Reasoning with Actions in Transaction Logic

Martin Rezk! and Michael Kifer?

1 KRDB Research Center, Free University of Bozen-Bolzano, Bolzano, Italy
rezk@inf.unibz.it
2 Department of Computer Science, Stony Brook University, NY 11794, U.S.A.
kifer@cs.stonybrook.edu

Abstract. This paper introduces T'R™” (Transaction Logic with Partially De-
fined Actions)—an expressive formalism for reasoning about the effects of com-
pound actions. T'R™" is based on a subset of Transaction Logic, but extends it
with special premise-formulas that generalize the data and transition formulas of
the original Transaction Logic. We develop a sound and complete proof theory
for TR™" and illustrate the formalism on a number of non-trivial examples. In
addition, we show that most of T R™” is reducible to ordinary logic programming
and that this reduction is sound and complete.

1 Introduction

Transaction Logic (TR) [5I7U8]] was intended as a formalism for declarative specification
of complex state-changing transactions in logic programming; and it has been used for
planning, active databases, and as a declarative alternative to non-logical features in
Prolog. The idea behind 7R is that by defining a new logical connective for sequencing
of actions and by giving it a model-theoretic semantics over sequences of states, one
gets a purely logical formalism that combines declarative and procedural knowledge.

As a motivating example, consider the US health insurance regulations. The com-
plexity of these laws makes it difficult to determine whether a particular action, like in-
formation disclosure, or contacting a patient, is compliant. To help along with this prob-
lem, [[12] formalized a fragment of these regulations in Prolog, but could not formalize
temporal, state-changing regulations. For instance, [12] had statements to express the
fact that, to be compliant with the law, a DNA test requires a doctor’s prescription and a
patient’s consent, but it was awkward to declaratively express the order in which these
two independent actions are to be performed. The sequencing operator of 7R enables
these kinds of statements naturally.

Although TR was created to program state-changing transactions, [6] demonstrated
that TR can do basic, yet interesting reasoning about actions. However, [6] was unable
to develop a complete proof theory, and the fragment of 7R studied there was not ex-
pressive enough for modeling many problems in the context of action languages (cf. Ex-
ample3)). In this paper we continue that investigation and develop a full-fledged theory,
Transaction Logic with Partially Defined Actions (I' R™"), for reasoning about actions
over states in addition to programming the actions. For instance, we can program an
action “do_dna” that performs a DNA test if the patient gives an ok, but (assuming that
the hospital was in compliance) if the test was administered we can also infer that the

patient must have given her prior consent. To carry out this kind of reasoning, we need
to extend TR to express information about the states. For example, we need to be able
to state that in a state D5 the patient consents to a DNA test or that executing the action
do_dna in state D, leads to state D5. In addition, we need a sound and complete proof
system for this new formalism. Our main focus in this paper is the development of
the formalism itself and illustration of its capabilities. 7'R™” has a great deal of sophis-
tication in action composition, enabling hypothetical, recursive, and non-deterministic
actions. In particular, compared with other actions languages like [10I9J412/16l3], T'R™"
supports more general ways of describing actions and can be more selective in when
and whether the fluents are subject to the laws of inertia. We will discuss problems that
we can model and reason about, but that cannot be handled by the aforementioned ac-
tion languages. A detailed study comparing 7'R™” with other formalisms for describing
actions [14]] was submitted to this conference.

Our contribution in this paper is four-fold: (i) extension of TR with premise-formulas,
which make TR more suitable for specifying partial knowledge about actions; (ii) defin-
ing a subset of the resulting formalism, called 7'R™”, and demonstrating its expressive
power for high-level descriptions of the behavior of complex actions; (iii) development
of a sound and complete proof theory for T'R™”; (iv) a sound and complete reduction
of the definite subset of T'R™” to regular logic programming. This last contribution
provides an easy way to implement and experiment with the formalism.

This paper is organized as follows. Section [2] presents the necessary background
on Transaction Logic. Section [3| defines T'R™”, and develops a sound and complete
proof theory for it. Section |4 shows how to express the axioms of inertia in T'R™” and
illustrates the use of T'R™” and its proof theory for complex reasoning tasks about ac-
tions. Section[5]introduces a reduction from 7"R™” to Horn logic programs and presents
soundness and completeness results for this reduction. Section [6] concludes the paper.
All proofs are given in the technical report [15].

2 Preliminaries

This section reviews the syntax and model theory of a subset of Transaction Logic,
which we call TR™, to the extent that is necessary for understanding the results of
this paper. One of the important restrictions in TR~ is that it uses only the explicit
negation neg (sometimes called “strong” negation [13[]). This negation is a weaker
form of classical negation, and it applies only to fluents, not actions. Another important
restriction is that T'"R~ uses only relational database states—unlike the full 7R, which
allows arbitrary states and state transitions. In Section 3] these restrictions will enable
us to reduce various subsets of interest of 7'R~ to ordinary logic programming.
Syntax. The alphabet of the language L1 of TR~ consists of countably infinite sets
of variables V, function symbols F, and predicates P. The set of predicates P is further
partitioned into two subsets, Priyents and Pactions. The former will be used to represent
facts in database states and the latter transactions that change those states. Terms are
defined as usual in first order logic. TR formulas are built as shown in Figure[T]

A literal whose predicate symbol is in Pyjyents Will be referred to as a fluent literal.
An atom whose predicate symbol is in Py.t;0r, Will be called a transactional literal or
(trans)action atom. Informally, the serial conjunction ¢ ®1) is an action composed of an

p(ti...tn) (positive atom or positive literal) where p € P and t1, . . . , t,, are terms

negp(ti...tn) (negative literal) where p € Pgiuents and t1, . .., ¢, are terms
b1 N ¢2, p1 V P2 (conjunction and disjunction)

01 ® P2 (sequencing)

Oo1 (hypothetical)

@1 — P2, @1 < ¢p2 (implication)
3X.¢1(X), VX.91(X) (existential and universal quantification)

Fig. 1. Transaction Logic Formulas

execution of ¢ followed by an execution of . The hypothetical formula <¢ represents
an action where ¢ is hypothetically tested whether it can be executed at the current
state. However, no actual changes to the current state take place. Implications of the
form ¢y — ¢ (or ¢ < 1)) can be understood as a statement that ¢ is an invocation
sequence of a complex transaction and 1) is a definition of the actual course of action
to be performed by that transaction. We will say that ¢ is a compound action if ¢ is an
action atom. We will say that ¢ is a defined fluent if ¢ is a fluent literal.

A transaction is a statement of the form ?—3X¢, where ¢ = [, @ --- ® I}, is a
serial conjunction of literals (both fluent and action literals) and X is a list of all the
variables that occur in ¢. Transactions in 'R~ are analogous to (and generalize) the
notion of queries in ordinary logic programming. A transaction base is a set of trans-
action formulas of the form head or head <— body, where head is a literal and body a
serial conjunction of literals. The following example illustrates the above concepts. We
will follow the usual logic programming convention whereby lowercase symbols rep-
resent constants, function, and predicate symbols, and the uppercase symbols represent
variables that are universally quantified outside of the rules. The universal quantifiers
are omitted, as usual.

Example 1 (Health Insurance). Consider the US health insurance regulations scenario
discussed in the introduction. Suppose we want to formalize the following regulations:
(i) The AIDS and DNA tests (aids_t(7") and dna_t(7")), require prior consent of the pa-
tient (need_consent(7")).
(i) To perform a test 1" prescribed by doctor D to patient P in compliance with the
law (do_cmpint_test(T', P, D)), T must be done (do_t(T, P, D)) only after D prescribed
T test (do_presc(D,T)), which in turn must be done after receiving the consent of P
(rev_consent(P, T')).
In T R™", this is expressed as follows:
(1) need_consent(T") « aids_t(7") (2) need_consent(7") < dna_t(7')
(3) do_cmpint_test(T', P, D) < rcv_consent(P, T")consent(P, T') @ do_presc(D,T)®

® presc(T, P, D) ® do_{(T, P, D)
In the rules above, do_cmplnt_test, rev_consent, do_presc and do_t are actions, while need_consent,
dna_t, aids_t, consent and presc are fluents. Rules (1) and (2) define the fluent need_consent.
They consist exclusively of fluents so they are regular logic programming rules that
do not cause state transitions. Moreover, serial conjunction of fluents is equivalent to
the use of the classical conjunction, since fluents do not cause state transitions. Rules
(1) and (2) formalize regulation (¢). Rule (3) defines the compound action do_cmpint_test
which formalizes regulation (i%). The three actions in Rule (3) will be defined in Exam-
ple[2] They are partially defined actions, which we will define in the following section.

Note that compound actions like do_cmpint_test cannot be expressed in action languages
like [91416].
The next statement is an update transaction, where wb, s, and m are constants.
2?—aids_t(wb) ® do_cmpint_test(wb, m, s) ® negative(m, wb)

It first queries the database to check if Western Blot (wb) is an aids test. If it is, the
transaction executes the compound action do_cmpint_test to perform a complaint test wb
for the patient Mark (m) prescribed by Dr. Smith (s). If the test finishes successfully, the
transaction checks that the result is negative and all is well. Note that if after executing
do_cmpint_test the transaction fails, for example because Mark’s consent was not received,
actions are “backtracked over,” and the underlying database state remains unchanged.

Model Theory. In T'R~, truth values of formulas are defined over sequences of states,
called execution paths (or simply paths). When the user executes a transaction, the un-
derlying database may change, going from the initial state to another state. In doing so,
the execution may pass through any number of intermediate states. A database state (or
just a state, for short) D is a set of ground (i.e., variable-free) fluent literals. States are
referred to with the help of special constants called state identifiers. We will be usu-
ally using boldface lowercase letters d, d;, ds, to represent them. We use the Herbrand
semantics for T'R~. The semantics defines path structures, which generalize the usual
first-order semantic structures (also called interpretations). As in first-order logic, the
domain of Herbrand path structures is called the Herbrand universe, which we denote
by U. It is the set of all ground first-order terms that can be constructed from the func-
tion symbols in the given language L. The Herbrand base B is a set of all ground
literals in the language. A classical Herbrand structure is a subset of B. Note that the
Herbrand universe and Herbrand base are infinite, fixed, and depend only on the lan-
guage LR, not on the transaction base. A central feature in the semantics of TR~ is
the notion of execution paths, since TR formulas are evaluated over paths and not over
states like in temporal logics. An execution path of length k, or a k-path, is a finite
sequence of states, 7 = (D; ... Dy), where k& > 1. It is worth noting that TR~
distinguishes between a database state D and the path (D) of length 1. Intuitively, D
represents the facts stored in the database, whereas (D) represents the superset of D
that can be derived from D and the rules in the transaction base.

Definition 1 (Herbrand Path Structures). A Herbrand path structure, M, is a map-
ping that assigns a classical Herbrand structure to every path. This mapping must sat-
isfy the following condition for every state D: D C M({D)). In addition, M includes
a mapping of the form Ay, : State identifiers —> Database states, which associates
states to state identifiers. We will usually omit the subscript in A .

A path abstraction is a finite sequence of state identifiers. If (dy ... dy) is a path
abstraction then (D1 ... D), where D; = A(d;), is an execution path. We will also
sometimes write M({dy ... dy)) meaning M({A(dy) ... A(dy))) O

Intuitively, Herbrand path structures in 7R have the same role a transition functions
in temporal logics like LT L or u-Calculus. That is, they are relations between states
and actions. However, while transition functions take a state and an action and return a
set of states, a Herbrand path structure takes paths of the form (D; ... D,,) and return
the set of actions that are executable at D; and for which at least one execution ends in

state D,, (actions in 7R can be non-deterministic). The following definition formalizes
the idea that truth of T'R~ formulas is defined on paths. As in classical logic, to define
the truth value of quantified formulas we use the usual notion of variable assignment.

Definition 2 (Satisfaction). Let M be a Herbrand path structure, © be a path, and let
v be a variable assignment.

— Base case: Ifpis a literal, then M, |=, p if and only if v(p) € M(7).

— “Classical” conjunction and disjunction: M, 7 =, ¢ A ¢ iff M,7m =, ¢ and
M, E, . Similarly, M, 7=, ¢V iff M,m =, ¢ or M,m =, 9.

— Implication: M, 7 =, ¢ < ¥ (or M, 7 |=, ¥ — @) iff whenever M, =, 1 then
also M, =, ¢.

— Serial conjunction: M, 7 =, ¢ ® 1), where 7 = (D1 ... Dy), iff there exists
a prefix subpath my = (D1 ... D;) and a suffix subpath w9 = (D, ... Dy) (with 2
starting where 1 ends) such that M, 7 =, ¢ and M,y =, 1. Such a pair of
subpaths is called a split and we will be writing m = 1 o Ty to denote this.

— Universal and existential quantification: M, 7 =, (VX)¢ iff M,n =, ¢ for
every variable assignment p that agrees with v everywhere except on X.

M, 7=, (3X)o iff M, 7 =, ¢ for some variable assignment i that agrees with v
everywhere except on X.

— Executional possibility: M, 7 =, $o¢ iff «is a I-path of the form (D), for some
state D, and M, 7' |5, ¢ for some path 7' that begins at D.

Variable assignments are omitted for sentences, i.e., formulas with no free variables,
and from now on, we will deal with sentences only, unless explicitly stated otherwise.
If M, | ¢, we say that sentence ¢ is satisfied (or is true) on path 7 in structure M.

Definition 3 (Model). A Herbrand path structure, M, is a model of a formula ¢ if
M, |= ¢ forevery path w. In this case, we write M |= ¢. A Herbrand path structure
is a model of a set of formulas if it is a model of every formula in the set. O

A TR~ program consists of two distinct parts: a transaction base P and an initial
database state D. Recall that the database is a set of fluent literals and the transaction
base is a set of transaction formulas. With this in mind we can define executional en-
tailment, a concept that relates the semantics of 7'R~ to the notion of execution.

Definition 4 (Executional entailment). Let P be a transaction base, ¢ a transaction
formula, and let dg . . .dy, be a path abstraction. Then the following statement
Pdy...dy =9 (1)
is said to be true if and only if M, (Dg ...Dy) | ¢, where D; = Apq(d;), for every
model M of P. Related to this is the statement P,do——— = ¢, which is true iff there
is a database sequence Dy ... Dy, where Doy = Ap(dy), that makes (1)) true. It says
that a successful execution of transaction ¢ can change the database from state Dy to
D; ... toD,. O

3 Partially Defined Actions and Incomplete Information

In this section we enhance T'R~ to make it suitable for representing commonsense
knowledge about the effects of actions in the presence of incomplete information. Our
first step is to introduce premise-formulas, which are statements about action execu-
tions, that were not in the original Transaction Logic (and thus not in TR™). Then we

propose a sublanguage of the resulting extended formalism. The new formalism, called
T R™P, has a sound and complete proof theory, is much more expressive than the Horn
fragment of TR studied in [SI7l8]], and better lends itself to complex representational
and reasoning tasks about actions.

T R™” consists of serial-Horn rules partial action definitions (PADs), and certain
statements about action execution, which we call premises. Like T R~, T'R™" uses only
relational states, i.e., they are simply sets of fluent literals.

A serial-Horn rule is a statement of the form:

bbb ®---®@b,
where n > 0, b is a literal, and each b; is a literal or a hypothetical serial conjunction
(i.e., O(serial _conjunction)). If the rule head is a fluent literal then we require that all
the body literals are also fluents. We will refer to these last type of rules as fluent rules.

A partial action definition (a PAD , for short) is a statement of the form:

b1 @ a®by — b3 @ @ ® by 2)
where each b; is a conjunction of fluent literals and « is an action atom (the serial con-
junction ® binds stronger than the implication). We will say that b, is a precondition of
the action «v and b, is its effect. In addition, by will be called post-condition and b3 is a
pre-effect. Intuitively, (2)) means that whenever we know that b; holds before executing
« and by holds after, we can conclude that b3 must have held before executing o and
b4 must hold as a result of . It is worth noticing that neither the pre/postcondition nor
the pre/effect are mandatory. Thus, any of them can be omitted. For instance, the PAD,
alive_turkey @ shoot ® —alive_turkey — loaded, states that if a turkey is alive before firing
the gun and is dead after the shooting, then we can conclude that the gun was loaded
initially. Recall that since by, b2, b3, and b4 are conjunctions of fluents, the serial and
the classical conjunctions behave identically for them, since for fluents the semantics
of TR~ guarantees that f' A ... A f* = f! ® ... ® f™. Each individual conjunct in b,
and b, will also be called a primitive precondition and primitive effect respectively. Ob-
serve that we distinguish two kinds of actions: partially defined actions (abbr., pda) and
compound actions. Partially defined actions can be defined by PADs only. In contrast,
compound actions are defined only via serial-Horn rules. Note that pdas can appear in
the rule bodies that define compound actions and, in this way, T'R™” can be used to
create larger action theories out of smaller ones in a modular way. A T'R™” transaction
base is a set of serial-Horn rules and PADs definitions.

One key addition that T'"R™” brings to TR is the notion of premises. In T'R, state
identifiers are not part of the language, since T'R formulas never refer to such con-
stants explicitly. In contrast, 7'R™” premises do explicitly use state identifiers, so these

constants are part of the 7"R™” language.
Definition 5 (Premise). A premise is a statement that has one of the following forms:

— A state-premise: d > f, where f is a fluent and d a database identifier. Intuitively, it
means that f is known to be true at state d.

— A run-premise: dy 5 dy, where ais a partially defined action. Intuitively it says that
execution of action « in state represented by dy is known to lead to state denoted by do
(among others).E]A T R™" specification is a pair (P,S) where P is a T R™" transaction
base, and S is a set of premises. o

3 In general, an action can be non-deterministic and may non-deterministically move to any one
of a number of states.

Usually, premises are statements about the initial and the final database states, and state-
ments about some possible executions of partially defined actions. Typically these are
partial descriptions so several different database states may satisfy the state-premises
and several execution paths may satisfy the run-premises. Let us now turn to the se-
mantics of T'R™” specifications.

Definition 6. (Models) Let M be a Herbrand path structure, such that M |= P, and
let o be a premise statement. We say that M satisfies o, denoted M |= o, iff:

— 0 is a run-premise of the form dy ~ dy and M, (A(dy) A(dz)) = o

— o is a state-premise d > f and M, (A(d)) = f.

M is a model of a set of premises S if it satisfies every statement in S. a

Entailment is defined similarly to 7R. That is, a specification (P, S) entails a for-
mulagond; ...d,, denoted P,S,d; ...d, | ¢, if and only if for every model M of
P and S, we have M, (A(dy) ... A(dy)) E ¢.

3.1 Motivating Examples

We will now show how T'R™” can be used to represent complex scenarios that arise in
reasoning about actions. We will discuss which conclusions are desired in each case,
but the machinery to do the actual reasoning will be developed in subsequent sections.

Example 2 (Health Insurance, continued). Consider Example[I] and let us now present
the three PADs that were left undefined. We also add the fluents dr, matching, and finished.

neg finished(P, T') ® neg matching(P,T) @ do_t(T, P, D) —
do_t(T, P, D) ® finished(P, T") ® negative(P, T')
P = { patient(P) & need_consent(7") ® rcv_consent(P, T) —
rev_consent(P, T') @ consent(P, T')
dr(D) & do_presc(T, P, D) — do_presc(T, P, D) @ presc(D, P, T')

The first PAD states that the result of the test is negative if the test is still in process
(i.e., not finished) and there is no match with the patient’s sample. The second and third
rules define the actions rev_consent and do_presc. Suppose that Mark (m) got a PCR DNA
test (pr) prescribed by Doctor Smith (s); and we know that the result of the test did not
match the sample and the test finished successfully. The premises for the problem at
hand are as follows:

rev_consent(m,pr) . . .
1 s d, — m’s consent is received at d;, which leads to ds
do_presc(m,pr,s) Lo . .
2 ~ ds — The prescription is received at dg leading to d3
dOJ(m.,pr,s) . . .
3 s dy — m’s test is made at state d3 and it results in d4
S = { dj > negfinished(m, pr) — The test is not finished at state d;
d; > dna_t(pr) — PCR is a DNA test
d; > patient(m) — Mark is a patient
d; > dr(s) — Smith is a doctor
d; > neg matching(m, pr) — There is no match with m’s sample
d, > finished(m, pr) — The test was performed successfully

We would like the logic to infer that the result of the compliant PCR test for Mark was
negative. That is, P, S, d;——— = do_cmpint_test(pr,m,s) @ negative(m, pr).]

Let us now consider a problem, popular example in action languages, called the
Turkey Hunting Problem, which is used in [9/4/16]] among others.
Example 3 (The Turkey Shoot Problem [10]). A pilgrim goes turkey-hunting. If he fires
a loaded gun, the turkey is dead in the next state. The turkey can die only by being shot,
the pilgrim can only hunt during the day and after shooting the night falls.
Assuming that the turkey is alive initially and dead afterwards, we want to be able to
infer that the gun was loaded initially. For this problem, the fluents are loaded, daylight,
and alive. The only action is shoot. The PADs and the set of premises are as follows:

shoot
d, ~ do
(daylight/\ d; > alive
= ve S =\ di > daylight
loaded) ® shoot — shoot ® neg alive 1 Yig

d; > negalive
d- > neg daylight

The above premises state that a shooting occurs at some state Dy (= A(d;)) and
initially the turkey was alive and there was daylight. Following the shooting, the turkey
was not alive and it was dark outside.

The PADs describe the effects of shooting. Our requirement is that the logic must
be strong enough to prove that the gun was loaded initially: P, d; |= loaded.

In general, there is not enough information to prove that in all models where shoot
makes a transition from D to D5 (= A(dy)), the following is impossible:

D; = {negloaded, alive, daylight } Dy = {neg loaded, neg alive, neg daylight}
However, common sense reasoners would normally reject transitions from such D; to
D, because the fluent alive changes without a cause. O

To solve the problem defined in Examples 2] and [3] we need to be able to state the so-
called inertia (or frame) axioms, which say that things stay the same unless there is an
explicitly stated cause for a change. However, a subtle point in Example [3]is that daylight
is not a direct effect of an action, so a simplistic law of inertia would conclude
P,d; = neg daylight

Clearly, this is not the desired conclusion in this case. Thus, there are situations where
assuming that things change only due to a direct effect of an action (and remain the same
otherwise) is inappropriate. It is worth noting that the problem described in Examples
and [3] cannot be expressed in the action languages previously cited. For instance, the
action language A [9]], does not allow defined fluents, and neither A nor AL nor AC
[914116] support compound actions.

Note that in all previous examples we were using a restricted type of PADs of the
form b; ® & — o ® be. This restricted form is sufficient for most types of action
specification, but inertia and related laws require a more general kind. For example, a
rule suitable for expressing the inertia needed in Example [3]is

neg loaded ® shoot ® neg alive — neg alive @ shoot
It says that if shooting with an unloaded gun puts us in a state where the turkey is dead,
the turkey must have been dead beforehand.

3.2 Proof Theory

This section develops an inference system for proving statements about transaction ex-
ecution. These statements, called sequents, have the form P, S, d; ...d, = ¢, where

Axioms: No-op: P,S,d | ()
Inference rules: In the rules below, a, and « are literals, and ¢, rest, and b; (i = 1...4) are
serial goals.

Applying transaction definitions: Performing hypothetical operations:
a+—¢peP P,S,d, dj,....d, 8
P,S,dy...dp F o Rrest P, S,d di,....,d, F v
P,S5,d;...d, Fa®rest P.d,di,....d, FOB Ry
Premise rules: For each premise in S: Forward Projection: Suppose « is a partially
N defined action. Then
hodes b ®a®b, —bs@a®by P
PSdid;Fa 1@a@b: by ®a@bs
e P,S,di - by
d>fes P,S,dxF b
W P,S,didx F «
Y P,S,lebg and P,S,dzkbgl
Sequencing: Fluent decomposition: Suppose ¢ and 1 are
serial conjunctions of literals and hypotheticals.
P.S,di...d;+-¢ Then
P,Sd;...d, ¥
where 1 <i<n P.SditF¢y
P.S,di...dn Q9 P,S,di+-¢ and P,S,d1 -9

Fig. 2. Inference System F

n > 1 and ¢ is a serial-Horn goal and (P, S) a T R™" specification. Informally, such a
sequent says that transaction ¢ can successfully execute starting at a state correspond-
ing to d;, go through some intermediate states, and end up in a state denoted by d,,.
We refer to the inference system developed here as F. It significantly generalizes the
inference system for the serial-Horn fragment of 7'R ™~ presented in [[7]].

Definition 7. (Inference System F) Let P be a transaction base and S a set of premises.
The inference system F consists of the axioms and inference rules in Figure[3.2] where
d, dy, ds ... are state identifiers. O

The next theorem relates the inference system JF to the model-theory.

Theorem 1. (Soundness and Completeness) For any serial goal ¢ and T R™" program
(P,S), the executional entailment P,S,d; ...d, |= ¢ holds if and only if there is a
deduction in F of the sequent P, S d; ...d, - ¢

4 Axioms of Inertia

We now return to the problem of inertia discussed in Examples[2] and[3] Given a T R™”
transaction base P, we augment it with suitable frame axioms and construct a specifi-
cation A(P), called the action theory of P, where P C A(P).

For this specification to be well-defined, we impose a restriction over interloping
PADs—defined below. Observe that we do not impose this restriction on T'R™" itself—
only on the particular action theory presented in this section. For instance, the inference

system and the reduction to logic programming given in Section [5|do not rely on this
assumption. Some other action languages (e.g., the A-language of [9]) impose the same
restriction. To capture the inertia laws in T'R™” without the restriction over interloping
PADs, one needs a more elaborate theory, to be presented in a follow-up paper. Two
PADs are said to be interloping if they share a common primitive effect. For instance,
the following PADs are interloping, as they share a fluent (loaded):

— has_bullets ® load — load ® loaded

— has_ammunition ® load — load ® (loaded A ready)
In this section, we will assume that 7"R™” transaction bases do not contain interloping
PADs. For conciseness, we will be combining several formulas into one using the usual
De Morgan’s laws. Note that the explicit negation connective neg is distributive with
respect to conjunctions of fluent literals (serial and classical, which are equivalent for
fluents) the same way as negation distributes through the regular classical conjunction
according to Morgan’s laws.
As explained in Example [3] it is a requirement that the frame axioms must be able
to model a variety of different behaviors, depending on the problem at hand. In the
following we define a general set of rules, Frame(P), that encodes different aspects
of the Frame Axiom. For instance, in Example [3| we expect that some fluents, like alive,
are subject to the frame axioms, while others, like daylight, are not. We thus introduce
a predicate, inertial, that indicates whether a fluent is subject to inertiaE] If a fluent, f,
behaves according to the frame axioms in state D (= A(d)), it is assumed that S has a
state-premise of the form d > inertial(f). The action theory A(P) for a transaction base
P is defined as P U Frame(P), where Frame(P) is the following set of axioms:

Unrelatedness. For each fluent literal h and each partially defined action « such that
neither & nor neg h is a primitive effect of «
(inerial(h) Ah) @ @ - a®h € Frame(P)

Forward and Backward Disablement. Let g or neg g be literals and « a pda. Due
to the absence of interloping PADs, there can be at most one partially defined action
pgy with the primitive effect g and at most one pda Ppeg 4 With the primitive effect
neg g. Let f, be the precondition of py and fneg 4 the precondition of pueg 4 (if pgy or
Pneg g does not exist, assume that neg f; or neg fneg 4 iS true in every state). Then the
following forward disablement axioms are in Frame(P):

(inertial(g) A neg fy Aneg fregq) ® g & « = a®g

(inertial(g) A neg fq A neg fnegy) ®NeggR a — a@negy

The following backward disablement axioms are also in Frame(P):

(inertial(g) A neg fy Aneg fregq) @ g =S gRa

(inertial(g) A neg fq A neg fregy) ® @« ®negg — negg® «
In other words, if the pdas p, and pyeg 4 are disabled in some state then executing « in
that state does not change the truth value of the fluents g and neg g

Weak Disablement. For each pda « such that f is not a primitive effect of «
inertial (f) ® « @ neg f — neg f ® a € Frame(P)

* In some cases, we can also specify inertial via rules and facts. For instance, if every fluent is
inertial, we could just have a universal fact inertial(F’).

10

Causality. For each PAD b; ® @ — a® by € P, and each primitive effect b’ that occurs
as one of the conjuncts in by:
negh' @a @b — by ®a € Frame(P)

That is, if an effect of an action has been observed, the action must have been executed
as prescribed by the unique (since there are no interloping PADs) PAD that specifies
that effect. In particular, the precondition of that PAD must have been true. Note that
this axiom applies to both inertial and non-inertial fluents.
Backward Projection. For each PAD in P of the form (A¥_ b}) ® @ — a ® by, and
each primitive precondition b{

(/\le,#jbil) ® a @ negby, — negh) ® a € Frame(P)

That is, if all but one primitive preconditions hold, but the effect of the action is false in
the next state, we must conclude that the remaining precondition was false prior to the
execution. Again, this axiom applies to both inertial and non-inertial fluents.

We now return to our examples and show how the above action theory handles
the problems highlighted in Section To preserve continuity, we will first solve the
problem described in Example [3]and then we continue with Example[2]

Example 4 (Turkey Shoot, continued). The issue in Example[3|was the inability to prove
that the gun was loaded initially: P, d; |= loaded. This problem arose because T'R™” was
not sufficiently expressive to let us specify the rules of inertia. Fortunately, the axioms
Frame(P) do the trick. Figure 4| shows a proof for A(P),S,d; = loaded using the
inference system F. The relevant instance of the axioms in Frame(P) is:
(a) alive ® shoot® neg alive — loaded ® shoot (Causality)

We assume that all fluents are inertial in every state, except for daylight, which is not
inertial in any state. Since daylight is not subject to the frame axioms, S does not contain
d; ©> inertial(daylight) and thus we cannot infer d; > daylight using the inertia axioms in
A(P). The desired conclusion now follows from the soundness of F (Theorem . o

A(P),S,d; F alive by the inference rule Premise
A(P),S,dz - negalive again by Premise

A(P), S, d1d2 + shoot by Premise

A(P),S,d; + loaded by the inference rule Forward Projection,

the above instance (a) of the Causality axiom,
and the previous three sequents

Fig. 3. Derivation of A(P), S,d; = loaded.

Example 5 (Health Insurance, continued #2). The issue in Example [2[was to prove
P,S,d;——— = do_cmpint_test(pr, m, s) ® negative(pr, m). We now show a proof for this
statement using the inference system J. We assume that all fluents are inertial in every
state. The derivation is shown in Figure [Z_f} For convenience, we show the relevant in-
stances of the axioms in F'rame(P) here:

(a) inertial(finished(m, pr)) @ neg finished(m, pr) ® rev_consent(m, pr) —

11

rev_consent(m, pr)®mneg finished(m, pr) (Unrelatedness)
(b) inertial(dr(s)) @dr(s)®rcv_consent(m, pr) — rev_consent(m, pr)®dr(s) (Unrelatedness)
The required conclusion now follows from the soundness of F and the definition of

entailment in 7R. o
(1) A(P),S,d; F patient(m)® by the inference rule Premise, App. tran.
need_consent(pr) def. , and Sequencing
(2) A(P),S,d1d2 - rev_consent(m, pr)® by the rule Premise, the previous sequent (1),
®consent(m, pr) Forward Projection, and Sequencing
(3) A(P),S,d2 Fdr(s) by rule Premise and Forward projection

using instance (b) of the Unrelateness axiom
(4) A(P),S,d2ds + do_presc(pr,m,s)® by sequent (3), rules Forward Projection

presc(pr, m, s) and Sequencing

(5) A(P),S,ds F negfinished(m, pr) by rule Premise, Forward Projection,
neg matching(m, pr) and instance (a) of Unrelateness axiom

(6) A(P),S,ds,ds - ®@do_t(pr,m, s) by the above sequent (5) and rules Premise,
®negative(pr, m) Forward Projection, and Sequencing

(7) A(P),S,d1,d2,ds,ds F by the rule Applying Transaction

do_cmpint_test(pr, m, s) ® negative(pr, m) Definitions and the sequents (2),(4),(6)

Fig. 4. Derivation of P, S,d; ...d4 = do_cmpint_test ® negative(pr, m).

5 Reducing Relational T'R’” to Logic Programming

In this section we present a reduction for a large fragment of 7'R™” to sorted Horn logic
programming and state the theorems of soundness and completeness.

The subset in question, which we call definite T R™" , 'R, has only three restric-
tions: it allows neither non-deterministic nor converging run-premises and it requires
the set of premises to be well-founded. These notions are defined next. A set of run-

premises is converging if it has a pair of run-premises that share the same final state.

. shoot load . . . e e
For instance, d; ~~ dy and d3 ~~ ds. A set of run-premises is non-deterministic

if it has a pair of run-premises for the same pdas and the same initial state but differ-
ent final states. Note that this restriction concerns pdas only: compound actions defined
via serial-Horn rules can be non-deterministic and 7"R2*” has no problem dealing with
them. We say that a set of premises S is well-founded if S does not have an infinite

. N [(03 «
chain of run-premises of the form dy ~3 dy, do ~5 d{, ds ~3 do, ..., for any states
do, dy, do, ... and pdas «g, a1, as, As a special case, this precludes circular run-

premises. For instance, the set of premises that has the following run-premises is not
well-founded: q, <% d, d, B, d, - Given a language Lrg of Transaction Logic, the
corresponding language L1, p of the target logic programing reduction of T'R}'” is a
sorted language with the sorts state, fluent, action, constant, and an infinite
set of variables for each sort. In addition, we assume that the sort of fluents is contained
in the sort of actions so any fluent-variable is also an act ion-variable. Recall that
in Transaction Logic fluents can be viewed as “trivial” actions that do not change the
current state. We will see that the same holds for the LP reduction.

12

L, p has two distinguished predicates, Holds and Fxecute; and four distinguished
function symbols, Result, neg, <, ®. Intuitively, the atom Holds(f, s) means that
the fluent f holds in state s, and Ezecute(q, s1,$2) means that executing « in s;
leads to state s5. The intuition behind neg, <, ® should be clear at this point: they
encode negated literals, hypotheticals, and sequencing of actions. The state-term
Result(a, s) represents the state resulting from executing « in the state s. In addition,
L1 p has a unique state-constant sq for each state identifier d in T'R}'.

For each n-ary predicate symbol p € Priyent (0r Paction) and each n-ary function
symbol f € F in Lrg, L1 p has an n-ary function symbol p and f (with the same
names as in Lrg). To simplify the language, we will use the following conventions
about variables: S, S, Sa, ... denote state-variables, while A, A, A,, etc., will
denote action-variables. We will also rely on the usual De Morgan’s laws, such as
neg (f A g) = neg f V negg, and we postulate that V and A are distributive with
respect to Holds; for example, Holds(f1 A f2,8) = Holds(f1,s) A Holds(fn,s). The
reduction I'(P, S) of a TR” specification (P, S) is defined by a set of rules and facts
that resemble the inference rules and axioms of Section @} Due to space limitation,
we provide only the intuition of the reduction. Full details can be found in [[15].

First we define a mapping db2sts from the set of database states to the set of
state-terms, as follows:

— db2stg(d) = sq, if d occurs in a run- or state-premise in S and S has no run-

premise of the form dg 5 d, for some state dy. Here sq is the unique Ly p state
constant that corresponds to the T'R;'” state identifier d and « is a pda.

— db2sts(d) = Result(c,s), if S has a run-premise of the form dy ~~ d, and

db2sts(dg) = s.

It is worth noticing that this definition is well-formed, because S is a well-founded set
of premises.

I'(P, S) contains one kind of LP rule for each inference rule/axiom in }'E] plus one
extra rule that interprets fluents as trivial actions that do not change states. For instance,
for each state-premise d > f € S and every state s € db2sts(d), I'(P,S) contains the
fact Holds(f, s). Observe that whenever we can derive P, S,d - f using the Premise
inference rule in F, there is a state s = db2sts(d) such that I'(P,S) = Holds(f, s).
Analogously, for each run-premise dy &5 d; € S there is a state s = db2sts(d;) such
that (P, S) contains the fact Execute(o, s, Result(a, s)). This similarity is reflected
in other rules. For instance, for the Hypothetical and Sequencing inference rules, the
corresponding LP rules in I'(P, S) are:

Execute(CA, S, S) < Execute(A, S, S1) (Hypothetical)
Execute(A; ® As, S1,52) + Execute(Ay, 51, S), Execute(As, S, S2) (Sequencing)

The soundness theorem uses the following partial function from state-terms to
database states. Let st2db be the partial function defined as follows:
— st2db(sq) = d, if d occurs in a run- or state-premise in S and S has no run-premise

of the form do ~~ d for some dy. Otherwise, st2db(sq) is undefined.

> Forward Projection in I'(P, S) consists of two kinds of rules, one for the post-condition, and
one for the pre-effect.

13

— st2db(Result(o, s)) = d, if st2db(s) exists and db2st(s) ~» d € S. Otherwise,
st2db(Result(a, s)) is undefined. st2db(s) is uniquely defined and thus well-formed
because S is well-founded and has no non-deterministic run-premises.

Theorem 2 (Soundness). Let I'(P,S) be an LP-reduction of a TR program (P, S).
Suppose I'(P,S) = Execute(a, s1, S2), where s1 and sy are ground state-terms

and a an action. Then there are relational database statesdq, . . . ,ds in L1 g such that
the following holds:

(1) P,S,dy...d> =« (2) dy = st2db(s1), do = st2db(s2)

(3) P.S,d1 = D(s1) (4) P,S,d> = D(s2)

where D(s) denotes the set of all database fluents [in the language Lt e, such that
I'(P,S) = Holds(f, s).

Theorem 3 (Completeness). Let I'(P, S) be an LP-reduction of a T R?” specification
(P,S). Suppose P, S,d; . ..d, = ¢. Then the following holds:
—If n = 1, and there is a state-term sy such that db2sts(d1) = s1, then ¢ is a
conjunction of fluents and hypotheticals and:

I'(P,S) E Execute(g, s1,51)
—If n > 1, and there are ground state-terms si, sy such that db2sts(d;) = sy and
db2sts(dy,) = so, then:

I'(P,S) = Execute(o, s1, s2)

In plain English, these theorems say that every execution of an action in I'(P, S) has a
similar execution in TR, and vice versa.

6 Conclusions and Future Work

We extended Transaction Logic and made it suitable for reasoning about partially de-
fined actions. We illustrated the power of the language for complex reasoning tasks
involving actions and gave a sound and complete proof theory for that formalism. We
also showed that, when all partially defined actions are definite, such reasoning can be
done by a reduction to ordinary logic programming. This last contribution provides an
easy way to implement and experiment with the formalism, although a better imple-
mentation should be using the proof theory directly, similarly to the implementation of
the serial-Horn subset of 7R in FLORA-2 [[11]].

This work continues the line of research started in [6], which, however, was target-
ing a different fragment of TR. It did not provide a complete proof theory or a reduction
to logic programming. It also did not consider premise statements and thus could not
be used for reasoning about partially defined actions without further extensions.

In many respects, T'R™” supports more general ways of describing actions than
other related formalisms [10L9/412/16/13]], including non-determinism, recursion, and
hypothetical suppositions. Uniquely among these formalisms it supports powerful ways
of action composition. Nevertheless, 7'R™” does not subsume other works on the sub-
ject, as it cannot perform certain reasoning tasks that are possible with formalisms such
as [31416]. A detailed study of the relationship of our approach to other languages for
actions was submitted to this conference [|14].

Enhancing T'R™” in that direction, including non-monotonic extensions, will be the
focus of our future work.

14

Acknowledgments. We thank Mariano Rodriguez-Muro, Tamara Rezk, and the anony-
mous reviewers for useful comments and feedback. M. Rezk was partially supported
by the European Commission under the project OntoRule. M. Kifer was partially sup-
ported by the NSF grant 0964196.

References

1.

10.

11.

12.

13.

15.

16.

C. Baral and M. Gelfond. Representing concurrent actions in extended logic programming.
In Proceedings of the 13th international joint conference on Artifical intelligence - Volume
2, pages 866871, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

. C. Baral and M. Gelfond. Reasoning agents in dynamic domains, pages 257-279. Kluwer

Academic Publishers, Norwell, MA, USA, 2000.

. C. Baral and M. Gelfond. Reasoning about intended actions. In Proceedings of the 20th

national conference on Artificial intelligence - Volume 2, pages 689-694. AAAI Press, 2005.

. C. Baral, M. Gelfond, and A. Provetti. Representing actions: Laws, observations and hy-

potheses. Journal of Logic Programming, 1997.

. A.J. Bonner and M. Kifer. Transaction logic programming. In Int’l Conference on Logic

Programming, pages 257-282, Budapest, Hungary, June 1993. MIT Press.

. AJ. Bonner and M. Kifer. Applications of transaction logic to knowledge representation.

In Proceedings of the International Conference on Temporal Logic, number 827 in Lecture
Notes in Artificial Inteligence, pages 67-81, Bonn, Germany, July 1994. Springer-Verlag.

. AJ. Bonner and M. Kifer. Transaction logic programming (or a logic of

declarative and procedural knowledge). Technical Report CSRI-323, Univer-
sity of Toronto, November 1995. http://www.cs.sunysb.edu/ kifer/
TechReports/transaction-logic.pdf .

. A.J. Bonner and M. Kifer. A logic for programming database transactions. In J. Chomicki

and G. Saake, editors, Logics for Databases and Information Systems, chapter 5, pages 117—
166. Kluwer Academic Publishers, March 1998.

. M. Gelfond and V. Lifschitz. Representing action and change by logic programs. Journal of

Logic Programming, 17:301-322, 1993.

S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Artif. Intell.,
33(3):379-412, 1987.

M. Kifer. FLORA-2: An object-oriented knowledge base language. The FLORA-2 Web
Site. http:/flora.sourceforge.net.

Peifung E. Lam, John C. Mitchell, and Sharada Sundaram. A formalization of HIPAA for
a medical messaging system. In Proceedings of the 6th International Conference on Trust,
Privacy and Security in Digital Business, TrustBus *09, pages 73-85, Berlin, Heidelberg,
2009. Springer-Verlag.

D. Pearce and G. Wagner. Logic programming with strong negation. In Proceedings of
the international workshop on Extensions of logic programming, pages 311-326, New York,
NY, USA, 1991. Springer-Verlag New York, Inc.

. M. Rezk and M. Kifer. Representing £; Domain Descriptions as Partially Defined Actions

of Transaction Logic. in preparation, 2011.

Martin Rezk and Michael Kifer. Reasoning with actions in transaction logic, 2011. Available
fromhttp://www.inf.unibz.it/~mrezk/techreportPAD.pdf.

H. Turner. Representing actions in default logic: A situation calculus approach. In In Pro-
ceedings of the Symposium in honor of Michael Gelfond’s 50th birthday (also in Common
Sense 96, 1996.

15

http://www.inf.unibz.it/~mrezk/techreportPAD.pdf

	 Martín Rezk and Michael Kifer
	Introduction
	Preliminaries
	Model Theory.

	Partially Defined Actions and Incomplete Information
	Motivating Examples
	Proof Theory

	Axioms of Inertia
	Reducing Relational TRDPAD to Logic Programming
	Conclusions and Future Work

