunctive point-based metric constraints (fourth column of Teble
1). This conjunctive set of point-based constraints expresses the ‘fulfillment or non-
fulfillment’ (ec U @ec) of the elemental symbolic constraint ec.

iv) A digunctive set ¢;={ec;x} of eemental symbolic congtraints between |; and |; is represented
by:
A conjunctive set of digunctive point-based metric constraints between the time-points

;" I, ;" and I';. This conjunctive set is composed by the congtraintsin the fourth column
of Table 1 for each elemental constraint in {ec;x}.

A sat of I-L-Sets that expresses the logica relation among eemental symbolic
congtraintsin { ec;j«} . Thet is, 'one and only one elemental symbolic constraint in {eg; }
should hold'":

iv.d) Only one elemental constraint in {ec;,} should hold. This condition does not
need to be represented since the different sets of point-based constraints that
correspond to fulfillment of different elemental symbolic constraints (second
column of Table 1) are dready mutually exclusive.

iv.n) One of the elemental symbolic constraints in {ec;«} should hold. Let S be the
label sets, where each label set corresponds to the point-based constraints which
are related to the non-fulfillment of each elemental symbolic constraint in { ec;; «}
(third column of Table 1). Thus, the Cartesian product among the labdl setsin S
isaset of I-L-Sets.

For instance, 1; {b msdi} |, can be represented as.

(1 { (0¥)rop} 11, (12 { (0¥)(rey} 127),
I {b @b} I, P (1.7 {(0¥)roy (-¥ Olgroz} 12),
li{m @m} I, P (11" {[00]{rmay (O ¥)(rmzy (¥ O)rmay} 12),
l1{s @s} I, P (12 {[00](rsy) (O ¥)(rs3) (-¥ O)rsay} 12) U(I1" {(0 ¥ )irszy (¥ Olirssy} 12),
I {di @di} 1,°1,{d @d} I; P (12" {(¥ O)ray [0 ¥){razs} 11) U (12" {(0 ¥ ){raz} (-¥ Olragy} I1°).

Moreover, one of the symbolic constraintsin {b, m, s, di} should hold. Thus (according to Point
iv.b of the method), the Cartesian product of the associated |abels related to the non-fulfillment of
each elemental symbolic constraintsin {b, m, s, di}. That is:

{{Ro2} &{ Rre, Rng} C{ Rs3, Rsa, Res} C{ Ras, Rua}
should be explicitly included in the set of I-L-Sets.

By applying this method, qualitative interval-based constraints can be fully integrated in the
proposed |abeled point-based constraints. In this case, the interpretation domain for time-points {1;”
[} can be restricted to only three values ({ D} ={ (¥, 0), [0Q], (O ¥)}), such that, I=3. Therefore, the
computational cost of reasoning algorithms is bounded by O(n* 3%).

To illustrate the proposed method, let’s show a typical example on symbolic interval-based
congtraints (Figure 11.a), which was given by Allen (1983). This example shows how interval-based
constraints can be represented and managed by means of digunctive metric point-based constraints
and aminimal IA-TCN can be obtained.
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li ecijx I; li ecij [ I Dec;k | li (eGjx OQeCij.k) I
li beforel; | 1" {(0¥)roy} Ij " {(-¥ Oltroy} I 1" { (0¥ )(roay (¥ Oltrozy} Ij”
limeetsl; | 1" {[00lrmy} I | 1" {(0¥)irma (-¥ O)rma} I | 1i" {[0 Oltrmay (O ¥)irmz (-¥ O)rma} I
liduring l; | I {(-¥ O)rany} i’ (1 {[0 ¥)rag} 1I}) i {(-¥ O)rayy [0 ¥)(razy} i
1" { (0¥ )irazy} Ij” U (" {(-¥ Oraa} Ij") Ii* { (0¥ )(razy (¥ Oltraay} Ij”
listartsly | 1 {[00)rsyy} Ii” | (" {(0O¥)(rsg) (-¥ O)rsg} i) | 1i" {[O00Q)rsyy (0¥ )(rs3y (¥ O)rsa} I
i { (0¥ )rsy} I} U (i {(-¥ Orss} i) i { (0¥ )(rszy (-¥ Olirssy} Ij"
li finishes i | 1" {[0Oltreny} " | (" {(0¥)(rizy (¥ O)rear} 1i") | 1" {[0 Olreyy (0 ¥)regy (¥ O)raay} I}
li {(-¥ O)rzy} I U (i {[0¥)ris} I}) li {(-¥ O)rr2} [0 ¥)(rig} I}
i overlaps|; | 1i" {(-¥ O)ron} I} (1 {10 ¥)(rog} 1)) i {(-¥ O)roz [0¥ )iroay} I}”
i {(0 ¥ )rozy} I} U (" {(-¥ Olros} Ii") 1i"{(0 ¥ )rozy (-¥ Ol(ros} Ij”"
i {(0¥)(rog}} I}’ U (7 {(-¥ Orogj} I}) I {(0¥)(ro3} (¥ Olrog}} I}’
liequal l; | 1" {[00lren} " | (" {(0¥)(res (-¥ O)reqt} i) | 1i" {(0¥)res) [0 Ol¢rey (¥ O)req} Ij”

li {[0Qltrexy} I}

U (I {(0¥)(res; (-¥ O)regy} 1))

li { (0¥ )resy [0 Ol{rez; (-¥ O)(resy} I

Table 1: Interval-based constraints and their equivalent digunctive metric constraints between
interva ending points(Cellsin the second and fourth columns are a conjunctive set of constraints)

Symbolic Digunctive Metric Constraint between I" I|  Inconsistent-L abel-Sets
Constraint
IA"{(-¥ O)ry) [0¥ )r3y)} IB
(IA{ddi}IB) P IA"{(0¥)rzy (¥ Olray} 1B {Rs Re} {Rs Re}
IB" { (¥ O)rsy [0 ¥)irpy} 1A {Rs R7} {Rs R7}
IB" {(0¥)(re} (-¥ Ogray} IA”
IB" { (-¥ O)(roy [0 ¥)(r1yy} IC
(B{dd}IC) P IB* {(0¥)(r10} (¥ Ol(raz} IC {R12 Rig} {Ru1 Rug}
IC {(-¥ O)(r13} [0 ¥)(r15}} IB {Ri2 Ris} { Ri1 Rus}
IC" {(0¥)r1a) (¥ Ofragy} 1B
ID* {[0 Olra7} (0 ¥ )(rigy (-¥ O)rigy} IA™ | {Ruo Roa} {Rug Rea} { Ruo Rz}
(ID{ms}1A) P ID" {[0 Ol{r20y (0 ¥ );rozy (-¥ O)r2gy} IA™ | {R1g Res} {Rig Reo} {Rig Re2}
ID" { (0 ¥)ron (-¥ Olrog} IA”
ID* {(-¥ O)rgy} 1B
(ID {0} IB) =] |D+{(0¥){Ro}} IB*
ID” {(0¥)ray} IB
ID" {[0 Oltrzs} (0 ¥ )iros (¥ O)rany} IC | {Re7 Raz} { Res Raz} { Re7 Raa}
(ID{ms}tIC) P ID" {[0 Ol¢rog} (0 ¥ )r3c} (-¥ O)rayy} IC | {Res Ra1} {Re7 Rao} { Res Rao}
ID" {(0¥)irog} (-¥ Oliran} IC

Table 2: Symbolic constraintsin Figure 11.a by means of digunctive metric

constraints between I, I
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Figure 11.a represents a path-consistent IA-TCN, which has inconsistent values in constraints
(Allen, 1983). In Table 2 we have the interval-based symbolic constraints for this example, the
corresponding disunctive metric constraints between their ending time'points (I;*, I) and the
corresponding set of I-L-Sets (according to Table 1). Moreover, we aso have:

(IA{(0¥)ro}IA™), (IB{(0 ¥ )roj} IB"), (IC{(0 ¥ )(rj}|C") and (ID{ (0¥ )ro} ID").

When dl these metric congtraints among the ending time-points of intervas are updated according
the proposed methods in Section 4, the [abeled minimal TCN in Table 3is obtained. The associated
labels to each elementa constraint (digunct) in constraints are not included for reasons of brevity.

{d, ai, f, e fi,
si, s, 0,di}

a) Path-Consistent IA-TCN b) Minimal IA-TCN

{d, di,s d, &

Figure 11: Path-Consistent and equivalent Minimal IA-TCN

IA* 1A IB” 1=} Ic* IC ID* ID
IA* {0} | {(0¥), [{(-¥ O} [{(-¥ %)} [ {(-¥ O} [{(-¥ O} [{(-¥O)}
(¥ 0)}
A~ | {(0%)} {©¥)} [ {(-¥0),| {(0¥)} | {(-¥0),| {[00], |{(-¥0),
0¥)} 00, | 0¥} | [00}
0¥)}
IB" | {(-¥ 0), [ {(-¥ 0)} {(¥0)} | {(¥0), | {(¥ 0} | {(-¥ O)} | {(-¥ O)}
0¥)} 0¥)}
IB" | {(0¥)} | {(0¥%), | {(0O¥)} {©¥)} | {(-¥0), | {(0¥)} [{(-¥ O}
(¥ 0)} 0¥)}
IC" [{(-¥ ¥)} | {(-¥ O)} | {(-¥ 0), | {(-¥ O)} {(-¥ 0} | {(-¥ 0)} | {(-¥ O)}
0¥)}
1C | {(0¥)} [ {(¥0),| {(0¥)} | {(-¥0), | {(O¥)} {(0¥), | {(¥0),
[00], 0¥)} 0o} | (00}
0¥)}
ID" | {(0¥)} | {(-¥0), | {(0¥)} |[{(-¥0)} | {(0¥)} | {(-¥0), {(-¥ 0)}
[00]} [0 0}
ID" | {(0%)} | {[00Q], | {(0¥)} | {(0¥)} | {(O¥)} | {[0Q], | {(O¥)}
©0¥)} 0¥)}

Table 3: The minimal metric point-based TCN of the IA-TCN in Figure 11.a
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Allen (1983) remarks that the symbolic constraint (IA {f fi} IC) cannot hold given the existing
constraints between 1A, IB, IC and ID. In the labeled point-based TCN, (IA {f fi} IC) is represented
by a set of constraints among ending points of A and IC. Moreover, the labdls associated to each
labeled elemental constraint allow us to determine whether a set of elemental constraints between
different pairs of time-points can be part of a global solution (Theorem 10). Thus, we can deduce
whether (1A {f fi} IC) can hold in the point-based TCN.

The existing constraints between the ending time-points of 1C and |A, with their associated [abel-
setsare:
IC"  {(-¥ ¥){Ro5 R30 R29 R17 R22 R21 RO)({R27 R28 R29 R19 R20 R21 R0}
(-¥ O){R27 R28 R29 R17 R22 R21 R9 R10 R15 R16 R1 R2 R7 RO R8}»
(0¥ ){Rro5 R30 R29 R19 R20 R21 R11 R12 R13 R14 R3R4R5 RORe} JA”

IC {(0¥){Rro7 R28 R29 R17 R22 R21 RO R10 R15 R16 R1 R2 R7 R8 R0}
[0 O] {r25 R30 R29 R17 R22 R21 RO} R27 R28 R29 R19 R20 R21 RO} »
(-¥ 0){R25 R30 R29 R19 R20 R21 R11 R12 R13R14 R3R4 R5R6 R0} 1A

Let'sask for each digunctin (1A {f fi} 1C):

i) The constraint (IA {f} IC) implies(IC*" {[0 O]} IA") U(IC {(-¥ 0)} IA"). According to
Theorem 10, these constraints hold iff the set-union of the label sets associated to (IC” [0 O]
IA") and to (IC (-¥ 0) IA") isnot an I-L-Set. We have two possibilities:

i.1)  {Res Rao Rog Ri7 Roz Rot Ro} E { Ros Rao Rog Rio Roo Re1 Riz Riz Riz Rus Rs Ry Rs Re Ro} =
{Rs Rs Ry Rs Rop R1g Ros Rap Rzg Ri7 Ro2 Ro1 Rt Ri2 RisRia Ro }, OF

i.2)  {Ry7 Rog Rag Rig Roo Ro1 Ro} E { Ros Rao Rag Rig Roo Rat Ri1 Riz2 Ris Ria Rs Ry Rs Rs Ro} =
{R14 R13 Ri2 Ri1 Rag Ros Ry7 Rag Rog Rig Rog Ro1 Rs Ry Rs Ro Re} -

However, both label sets (i.1,1.2) are |-L-Sets: For instance, { Rig R22} and { Ry, Reo} arel-L-
Sets (Table2) and they are subsets of i.1 and i.2, respectively. Thus, (IA {f} 1C) does not hold.
i) The congtraint (1A {fi} IC) implies (IC*{[0 0]} IA") U(IC { (0¥)} IA). Similarly:
il.1)  {Res Reo Rog Ri7 Ro2 Rot Ro} E { Ro7 Rog Rog Ri7 Ro2 Rot Ry Rig Ris Rig RiRe Ry Rg Ro} =
{R16 Ri5 R1g Ry Rag Ro7 Ros Rap Rag R17R22 Ro1 Ry Ry Ry Ry Rg}
Thislabel set isan I-L-Set. For instance, { Ry R,7} isan I-L-Set. Also,

i1.2)  {Ro7RagRog Rig R0 Ro1 Ro} E { Ra7 Rog Rag Ri7 Roz Ro1 Ro Rio Ris Rig Ri Ry Ry Rg Ro} =
{Rs R7 Ry R1 Ry Ri7 Ry7 Rog Rog Rig Rog Ro1 Ry Rig Ris Ris Ro}-

Both these labdl sets (ii.1, ii.2) areaso I-L-Sets. For ingtance, { Ry Rz} and {Ryg Roo} arel-L-
Sets. Thus, (1A {fi} 1C) does not hold either.

In conclusion, the symbolic congtraint (1A {f fi} 1C) cannot hold on the globaly |abeled-consistent
point-based TCN. This conclusion could be also obtained from a minimal IA-TCN (Figure 11.b).
Additionally, we have that (1A {f fi} IC) implies (IA" [0 Q] IC"). That is, if the congtraint (IA* [0 0]
IC") holds, we have that the associated constraints to the label sets { R,s Rsp Rog Rz Rz Rer Ro} or
{R27 Ryg Rog Rig Ry Roy Ro} should dso hold. Each one of these label setsimplies (IC {[0 0]} 1A").
Thatis: (IA"[00] IC") ® (IC{[00Q]} IA"). Thus, the only way that (IA* [0 0] IC") can hold isif (IA
{€} 1C) holds. These relations will be detailed in Section 6.
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5.2 Metric Constraintson Intervals

Metric constraints between intervals can aso be managed in the described temporal modd. From a
generd point of view, metric information can be added to each elementa interval-based constraint
in a standard way (Table 4). These metric constraints on interval boundaries (Table 4) are smilar to
the ones proposed by Staab and Hahn (1998).

IA Symboalic IA Metric Elemental Constraints
Elemental Ci° {[dm; dM,], [dm, dM_], ..... [dm,, dM,]}
Congtraints ¢ {[dm"; dM’], [dm', dM’;], ..... [dm', dM’ ]}
li
|, before |, I, (before g)) |; e
li
I, meets |J' [ (meetsci,-) Ij LL lj
li
I, during |; l; (G; during ci) |; : L
. ‘ i
|, starts Ij l; (ﬂartSCij) Ij — Ij
|i .
I; finishes |; I; (finishes ) I p
li
l; overlaps |; li (overlaps c;) |; Sij i
li cy
l; equd |j I (C‘] a}ual C'ij) |j i Ij -~

Table 4: Metric interval constraints on interval boundaries

Obvioudly, the metric constraints of Table 4 can be managed in the proposed model, by means
of metric constraints on interval ending points. Thus, symbolic constraints of Interval Algebra can
be extended in this way to metric domain. However, since each interval is represented by means of
its ending time-points, more flexible metric constraints on intervals can be represented by means of
metric constraints on their ending time-points. In this way, the described model aso subsumes the
Interval Distance Sub Algebra model proposed by Badaloni and Berati (1996). Moreover, ending
points of intervals can aso be related to the initial time-point Ty, and unary metric constraints on

interva durations can be expressed by means of metric congtraints between the two ending points of
each interval:

dur (1}) = {[dmy dM.], [dm, dM], ..... [dm, dML]} P
(I {[dmy dM4], [dm, M), ..... [dm, AML]} 1),
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NN PR S o
L ipien * L,
L 0 = 50 —

?o {[140 1501, [200 2107} ”

Figure 12: Metric constraints between intervals

Thus, following constraints (Figure 12):
(11{b, 0} 12) U (11 is[[20 30], [50 60]} before12) U (12 is{[140 150], [200 210]} after T,)
can be represented as (Table 1):

By default: (I { (0¥ )ra} 1), (12{ (0¥)(rg} 12)), and
(11{b,0}12) P (117 {(0 ¥ )royy (¥ Olrozy} 12), (117 {(-¥ O)roy [0¥ )(rog} 12),
(1I77{(0 ¥ )roz (¥ Ol{rosp} 127), (17 {(0 ¥ )(rog) (¥ Oltrog)} 12),
(ITis[[2030], [5060]} attheleftof 1Z) b (11 {[50 60]ry [20 30} gz} 12),
(12 is{[140 150], [200 210]} after T)) P (To{[140 150} g [200 210} e} 12),
and { Rp2 Ros}, { R Ros}, { Ro2 Roe}, { Rt Ro} and {Rs; Ry} are I-L-Sets.

6. Reasoning on Logical Expressions of Constraints

In the described model, each digunct in an input constraint is univocally associated to a label.
Moreover, the labdl set associated to each derived elemental constraint represents the support-set of
input elemental constraints from which the elemental congtraint is derived. |-L-Sets represent
inconsistent sets of input elemental constraints. By reasoning on labeled digunctive constraints,
associated label lists and I-L-Sets, the temporal model offers the capability of reasoning on logical
expressions of eemental constraints belonging to digunctive constraints between different pairs of
time points. Let's assume the following labeled input constraints:

(nley n)° (n {(legj1)riy (1€G52) (rij2 ----(1€Gip) (R} M),
(N Iea ) © (N { (Iecu1) (rua.zy (1€Ck1.2) (ret 2y -----(1€CiiLg) (R} 1Y)
i) To represent that two elemental constraints® (€cil Ic;, €yl Ici) cannot hold simultaneoudy
(that is @(dlci;x Udcy,)) the label set {R;x Ry} should be added to the set of I-L-Sets.

ii) To represent alogical dependency between two elemental constraints, such as 'If lec; then
IeCk|_yl (WhereleQJXI Cij, I&kLyI Ck|), the Cartesian prOdUCt {Rij.x} C {{Rkl.l’ Rk|_2, ..... s R(I.q}'
{Ruy}} should be added to the set of I-L-Sets.

iii) To represent that two demental constraints (elc; I Ic;, €lcy, 1 Icy) should hold smultaneoudy
(bi-directional logical dependency), the Cartesian products{R;} C {{R«.1, Ra2, -y Rag}-

4 For reasonsof simplicity, only two elemental constraintsare shown. However, morethan two disjunctions can be managed
inasimilar way. Likewise, these features can be also applied to |abeled derived constraints.
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{Rkl.y}} and { Rk|_y} C {{ lel, Rij.2; ..... s Rij.p} ‘{ Rij.x}} should be added to the set of |-L-Sets.
For instance, let’s see the Example 2 of Section 4.4 (Figure 10):

To represent that * John goes to work by car and Fred goes to work walking’ is not possible,
{R: Rs} should be asserted as an |-L-Set.

To represent that ‘if John goesto work by car then Fred goesto work walking’, { Ry Rs} and
{R: R4} should be asserted as |-L-Sets.

To represent that *if John goesto work by car then Fred goesto work walking, and viceversa’,
{R: R3}, {R: Ry} and {Rs R,} should be asserted as |-L-Sets.

Inasimilar way, logica relations among point-based and interval-based elemental constraints can
also be represented. For instance, the logical dependence "the duration of 1, is[5 8] if I, isbefore |3
and the duration of 1, is[12 15] if I, is after 15" can be represented as:

(I2{b, bi} I5) P (12" { (0¥ )rooy (¥ Olgrozoy} 13), (15" { (0¥ )(roryy (-¥ Olgroszy} I2),
{Rblo RblZ} isan I'L'%[,

(I {[58l¢ry [12 15](ra} 117,

and {R; Ro11}, {R: R} arel-L-Sets, since R,;; isassociated to ‘I, is after I3 and Ry IS associated
to‘l,isbeforely’. Likewise, "1, startsat the sametime as|, if t; occursafter t," can be represented
as (see Table 1):

I {s @5} I, (I {[0Ol(rsyy (0¥ )iregy (¥ O)ren} 12) + (117 { (0¥ )rey (¥ Olgresy} I27)
(t { (¥ -1ry, [00](rz, [1 ¥ )ry} ),

and { R: R}, {Rs Ry}, and { Rs Rg} are I-L-Sets, since R; isassociated to 't; occurs after t,' and Rgs,
Rs and Rgs are associated to 'l does not start at the sametime as|.".

6.1 Digunctionsof Point and Interval-Based Constraints

Digunctions of constraints between different pairs of points and intervals can be represented in the
proposed model by means of labeled constraints between points and a set of I-L-Sets. This subsumes
the related expressiveness in the subset of digunctive linear constraints proposed by Stergiou and
Koubarakis (1998), where only digunctions of constraints between different pairs of points are
managed.
To represent adisjunctive set of disjunctive constraints between points, we have’:
(n le; i) U(ncley n) canberepresentedas: (i {Ic;; UBIc;;} n) U(ne {lcy Ulcy} n),
and some logical relation among Ic;, Dic;;, Icy, and Blcy,. Thus, the digunctive set of constraints:

{(n I ) U(ncleg )} ©

{(n {(leci1)ri 1y, (16G52)(rij25r --onr (1€ p)Ri ) 1) U
(N { (leck 1)iruays (1€Ca2)(RK1.2ps v (1€CKi.q)iRK1GH M)}

5 For reasonsof simplicity, only two constraints are shown. However, morethan two disjunctive constraints can be managed
inasimilar way.
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can be represented as:

i) A conjunctive set of constraints between (n, n) and between (ny, n), where, J(lec,) can be
represented by means of the complementary domain of (lec,):

(n{ (e 1)rii.1 (1€G12)Rij2p0 -ors (163 p)criipp DL (1€ 1) i1y, (1665 2)(Rij 230 -ooer (1€Cip)iRip}} 1Y) U
(ne{ (€S 1) ru1y, (1€C2)1RK12} -er (1€CG ) (RK1G DL (1€C0 1) (Ru1.1ys (1€Ca2)(RK1.2}s v (1€CKi q)RKIG3 S N)
°{(n{(leci1)riy (1€Ci2)Ri12pr - (1€Gip)irijpy (BT 1) Rij1y, (D€ 2)Rij 2, s (DIEC phRifm} 1) U
(n{(leca.1)iru1y, (1€Ga2)(RK1.2p - (16C.q)iRe1.qp» (DNECK 1) 1RK11 (DNECki 2)(RK1.2pr - ( DGt q) RN T M)}
i) A set of I-L-Sets to represent the mutually exclusive digunction of Ic;; and Icy, (they cannot
simultaneously hold):

ii.a) One of the congtraintsic;; or Ic,, should hold: The Cartesian product of label sets from
complementary domains of Ic;; andIcy, {Rj1, R'j2, ..., Rijp} C{Rk 1, Ru2, .-y Ruig},
arel-L-Sets.

i.n) Only one of the congtraints|c;; or I, should hold: The Cartesian product of label sets
from ICij and ICk|, {Rij.llRij.Zl""lRij.p} C{ Ra1, Razy vesy Rk|.q} are|-L-Sets.

Thus, digunctive and conjunctive sets of digunctive constraints between points can be represented
and managed by means of a conjunctive set of digunctive constraints and a set of 1-L-Sets. For
example:

(t {[55](ry [10 10](r2p} ;) U (t {[0 O] (rg) [20 20](ray} 1) ©

(t; {[5 Bl(ry [10 10](re} (-¥ 5)(rey (5 10)(re) (10 ¥ )ir} t) U
(t {[0 Ol(rs) [20 20](ray (-¥ O)(rg) (0 20)(rg} (20 ¥ )ragp} 1),
and

(ii.8) since (t {[5 5](ry, [10 10] (e} t] OF [t {[0 O](ray, [20 20] ;ra} ti] should hold:
{R5 RG R7}C{ Rg Rg RlO} are I'L'%ts,

(ii.b) since only one congtraint (t; {[5 5];ryy [10 10]r2} tj) O (& {[O Ol{rs) [20 20](r4} ) should
hold:

{R1 R}C{Rs R4} ={R1 R3}, {R1 R}, {R: Rs}, {R: Ry} arel-L-Sets.

li €Cj; |j li €Cjj |j li ﬂeci,- |j li (ecij U (Zieq,) |j
I, beforel, | 117 {(0¥ )(roy} I2° 11" {(-¥ Oltrozy} 12 11" { (0¥ )(royy (-¥ Olroz} I2
Isbeforely | 13" {(0¥ )(rog} 14 13" {(-¥ Ol(rog} 12 13" { (0¥ )(rogy (-¥ Olroay} I4

Table 5: Point-based constraints for (I, before I,) and (I; before 1 ,)

Similarly, digunctions of interval-based constraints between different pairs of intervals can also
be represented. For instance, from Table 1and Table 5, {(I; before I,) U (15 before 1))} can be
represented as:

(11" { (0¥ )ron (¥ Olgroy} 12): (I3 { (0¥ )rozy (¥ Olirog} 14),
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and

a) one of the condraints (I, before 1,) or (I3 before 1) should hold. Thus, the Cartesian product
of label sets associated to the digunctive constraints in (I; Jec; 1)) isaset of I-L-Sets: { Ry,
Ry} isan I-L-Set,

b) only one of the constraints (1, before I,) or (I3 before I;) should hold. Thus, the label set
associated to the mutual fulfillment of constraintsin (1; eg; I)) isan I-L-Set: { Ry, R} isan
[-L-Set.

Thus:
{(1, before I,) U (I5 before 1)} ©
(11" { (0¥ )rony (¥ Olgrony} 12), (1" { (0¥ )rozy (¥ Olgrogy} 14),
and { Ry, Ry}, {Ro1, Ris} are I-L-Sets.

li €cij | li €cij li Dec |; li (ecij U @eg;) |;
(I during 1) | 117 {(-¥ O)yran} I2° (11 {[0 ¥)(razy} 12) I {(-¥ O)rayy [0 ¥)(razy} I2°
11" {(0¥)razn} 12" | U (1" {(-¥ Olrag} 12" 11" { (0¥ )(raz) (¥ Oltraay} I2"
(Isstartsls) | 13 {[00](rsyy} 14~ | (I3 { (0O ¥)(rs3} (-¥ O)gregy} 14) |15 {[0 Olgrs1} (0 ¥ )(rss} (¥ O)rsgy} 4
3" { (0¥ )(rsxy} 14" U (5" {(-¥ Orss} 14) 3" { (0¥ )(rsz} (-¥ Oltrs5} l4"

Table 6: Point-based constraints for (I, during I,) and (I starts 1)

In asimilar way (Table 6), (I, during I,) U (I; starts|1,) ©

(1L {(*¥ O)ray [0¥)raz} 12), (11" {(0¥)raz (-¥ Olirag} 127,
(15 {[00lirsyy (0¥ )(rsgy (¥ O)rsay} 14), (15" {(0¥)rey (¥ Oliregy} 147),

and { Ry; Rz Ry Re} and the Cartesian product { Ryz Ris} X { R Ry Rss} are l-L-Sets.

Therefore, logicd relations on elementa congtraints can be represented by a set of I-L-Sets. Thus,
alabeled TCN (and the set of I-L-Sets) can represent aspecial type of and/or TCN. These types of
non-binary constraints enrich the expressiveness of language and alow for the modeling of more
complex problems (Meiri, 1996). Stergiou and Koubarakis (1996) and Jonsson and Backstrom (1998)
show that Digunctions of Linear Constraints (DLR) are also able to represent these non-binary
congraints. However, Pujari and Sattar (1999) remark that generd methods from linear programming
should then be applied for DLR management, such that specific tempora concepts (like the ones
detailed in Section 2) are not considered in these general methods. In the proposed mode,
management of these non-binary congtraints are performed by the proposed reasoning methods
without increasing their computational complexity. The added functionality is of interest in severa
temporal reasoning problems, including planning, scheduling and temporal constraint databases
(Barber et d., 1994; Gerevini & Schubert, 1995; Brusoni et d., 1997; Stergiou & Koubarakis, 1998;
etc.) where no genera solutions are provided in the specific temporal reasoning area.

In addition, the proposed reasoning algorithms obtain a globally labeled-consistent TCN
(Theorem 11). This feature alows us to manage hypothetical queries, which is an important
requirement in query processes on temporal constraint databases (Brusoni et d., 1997). Thus, queries
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such as Does ¢ hold, if ci4? can be answered without any TCN propagation. The label set associated
to each derived elementa congtraint represents the set of input elemental constraints that should hold
for the fulfillment of this elemental constraint. Therefore,

(X Cla X)® (X Cij X))
hOldS, if " deLyT ICk| /&kl.yi Cy then $dCij,X’|\ ICij /a:ijlxll C'ij and Id)dS(dCij_x)i Id)dS(deLy) hold.
For example, from the labeled minima TCN in Figure 7, we have:

(T1 {[4040]} T) ® (To{ [00]} Ts), (Ts{[2020]} T)® (T5{ [2020] } To).

However, (T5{[10 20]} T,) does not imply (T {[70 70]} T,). Similarly, questions such as ‘Can
c’j hold, if ¢\v?" can aso be easily answered by applying Theorem 9 and Theorem 10.

7. Alternative Temporal Contexts

When we reason on temporal facts, we can smultaneously work on different alternative temporal
contexts, situations, trends, plans, intentions or possible worlds (Dousson et al., 1993; Garcia &
Laborie, 1996). Thisis usua in a branching (backward or forward) modd of time. Here, we can have
aternative past contexts (i.e.: different lines about how facts may have occurred) or alternative future
contexts (i.e.: different lines about how facts may occur). Thus, tempora context management is also
required in hypothetical or causal reasoning. Also, having different contexts permits a partition of
the whole TCN in a set of independent chains in order to decrease the complexity problem size
(Gerevini & Schubert, 1995). In this section, we do not deal with hypothetical reasoning issues. Our
god is temporal management of context-dependent constraints. Thus, in genera, a hierarchy of
alternative temporal contexts can be established, such that constraints can be associated to different
temporal contexts. For instance, Figure 13 represents a hierarchy of aternative contexts, where Wy
represents the root context and there are different digunctive constraints between (n, rp) in each
context. Tempora reasoning algorithms detailed in this paper are able to manage these context-
dependent constraints:

= |nput digunctive congtraints are asserted in different tempora contexts. To do this, the labels
associated to input elemental constraints can aso be used to represent the context in which the
digunctive is asserted. For instance (Figure 13), if the constraint:
(M {[0 50]¢ry, [200 210](rz3} )
is asserted in context W;, we have the following input context-dependent labeled constraint:
(M {[0 25]re, wy, [260 280](rz, Wz} ).
Here, each context-dependent label set associated to each elementa constraint represents both

the dternative tempora digunct (i.e: R or R;) and the context in which the elemental
constraint is asserted (W,).

= Label sets associated to context-dependent derived elemental constraints will represent the
temporal contexts in which derived elemental constraints hold.

Definition 8. A context-dependent disjunctive constraint is a digunctive constraint where each
elementa constraint (i.e.: digunct) is associated to an alternative temporal context. The universal
labeled constraint is {(-¥ ¥)woro}, Where W, isthe root context. a

72



BARBER

The proposed reasoning processes can manage context-dependent dig unctive constraints in away
similar to previoudy defined labeled digunctive constraints (Section 3). For instance, according to
the constraints and contexts in Figure 13, the following input labeled constraints between nodes ny
n, should be updated:

(M {[0 100](r1woy, [200 300]{r2 woy} M), (M {[050]{rs w1y, [200 210 (rawyy} o),
(m, {[60 100] (rs w23, [290 300] (re w2y} M), (M {[O 25](r7 w3}, [260 280](rs w3t} o),
(M { [0 25](rowiy} M), (n { [30 50]{row1z}, [200 205] (riowizy} M),
(M {[0 20]rows1y, [210 215] (rowszy} o), (. {[260 280] (rowsag} M)
More restricted constraints >
Context Wy,
Context Wi n{[025]} n,
n,{[050], [200 210]} n, >
Context Wiz
n,{[30 50], [200 205]} n,
Context W, >
ny {[0 100], 200 3001} n, n,{[60 100], [290 300]} n, >
Root-Context W
Context Wy
n,{[020]} n, >
Context W, Context W,
n,{[025],[260280]} n, n{[210 215]} n, >
\ Context Ws;3
n{[260 280]} n, >
I Assertion in Context, I >
Upward Consistency: Downward Propagation:
Consistency in contexty Propagation to context,
and its predecessor contexts and its successor contexts

Figure 13: A hierarchy of alternative contexts

The updating process of each new constraint ¢ in a given context W, should assure the
congistency of ¢;; in the context W,,, aswell asin its predecessor contexts(Figure 13). The consistency
of ¢;; with the successor contexts of W, will be detailed in Section 7.2, since several options can be
identified. However, it is not necessary to assure consistency among constraints belonging to contexts
of different hierarchies. Successor contexts of a given context represent different alternatives, which
are mutually exclusive. Thus, constraints belonging to contexts of different hierarchies can be
mutually inconsistent. However, this does not imply that congtraints in these contexts should
necessarily be mutually digoint. For instance (Figure 13), the constraints (n, {[0 50];rs w1, [200
210];ra w13} ) in context W, and (ny {[0 25];r7 w3y, [260 280] (rs w3} M) in context W; are not
mutualy digoint. However, W, W, and W5 are assumed as three mutually exclusive dternatives of
Wo.
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The closure process of each new constraint ¢; in context W, should downward propagate the new
constraint ¢; to all its successor contexts (Figure 13). Moreover, no propagation should be performed
to the predecessor contexts of context,, nor among contexts of different hierarchies. Elemental
constraints belonging to contexts of different hierarchies cannot be smultaneoudy considered, that
is, combined or intersected.

7.1 Context-Dependent Updating and Closur e Processes

The update and closure processes defined in Section 4 should be adapted in order to manage context-
dependent digunctive constraints. The Context-Update process (Figure 14) asserts the constraint
c'ij°{ecy, eC’y, ..., €C'n} in the context context,. In away similar to the updated process described in
Section 4, Context-Update should be performed each time a new context-dependent constraint is
asserted.

Context-Update (n; ¢’ n; contexty)
Icj = Put-label-context (C'j;, contexty) ;Labelling and mutual inconsistency.
I f Consistency-Test (get-upward (i, iy, contexty), IC) ;Upwards Consistency test
Then (*Inconsistent Constraint*)
Return (false)

Else (*Consistent Constraint*) ;1c; isasserted in the context, and in all its
lc; = (c;; - get (n, n, contexty)) Ec (c; Ac1chy), ;SUCCESSOor contexts.
lcji = Inversa. (Icy),

Context-Closure (n Ic;; ny contexty) ;Downwards Closure algorithmin context
Return (true)
End-If
End-Context-Update

Figure 14: Context-Update process for context-dependent labeled constraints

Where:

Put-label-context (c';, contexi,) associates an exclusive label setto each elementa constraint
eC'jjpl C'jj. Thislabel set has two labels { R, context} . In this [abel set, the first labd is the
label associated to each tempora digunct. Inaway smilar to Put-labels function, these labels
are mutually exclusive (Definition 3). The second label represents the context in which ¢’j; is
updated. Moreover, each pair of labels associated to successor contexts of the parent context
of context, is added to the I-L-Sets, since all the successor contexts of a given context are
mutually exclusive:
" context, / context,i Succesor-Contexts(Parent-Context(Context,)),
|-L-Sets— 1I-L-Sets E ({ context,} E{ context,}).

Where Parent-Context(context,) and Successor-Contexts(contexty) return the parent-context
and the set of successor-contexts of contexty, respectively. Thus, in Figure 13, {{W,, W},
{W1, Wa}, {Wa, Wa}, {W11, Wi}, {Wa1, Wao}, {Wa1, Was}, {Wa, Was}} arel-L-Sets.
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get (n;, n, context) returns the set of labeled elemental constraints between n and ) in the
context, (and in al its successor contexts). That is:

get (n, ny, contexty)::= { (ec; ,{ Iabek; ,})1 Ic; / context, ] {labek;,}}.

Note that get(n, n, context) isasubset of Ic;. Thus, (Ic;; - get (i, 1), context,)) means the set-
difference between Ic;; and get (n, n, contexty). That is, the set of elemental constraintsin the
context-dependent constraint Ic;;, which are not in context, nor in any of its successor contexts.

= get-upward (n;, n;, context), smilarly to the previous get function, it returns the existing
constraints between n and ny in the context, (and in all its successor contexts). However, if
there is no constraint between n and 1 in the contexty, then the function returns the
constraints between n and n that exist in the predecesor context of context:

get-upward (n;, n;, context) =
If get (n, n, context,) * A Then return (get (n, ny, contexty))
Else
Context, - Parent-Context (Contexty)
Until get (n, nj, context,) ¢ A U Context, =W, do
If get (n, n, context,)* A Then return (get (n, nj, contexty))
Else return({ (-¥ +¥)}woro})
End-get-upward

The context-dependent closure (Figure 15) process is similar to the closure process described in
Section 4 and it is also performed at each updating process. The closure process of each updated
constraint in context, is downwards performed in context, and in all its successor contexts.

Context-Closure (n; lc; n; contexty)
(* Firstloop: Closuren; ® n;® ny*)
" nkT TCN/ |Cjk1 {U{ROWO}}:
ICik = lcik A|c (Icj; A, k),
lci = (Ici - get (n, n, contexty)) Eie Ic'y,
Iy — |nVG'93(|Cik)
(* Second loop: Closuren; ® n ® n *)
" I’ﬂ TCN/ IC” 1 {U{ROWO}}:
|C'J'| - ICJ'| A|C (lnverf(lcij) A|c |Ci|),
Ic; ~ (Ic;i - get (n, n, context)) E . Ic,
lc;— Inverse(ic;)
(* Third loop: Closuren ® n® n® nc*)
"n, r](i TCN/ |C|J' 1 {U{ROWO}}a ICjk 1 {U{ROWO}}:
IC\k = lci Alc (Icii A Ic;; A Icix)
lci = (Icw - get (n, nk, context)) Eje IC'k,
Ic = Inverse(lcy)
End-Context-Closure

Figure 15: Context-Closure process for context-dependent |abeled constraints
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The resulting label set associated to each context-dependent derived elemental constraint represents
the contexts where the elementa constraint holds, as well as the hierarchy of predecessor contexts
of the lementa congtraint. For instance, Figure 16 shows the contextua labeling for the example in
Figure 13. Moreover, after successively performing the updating and closure processes for all
congtraints in this example, we have the following constraint between nodes n, and n:

(M Icz np): (my {[0 200] ¢ r1 woy, [200 300] (r2woy, [0 50]{rs R w1 woys [200 210] (raro w1 woys (S

[60 1(:0] {R5R1W2W0}» [2% 3CD] {R6 R2 W2 W0}, [O 25] {R7R1W3 W0} [260 280] {R8 R2 W3 W0}
[O 25] {ROR3 R1W11 W1 W0} [30 50] {R9R3R1W12W1 W0} [Z(D 205] {R10R2R4W12 W1 WO0}s

[020 {ROR7 R1W31 W3 W0} s [210 215] {ROR2 R8 W32 W3 W0} [260 280] {ROR2R8W33W3 WO}} )

(v0)

/

Figure 16: Labelsin contexts

No closure process is performed among constraints belonging to contexts of different hierarchies.
According to Put-label-context function, each pair of labels related to the successor contexts of each
context is an |-L-Set. Thus, these |-L-Sets prevent deriving elemental constraints from contexts of
different hierarchies. That is, each derived elemental constraint obtained (combining or intersecting)
from two eemental congtraints in contexts of different hierarchy will have an inconsistent associated
label set. Therefore, these derived elemental constraints will be rejected in the operation E,.. For
instance, in the example of Figure 13, {{ W, W,}, {W1, W3}, {W,, W3}, { W11, Wio}, {Wa1, Wa,},
{Ws1, Waz}, { Wz, W33} } arel-L-Sets. Thus, if acongtraint is asserted in context Wy:

i) No propagation is performed using constraints in contexts W;; and W;, simultaneoudly,
since {Wy;, Wy,} isan I-L-Set.

i) No propagation is performed in context W,, nor in Wj, nor in their successors, since { W1,
W,} and {W,; W3} arel-L-Sets.

Let's see an example of the Context-Update and Context-Closure processes. Let’ s assume that the
context-dependent constraintsin Figure 13 are already updated and closured, such that the previous
congraint Ic,, (expression e3) exists between n; and n,. Now, we update (n, {[20 40]} ) in context
W;. The cal to Consistency-Test function in the Context-Update function is:

Consistency-Test (get-upward (ny, e, W), {[20 40 ;row1;} )-
Given the previous congtraint Ic,, between n, and n, (expression €3), the function performs:

{ [0 50] {R3R1W1WO0} [200 210] {R4R2W1W0}» [0 25] {ROR3 R1W11W1WO0},
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[30 50] {R9R3R1W12 W1 WO}, [200 205] {R1I0R2R4W12W1 WO}} A Ic { [20 40] {RO Wl}} =
{[20 40] {R3R1ROW1WO0}s [20 25] {ROR3R1W11 W1 WO}, [30 40] {ROR3R1ROWI12W1 WO}} VA
Thus, the new constraint (n, {[20 40]} n,) is consistent in context W,. Therefore, the constraint
between n, n, results.
Icio = (2 - get Ny, Np, W) Ejc (Iciz Aic {[20 40k rowyy}) =
{[0 100];r1 woy» [200 300] {r2 woy, [60 100];rsr1w2woy, [290 300);re R2 W2 W0}

[0 25]¢r7 r1 w3 wo}, [260 280](rg rR2wawoy: [0 20l{roR7R1 W31 W3WO},
[210 215];rororReW32W3wo}: [260 280k RoR2R8WasW3 W Elc

{[20 40](r1 rRow1wo}, [20 40](r3R1 ROW1WO}, [20 25]RoR3RL W11 W1W0} [30 40]iRoR3R1IROWI2 W1 WO} =

{[0 100];Rr1 way, [200 300] {r2 woy, [60 100];rs r1w2way, [290 300] re R2w2woy: [0 25)r7R1Wa W0y, (€4)

[260 280]{rgr2w3woy, [0 20I{ror7R1W31W3WO} > [210 215](R0 R2R8W32W3WO) [260 280 ROR2RE8 W33 W3 WO},

[20 40);r1 row1 woy: [20 25];ror3R1 W11 W1 way [30 40 roRrsR1ROWI2Z W1 WO} -
Note that the new updated constraint is asserted in context W; and propagated to all its successor
contexts (Wy; and Wy,). However, the new constraint in context W; does not affect the existing

constraints in predecessor contexts of W, (W) nor the constraints belonging to contexts of different
hierarchies (W,, W3 and their successors).

In this update process, no closure process is performed, since no node is related with ny or np.
Now, let's update (ns {[10 20]} ny) in context W,. We have:

Consistency-Test (get-upward (s, i, W), {[10 20];row1;} ),
that performs:
{(-¥ +¥)}woro Arc {[20 40](rows} = {[20 40 (rowown} * A&

since no previous constraint exists between (s n,) in context W;. The congtraint (ns {[10 20]} ny) is
consistent, and asserted in the TCN:

Icsi = {(-¥ +¥)}worg, [20 40] (rowowy} - (e5)
Afterwards, this congtraint is closured. The call to Context-Closure process is.
Context-Closure (ns, { (-¥ +¥)}wora,[20 40] (rowo w1}, M, Wh).

In this closure process, only the first loop is performed since no node is related to ns. Moreover,
only the previous congraint Ic,, (expression e4) existsin the current TCN between n, and n,. Thus,
the first loop performs:

IC's, = lcs, Alc ({ (¥ +¥)} woroy, [20 40](rowo w13} A Icp) =
{('¥ ¥ ){vvo RO}} A Ic ({ ('¥ +¥ )}{WO RO}, [20 40]{ROWO w1}} Alc |Clz) =
{(-¥ +¥)}wora, [220 340] (r2rowoway» [40 80](r1row1waoy,

[40 65] {ROR3R1W11W1WO0}s [50 80] {R9R3R1ROW12 W1 WO}} )
such that,

Icz, =~ (Icsz - get (ns, p, Wy)) EicICs = { ¥ ¥)worg} -{}) Eic I3, =
{ (-¥ ¥)iworap, [220 340] (r2 Rowo wy, [40 80 (r1roOW1 W0}
[40 65](rorsr1 w11 w1waps [90 80] {ror3 R ROW12 W1 WO}} - (e6)
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Thus, the asserted constraint between (rs, np) in context W is closured in the context W; andin
all its successor contexts (W, and Wi,). Likewise, the closure process does not perform any
propagation smultaneoudy using constraints of the contexts W, and W,,, nor any of the context W,
W3, nor any of their successors.

7.2 Complete Versus Incomplete Partition of Contexts

In each updating process, the consistency of each new congtraint IC'j; in agiven context is assured in
this context and in al its parent contexts. Let’s deal with consistency issues between a context and
its successor contexts. Here, we have that congtraints in a given context W, can be either completely
covered or only partially covered by the existing constraints in the successor contexts of W,. That is,
the successor contexts of W, can be either a complete partition or only a partial partition of W;.

For instance, let's assert the constraint (n, {[210 210] row1;} Mp) in the context W, of the example
in Figure 13. In the Consistency-test function, we have (where the congtraint Ic,, is the previous
expression e2):

get-upward (ny, Nz, W1) A ¢ {[210 210](rowy} =

{0 50];r3R1wW1wo}, [200 210)rar2w1woy: [0 25]iror3R1W11W1wo0} [30 50]RoR3RI W12 W1 WG}
[200 205];ri0rerawzzwiwey} Aic {[210 210)rowy} = {[210 210]ro w1 ra R2WO}} -

That is, the asserted constraint is consistent with the existing constraints in context W;. However,
no resulting elemental constraint is associated to context Wy, nor Wy,. This means that the asserted
congtraint (n {[210 210);rowy} Mb) iSconsistent in Wy, but isinconsstent in Wy, and in Wi,. Here,
two alternatives appear:

i) To assume that existing successor contexts are a complete partition of their parent context.
Therefore, a new constraint ¢; in a context W, should be rejected, if ¢; is inconsistent in all
successor contexts of W,. For instance, we can assume that W;; and Wy, in Figure 13 are a
complete partition of W;. Thus, (n, {[210 210] ;row1;} Nx) should be rejected.

i) To assume that successor contexts are not a complete partition of their parent context. Therefore,
successor contexts become inconsistent and they should be removed. In the example, we can
assume that contexts Wy, and W, are not a complete partition of the context W, such that
another possible new successor context of W, would be able to match in the future the asserted
congtraint (m, {[210 210];ro w13} ). IN this case, the constraint (n, {[210 210];ro w13} M) iS
assumed to be correct, such that it can be asserted in the TCN. Therefore, the contexts Wy, and
W, become inconsistent. {W,,} and {W,,} should be added to the set of I-L-Sets, such that
these contexts (and all their successor contexts and al their constraints) become inconsistent and
removed fromthe TCN. That is, dl elemental constraints with an associated label set containing
{Wi1} or {W;,} should be removed.

In both cases, each context will always be consistent with al its successor contexts. The option
to be adopted can depend on the problem type to solve (Garrido et d., 1999). Any of the these options
can be easily introduced in the described reasoning processes, since the function Consistency Test
can determine which successor contexts (Ws) become inconsistent at each new congtraint (IC'j; ) in
a context (W):
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W, Successor-Contexts(W,) / $elc;; ] get-upward (n, n, W), Wd {labe};,} U
®$dcij_rT (get-upward (r\, n, Wk) A|C IC’ij), WST {Iabel”r} .

On the other hand, when: (i) the successor contexts (Wi, W, ..., Wip) Of a context W are a
complete partition of it, and (ii) al constraints in (Wi, Wiz, ..., Wip) have been asserted, then
congtraintsin Wy can be restricted according to the fina existing congtraints in (W, Wiz, ..., Wip).
To do this, the context W, should be constrained by the tempora union of the constraintsin dl its
SUCCESSOr contexts.

7.3 A Minimal and Consistent Context-Dependent TCN

Definition 9. A context-dependent TCN isminima (and consistent) if the congtraints in each context
are consistent (with respect to constraints in this context, in al its predecessor contexts, and al its
successor contexts) and minimal (with respect to constraints in this context and in al its predecessor
contexts). a

Theorem 12. At each updating process, the context-dependent reasoning processes obtain a minimal
(and consistent) context-dependent TCN if the previous context-dependent TCN is minimal

Proof: If the previous context-dependent TCN is minima, the Consistency-Test function guarantees
the consistency of each new context-dependent input constraint:

i) initscontext and in all its parent contexts (get-upward function and Theorem5),
i) inall its successor contexts (depending of the two identified casesin Section 7.2).

The closure process of a new constraint in a given context (W,) propagates its effects to this
context and to all its successor contexts. Therefore (Theorem7), the process obtains the new minimal
congtraints in this context (W) and in al its successor contexts. a

Moreover, the obtained context-dependent TCN is globally labeled-consistent. Thus, we can
deduce whether a set of elemental constraints (between different pairs of time points) is consistent
(Theorem 10). That is, this set of elementa congtraints holds in some context. For instance, given the
previous congtraints Ic 1, Ics; and Ics, (previous expressions e4, €5 and e6), we can deduce that:

(ny {[40 40} ) U (ns {[40 40]} ny) U(ns {[40 40]} rp)
isfull consistent since:

$ecio,d IC1o, $eCayl ICa1, $eCs I Ics, / ({label,,} E {labeh,,} E {label,,}) isnot an I-L-Set.

Specificaly, these instantiations hold in {R; Ry W1 We} and {R; Ry Wo}. Thus, this set of
elemental constraints holds in context W1 (and, obvioudly, in dl its predecessor contexts).

Likewise, from aminimal context-dependent TCN, the user can retrieve the congtraints that hold
in each context or the constraints that simultaneously hold in a set of given contexts. To do this, the
Context-Constraints function retrieves the constraints that hold between a pair of nodes (n, n) ina
given context (contexty). That is, the result of Get-upwards(n, nj, context) except those elemental
constraints belonging to successor contexts of context:
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Context-Constraints (n;, n;, context)::= Get-upwards (n, nj, contexty) —
{lec; I lci; / $context,] Succesor-Contexts(contexty), { context,} C{ label; .} A}.

For instance, given the context-dependent constraint Icy, in Figure 13 (expression €3), the
following constraint would hold between (ny, n,) in both contexts W, and Wj:

Context-Constraints(ny, n,, W) A, Context-Constraint(ny, np, Ws) =

{[0 50];rsr1w1wo}, [200 210} rar2wiwoyt Aic {[0 25](r7 R1wawop, [260 280];rs R2 W3 wop} =
{[0 25}r7r3R1W3 W1 WO

In addition, we can obtain the constraints, which smultaneoudly hold in a context and in any of
its successor ones. For instance, in context W, and in any of its successor contexts (W1, W), the
following constraint holds:

Context-Constrains(ny, np, W1) A [Context-Constraints(ny, N, W11) E i Context-Constraints(n 1, np, W1,)]=
{[0 50]{rsr1w1wo}, [200 210)rar2wiwopt Aic

{[0 25];ror3r1 w11 wiwoy} Eic{[30 50] {rorsR1w12w1woy, [200 205)rior2RAWI2W1WOL} =
{[200 205];w12r10RaR2W1 W0} [0 25]¢ w11 ROR3 R W1 W0} [30 S0](w12ROR3RI W1 WO} -

On the other hand, each aternative context (W;) can be associated to an dternative hypothesis
(H;). Each hypothesis H; gives rise to a set of constraints, which will be asserted in the associated
context W;. Thus, the proposed reasoning processes assure minimal congtraints in the hierarchy of
hypotheses. Moreover, if a hypothesis (H;) becomes unavailable, then the label set {W;} should be
added to the set of I-L-Sets. Thus, dl constraints in context W; (and in al its successor contexts) will
be removed. That is, al constraints that depend on the unavailable hypothesis H; will be removed.

7.4 Computational Complexity of Temporal Context Management

The management of temporal context does not increase the complexity of the reasoning processes
detailed in Section 4. In fact, we can consider that each label associated to adigunct (R;) in labeled
digunctive constraints is also associated to a context (W,). Thus, the computational cost of each
updating process is also bounded by O(n? %), where 'I' is the maximum number of input disuncts
between any pair of nodesin al contexts.

The temporal labeled agebra proposed in this paper (Section 3) has been applied on the point-
based digunctive metric constraints (Dechter, Meiri & Pearl, 1991). However, this |abeled agebra
can aso be applied on other temporal constraints. In this case, the operations A ¢, A ¢, Eicand |
should be specified (Section 3) on the basis of the operations A, A, Er and | ; of the underlying
algebra. In this way, the management of temporal contexts can aso be applied to other types of
constraints.

Theorem 13. The computational complexity of the proposed reasoning process applied to context-
dependent non-disjunctive metric constraintsis polynomial (O(n* WA)) in the number W of managed
contexts.

& However, notethat thisisan impossiblesituation, sinceW ; and W 5 are mutually exclusive contexts. That is, { W3, W 3}
isan|-L-Set.
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Proof: Digunctions in constraints are only related to the contexts in which input constraints are
asserted, if non-digunctive constraints are managed. That is, constraints between each pair of nodes
arein the form:

(n {(ecijo{ Wo Ro}), (€Cij1{ W1 Ro}), ... » (€ { Wk Ro})} n) , OEKEW [ W=[{ Wi} |

Thus, the maximum number of diguncts in constraints is bounded by the maximum number of
managed contexts W. Moreover, the maximum length of associated labe setsis the maximum depth
in the hierarchy of contexts, and the set of I-L-Sets has only 2-length sets (i.e.: pairs of labels
associated to each pair of successor contexts of each context). Therefore, the computational cost of
operations A and A . is bounded by O(W). a

The methods proposed in Section 7.1 for management of temporal contexts can also be applied
to other tempora reasoning algorithms, instead of the reasoning methods detailed in Section 4. This
requires that these other reasoning agorithms be based on the operations of composition and
intersection of temporal constraints. Thus,

i) Each demental constraint should only be associated to the context (W) in which it is asserted.
Thus, label sets associated to elemental constraints have only one contextual label {W}.

i) The methods for management of tempora contexts described in Section 7.1 should be
integrated into the new reasoning agorithms. These agorithms should use the operations A
i A, get and get-upwards. The computational cost of operations A . and A, related to
management of temporal contexts is polynomia (O(W)) in the number (W) of managed
contexts. Therefore, the computational cost of the reasoning agorithmsisincreased by a factor
W? when temporal contexts are managed.

For instance, when interval-based constraints are managed, the TCA algorithm can be used to
obtain a path-consistent context-dependent IA-TCN, with a O(n®* WF) cost. Similarly, when a context-
dependent reasoning is applied to PIDN networks (Pujari & Settar, 1999), the computational cost of
specific reasoning algorithms on PIDN constraints is increased by afactor W?. When the proposed
temporal algebra in Section 3 is applied to tractable classes of constraints, the specific reasoning
algorithms for management of these classes of constraints can aso be applied. The computational
cost of these reasoning agorithms (which should be based on combination and intersection
operations on constraints) is increased by a polynomial factor W. For instance, when non-
digunctive metric constraints are managed, the TCA agorithm can be used as the closure algorithm
in Section 7.1. This agorithm will obtain a minimal context-dependent TCN with a computational
cost O(n°* WA).

8. Conclusions

Severa problems remain pending in representation and reasoning problems on tempora congtraints.
In relation to this, we have dealt with reasoning on complex qualitative and quantitative constraints
between time-points and intervals, which can be organized in a hierarchy of aternative temporal

"That is, there are not |abel's (R;) associated to disjunctionsin disjunctive constraints. Thus, Definition 3isnot appliedin
the Put-Label-Context function. Therefore, the distributive property for A over A\, does not hold for disjunctive
constraints. However, thisis not relevant since other reasoning processes will be applied.
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contexts. We have described a new-labeled tempora agebra, whose main elements are labeled

digunctive metric constraints, label sets associated to elemental constraints, and sets of incons stent
elementa constraints (I-L-Sets). The temporal model presented is able to integrate qualitative and

metric constraints on time-points and intervas. In fact, symbolic and metric constraint between
intervals can be represented by means of digunctive metric constraints between time points and a set
of I-L-Sets. The model is aso able to manage (hon-binary) logical relations among elemental

constraints. The reasoning agorithms on the described mode are based on the distributive property
for composition over intersection in labeled constraints, and guarantee consistency and obtain a
minima TCN of digunctive metric point-based constraints. In addition, a special type of global

labeled-consistent TCN is aso obtained.

Labeled congtraints can be organized in a hierarchy of alternative temporal contexts, such that
temporal reasoning processes can be performed on these contexts. Reasoning agorithms guarantee
consistency in each hierarchy of contexts, maintain aminimal context-dependent TCN, and alow us
to determine what constraints hold in each context or in a set of aternative contexts. Thus, we can
reason on a hierarchy of context-dependent constraints on intervals, points and unary durations
(Figure 17).

These described features are useful functionalities for modeling important problems in the
temporal reasoning area. However, they have not been identified in previous models. Therefore, the
temporal model presented here represents a flexible framework for reasoning on complex, context-
dependent, metric and qualitative constraints on time-points, intervals and unary durations.

1{b} I, Dur(l )T {[20 20], [50 60]} >
t; {[10 20], [100 130]} I Context W

L (bdm) I, Context W. I {[100 100], [200 300]} ">
Dur(i )l {[20 301, [50 1001} Dur(l )T {[20 30], [60 100]}

Context W 1>
t1 {[10 20], [100 200]} I 2
I, {[0 100], [200 300]} 1%, {d} I, _
t; {[10 15], [120 200]} I , t1 {[10 10]} I >
Root-Context W Ii{d m} 12 Context W,

Context W, \ ?l;r(rlnl}):ISO
1 2

Context W »,

Figure 17: Context-dependent constraints on intervals, time points and unary durations

A path-consistent algorithm can be used as the closure process on labeled TCNs, like the typical
TCA dgorithm as applied by Allen (1983). This path-consistent algorithm would obtain a minimal
context-dependent TCN of digunctive metric constraints. We have proposed an incremental
reasoning process. Thus, aminimal (and consistent) context-dependent TCN is assured at each new
assertion. This incremental reasoning allows us to detect whether each rew input condraint is
inconsistent with the previoudly existing ones. This can be useful when problem constraints are not
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initially known but are successively deduced from an incremental independent process (Garrido et
al., 1999).

A prototype of proposed reasoning algorithms has been implemented in Common-Lisp and is
available from the author. These reasoning algorithms are being applied to an integrated architecture
of planning and scheduling processes (Garrido et al., 1999). Here, the scheduling process should
guarantee the consistency of each aternative partia plan (i.e.: tempora constraints and availability
of resources for operations) smultaneoudly as the planner is generating each partid plan (Srivastava
& Kambhampati, 1999). Thus, the following main features are needed:

= Management of digunctive metric congtraints. Particularly, in planning and scheduling
problems the number diguncts in input constraints is generally bounded by [£2 (i.e.: non-
simultaneous use of resources). However, tempora dependencies between constraints (i.e.:
non-binary constraints) can appear. For instance, operation durations can be dependent on the
order in which they are scheduled.

= |ncrementa reasoning. The process should interactively guarantee the consistency of each new
input temporal constraint (about resources, plans, ordering, and objects) as each new step is
deduced in a partid plan.

= Management of temporal contexts, where each context is associated to an aternative plan
(action or state). Reasoning agorithms simultaneously work over different and aternative
partia plans.

A globally labeled-consistent (and minimal) TCN allows us to determine consistent alternative
choices and to obtain optimal solutions in each plan. Additionaly, the proposed modd can be a
useful framework to apply on problems where these features aso appear (Dousson et a., 1993;
Garcia& Laborie, 1996; Srivastava & Kambhampati, 1999; etc.).

The computational cost of reasoning algorithms is exponential, due to the inherent complexity of
the management of digunctive constraints. However, the management of tempora contexts does not
increase the complexity of the reasoning processes on digunctive constraints.

Some improvements to decrease the empirical cost of reasoning agorithms have been proposed
in this paper. The application of agorithms to handle only an explicit TCN (without making the
derived constraints explicit) and empirical evaluations on severa test cases are under study.
Moreover, other reasoning algorithms can be applied to the temporal agebra presented, as proposed
in Section 4. On the other hand, it is interesting to identify subclasses of the labeled tempora agebra
where the size of labdl sets can be bounded, and to identify tractable subclasses of 1A on the proposed
moddl. It could aso be interesting to identify the expressive power of I-L-Sets (and labeled
constraints) on the basis of method described by Jeavons, Cohen and Cooper (1999). Here, each |-L-
Set represents a specia derived constraint, which expresses the inconsistency of a set of input
elementa constraints; that is, a special type of digunctive linear constraint (Jonsson & Béckstrém,
1996; Stergiou & Koubarakis, 1996).

The proposed-labeled algebra (Iabeled constraints and the operations on them) can be applied to
other temporal models (i.e.: to other classes of temporal constraints, operations, and reasoning
agorithms). To do this, the operations of the labeled algebra (A, A, Eicand [ ) should be defined
on the basis of the respective operations (A, A, Erand | 1) of these models, and the reasoning
algorithms should use the operations defined on labeled constraints (&, Ac, Eicand i o). This
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requires that these reasoning agorithms be based on the composition and intersection operations.
Specificaly, the application of the proposed model to tractable tempora constraints -as those
identified in Section 1 (Jonsson et a., 1999; Drakengren & Jonsson, 1997; Vilain, Kautz and Van
Beek, 1986; etc.)- alows for a tractable reasoning process on a hierarchy of temporal constraint
contexts.
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