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Abstract

In this paper we study how automated reasoning systems based on
Description Logics (DLs) can be used for reasoning about UML class di-
agrams. The ability of reasoning automatically on UML class diagrams
makes it possible to provide computer aided support during the appli-
cation design phase in order to automatically detect relevant properties,
such as inconsistencies and redundancies. We show that UML class dia-
grams can be formalized as knowledge bases expressed in the DL DLR.
DLR knowledge bases can be translated into knowledge bases expressed
in the variants of ALCQI accepted by state-of-the-art DL-based systems.
Hence, in principle, the reasoning capabilities of such systems can be used
to reason on UML class diagrams. However, we report some experiments
indicating that state-of-the-art systems have still difficulty in dealing with
the resulting knowledge bases.

1 Introduction

The Unified Modeling Language (UML) is the de facto standard formalism for
object-oriented modeling [1, 11]. There is a vast consensus on the need for a
precise semantics for UML [9, 14], in particular for UML class diagrams. Indeed,
several kinds of formalizations of UML class diagrams have been proposed in the
literature [8, 9, 10, 7]. Many of them have been proved very useful with respect to
the task of establishing a common understanding of the formal meaning of UML
constructs. However, to the best of our knowledge, none of them has the explicit
goal of building a solid basis for allowing automated reasoning techniques, based
on algorithms that are sound and complete wrt the semantics, to be applicable
to UML class diagrams.
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We are interested in exploiting the research on Description Logics (DLs),
which are decidable logics tailored towards class based knowledge representation,
to carry out various forms of reasoning on UML class diagrams, so as to provide
support during the specification phase of software development. Recently the
research on DLs has resulted in a number of automated reasoning systems [15,
16, 17, 12, 13], that have been successfully tested in various application domains
(see e.g., [19, 20, 18]). Such systems are candidates to form the core reasoning
engine for advanced UML CASE tools.

In this paper, we illustrate a formalization of UML class diagrams in terms
of DLs [2]. In particular, we show how UML class diagrams can be captured
by knowledge bases expressed in the DL DLR [4, 3]. This logic is particularly
well tailored towards the high expressiveness of UML information structuring
mechanisms, and allows one to easily model important additional properties,
such as disjointness of classes, or partitions of classes into subclasses, that are
typically specified by means of constraints in UML class diagrams. DLR asser-
tions can be translated into ALCQI assertions. Since variants of the latter are
accepted by state-of-the-art DL-based reasoning systems, in principle, we can
exploit such systems to reason about UML class diagrams. However, in spite
of the fact that such systems have shown to perform nicely in several context,
we report in this paper some experiments indicating that they still have serious
efficiency problems when dealing with UML class diagrams.

The rest of the paper is organized as follows. In Section 2 we give a brief
overview of the Description Logic DLR. In Section 3 we show how UML class
diagrams can be formalized in DLR. In Section 4 we discuss the use of DL-
based reasoning systems, namely FaCT [17] and Racer [13], for reasoning
about UML class diagrams, and show some results of our experimentation with
such systems. Section 5 concludes the paper. In the appendix, we show the
UML class diagrams used in the reported experiments.

2 The Description Logic DLR

The basic elements of DLR [4, 3] are concepts and n-ary relations. We assume
to deal with a finite set of atomic relations and atomic concepts, denoted by P
and A, respectively. Arbitrary relations (of given arity between 2 and nmax),
denoted by R, and arbitrary concepts, denoted by C, are built according to the
following syntax:

R ::= ⊤n | P | (i/n : C) | ¬R | R1 ⊓ R2

C ::= ⊤1 | A | ¬C | C1 ⊓ C2 | (≤ k [i]R)

where i denotes a component of a relation, i.e., an integer between 1 and nmax, n
denotes the arity of a relation, i.e., an integer between 2 and nmax, and k denotes
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⊤I

n ⊆ (∆I)n

P I ⊆ ⊤I

n

(i/n : C)I = {t ∈ ⊤I

n | t[i] ∈ CI}
(¬R)I = ⊤I

n \ RI

(R1 ⊓ R2)
I = RI

1
∩ RI

2

⊤I

1
= ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 ⊓ C2)
I = CI

1
∩ CI

2

(≤ k [i]R)I = {a ∈ ∆I | ♯{t ∈ RI

1
| t[i] = a} ≤ k}

Figure 1: Semantic rules for DLR (P , R, R1, and R2 have arity n)

a non-negative integer. We consider only concepts and relations that are well-

typed, which means that (i) only relations of the same arity n are combined to
form expressions of type R1 ⊓ R2 (which inherit the arity n), and (ii) i ≤ n
whenever i denotes a component of a relation of arity n.

We also make use of the following abbreviations: C1 ⊔C2 for ¬(¬C1 ⊓¬C2),
C1 ⇒C2 for ¬C1 ⊔ C2, (≥ k [i]R) for ¬(≤ k−1 [i]R), ∃[i]R for (≥ 1 [i]R), ∀[i]R
for ¬∃[i]¬R. Moreover, we abbreviate (i/n : C) with (i : C), when n is clear from
the context.

A DLR knowledge base (KB) is constituted by a finite set of inclusion as-

sertions, where each assertion has one of the forms:

R1 ⊑ R2 C1 ⊑ C2

with R1 and R2 of the same arity.1

The semantics of DLR is specified through the notion of interpretation. An
interpretation I = (∆I , ·I) of a DLR KB K is constituted by an interpretation

domain ∆I and an interpretation function ·I that assigns to each concept C a
subset CI of ∆I and to each relation R of arity n a subset RI of (∆I)n, such
that the conditions in Figure 1 are satisfied (in the figure, t[i] denotes the i-th
component of tuple t). We observe that ⊤1 denotes the interpretation domain,
while ⊤n, for n > 1, does not denote the n-Cartesian product of the domain,
but only a subset of it that covers all relations of arity n. It follows, from this
property, that the “¬” constructor on relations is used to express difference of
relations, rather than complement.

To specify the semantics of a KB we first define when an interpretation sat-
isfies an assertion as follows: An interpretation I satisfies an inclusion assertion
R1 ⊑ R2 (resp. C1 ⊑ C2) if RI

1
⊆ RI

2
(resp. CI

1
⊆ CI

2
). An interpretation that

satisfies all assertions in a KB K is called a model of K.
Several reasoning services are applicable to DLR KBs. The most important

ones are KB satisfiability and logical implication. A KB K is satisfiable if there

1DLR knowledge bases may also include identification-constraints that allow one to force
instances of concepts or relations to be uniquely identified through suitable mechanisms (see [4]
for details). Interestingly, however, such additional constraints play no role in checking knowl-
edge base satisfiability or logical implication of inclusion assertions. For this reason in this
paper we do not consider them.
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Figure 2: Aggregation in UML

exists a model of K. An inclusion assertion α is logically implied by K if all
models of K satisfy α. One can easily verify that logical implication and KB
(un)satisfiability are mutually reducible.

One of the distinguishing features of DLR is that it is equipped with rea-
soning algorithms that are sound and complete wrt to the semantics. Such
algorithms allow one to decide all the above reasoning tasks in deterministic
exponential time [4, 3].

3 Representing UML class diagrams

We concentrate on UML class diagrams for the conceptual perspective. Hence,
we do not deal with those features that are relevant for the implementation
perspective, such as public, protected, and private qualifiers for methods and
attributes.

Classes A class in an UML class diagram denotes a set of objects with common
features, hence it can be represented by a DLR concept. This follows naturally
from the fact that both UML classes and DLR concepts denote sets of objects.
Attributes and operations of classes can be easily represented by means of DLR-
relations [2].

Relationships between classes come in two forms in UML: aggregations, de-
noting part-whole relationships, and associations, denoting general relationships
between two or more classes.

Aggregations An aggregation in UML, graphically rendered as in Figure 2, is
a binary relation between the instances of two classes, denoting a generic form
of part-whole relationship, i.e., a relationship that specifies that each instance
of a class is made up of a set of instances of another class. An aggregation A,
saying that instances of the class C1 have components that are instances of the
class C2, is formalized in DLR by means of a binary relation A together with
the following assertion:

A ⊑ (1 : C1) ⊓ (2 : C2).

Note that the distinction between the contained class and the containing class
is not lost. Indeed, we simply use the following convention: the first argument

of the relation is the containing class. The multiplicity of an aggregation can be
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Figure 4: Binary association in UML

easily expressed in DLR. For example, the multiplicities shown in Figure 2 are
formalized by means of the assertions:

C1 ⊑ (≥ nℓ [1]A) ⊓ (≤ nu [1]A)

C2 ⊑ (≥ mℓ [2]A) ⊓ (≤ mu [2]A)

Associations An association in UML, graphically rendered as in Figure 3, is
a relation between the instances of two or more classes. An association often
has a related association class that describes properties of the association such
as attributes, operations, etc.

Since associations have often a related association class, we formalize asso-
ciations in DLR by reifying each association A into a DLR concept A with
suitable properties. We represent an association among n classes C1, . . . , Cn, as
shown in Figure 3, by introducing a concept A and n binary relations r1, . . . , rn,
one for each component of the association A. Each binary relation ri has Ci

as its first component and A as its second component. Then we introduce the
following assertion:

A ⊑ ∃[1]r1 ⊓ (≤ 1 [1]r1) ⊓ ∀[1](r1 ⇒ (2 : C1)) ⊓
...

∃[1]rn ⊓ (≤ 1 [1]rn) ⊓ ∀[1](rn ⇒ (2 : Cn))

where ∃[1]ri, with i ∈ {1, . . . , n}, specifies that the concept A must have all
components r1, . . . , rn of the association A, (≤ 1 [1]ri) specifies that each such
component is single-valued, and ∀[1](ri ⇒ (2 : Ci)) specifies the class each com-
ponent has to belong to.2

2In addition, we would need an identification constraint saying that the relations r1, . . . , rn
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Figure 5: A class hierarchy in UML

For a binary UML association, we can easily represent multiplicities by im-
posing suitable number restrictions on the DLR relations modeling the compo-
nents of the association. The multiplicities shown in Figure 4 are captured as
follows:

C1 ⊑ (≥ nℓ [1](r1 ⊓ (2 : A))) ⊓ (≤ nu [1](r1 ⊓ (2 : A)))

C2 ⊑ (≥ mℓ [1](r2 ⊓ (2 : A))) ⊓ (≤ mu [1](r2 ⊓ (2 : A)))

Generalization In UML one can use generalization between a parent class
and a child class to specify that each instance of the child class is also an instance
of the parent class. Hence, the instances of the child class inherit the properties
of the parent class, but typically they satisfy additional properties that do not
hold for the parent class.

Generalization is naturally supported in DLR. If an UML class C2 general-
izes a class C1, we can express this by the DLR assertion:

C1 ⊑ C2

Inheritance between DLR concepts works exactly as inheritance between UML
classes. This is an obvious consequence of the semantics of inclusion assertions,
which is based on subsetting. Indeed, in DLR, given an assertion C1 ⊑ C2, every
tuple in a relation having C2 as i-th argument type may have as i-th component
an instance of C1, which is in fact also an instance of C2. As a consequence,
in the formalization, each attribute or operation of C2, and each aggregation
and association involving C2 is correctly inherited by C1. Observe that the for-
malization in DLR also captures directly inheritance among association classes,
which are treated exactly as all other classes, and multiple inheritance between
classes (including association classes).

In UML, one can group several generalizations, as shown e.g.., in Figure 5,
and impose covering or mutual disjointness between classes, if needed. This is
captured in DLR by a set of inclusion assertions, one between each child class

form an identifier of the concept A. However, as mentioned, such a constraint has no impact
on reasoning on logical implication or satisfiability of the resulting knowledge base, so we omit
it here.
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and the parent class:

Ci ⊑ C for each i ∈ {1, . . . , n}

Then if the superclass C is a covering of the subclasses C1, . . . , Cn, we include
the additional assertion

C ⊑ C1 ⊔ · · · ⊔ Cn

For each pair of subclasses Ci and Cj that are mutually disjoint, we include the
assertions

Ci ⊑ ¬Cj

Constraints In UML it is possible to add information to a class diagram by
using constraints. In general, constraints are used to express in an informal
way information which cannot be expressed by other constructs of UML class
diagrams. One can exploit the expressive power of DLR to formalize several
types of constraints that allow one to better represent the application semantics
and that are typically not dealt with in a formal way. This allows one to take
such constraints fully into account when reasoning on the class diagram.

4 Experiments

We have formalized as DLR knowledge bases several UML class diagrams. Then
we have used state-of-the-art DL-based systems to reason with them, by trans-
lating the DLR knowledge bases into ALCQI knowledge bases (or more pre-
cisely knowledge bases expressed in the variants of ALCQI accepted by the
systems used). In particular, we have used the two systems FaCT 3 (the exe-
cutable SHIQ reasoner (shiq-app.exe) contained in the Corba-FaCT distribu-
tion v.2.15, excluding the corba interface) and Racer 4 (v.1-5-10). We have
run the experiments on a Pentium III biprocessor, 866 Mhz, 512MB of RAM
and OS Windows 2000 Professional.

Below we report the results obtained with four rather simple UML class
diagrams, shown in the appendix: Restaurant, Library, Soccer, and Hospital,
modeling, respectively, a restaurant, a library, a soccer championship and the
acceptance procedure in a hospital. The reasoning service we focused on is satis-
fiability of the class diagram. Observe that all diagrams are obviously satisfiable.
The obtained results are shown in Table 1, where:

• complete refers to the original UML class diagrams;

3Available at http://www.cs.man.ac.uk/∼horrocks/FaCT.
4Available at http://kogs-www.informatik.uni-hamburg.de/∼race.
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Restaurant Hospital Soccer Library

FaCT Racer FaCT Racer FaCT Racer FaCT Racer

no mult. constr. yes yes yes yes yes yes yes yes

no minimal mult. constr. yes no yes yes yes yes yes yes

no maximal mult. constr. yes no yes no yes no yes yes

complete no no yes no no no yes no

Table 1: Successful classification of the considered UML class diagrams

• no multiplicity const. refers to the class diagrams weakened by removing all
multiplicity constraints, i.e., making all multiplicities of the form 0..∗;

• no minimal multiplicity const. refers to the class diagrams weakened by
removing minimal multiplicity constraints, thus getting multiplicities of
the form 0..∗ or 0..1;

• no maximal multiplicity const. refers to the class diagrams weakened by
removing maximal multiplicity constraints, thus getting multiplicities of
the form 0..∗ or 1..∗.

In the table, “yes” indicates that the reasoner could classify the knowledge base
corresponding to the UML class diagram, and “no” that the reasoner couldn’t
classify it because it ran out of resources.

When the reasoners are able to classify a knowledge base (yes in the table),
they both take less than 1 minute to perform the classification. When FaCT

cannot classify a knowledge base (no in the table), this is because it goes in
stack overflow (in about 1 minute on the experiments reported). Observe that
the only limit to the stack size is the one imposed by the OS, and FaCT goes
in stack overflow whenever the OS can’t provide more memory. FaCT memory
requests increase quite regularly, until all the available memory is exhausted.
As for Racer, when it cannot classify a knowledge base (no in the table, this is
because it starts paging, so that all the resources are used to perform memory
swaps and the CPU usage decreases greatly. After 1 hour of paging we stopped
the reasoner. The only exception to this behaviour is in classifying the knowledge
base corresponding to Hospital with no maximal multiplicity constraints, where
Racer goes in stack overflow, even setting the stack size to the maximum.

FaCT can classify all knowledge bases corresponding to the class diagrams
having no minimal multiplicity constraints and those having no maximal mul-
tiplicity constraints, but it can’t classify some of those corresponding to the
complete class diagrams: namely Soccer and Restaurant, which are characterized
by having cycles of associations/aggregations all involving minimal multiplicity
constraints in both directions. 5

5Curiously, we noticed that FaCT is able to classify the knowledge base corresponding
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Racer can classify none of the knowledge bases corresponding to the com-
plete UML class diagrams. Instead, it can classify the knowledge bases corre-
sponding to the weakened class diagrams with no multiplicity constraints, and
those corresponding to the class diagrams with no minimal multiplicity con-
straints, with the exception of Restaurant. The weakened class diagrams with
no maximal multiplicity constrains are too complex for the current version of
Racer, with the exception of Library, where only few minimal multiplicity con-
straints appear.

From an analysis of the UML class diagrams and the corresponding knowl-
edge bases, it appears that what makes reasoning difficult for the current systems
is the combination of: (1) terminological cycles involving existentials (which in
UML class diagrams are generated by minimal multiplicity constraints); (2) in-
verse roles (which are intrinsic in the possibility of navigating UML aggregations
and associations components in both directions); (3) functional restrictions com-
bined with existential restrictions (which are present in the complete class dia-
grams); (4) the overall size of the UML class diagrams.

More information about the conducted experiments, including the DLR
knowledge bases corresponding to the UML class diagrams considered here, and
the knowledge bases expressed in the languages accepted by FaCT and Racer,
are available at http://www.dis.uniroma1.it/∼berardi/uml2dl.

5 Conclusions

We have seen that UML class diagrams can be formalized as DL knowledge
bases, and this potentially allows for exploiting DL-based reasoning systems to
perform various kinds of reasoning on them. However, the experimentation with
state-of-the-art DL reasoners, shows that the current reasoners may have serious
efficiency problems in dealing with the resulting knowledge bases. Observe that
all results obtained apply also to Entity-Relationship diagrams (with cardinality
constraints) [6, 5], which are tightly related to UML class diagrams.

Hence, we encourage further research on practical DL reasoners. Reasoning
with UML class diagrams (with multiplicity constraints) can be a challenging
testbed for them.
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to Restaurant, if we reverse the direction of two aggregations (related and is comprised),
which in this case amounts to reversing the order of the two arguments of the DLR relation
corresponding to two aggregations. This appears quite strange, considering that DLR relations
are reified in ALCQI and the treatment of the two components in the translation of the
relations is completely symmetrical.

9
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Figure 6: UML class diagram: Restaurant
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Figure 7: UML class diagrams: Hospital and Soccer
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Figure 8: UML class diagram: Library
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