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ERRATA

Reasoning with Incomplete Information
Investigations of Nonmonotonic Reasoning

David W. Etherington

The following is a (partial) list of errata.

Page 44:

Page 50:
Page 77:
Page 96:

- Page 116:

Page 131f:

Page 148:

Page 149:

In the definition of the result of a sequence of defaults, the three
occurrences of <§;> should be <3;>.

In (2.i), delete "and vy; € {B1,....B,}"
In point 3, x = ux should be x = u.
The last two occurrence of Qa in Example 8.2 should be -Qa.
In (2.i), delete "and v; € {B;.....Bs}"

line -2: LITERALS (o) should be LITERALS (o A ).

Every occurrence of J should be (.

r=1 r=0

The three occurrences of =Py ] should be P {
-Px -Px

In the proof of Lemma 822, after Pa; ¢ CONSEQUENTS (GE (E.3)).,
insert “(The remaining terms can be put into GD(E,A) in like manner
— again, the existence of M and the domain-closure axiom guarantee
that this is possible.)”



Abstract

Intelligent behaviour relies heavily on the ability to reason in the absence of complete infor-
mation. Until recently, there has been little work done on developing a formal understanding of
how such reasoning can be performed. We focus on two aspects of this problem: default or proto-

typical reasoning, and closed-world or circumscriptive reasoning.

After surveying the work in the field, we concentrate on Reiter’s default logic and the vari-
ous circumscriptive formalisms developed by McCarthy and others. Taking a largely semantic
approach, we develop and/or extend model-theoretic semantics for the formalisms in question.
These and other tools are then used to chart the capabilities, limitations, and interrelationships of

the various approaches.

It is argued that the formal systems considered, while interesting in their own rights, have
an important réle as specification/evaluation tools wis-a-vis explicitly computational approaches.
An application of these principles is given in the formalization of inheritance networks in the pres-

ence of exceptions, using default logic.
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CHAPTER 1

Incomplete Information

The perverse maxim that whatever you can get away with is right has its coun-
terpart in the claim that whatever works is clear. I might not understand the
devices I employ in making useful computations or predictions any more than
[one] understands the car [one] drives to bring home the groceries. The utility of
a notion testifies not to its clarity, but rather to the philosophical importance of
clarifying it.

— Nelson Goodman [1955].

Human common-sense reasoning appears to rely heavily upon the ability to use general rules
subject to exceptions; what has been called prototypic or default information. Virtually none of
the decisions one makes everyday are made with complete certainty. With little effort, an endless
supply of more or less probable scenarios can be constructed which contraindicate any chosen
course. Yet people are not paralyzed by indecision; they continue to act and to decide in spite of

all this uncertainty.

Science fiction fans will recognize “Insufficient Data” as a favourite cliché: computers are
frequently characterized as paralyzed by not having enough information to arrive at a logically
sound conclusion. If computers are restricted to sound modes of reasoning based on complete
information then Artificial Intelligence is a futile goal. For a variety of reasons, ‘“Intelligence”
(whatever it may be) must involve the ability to function without complete information about the

world.

In the first place, complete information is hard to come by, even in the most contrived
situations. Consider, for example, a simple “blocks-world” situation in which there are three
blocks of known dimensions, masses, and locations, and a robot manipulator arm with a known
lifting capacity, effective radius, and position. If all of the blocks are of a size and mass within
the tolerances of the arm, can the arm be used to stack the blocks? At first glance, the answer
seems an obvious “yes”. Reflection shows that this might be hasty. Our information about the
situation is incomplete. There may be things we know nothing about which may interfere. For
example, the arm may be broken. (This argument may not convince those who say, “If so, the

actual lifting capacity of the arm (0g) was not really known!”.)

Granting this, there may still be a wall between the arm and the blocks — we do not know.
We can improve our specification of the problem to avoid such incomplete information by saying
that there is nothing between the arm and the blocks (not even air?), but we still cannot une-
quivocally answer the question. A monkey may be holding back the arm — the perverse mind can



generate possible reasons for failure indefinitely. Without more information, these cannot be ruled

out.

The next step is to add the information that nothing prevents the arm from getting to and
lifting the blocks. Now we can safely decide that the arm can lift the blocks. Of course, if noth-
ing prevents the goal, we do not need any knowledge of blocks and arms to answer the question:

we have given too much away.

Putting a finer point on our knowledge, we might say ‘““nothing prevents the arm from func-
tioning according to specification”. We will be charitable, for the moment, and assume that this
precludes monkeys. Can the arm lift the blocks now? Well, the blocks may be too slippery, may
explode when touched, or any of a number of things “‘too ridiculous to consider” may happen. It
seems that, short of being explicitly told — or actually trying — we can never know enough to

decide whether an attempted lift will succeed.

Even in situations where one intuitively should have complete knowledge, incompleteness
may result from the impracticality of representing all of the relevant information. For example, an
airline database which records flights aind the cities which they connect would be overwhelmed if
it had to keep track of all of the pairs of cities not connected by each flight. If this “negative”
information is not explicitly stored, however, how can we decide whether PW819, which connects
Vancouver and Guyamas, connects Tokyo and Hong Kong? The traditional approach to this
problem has been to invoke the Closed-World Assumption. If we assume that we have complete
knowledge about all of the positive facts true of the world, we can infer that anything we do not
know to be true — such as CONNECTS(PW819, Tokyo,HongKong) — is false.

If our knowledge about any aspect of the world may be incomplete, however, this assump-
tion is obviously suspect. Suppose, for example, that we want to start a flight from Vancouver to
the New York City area, but do not yet know whether it will éctually go to New York or Newark.
Perhaps the database also stores information about flights’ “home port” for maintenance pur-
poses. We may want to enter Fictictious Airlines 001, with home port Vancouver, so that the
maintenance department can gear up for the extra aircraft. The closed-world assumption would
then allow us to infer that FALOOL connects Vancouver to neither New York nor Newark (nor

anywhere else, for that matter).

To prevent such unwarranted inferences, we must retract our assumption of complete
knowledge. Thus we can no longer use the closed-world assumption. As a side-effect, our uncer-
tainty about FALOO1 reintroduces uncertainty about whether PW819 connects Tokyo and Hong
Kong. In this case, we might decide to manage the uncertainty by explicitly stating for which
flights we have complete knowledge. The closed-world assumption can then be used where it is-

appropriate, and avoided elsewhere.

The closed-world assumption is often made even when its applicability cannot be
guaranteed. One can imagine situations — in domains less structured than airline databases — in
which it may not be known whether the information at hand is complete. Physicists, for example,
periodically believe that they have tracked down the full suite of suba.tomicApa.rticles, and work.
using this assumption. So far, no-one has been able to say how we will know when all such parti-
cles have been discovered. In such situations, the best course of action is often to act as though
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one has complete information until one has reason to suspect otherwise. The question of when to
suspect otherwise then becomes quite important. The principles which guide this type of reasoning
appear difficult to elucidate. Certainly, knowing nothing is reason to doubt that one knows every-

thing, but where does one draw the line?

Closed-world reasoning takes positive facts as given, and sanctions negative conclusions.
Commonsense reasoning often requires a different sort of assumption to be made. Because of the
need to act, and the pervasiveness of incomplete information, humans are usually willing to
assume - often quite unconsciously — vast numbers of “normalcy” conditions without explicit
justification. In planning to get to the airport by going out the front door, getting into one’s car,
and driving, one assumes that the door will open, the car will start, the airport hasn’t moved, and
that one’s usual route is still passable. These assumptions rarely reach the conscious level, unless
circumstances make it likely that they will be violated. For example, at -40° C, one might make

contingency plans for the car’s failing to start.

Should subsequent information or reflection violate any of these “implicit” assumptions,
adjustments are made; but the absence of violation need not be proven before assumptions are
made. The kinds of assumptions which are made to deal with the various forms of incomplete
information cannot be sound, in the usual sense of never leading from true premises to false con-
clusions. This is disappointing to the purist. Unfortunately, if one wants to get anything done,

certain assumptions must be made.

If we are willing to forsake soundness, how do we avoid embracing irrationality? The best
one can hope for is some form of “justification” for one’s assumptions; principles which allow gaps
in one’s knowledge to be filled and which guarantee that — most of the time ~ these assumptions
will not lead too wildly astray. Deciding what constitutes the “normal” state-of-affairs and when
to assume that things are indeed “normal” are important problems. Clearly, one must be very
good at detecting abnormal conditions before assuming that everything is normal. Furthermore,
once such assumptions have been made, one must be prepared to detect and deal with any

conflicting {or apparently conflicting) information which turns up.

1.1. Overview of the thesis

The thesis attempts to pull together a number of threads — aspects of various approaches to
reasoning with incomplete information. The results presented fall into two main categories: those
which extend our understanding of the capabilities and limitations of particular approaches, and
those which explore the interconnections, similarities, and differences between approaches. (Hope-

fully the latter category is subsumed by the former.)

Chapter 2 presents a detailed survey of a number of important systems for non-monotonic
reasoning. We draw together a number of results from the literature and some original observa-
tions. The emphasis is on presenting a cohesive picture of the field. The presentation .thus
attempts to stress the commonalities and essential differences of the various approaches. The
reader should be able to come away with an understanding of both the problems and state of the



art of the field.
Chapter 3 consists of investigations of the properties of a particular formal system, Reiter’s

logic! for default reasoning. We present a general semantics for default theories, and show how
this semantics highlights the essential similarities and dissimilarities between default logic and
other non-monotonic systems. We then characterize a broad class of default theories which are

well-behaved, in the sense of preserving the coherence of the underlying world-description.

We turn, in chapter 4, to an investigation .of inheritance networks with exceptions. We
develop a correspondence between such networks and default theories. We then use this
correspondence to prove a number of interesting results, including sufficient conditions for the
correctness of a network inference algorithm and for the coherence of an inheritance network
representation of a body of knowledge. We conclude by showing that Touretzky’s [1984a)

“inferential distance” algorithm satisfies these criteria.

Chapters § through 7 turn from default logic to discuss a quite different approach to incom-
plete information, the various forms of minimal entailment or circumscription. In chapter 5, we
discuss a number of semantically-motivated pessimistic’ results concerning the capabilities of
predicate circumscription. Chapter 6 looks at a generalization of predicate circumscription, called
formula circumscription. Model-theories are presented for some variants of this approach, and a

number of results (both positive and negative) are proved concerning their power.

The “long-dead” domain circumscription formalism is “resurrected” in chapter 7. We argue
that this approach provides an important capability for common-sense and database reasoning
systems. We uncover and correct an error in the original presentation, and we show that a niche
remains for domain circumscription by refuting subsumption claims made in favour of predicate
(and formula) circumscription. We conclude the chapter with some results concerning domain

circumscription’s capabilities and limitations.

In chapter 8, we return to default logic, this time in the context of our discussion of cir-
cumscription. We present a number of results detailing the relationship between these rather
disparate formalisms, showing their points of correspondence and their (unfortunately) more-

frequent points of divergence.

The thesis concludes with a lengthy discussion of some important open problems and
interesting research directions, in chapter 9, and a summary and evaluation of the significance of

the work presented, in chapter 10.

Every attempt has been made to make the thesis as self-contained as possible. A familiarity
(at times, intimate) with first-order logic is assumed throughout, however. (See [Mendelson 1964]
for an introduction.) To preserve continuity, the proofs of the theorems have been relegated to
Appendix A, while Appendices B and C contain notational conventions and definitions of logical
terms assumed elsewhere in the thesis. The intention has been to keep the degree of logical sophis-
tication required to read the bulk of the thesis to 2 minimum.

! Some have objected to the use of the term “logic® (and even “formal®) for the systems we discuss
here. Rather than debate this issue, we encourage those who find the terminology objectionable to substi-
tute whatever term(s) they find appropriate. '



CHAPTER 2

Approaches to Incomplete Knowledge

Traditional logics suffer from
the ‘Monotonicity Problem’

~— Drew McDermott

In traditional logical systems, extending a set of axioms can never prevent the derivation of
conclusions derivable from the original set. More formally, if S and S’ are arbitrary sets of formu-

lae then:
SCS8 s {w|Shwc{w|Sw!

The addition of formulae to a set monotonically increases what can be proved from that set;

hence such logics are sometimes called monotonic.

Recently, it has been noted [McCarthy 1977, Minsky 1975] that monotonic logics seem
inadequate to capture the tentative nature of human reasoning. Since people’s knowledge about
the world is necessarily incomplete, there will always be times when they will be forced to draw
conclusions based on an incomplete specification of pertinent details of the situation. Under such
circumstances, assumptions are made (implicitly or explicitly) about the state of the unknown fac-
tors. Because these assumptions are not irrefutable, they may have to be withdrawn at some later
time should new evidence prove them invalid. If this happens, the new evidence will prevent some
assumptions from being used; hence all conclusions which can be arrived at only in conjunction
with those assumptions will no longer be derivable. This causes any system which attempts to

reason consistently using assumptions to exhibit non-monotonic behaviour.

Common-sense conclusions are often based on both supporting evidence and the absence of
contradictory evidence. Traditional logics cannot emulate this form of reasoning because they
lack any means for considering the absence of knowledge. A number of systems have been
developed to address this shortcoming, by augmenting a traditional first-order logic with some
mechanism for predicating conclusions on the absence of specific knowledge.

In Al, logic-based attempts to solve the problems presented by incomplete information have
fallen into two categories. (For the purposes of this thesis, we ignore “probabilistic” approaches.)
The first category includes those which assume that all of the relevant positive information (e.g.,
which individuals exist, which predicates are satisfied by which individuals) is known. From this

! S |- w means w is provable from premises S.



assumption, it follows that anything which is not “known” to be true must be false. Negative

facts? can thus be omitted, since they can be inferred from the absence of their positive counter-
parts. Such assumptions of complete positive knowledge underlie PLANNER’s “THNOT”
[Hewitt 1972] and related negation operators in Al programming languages, semantic networks,
and databases [Reiter 1978a, b|, as well as more formal reasoning techniques such as predicate
completion [Clark 1978], and circumscription [McCarthy 1980, 1986].

In contrast, many have wanted to represent and use what would generally described as
“default” or “prototypic” information. Defaults are used to fill gaps in knowledge. In the absence
of specific evidence, they allow a system to make (hopefully) enlightened ‘“guesses”, instead of
reserving judgement or assuming that whatever is unknown is false. Non-monotonic logic
[McDermott & Doyle 1980], default logic [Reiter 1980a), truth maintenance systems [Doyle 1979,
McAllester 1978, 1980}, and various network- and frame-based procedural knowledge representa-
tion schemes [Quillian 1968, Minsky 1975] all embody this idea.

The two approaches are not mutually exclusive — each of these reasoning techniques has
been used to achieve the other. Comparisons of the power of the two paradigms are most notable
for their absence from the literature, however. The discussion in the remainder of this chapter

does not provide such a comparison, although some points of correspondence are indicated.

2.1. Closed-World Reasoning

Negative facts — those which state what is not true about the world - vastly outnumber
positive facts. For example, in a discussion at a sufficiently high level, everything which is at some
place is not at every other place. Similarly, if Tumnus is a cat, he is not a dog, a fish, or a tree
(among other things). The amount of negative information about a world increases geometrically
with the size of the Herbrand Universe. One would like to avoid having to explicitly represent all
such information. The information must somehow be available, however — at some point it may

become useful to know that Tumnus is not a dog.

In certain situations, it is reasonable to assume that one knows all of the relevant truths.
For example, it is reasonable to assume that a company’s inventory database lists all parts sup-
plied by that company, that one’s T4 slips list all deductions from one’s income, and that one’s
electricity will not be cut off tomorrow. Such assumptions are justified either by the design and
intended function of the instrument in question or, as in the latter example, by the implicit belief
that if a fact were important enough — such as the impending cessation of one’s electric services —

one would presumably have heard about it.

If one assumes “total knowledge about the domain being represented”, it is no longer neces-
sary to explicitly represent negative infomation. Negative facts may simply be inferred from the
absence of their positive counterparts. Reitér [1978a] calls this assumption the Closed- World
Assumption (CWA), since it implies a closed domain in which all truths are known. The closed-

2 A fact is negative ¢ff all of the literals in its clausal form are negative.



world assumption on a knowledge-base, KB, corresponds roughly to an inference rule of the form:
If KB |/~ Pthen infer —P

applicable to positive facts, P. This rule can be paraphrased as “If P is not provable from the

knowledge-base, assume ~P.”

2.1.1. Naive Closure
Reiter provides the following syntactic realization of the CWA, which we will call natve clo-
sure (NC):3 Define EKB, the negative extension of KB, as follows:
EKB = { ~P&|P is an n-ary predicate letter,
a is an n-tuple of ground terms, and KB {~ P& }.
Then the naive closure of KB is defined as those formulae provable from KB U EKB. We write
KB |- xc-

It is important to notice that naive closure extends the knowledge-base by adding a set of
ground literals. Universal statements capturing the CWA for particular predicates do not gen-

erally follow from the naive closure of the knowledge-base.* For example, if
KB = { Penguin(Opus) }, then

EKB = { —Penguin( Tweety), ~Penguin(Fred), ... }
but

KB {- yoc Vz. z £ Opus D —Penguin(z).
To see this, notice that we can construct a model for KB U EKB with a domain element, say o,
which does not correspond to any named by KB or EKB and set Penguin(a) true.

A semantic characterization of this type of closed-world reasoning can be given in terms of
minimal Herbrand models, as outlined below. We introduce the notion of minimal model in
greater generality than is immediately required. This will help simplify subsequent discussion and
clarify the relationships between the various formalisms we will be discussing.

In general, if we are given an ordering relation, < on some class of interpretations, I, we
say that I € I is minimal in 1 iff VI' € I. ~(I' < I) or (I' = I). For our present purposes, let P,
Q, and Z be disjoint sets of predicate-letters which jointly exhaust the supply of predicate-letters

of the language. We can define an ordering < on sets of Herbrand interpretations as follows:® *¢

Il < IzE VPG P. IPI[l C lPI]z, and VQE Q. IQ|11= 'Qllz'

In other words, the extensions of predicates in Q are identical, and those in P are (not necessarily

3 A confusion prevalent in the literature conflates ‘the CWA?’ with what we are calling ‘naive closure’.
¢ To simplify the discussion, we assume here that there is at least one ground term.
5 Note that this is not the standard mathematical notion of substructure or submodel.

¢ We will use |I| to represent the domain of the interpretation, I, and |P|s |#; to represent the in-
terpretation in 7 of the predicate, P, and term, ¢, respectively.
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proper) subsets. Observe that nothing is said about the interpretations of the predicates in Z.

Returning to the semantics of the CWA, it can be shown [van Emden and Kowalski 1976]
that the naive closure of KB corresponds to minimality in the set of Herbrand models of KB, in
the following sense. Let P be the set of all predicate symbols of L (hence Q = Z = { }). Then, if
KB is Horn and consistent, there is a unique minimal element, M, in the class of Herbrand models
of KB (in fact, M= N { M| Mis a Herbrand model of KB }). Furthermore, for ground clause,
L, KBU EKB| Lif M= L.

The class of Herbrand models of a theory is interesting for common-sense reasoning because
each Herbrand model contains precisely the individuals for which the theory provides names.
Intuitively, this is attractive for closed-world reasoning, since one would imagine that a closed
world would contain no spurious individuals. Unfortunately, as we have seen, in general both KB
and KB U EKB may have models with individuals not corresponding to any name. This accounts
for the fact that, while KB U EKB agrees with KB’s minimal Herbrand model, M, for ground
clauses, there may be facts true in M which do not follow from the naive closure of KB
(specifically, those which entail there being exactly the named individuals). If the knowledge-base
entails that there are only finitely-many individuals, it can be shown that M is the only model (up
to isomorphism) for KB U EKB.

Despite its attractiveness as a means of implicitly representing negative knowledge, closed-
world reasoning is not without shortcomings and pitfalls. The most obvious of these is that there
is no room for genuinely incomplete knowledge under the CWA — anything which is not known
will be assumed false. To see the problems presented by incomplete information, consider a data- -
base consisting of only BLOCK(A) V BLOCK(B). Since it is possible to derive neither
BLOCK(A) nor BLOCK(B), naive closure allows the derivation of —BLOCK(A) and

—BLOCK(B). It is easy to see that such situations lead to inconsistent conclusions.

The fact that some classically consistent databases are not consistent with naive closure
leads to the question, “Under what circumstances can naive closure be consistently employed?”
There is no complete characterization of suitable databases, and the only known sufficient condi-
tion is that the database be Horn and consistent. Purely negative information (clauses without
positive literals) plays no part in closed-world query evaluation for such databases. Since nega-
tive information can be reconstructed using the CWA, it can be ignored without loss of deductive
power [Reiter 1978a].

A more subtle drawback is that the “ {/ ” relation is not effectively computable, since first-
order provability is only semi-decidable. Thus, even where naive closure preserves consistency, it
may be impossible to even enumerate all of its consequences. While first-order logic is semi-
decidable, and its theorems recursively enumerable, neither of these holds for first-order logic +

naive closure.



2.1.2. Negation As Failure To Derive

Al programming languages (e.g., PROLOG [Roussel 1975, PLANNER [Hewitt 1972]) have
often addressed the problem of negative knowledge by adopting a weakened form of the CWA.
They represent only positive information, assuming that whatever cannot be shown to be true
must be false. Such systems embody a weakened form of the CWA because they do not fully
implement the ¢ {/- ” relation. A derivation of —P typically consists of an unsuccessful exhaustive
gearch for a derivation of P. This technique is called regation as faslure (NAF). Because the
search-space may not be finite, the search for a derivation of P may never fail, even when P truly
does not follow from the knowledge-base. Thus, NAF may not be able to find all of the negative
facts implied by the CWA.

In PROLOG, an attempt to prove the literal, —P, consists of (recursively) attempting to
prove P. If this fails, having exhausted the potential proofs for P, then the proof of —P succeeds.
This is the only inference rule for negation, and it is applicable only when P is a positive ground
literal. Clark [1978] justifies this approach to negation by showing that the inference of =P from
a database, DB, by NAF corresponds to a proof of =P from an extended database which is impli-
citly given by DB. (This extended database is discussed in detail in the next section.) Clark
shows that NAF can be viewed as a derived inference rule, a heuristic for deriving negative facts
which are (under the CWA) implicit in the database.

Because of the requirement of finite failure, the syntactic form of the database, as well as its
logical content, can play a role in what can be derived by NAF. For example, Sheperdson {1984]
points out that while the databases:

DB, = { Pa}
and:
DBy, = { =Pa> Pa}

are logically equivalent, PROLOG can prove Pa only from DB;,. An attempt to prove Pa from
DB, leads to an infinite proof tree: The subgoal —Pa is set up, leading to a further subgoal of
(failure to prove) Pa, ed infinitum. Although the attempt to prove Pa obviously fails, it does not
finstely fail, so the failure proof never returns. Of course, both databases logically entail Pq, and

the CWA functions correctly in either.

2.1.3. Database Completion

The CWA allows a system to act on the assumption that “the objects that can be shown to
have a certain property by reasoning from certain facts are all the objects that have that pro-
perty” [McCarthy 1980]. It does not, however, allow the reasoner to derive this assumption. Such
systems can never be “conscious” of the underlying principles which they are implicitly assuming.
Clark [1978] remedies this shortcoming by making the completeness assumptions explicit in the -
database. All of the information abdut a particular relation in the database, DB, is gathered
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together and a completion aziom is added which states that a particular tuple satisfies the relation
only in those cases where DB says it must. Applying this process to all of the relations in DB
yields the completed database (C(DB)). This completion of the database makes explicit the

assumptions of total world knowledge.

The database is viewed as a set of clauses, each with at most one distinguished positive
literal. A clause is said to be about the predicate occurring in its distinguished positive literal. All
of the clauses in DB about each n-ary predicate, P, are gathered together and converted to
equivalent implications with P(z,,...,z,) as their consequents. This implicative form makes clear
all of the conditions which DB gives as sufficient for P. Predicate completion asserts that these
conditions are also necessary, thus yielding a definition for P. If E,(%),...,E(Z) are the left-hand
sides of all of the implications for P(Z) in DB, then the completion aziom for P in DB is:

V7. P(z) o [Ey(3) V..V E(3)).

If there are no axioms about a predicate, the completion axiom says that that predicate is univer-
sally false. The completed database, C(DB), is the original database, together with the completion

axioms for each predicate. For example, the theory:

Bird( Tweety) (1)

Vz. Penguin(z) D Bird(z) (2)

Vz. Bird(z) \ —~Penguin(z) D Flies(z) (3)
gives rise to the following implications about Bird:

Vz. 2 = Tweety D Bird(z) (1

Vz. Penguin(z) D Bird(z) (2"

(Bird does not occur positively in (3)). Thus, the completion axiom for Bird, given these axioms
Is:

Vz. Bird(z) D z = Tweety V Penguin(z) . _ (4)
Similarly, the completion axiom for Flies is:

Vz. Flies(z) D Bird(z) N\ —Penguin(z) , (5)
and the completion axiom for Penguin is:

Vz. ~Penguin(z) . (6)

(We have assumed that (3) is about Flies.) Hence, C({(1), (2), (3)}) = {(1"), (2"), (3)-(6)},
which says the only birds are Tweety and the penguins, and all non-penguin birds fly. Further-
more, there are no penguins, so all (and only) birds fly.

Besides the original theory and the completion axioms, Clark adds “Unique Names Axioms”
[Reiter 1978a]. These are inequality axioms stating that different names denote different objects.

Thus, for example, if we add:
Penguin( Opus)

to the DB (1)—(3), we get the new completed database:



-11 -

C(DB') = { (1), (2), (3)~(5), Vz. Penguin(z) = z = Opus, Opus # Tweety },
which entails Flies( Tweety) and —~Flies(Opus). Without the unique names axiom, C(DB') would
entail neither Flies( Tweety) nor ~Flies(Opus).

When restricted to Horn databases, which have at most one positive literal, database com-
pletion preserves consistency. However, if clauses are allowed to have more than one positive
literal problems may result. For example, the clausal form of (3), above, is:

~Bird(z) V Penguin(z) V Flies(z) .
We arbitrarily decided that (3) was about Flies (because it illustrated our point), but we could as
easily have chosen Pengutn. It is easy to see that our choice makes the completion of:

DB = { (1)—(3), ~Flies( Tweety) }

inconsistent. Because (3) is taken to be about Flies, it is not taken into account when calculating
the completion of Penguin, even though it can be used to infer Penguin{ Tweety). Hence, the com-
pletion axiom stating that there are no penguins can still be derived, even though it is now incon-
sistent with DB.

Database completion can sometimes be consistently extended to non-Horn theories by treat-
ing a clause with positive literals, L,,...,Lg, as k clauses, each about a different L;. This may
allow database completion to be applied to databases containing incomplete information without

introducing inconsistencies. For example, the database:
BLOCK(A) V BLOCK(B),
which is not Horn and is inconsistent with naive closure, can be rewritten as:

Vsz.[~BLOCK(A) A z= B> BLOCK(z)}, |
{Vz. [~BLOCK(B) \ z = A D BLOCK(z)] }

These result in the consistent completed database:
{Vz.|BLOCK(z) = (~BLOCK(A) N\ z= B) V (-BLOCK(B) N\ z= A)}, A# B},
or equivalently,
{[Vz. BLOCK(z) = z = A] V. [Vz. BLOCK(z) = z= B, A# B} .
Notice that the completed database states that there is exactly one block, and it must be either A

or B. The disjunction in the original database, which did not exclude the possibility of two

blocks, has become ‘‘exclusive” in the completed database.
This approach has two drawbacks. First, the price paid for preserving conmsistency is weak-

ened conjectures. For example, if axiom (3) is treated as also being about penguins, the comple-
tion axiom for Penguin in (1)—(3) becomes:

Vz. Penguin(z) D Bird(z) N\ ~Flies(z) ,
and the completed database no longer allows us to conclude that Tweety does not fly. In fact, it is

a simple corollary of results' by Reiter [1982] and those in chapter 5 that predicate completion

cannot be used to conjecture positive facts (such as Flies( Tweety)) without risk of inconsistency.
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A more serious drawback, however, is that this weakened form still does not guarantee conm-

sistency. Shepherdson [1984] shows that the database:

a) V P(a) (7)
has an inconsistent completion, namely:

Vz. P(z) = z=a \—-Pla) .

This is especially disturbing, since (7) is equivalent to the trivial database, P(a). Perhaps con-
sistency can be guaranteed by restricting databases to some normal form which precludes (7), but
excluding all problematic cases would presumably require a sophisticated algorithm, capable of
determining when one set of clauses subsumes another. Such an algorithm would lose some of the
advantages of simplicity and directness which predicate completion enjoys. Normal forms aside,

the precise limits of the consistent applicability of predicate completion are as yet unknown.

This illustrates what is simultaneously a strength and a weakness of database completion.
The manipulations involved in completing the database are deterministic syntactic transforma-
tions. Any database can thus be effectively completed with relatively little effort. This same
fact, however, means that logically equivalent databases may have different completions. Thus,
the syntactic forms of formulae take on semantic significance, which is foreign to most logical sys-
tems. Besides sometimes leading to inconsistency, this seems to argue against Clark’s view that

the completion axioms are somehow implicit in the database.

Reiter [1984] explores the effects of adding completion axioms to normal relational data-
bases. He demonstrates applications of these techniques to problems involving some types of
incomplete information commonly encountered in the database field, such as null values and dis-

junctive information.

Database completion is more powerful than a first-order system augmented by NAF. Clark
shows that, for PROLOG programs, the structure of a failure proof is isomorphic to that of a

first-order proof from the completed database. Conversely, the completion of the database:

DB = {Penguin(Opus)}

ADB) = {Vz. [Penguin(z) = z = Opus|} (8)

from which Vaz. [z # Opus D —~Penguin(z)] follows by first-order reasoning. For any particular
z 7 Opus, NAF applied to DB can show —Penguin(z), but the universal summary (8) is beyond
its capabilities. {This follows from the fact that NAF is weaker than naive closure and naive clo-

sure cannot derive the universal summary.)

Database completion does not avoid all of the problems of NAF simply because all of the
deductions are first-order. There will still be propositions which are not decided by the completed
database — for example, propositions corresponding to those for which the exhaustive search for a

failure proof never terminates. Consider the database:

DB = { Penguin{Opus), Vz. Penguin(father(z)) D Penguin(z) }
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which says that the property of being a penguin is handed down from father to son. NAF cannot
prove —Penguin(Bruce) because the search for a derivation of Penguin(Bruce) will search forever

for a penguin among Bruce’s paternal ancestors. The completed database,
C(DB) = { Vz. Penguin(z) = z = Opus V Penguin(father(z)), Bruce # Opus }

also fails to entail —~Penguin(Bruce). Because of the circularity in the definition for Penguin, it

cannot prove the nonpenguinity of his father.

2.1.4. Generalized Realizations of the CWA

The CWA is the assumption of complete knowledge about which positive facts are true in
the world. As we have seen, this assumption is not always appropriate, and can lead to incon-
sistency if made in situations where knowledge is genuinely incomplete. This has led a number of
researchers to develop more sophisticated knowledge-closing operators which are able to handle
incompleteness in certain aspects of the KB without completely retreating to the ‘“Open-World

Assumption” that what is known is precisely what follows from what is explicitly stated.

To specify the generalized closed-world assumption (GCWA), Minker [1982] also uses
minimal models to characterize what follows from the closure of the database. Restricting his
attention to clausal databases (hence to universal theories) with a finite set of terms, Minker con-
siders the set of minirﬁal Herbrand models of the database. (For non-Horn theories, there may not

be a unique minimal Herbrand model.)

The GCWA augments the database with the negations of all the literals which are false in
all of its minimal Herbrand models. It can be shown that the resulting extended database is con-
sistent iff the original database is, and that no new positive clauses are derivable from the aug-

mented database.

To  illustrate the idea, consider the theory {BLOCK(A)V BLOCK(B),
BLOCK(C) V -BLOCK(D)}. This database has nine Herbrand models:

M; = {BLOCK(A), BLOCK(B), BLOCK(C), BLOCK(D)}
M, = {BLOCK(A), BLOCK(B), BLOCK(C), ~BLOCK(D)}
M, = {BLOCK(A), BLOCK(B), ~BLOCK(C), ~BLOCK(D)}
M, = {BLOCK(A), ~BLOCK(B), BLOCK(C), BLOCK(D)}
M, = {BLOCK(A), ~BLOCK(B), BLOCK(C), ~BLOCK(D)}
M, = {BLOCK(A), ~BLOCK{B), -BLOCK(C), ~BLOCK(D)}
M, = {~BLOCK(A), BLOCK(B), BLOCK(C), BLOCK(D)}
M, = {~BLOCK{(A), BLOCK(B), BLOCK(C), ~BLOCK(D)}
M, = {~BLOCK(A), BLOCK(B), ~BLOCK(C), ~BLOCK(D)}

of which Mg and M, are minimal. Accordingly, the GCWA sanctions ~BLOCK(C) and
—~BLOCK(D), since they are both false in all minimal Herbrand models, but yields no conclusions
about which of A and B are blocks. Thus, where the database could consistently be construed as
closed, the GCWA closes it, but where it is known to be incomplete (i.c.,
BLOCK(A) V BLOCK(B)), no conclusion is drawn.
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Because Horn theories have unique minimal Herbrand models, it is easily seen that this
definition of the GCWA corresponds to naive closure for Horn theories. The GCWA has the
advantage that it does not overcommit itself to the principle that all positive information is
known. Faced with a situation where some positive information is clearly not known, judgement is

reserved, rather than blundering into inconsistency.

Minker also provides a syntactic definition of the GCWA, which he proves corresponds to

the semantic characterization given above. The database, DB, is extended by adding EDB, the
set of negations of ground atomic formulae occurring in minimal positive clauses derivable from
DB. Specifically:

EDB = { —~P¢' | VK. DB |/~ (P¢’'V K), where K is a disjunction of
0 or more positive literals such that DB}~ K }

It is easily seen that, for Horn theories, this reduces to:
EDB = EDB= { -P¢’| DB {/~ Pc'}

— the closure set generated by naive closure — since for Horn DB and a positive clause, K, DB |-
(Pc’V K) iff DB |- Pc’or DB |- K.

Minker proves the GCWA preserves consistency — DB U EDB is consistent iff DB is — and
introduced no new positive information — if K is a positive clause, then DB U EDB K iff
DB |- K. These facts, together with the fact that the GCWA subsumes naive closure indicate
that the GCWA is an interesting extension. Of course, the GCWA is even less tractable than
naive closure (to the extent that either can be said to be tractable), since it involves multiple {/
tests for each literal. This suggests that naive closure might be preferred in those cases (Horn

theories) where it is applicable.

Gelfond and Przymusinska [1985] have developed an extension of the GCWA and naive clo-
sure. Their “‘careful closure procedure” differs from the GCWA (and naive closure) in that the
effects of closing the world can be constrained by indicating precisely which predicates may be

affected.

The predicates of the theory are divided into three sets, P, Q, and Z. P consists of those
aspects of the world which are to be closed; Q contains the predicates which are not to be affected
by the closure; and the predicates in Z may be affected in any way (consistent with the

knowledge-base) necessary to achieve maximum “closed-mindedness” about P.

This arrangement allows greater flexibility in closing the world. Firstly, by requiring that
certain predicates not be affected by the closure (those in Q), one can avoid inadvertently making
conclusions about, for example, the price of tea in China while one’s intention was to conclude
that the availability of tea at the local supermarket has not changed. Secondly, allowing the
predicates in Z to vary weakens the GCWA /naive closure restriction that no new positive facts
be derivable from the closure of the database. This means that if one is confident that one has all
the positive information about P, but knows only certain constraints on the relationship between

P and Z, then Z can vary as necessary to establish the minimal extensions for P.
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The “careful closure” of DB with respect to (P, Q, Z) is defined as DB'= DB U EDB,

where

EDB = {~P& | ¥{Ly...,L} C (P*U Q*U Q). DB - L, V..V L,, P& ¢ {L3},
orJk<n. DB | L, V..V L}

Intuitively, one can assume —P¢ unless this would allow the derivation of new facts about Q

and/or positive P.

The semantic definition of careful closure again involves a variant of the notion of minimal
Herbrand model outlined earlier, this time in its full generality (P, Q, and Z may all be non-
empty). Gelfond and Przymusinska show that, for a universal knowledge-base, KB, every
minimal Herbrand model of KB satisfies KB‘, and that KB" is consistent iff KB is.

It is easy to see that if Q = Z = { } then the above semantic characterization is the same
as that for the GCWA. Furthermore, if the knowledge-base is also Horn, the same is true for
naive closure. Since Gelfond and Przymusinska do not require that the knowledge-base be func-
tion free nor have a finite set of constants, this observation shows that these restrictions given in

the development of the GCWA were unnecessary.

2.1.5. Circumscription

McCarthy (1977, 1980, 1986] has presented a number of rules of conjecture for closed-world
reasoning. These rules are based on syntactic manipulations, rather than consistency. Instead of
the undecidability of appeals to non-provability on which some approaches to non-monotonic rea-
soning are based, these “circumscriptive” formalisms simply add new axioms (conjectures). These
conjectures force minimal, ‘“‘closed-world”, interpretations on particular aspects of the underlying

incomplete theory.

2.1.5.1. Predicate Circumscription

The most widely studied of these rules of conjecture is ‘“predicate circumscription”
[McCarthy 1980]. Predicate circumscription allows explicit completeness assumptions, similar to
Clark’s completion axioms, to be conjectured as they are required. This provides a means for
closing off the world with respect to a particular predicate at a particular time. A schema for a
set of first-order sentences is generated. This schema is then instantiated by substituting suitable
predicates for the predicate variables it contains. The particular substitution(s) chosen determine

which individuals are conjectured to comprise the entire extension of the circumscribed predicate.

The semantic intuition underlying predicate circumscription is the now-familiar notion that

closed-world reasoning about one or more predicates of a theory corresponds to truth in all models

T If R is a set of predicates, we use Rt and R, respectively, to indicate the positive and negative
ground literals over prediates in R..
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of the theory which are minimal in those predicates. Specifically, let T(Py,...,P,) be a first-order
theory, some (but not necessarily all) of whose predicates are those in P = {P,,...,,P,}. A model
Mof Tis a P-submodel of a model M’ of T (written M < pM') iff the extension of each P;in Mis
a subset of its extension in M’, and M and M’ are otherwise identical. M is a P-minimal model of
T iff every P-submodel of M is identical to M.

For finitely axiomatizable theories, T(Py,...,P,), McCarthy [1980] proposes realizing predi-

cate circumscription syntactically by adding the following axiom schema to T:
[T(d)l,...,tbn) A AVE (@55 P,E‘)]] > AVE (P25 22))

Here ®,,...,®,, are predicate variables, with the same arities as Py,...,P,, respectively. T(®y,...,®,) -
is the sentence obtained by conjoining the sentences of T, then replacing every occurrence of
P,,..,P,in T by ®,,...,P,, respectively. The above schema is called the (joint) circumscription
schema of Py,...,P, in T. Let CLOSUREp(T) — the closure of T with respect to P = {P,,...,P,} —
denote the theory consisting of T together with the above axiom schema. McCarthy formally
identifies reasoning about T under the closed-world assumption with respect to the predicates P
with first-order deductions from the theory CLOSUREp( T).

McCarthy [1980] shows that any instance of the schema resulting from circumscribing a sin-
gle predicate P in a sentence T(P) is true in all {P}-minimal models of T. This generalizes
directly to the joint circumscription of multiple predicates. An argument due to Davis [1980] can
be used to show that no general “completeness® result can be obtained identifying the “cir-
cumscriptive theorems” with precisely those formulae true in all minimal models of the theory.
Minker and Perlis [1983, 1984a] prove a “finitary” completeness result, however. Specifically, if
the original theory (or the circumscribed version) entails that the minimized predicates have finite
extensions, the minimal models of the original theory are all (and only) the models of the cir-
cumscribed theory.

McCarthy considers the blocks-world example, discussed previously, in which all that is

known is:

BLOCK(A) V BLOCK(B)® (9)
If the predicate variable, ©, in the circumscription of (9):

[©(4) V6(B)] A Vz. [6(z) > BLOCK(z)] > Vz. [BLOCK(z) D O(z)]
is replaced successively by the predicates z = A and z = B, the conjecture:

Vz. [BLOCK(z) > z = A] V V1. [BLOCK(z) D> z = Bj (10)

can be derived. As did the completed database, (10) says that there is only one block: A or B.
Again, the conjecture closes the world and puts the ‘“exclusive” interpretation on the original dis-

junction.

8 Recall that this theory is NOT consistent with its naive closure.
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The choice of s1\bstituends is crucial in determining what can be obtained by circumscrip-
tion. It is not clear, in general, how these substituends are to be chosen. McCarthy suggests that
the desired goal directs the choice of appropriate substitutions. It remains to be seen whether this

can be translated into general rules.

The relationships between predicate circumscription and the various forms of closed-world
reasoning are only partially understood. Reiter [1982] shows that predicate circumscription can
sometimes be used to derive the database completion axioms. McCarthy circumscriptively derives
the induction axiom for arithmetic, which shows that predicate circumscription is more powerful
than database completion.

Doylé [1984] has observed that circumscription is related to the idea of implicit definability
as it occurs in Mathematical Logic. A set of axioms, A, implicitly defines a predicate, P, if A

forces a “unique’ interpretation for P, or, more formally, if
A(®) D [V7. Pz = @3]
is valid for each expression, ®, of the same arity as P. It is easy to see that this schema implies
the circumscription schema.
Beth’s Definability Theorem [Beth 1953] guarantees that if A implicitly defines P then A
ezplicitly defines P. That is,
A VT PT = ¢7

where ¢ is some expression using only symbols of A (exclusive of P). This result is much-studied
in logic, and the known consequences include methods for finding an appropriate ¢. In those
cases where the circumscription schema actually implicitly defines P, these techniques can be used

to reduce the schema to an explicit definition axiom.

Circumscription does not always result in an implicit definition for P. In general, it is not
even decidable whether P is implicitly defined. In the Block(A} V Block(B) example cited above,

for example, all that is obtainable is a disjunctive definition,
[Vz. Block{z) = z = A] V [Vz. Block(z) = z = B] .

There are techniques for finding disjunctive definitions with k disjuncts, where such definitions
exist, but it is undecidable in general whether a disjunctive definition {(or a disjunctive definition

of size k) exists.

Doyle suggests that there may be profit in searching the Mathematical Logic literature (and

enquiring of mathematical logicians) for results which may shed light on such questions as:

1) When does circumscription implicitly define P? Disjunctively? When does it fail? Are there
interesting cases which can be characterized? Recognized?

2) What does circumscription do when it fails to define P?

3) When are new axioms irrelevant to prior circumscriptions? That is, when is the addition of
new information guaranteed not to invalidate circumscriptively derived explicit definitions?

4) How can the revision of circumscriptive conclusions in the face of new information be mechan-
ized?
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We have discovered a number of surprising limitations on the applicability and efficacy of

predicate circumscription. These are detailed in chapter 5.

2.1.5.2. Formula Circumscription

Many of the limitations of predicate circumscription stem from the fact that only those
predicates being minimized are allowed to vary. McCarthy [1986] has developed a generalized
form of circumscription which addresses this problem. This new formalism, formula circumscrip-
tion, retains many of the attractive features of its predecessor, without some of its limitations.

The formula circumscription axiom looks like:
V8. T(®) \ [Vz. E(3,3) > E(P,3)] o [VZ. E(P,5) > E(3,7)]

where E(P,Z) is any well-formed expression whose free individual variables are among
T = 1,,...,3; , and in which some of the predicate variables P = P;,...,P, occur free; E(3,%) is the
result of replacing each free occurrence of the predicate variables, P;, in E(ﬁ,i‘) with predicate

variables, ®;, of the same arity.

There are three main differences between the predicate circumscription schema and the for-
mula circumscription axiom. First, the former is a first-order axiom schema, while the latter is a
second-order axiom. McCarthy suggests that this is advantageous because it allows the results of
one circumscription to participate in subsequent circumscriptions. However, this feature is not
essential; the second-order axiom can be replaced with a first-order schema. Although weaker, the
first-order-schema variant appears adequate for many applications [Perlis and Minker 1986].
Investigations into the relative advantéges and disadvantages of second-order axioms vs first-order
schemas for circumscription are still continuing, and the question of the value of adopting a

second-order logic remains undecided.

The second new feature of formula circumscription is that arbitrary predicate expressions,
rather than simple predicates, may be minimized. McCarthy {1984, personal communication] sug-
gests that this is an inessential change, since the same effect could be indirectly obtained by intro-
ducing new predicates, with axioms defining these predicates as equivalent to the required expres-
sion. While this is true for formula circumscription, we show in chapter 5 that predicate cir-
cumscription cannot deal with such definitions. We also discuss additional mechanisms which are
sometimes used to augment predicate circumscription which allow definitions to be circumscribed.

These mechanisms do not always preserve consistency, however.

The third, and most significant, innovation is that the predicates allowed to vary are no
longer identified with those being minimized. This is reflected in the fact that P |alternately, 6]
may contain predicate variables not occurring in E(P,Z) [respectively, E(®,Z)] (and vice versa).
This separation allows circumscription to operate in richly connected worlds. Provided predicates
which would be altered by the minimization of the expression in question are among those

identified as “‘variable”, circumscription can have the desired effect.

Chapter 6 describes a model theory we have developed for formula circumscription, along

the lines of McCarthy’s [1980] semantics for predicate circumscription. For formula
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circumscription, the appropriate notion of submodel is one in which the extensions of the variable
predicates are allowed to expand or contract, provided that the extension of E(ﬁ,i’) contracts.
The extensions of the predicate parameters (those predicates which are not among the predicates
designated as variable) must be identical in a model and its submodels. A model is minimal if it
has no proper submodels. It is shown that formula circumscription is sound with respect to this
model theory; anything derivable from the circumscribed theory is true in all minimal models of

the original theory.

Perlis and Minker 1986] consider the completeness of the first-order-schema variant of for-
mula circumscription with respect to this model theory. They present results analogous to their
finitary completeness results for predicate circumscription [Minker and Perlis 1983, 1984a]. These
results partially answer some of Doyle’s [1984] questions about the relationship between cir-
cumscription and explicit/disjunctive definability, at least inasmuch as they establish explicit and
disjunctive definability as sufficient conditions for the completeness of formula circumscription.

These results have yet to be extended to the case of second-order formula circumscription.

Lifschitz [1984] has studied second-order formula circumscription and derived certain condi-
tions under which the second-order circumscription axiom can be reduced to an equivalent first-
order axiom. Such equivalences improve the usefulness of formula circumscription, in some cases,
by eliminating both the need for a second-order logic and the problem of finding the “right” sub-

stitutions.

Lifschitz defines a formula to be separable in P iff it can be written in the form:
v [c,-/\ VZ. E(z) > PE)] A V7. P(3) > F.ml]

where C;, E, and F; are P-free formulae. Essentially, a formula is separable if it is not recursive
in P. Lifschitz proves that the second-order formula resulting from circumscribing P in a separ-
able formula, A, allowing only P to vary is equivalent to a first-order formula with about the

same logical complexity as A.

In itself, this result is not very exciting, since second-order circumscription of P with only P
variable is subject to the same limitations chapter 5 outlines for predicate circumscription. Lifs-
chitz also shows, however, that the circumscription of P in A with P and Y variable is equivalent
to the circumscription of P in [ Y. A] with only P variable. Furthermore, if A is separable in Y,
then [JY. A] is equivalent to a first-order formula with complexity lower than A. While these
transformations do not always preserve separability [Reiter, personal communication|, it appears
that these techniques may be useful for eliminating the second-order quantifiers introduced by for-
mula circumscription — without re-introducing the awkwardness of axiom schemata and “right”

substitutions.

Another innovation due to Lifschitz is to minimize according to arbitrary pre-orders
(reflexive, transitive binary relations), rather than simple subset relations. Specifically, if X is an
n-tuple of predicate, function, and/or constant letters of T, and X' is an n-tuple of predicate,
function, and/or individual variables of corresponding types and arities, then the generalized cir-

cumscription axiom has the form:
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T(X) A VX', T(X') A (X' < 5X) > (X < 5X))
where < pis an appropriate pre-order.

The use of pre-orders allows a number of interesting and potentially useful extensions to cir-

cumscription. For example, the pre-order X < gY defined by
(Vz. X1z D Y32) A (V2. Yz D Xi3) D (Vz. Xp2 D Yaz))

allows the joint minimization of the unary predicates X; and X5 with the minimization of X; hav-
ing a “higher priority”.

The effect of allowing X to include constant and function letters is to allow constants and
functions to vary during the minimization process. It appears that — for languages with finite sets
of constants — it is possible to circumscriptively conjecture new facts about equality, including
unique names axioms, by allowing constants to vary. Unfortunately, Lifschitz neither motivates
nor discusses the variability of terms in detail. A semantic explanation of the process involved
has yet to appear. In chapter 6, we show that allowing circumscriptively variable terms
corresponds to weakening the definition of submodel in the semantic characterization of formula
circumscription by dropping the requirement that a model and its submodels share identical
interpretations of constant and function symbols. We also show that this approach can lead to

some unexpected consequences.

2.1.5.3. Domain Circumscription

In database and commonsense reasoning, it is often necessary to assume that the only indi-
viduals whose existence is relevant to some task are those required to exist by what is known
about the task. In such situations, the domain-closure assumption is made [Reiter 1980a]. This is
the assumption that the ‘“world” contains only individuals whose existence is required by the
available information. Reiter observes that this assumption is implicit in relational database
theory, where it is entailed by the manner in which universal queries are treated. Thus, for exam-
ple, in the education database:

Teacher(Smith) Student( Brown)

Teacher(Jones) Student( Black)

Teacher(Plato) Student(Aristotle)
with an integrity constraint specifying that the sets of teachers and students are disjoint, even the
simple query, “Who are all of the teachers?” cannot be answered without implicitly assuming that

the domain consists of only the listed individuals.

In cases where there are only finitely many individuals, this assumption can be stated using

domasin-closure aztoms. These are axioms of the form:
Ve.z=¢, V.Vz=1t, (11)

where the ¢; are ground terms. Any model satisfying (11) will have at most n distinct individuals
in its domain, those corresponding to the t. Reiter [1980a, 1984] shows that domain-closure
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axioms have an important role in logically formalizing the theory of relational databases.

Even when the domain cannot be enumerated to form a domain closure axiom, useful res-
trictions can sometimes be put on the size and composition of the domain by conjecturing that it
coincides with the extension of some predicate or function whose extension is (partly) known. For
example, in the education database discussed above, if it is known is that teachers are employees
and students are not, assuming domain closure allows one to conjecture that teachers are the only
employees. By conjecturing that the domain consists only of teachers and students (z.e.,
Vz. Teacher(z) V Student(z)), it becomes possible to deduce that there are no non-teacher

employees (regardless of whether all of the teachers and students are known).

Domain-closure axioms are also important with respect to a variety of closed-world reason-
ing formalisms. Perlis and Minker {1986], for example, show that the effects of predicate and for-
mula circumscription [McCarthy 1980, 1986] can be more precisely characterized in conjunction
with closed-domain theories. Similarly, Clark [1978] requires domain-closure axioms in the

development of his predicate completion approach.

Given the importance of domain-closure axioms, the question arises: Why not explicitly add
them to theories? Probably the most important reason is that the appropriate domain-closure
axiom may not be obvious. The repercussions of choosing too strong or too weak an axiom
(inconsistency or loss of useful conjectures, respectively) argues in favour of a more automatic
approach. Furthermore, as the state of the world (or the system’s knowledge) changes to bring
more entities into consideration, the same mechanism could be used to generate new domain-

closure axioms. In certain cases, domain circumscription provides such an automatic mechanism.

Actually the first of the circumscriptive formalisms, domain circumscription {McCarthy
1977, 1980; Davis 1980] is intended to be a syntactic realization of the model-theoretic domain-
closure assumption. It provides a mechanism for conjecturing domain closure axioms, eliminating

the need to explicitly state them.

To circumscribe the domain of a sentence, A, McCarthy proposes adding the schema:

Aziom(®) A A% > V. ®(z) ' (12)

Tt A Aziom(®) is the conjunction of Pa for each constant symbol o« and

V.2, [®2; A\ @z,) D ®fz;...z, for each n-ary function symbol £ A? is the result of rewriting
A, replacing each universal or existential quantifier, ‘Vz.> or ‘Jz.’, in A with ‘Vz.$z >’ or
‘Jz.8z N\ ’, respectively.

This axiom schema represents the conjecture that the domain of discourse is no larger than
it must be given the sentence A. For any predicate, ®, if & is true for all individuals whose
existence is given by the constant terms, through function application, or by existential
quantification, and if all individuals in ®’s extension satisfy all of the universally quantified for-
mulae, then ® is assumed to contain the entire domain. If the extension of some predicate meet-

ing these requirements is known, then the domain is (assumed to be) completely known.

The semantic intuition underlying domain circumscription is mintmal entatlment: only those
models with minimal domains should be considered in determining the consequences of the given

information. In this connection, a model, M, of a sentence is said to be a submodel of another
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model, N, if M is the restriction of N to a subset of N’s domain. A model is said to be minimal if
it has no proper submodels. Davis [1980] shows that every instance of (12) is true in all minimal
models of the original sentence A. This result is correct for those theories with at least one con-
stant symbol. In chapter 7, however, we show that inconsistency results when circumscribing
theories whose prenex normal forms contain no leading existential quantifiers and no constant
symbols. We also present a simple, easily motivated solution. This leads to a revised version of

domain circumscription which is shown to preserve consistency.

2.1.6. Restricting Closed-World Inferences

One may want to do closed-world reasoning to form conjectures about the underlying princi-
ples governing a situation. In this case, one is making universal (inductive) conjectures about the
state of the world. This is the type of reasoning which is involved in deducing laws, such as “‘an
unsupported object drops when released’’. In many cases, however, closed-world reasoning yields
stronger conjectures than may be desirable. For example, it is often sufficient to conclude that the
situation immediately at hand does not have certain properties. In day-to-day reasoning, one is
usually interested in forming particular conjectures in aid of completing a particular deduction.
These conjectures should be of as limited scope as possible while still strong enough to allow the
desired goal to be achieved. Thus, for example, if we knew that Tweety is a bird and that all
birds except penguins fly, we might want to conjecture that Tweety could fly (and hence that
Tweety is not a penguin). It is unlikely that we would want to conjecture that there are no

penguins at all, however.

“Protected Circumscription” [Minker & Perlis 1984b] provides one means for delimiting the
effects of closed-world reasoning. To prevent the circumscription of P in a theory, A, from conjec-
turing that S°s are not P’s, the predicate, S, is protected by weakening the circumscription

schema to:
A(®) A [VE’. (¢ A ~S7) D Pz] > [VE’. (PZ N\ -S7) > @7 .

The conclusions of protected circumscription apply only to those individuals that do not satisfy
the protected predicate. Thus, for example, McCarthy [1984, personal communication] has sug-
gested that one may wish to conclude only that there are no penguins present. Assuming that
there is a predicate, Present(z), which says that an individual is in the immediate vicinity, pro-
tecting —Present while circumscribing Pengutn will result in conjectures which say nothing about

those penguins which are not present.

Using formula circumscription, the scope of conjectures can be limited by conjoining a pro-
tecting predicate with the expression to be minimized, and not allowing the protecting predicate
to vary. For example, to minimize present penguins with respect to a theory, A, while protecting

possible “absent” penguins, the following circumscription axiom suffices:

V®. A(®) A [Vz. &z A\ Present(z) D Penguin(z) /\ Present(z)]
D [Vz. Penguin(z) N\ Present(z) D ®z A Present(s)] ,

which says nothing new about absent penguins.



- 28 -

2.1.7. Semantic Interconnections

Gelfond, Przymusinska, and Przymusinski [1985] have extended the ‘‘careful closure” notion
of Gelfond and Przymusinska [1985], by allowing the theory to be augmented with the negations
of arbitrary formulae meeting admissibility criteria. This is more powerful than adding only nega-
tions of ground atomic formulae. Gelfond, Przymusinska, and Przymusinski restrict their atten-
tion to fired-domain theories, those with axioms stating that there are finitely many individuals,
and that each term of the language denotes a unique individual. Let P, Q, and Z be as in section
2.1. Then a formula, K, not involving literals from Z, is free for negation iff there is no ground
clause, B, made up of literals in P* U Q* U Q™ such that T KV B and T {/ B. Then the
extended CWA for T is defined as:

ECWA(T) = TU { -K|K is free for negationin T} .

Using the same partial-order relation on models as Gelfond and Przymusinska [1985] (see section
2.1.4), Gelfond, Przymusinska, and Przymusinski claim that the set of formulae free for negation
in T are precisely those whose negations are true in every minimal model of T. (Here we refer to

minimality over all, not just Herbrand, models.) Thus, for consistent, function-free, fixed-domain

theories, T, ECWA(T) is consistent,” and corresponds precisely to the formulae true in all
minimal models of 7. It follows that the free-for-negation formulae characterize the results of for-

mula circumscription for such theories.

In fact, because of the fixed-domain property, one need only consider those K which are con-
junctions of literals from Pt U Q* U Q™. It can be shown that EC WA(DB) corresponds, syntac-
tically, to the careful closure of DB if DB is a fixed-domain theory. The semantic correspondence
follows from the fact that every model of a fixed-domain theory is isomorphic to a Herbrand

model, and hence every minimal model to a minimal Herbrand model.

By suitably matching the model-theory to the proof-theory, it is possible to show that, for
fixed-domain theories, predicate circumscription corresponds to the GCWA and, for Horn
theories, to naive closure. These observations show how central the notion of minimal model is to
the various formalisms for closed-world reasoning. The two forms of minimization — of extensions
of predicates and of the domain of the model (hence producing a fixed-domain model) — suffice to

connect them all.

° Every consistent, finite-domain theory has at least one minimal model.
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2.2. Default or Prototypical Reasoning

Never utter these words: ‘I do not know this,
therefore it is false.” One must study to know,
know to understand, understand to judge.

— Apothegm of Neruda

All of the approaches discussed so far provide ways of becoming more “closed-minded”.
Each functions by restricting the set of models for the given axioms. The goal has been to allow
only minimal models, in which only a minimal set of predicate instances or domain elements

necessary to satisfy the axioms is allowed.

The complementary approach also involves restricting the set of models considered. Rather
than focussing on minimality, the systems discussed in the sequel provide more flexibility in deter-

mining which models are considered ‘““‘interesting”.

2.2.1. Default Logic

Reiter [1978a, 1980a] addresses the problem of incomplete information by allowing new
inference rules to be added to a standard. first-order logic. These rules sanction their conclusions
provided that the set of beliefs satisfies the conditions outlined in their premises. Unlike standard
logic, these premises are allowed to refer both to what is known and to what is not known. The
latter property allows rules to be added that specify inferences that will be made only when
specific information is missing. These inferences can be used to tailor the completion of partial

knowledge, unlike closed-world reasoning, which involves a uniform completion strategy.

2.2.1.1. Default Theories

A default is any expression of the form:*°

A(Z): By(2), ..., Buf)
w(®)

where A(Z), B{(7), and w(z) are all formulae whose free variables are among those in " = 1;,...,2,.

A, B; and w are called the prerequisite, justifications, and consequent of the default, respectively.
If none of A, B, and w contain free variables, the default is said to be closed. If the prerequisite is
empty, it may be taken to be any tautology. Two classes of defaults having only a single
justification, B(Z), are distinguished. Those with B(z) = w(Z), are said to be normal, while those
with B(Z) = w(z) N\ C(Z), for some C(Z), are called semi-normal. Virtually all of the defaults

<

10 This notation differs from Reiter’s in the omission of the “M™ preceeding each of the Bls. Since
they are implicit in the positional notation, they have been omitted as a notational convenience.




-25 -

occurring in the literature fall into one of these two categories. (Lukaszewicz [1985] argues that
the remaining class of single-justification defaults, where B(Z) ¥~ w(z} are ill-motivated, and we

know of no application for multi-justification defaults.)

Defaults serve as rules of inference or conjecture, augmenting those normally provided by
first-order logic. Under certain conditions, they sanction inferences which could not be made
within a strictly first-order framework. If their prerequisites are known and their justifications are
“consistent” (1.e., their negations are not provable), then their consequents can be inferred. Thus
the term “justification” is seen to be somewhat misleading, since justifications need not be known,
merely consistent.!! The consequent’s status is akin to that of a belief, subject to revision should
the justifications be denied at some future time. It is this characteristic which induces the non-

monotonic behavior of defaults.

Default rules can be seen to have a great deal in common with many previously mentioned

approaches. For example, the Closed-World Assumption states:

If{f- w infer —w
which can be represented in default logic by:

.:ui (13)

—w

In fact, {(13) will later be referred to as the “Closed-World” default. The DEFAULT assignments
which can be attached to frame slots in KRL [Bobrow & Winograd 1977] also appear to be
related. KRL provides a mechanism for obtaining a value for a slot in the absence of a “better”

value. A KRL default value, d, for a slot, s, in a frame instance, f, can be viewed as:

If i s(/) # d infer s(f) = d

or, in default logic, as:

() =4d

s(=d
Similar mechanisms are available in many other frame-based knowledge representation schemes
[Minsky 1975].

A closely related approach is Sandewall’s [1972] ¢“‘Unless” operator. “Unless(P)” is inter-
preted as “ |/~ P?, and “Unless” terms are allowed in the construction of wffs, with results like:

A N\ Unless(B) > C
which corresponds roughly to:

A :-B
—e -

“Unless” was originally proposed as a solution to the frame problem [Hayes 1973]. Rather
than having to have explicit axioms stating that the properties of objects remained invariant from

situation to situation unless explicitly changed, Sandewall suggested that these ‘“frame axioms” be

! In a modal logic with the operator K (know) the justifications B; might appear as —~K—B;.
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replaced by a frame inference rule like:

IS(object,property, situation)
Unless{ ENDS{object,property,Successor(sttuation act)))

IS(object,property, Successor(situation,act))

which can be interpreted: If an object has a property in a situation, it can be concluded to retain
that property in the successor situation resulting from performing ‘act’, unless it can be shown

otherwise.

No formation rules were provided for ‘“Unless”, however, so questionable formulae such as:
A D Unless(B)

can be constructed. The semantics of such formulae are, at best, difficult to determine. Sandewall
also fails to provide any formal understanding of the impact of the “Unless” rule on the underly-

ing logic. Default logic has, to some extent, remedied these shortcomings.

2.2.1.2. Closed Default Theories and Their Extensions

A default theory, A, is an ordered pair, (D,W). D is a set of defaults; W is a set of first-
order formulae. Reiter [1980a] describes the extensions of a default theory as ‘“acceptable sets of
beliefs that one may hold about an incompletely specified world, W”. D is viewed as extending

the first-order knowledge of W in order to provide information not derivable from W.

Since defaults allow reference to what is not provable in the determination of what is prov-
able, the “theorems” of a default theory are not so easy to generate as are those of a first-order
theory. What is provable both determines and is determined by what is not provable. To avoid
this apparent circularity, the theorems of a default theory are defined by a fixed-point construc-

tion. An extension, E, for A is required to have the following properties:

WCE
A: B,,..,B,, ,
For each default, — ———— € D, if A € E, and -B,,...,.~B,¢ E
w

then w € E.

These properties state that F must contain all the known facts, that E must be closed under the
|— relation, and that the consequent of any default whose prerequisite is satisfied by E, and
whose justifications are consistent with F, must also be in E. Reiter defines an extension for a

closed default theory to be a minimal fixed-point of an operator having the above characteristics.

The extensions of a default theory select restricted subsets of the models of the underlying
first-order theory, W. Any model for an extension of A will also be a model for W, but the con-
verse is generally not true. Default theories need not always have extensions, even when W is

consistent. There are, however, certain classes of theories for which the existence of at least one
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extension is guaranteed. Theories with only normal defaults have been shown always to have
extensions [Reiter 1980a]. In chapter 3, we prove the same result for certain classes of theories

with semi-normal defaults.

Reiter [1980a] presents an iterative mechanism for deciding whether a set of formulae forms
an extension for a theory, A. The method is, unfortunately, not suitable for constructing exten-
sions. This i1s because an oracle is required which can decide whether a particular formula’s nega-
tion will be in the set. Reiter [1980a] and Etherington [1982] also present constructive mechanisms

applicable to normal theories and to arbitrary finite theories, respectively.

Some examples of defaults were presented in the preceeding section. The following example

illustrates the extensions induced by the closed-world default on the theory:
W = {BLOCK(A) V BLOCK(B)}.

The closed-world default is really a default schema which is applicable to any positive ground

literal. In this case, it results in the following set of normal defaults:

p- { mBLOCK(A) —~BLOCK(B)
~ | ~BLOCK(A) ' —BLOCK(B)

The theory, (D, W), has two extensions, E; and E,
E, = Th({~BLOCK(A), BLOCK(B)})

E; = Th({BLOCK(A), ~BLOCK(B)})

Note that E= Th({BLOCK(A), BLOCK(B)}) is not an extension. Like database comple-
tion and circumscription, the closed-world default sanctions the exclusive interpretation of dis-
junctions to which it is applied. Intuitively, this is because the defaults force as many things to
be false as possible, resulting in extensions whose models may be minimal models for W. More
precisely, E is not an extension because it violates the minimality condition of the definition of
extensions. (Were W also to contain both BLOCK(A) and BLOCK(B), E would be the only

extension.)

Notice how the extensions E; and E, manifest W’s inconsistency with the CWA. The incon-
sistent assignments for BLOCK{A) and BLOCK(B) are still obtainable, but they are separated
into orthogonal, self-consistent extensions. In fact, Reiter has shown that the extensions of any
default theory will always be self-consistent provided that the first-order theory W is consistent,

and that all the extensions of a normal default theory will be (pairwise) mutually inconsistent.

2_.2.1.3. General Default Theories

In contrast to closed defaults, an open default is one in which at least one of A(Z), B,(z), or
w(Z) contain free variables in Z. An open default is interpreted as standing for the set of closed
defaults obtainable by replacing its free variables by ground terms. If the set of ground terms is
infinite this results in a default theory with an infinite set of defaults.
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Most interesting default theories are not closed. Consider what, by now, must be the arche-

typal default theory:

Vz. Penguin(z) D Bird(z),

Vz. Penguin(z) D —Can—Fly(z),
Vz. Dead-Bird(z) D Bird(z),
W= \ Vz. Dead-Bird(z) D —~Can—Fly(z),
Vz. Ostrick(z) D Bird(z),

Vz. Ostrich(z) D —~Can—Fly(z),
Bird( Tweety)

D— { Bird(ézl ;_c;;:(;fzy(z) }

The default, which is not closed, might be interpreted as “If z is a bird, and it is consistent that z
can fly, conclude that it can”. This theory allows one to conclude, for an arbitrary bird (e.g.,
Tweety), that it can fly — unless one is told that it cannot, or that it is a penguin, an ostrich, or
dead. The conclusion may later have to be revoked should Tweety turn out to be a penguin, but
common sense seems to sanction the same conclusion. This is partly because people tend to
assume that they have the relevant information in most situations (c.f. linguists’ use of Grice’s
Conversational Implicatures [Grice 1975]: one of these is that all information necessary to inter-

pret an utterance is expected to be contained in the utterance.)

2.2.1.4. Interacting Defaults

Their broad applicability and the guarantee of coherence makes normal defaults attractive
for knowledge representation and reasoning. There are, however, some types of knowledge which
normal defaults cannot completely characterize. For example, Reiter and Criscuolo [1983] have
noticed that defaults sometimes interact with one another, and that normal defaults cannot ade-
quately constrain these interactions. One manifestation of this occurs when two defaults with dis-
tinct but not mutually exclusive prerequisites have contradictory consequents. In such cir-
cumstances it is not always clear which default should be applied. Commonsense reasoning usu-
ally prefers one of the competing defaults by virtue of its prerequisite being more specific, making
the default applicable for only a subset of those individuals for which the competing default is
applicable. This preference cannot be enforced using only normal defaults. For example, assume
we are given:

Typical adults are employed.
Typical high-school dropouts are adults.
Typical high-school dropouts are not employed.

This may be expressed by the following normal defaults:



-29 -

Adult(z) : Employed(z) Dropout(z) : Adult(z) Dropout(z) : —=Employed(z)
Employed(z) ’ Adult(z) ’ —Employed(z) ’

For a given a dropout, this theory can be seen to have two extensions which differ on his/her
state of employment. Intuition dictates that we assume s/he is unemployed. Careful considera-’
tion shows that the conflict arises because typical dropouts are not typical adults; this atypicality
should block the transitivity from Dropout through Adult to Employed. The first default incor-
porates no explicit reference to these exceptional circumstances which should block its applica-
tion. One way to address this problem is to require that the case under consideration not be a
known exceptional case. This requirement is then added to the justification. Thus the first default
above becomes:
Adult(z) : Employed(z) \ ~Dropout(z)
Employed(z) '

which is not applicable to known dropouts.

Semi-normal defaults can be used to resolve the ambiguities resulting from the interactions
between defaults. This is done by making interactions explicit, as exceptions to the applicability

of defaults. There are three major objections to this approach, however.

First, the complexity of theories with semi-normal defaults is substantially greater than of
theories with normal defaults. Application of a default may force conclusions obtained from pre-
viously applied defaults to be retracted. This phenomenon, which cannot occur with normal
default theories, precludes the type of straightforward proof theory developed by Reiter [1980a]

for normal theories.

Secondly, it is possible to so overconstrain the interactions between defaults that the result-
ing theory has no extension. Chapter 3 explores ways of guaranteeing that this does not happen,
but, for complicated theories with many interactions, it may be difficult to detect such overcon-
straining. '

Finally, interactions must be noticed and explicitly dealt with at the time new knowledge is
given to the system. In a large, complicated, system this is likely to be an enormous task. The
contributors of new knowledge may not be aware of all possible interations between their contri-
butions and the remainder of the knowledge base. In security-conscious environments, contribu-
tors may not even be allowed access to some of the information which interacts with their contri-
bution. Touretzky [1984a,b] argues that explicit control of interactions in default theories is inap-
propriate, for the reasons outlined above and because many of the ambiguities introduced by such
interactions can be resolved using more general principles. In semantic network systems, which
can be viewed as corresponding to default theories (see chapter 4), the standard such principle is
the “shortest-path heuristic”, which resolves ambiguities by preferring whichever conclusion can
be reached by traversing the smallest number of network arcs. Etherington [1982] shows how to
construct networks which defeat the shortest-path heuristic and other simple-minded ambiguity

resolution techniques.

Touretzky [1984a] presents a more sophisticated ambiguity resolution device, the inferential

distance topology, which appears to capture the intention of the shortest-path heuristic without its
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naive realization. He exploits the subclass/superclass relations, which are one of the raisons
d’¢étre for semantic networks, to arbitrate between rival conclusions. In the “Dropout” example,
above, since Dropout is a (default) subclass of Adult, the inferential distance ordering perfers con-
clusions associated with Dropout (i.e., unemployed) over those associated with Adult (s.e.,
employed), in accord with our intuitions. In chapter 4, we discuss Touretzky’s approach in more

detail, and show its relationship to default logic.

In spite of the fact that it is applicable only in subclass/superclass hierarchies, the success of
Touretzky’s approach in agreeing with the intuitively acceptable conclusions (a vague criterion, to
be sure) suggests that it may be possible to elucidate some set of general principles which avoid
the necessity of ad hoc manipulations of the knowledge base. Finding and evaluating such princi-

ples remains an important open problem.

2.2.2, Minimizing Abnormality

Default reasoning can involve conjecturing both positive and negative instances of predi-
cates. This would seem to preclude the use of any of the closed-world or circumscriptive formal-
isms, discussed earlier, in situations where general default reasoning is required. (In chapter 5, this
is shown conclusively in the case of predicate circumscription.) Expanding on an idea first
presented (to our knowledge) by Levesque [1982]), McCarthy [1986] and Grosof [1984] have
explored the possibility of using formula circumscription for default reasoning.-Essentially, the
idea involved is that if defaults represent the properties of ‘““normal’’ individuals, then there is
“something abnormal” about an individual who does not fit the default patern. By appropriately

axiomatizing abnormality, it is possible to do default reasoning by circumscribing abnormality.

An individual may be normal in some respects and abnormal in others; few, if any, are ever
totally “typical”’. Thus, some allowance must be made for these differing aspects of abnormality.
McCarthy explicitly introduces these aspects into his ontology, speaking of the (ab)normality of
particular aspects of an individual. Grosof, preferring not to proliferate objects unduly, instead
has a variety of abnormality predicates, each corresponding to abnormality of a particular aspect

in McCarthy’s notation.

An example helps to clarify the method. We follow McCarthy’s notation:
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Vz. Thing(z) A\ —ab(aspect,(z)) D —~Fly(z)
Vz. Bird(z) D ab(aspect,(z))

Vz. Bird(z) \ —ab(aspecty(z)) D Fly(z)
Vz. Penguin(z) D ab(aspecty(z))

Vz. Penguin(z) O Bird(z)

Vz. Penguin(z) N\ —ab(aspects(z)) D ~Fly(z) L (14)
Vz. Penguin—in-his—dreams(z) D ab(aspects(z))

Vz. Penguin—in—his—~dreams(z) O Penguin(z)

Vz. Penguin—in—his—dreams(z) N\ —ab(aspecty(z)) D Fly(z)
Vz. Ostrich(z) D ab(aspectyz))

Vz. Ostrich(z) D Bird(z)

Vz. Ostrich(z) N\ —ab(aspects(z)) D> ~Fly(z)

J

aspect;(z)-aspects(z) are the aspects, and ab is the abnormality predicate on aspects of individu-
als. Given Thing(Theodore), circumscribing ab(z) varying ab and Fly allows us to conclude
—ab(aspect;( Theodore)) and hence —Fly(Theodore). Given Bird(Tweety), circumscription will
yield ab(aspect,( Tweety)), ~ab(aspecty Tweety)), and Fly( Tweety). If Opus is a penguin, the con-
jectures will be ab(aspect,(Opus)), ab(aspecty(Opus)), —ab(aspects(Opus)), and —~Fly( Opus).

This reformulation of default reasoning as closed-world reasoning about abnormality can
deal with many of the problems of interacting defaults that forced the consideration of semi-
normal default theories. The direct default representation of the above example looks like:

Thing(z) : ~Fly(z)  Ostrick(z) : ~Fly(z)

~Fly(z) ' —~Fly(z) '
Bird(z) : Fly(z) \ —Ostrich(z) \ —(Penguin(z) N\ —Penguin—in—his—dreams(z))
Fly(2) ’
Penguin(z) : Fly(z) /\ ~Penguin—in—his—dreams(z))
~Fly(z)

In order to preserve a unique extension, the complicated interactions between the default state-
ments must be explicitly reflected in the rules. Introducing abnormality allows a normal default
representation consisting of the first-order axioms (14), together with the single closed-world
default:

: —ab(z)

—ab(z)

Grosof [1984] has developed a translation scheme, using abnormality predicates, which he
claims produces representations of normal default theories in a form suitable for circumscriptive
default reasoning.'? He is currently seeking a w'ay of extending this approach to arbitrary semi-
normal default theories. The related problem — whether ab can be used to reduce semi-normal

default theories to normal default theories — also remains open.

12 In fact, the representation correctly translates only prerequisite-free normal defaults.
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McCarthy [1984, personal communication] has discovered that it is possible to run into

interaction problems with ab predicates. Augmenting (14) with:

Vz. Canary(z) N\ —ab(aspecty(z)) D Bird(z)
Vz. Gangster-Canary(z) O Canary(z)
Vz. Gangster-Canary(z) D ab(aspecty(s)) ,

to allow the possibility that “canary’ may be used in the sense of old gangster-movies, may result
in ambiguity. Dinsdale the Canary must be abnormal with respect to either aspects or aspect;.
Circumscribing ab can only conjecture either that Dinsdale flies (because he is a bird and hence
abnormal in aspect;), or that he is an abnormal canary (in aspects). McCarthy [1986] has pro-
posed a variant of formula circumscription, prioritized circumscription, which allows several
expressions to be simultaneously minimized according to some particular precedence. This can
eliminate undesirable interactions, but at the cost that the precedence must be explicitly worked
out before circumscribing. The criticisms applied to semi-normal default representations, that
interactions must be known and accommodated when knowledge is represented, apply equally to
the prioritized circumscription of abnormality representations. Whether such interactions can be
dealt with without destroying the conceptual clarity and naturalness of the ab representation

scheme 1s unknown.

2.2.3. Non-Monotonic Logic

McDermott and Doyle [1980, McDermott 1982] propose a formalism complementary to
default logic, which they call non-monotonic logic (NML). Unlike default logic, which uses the
notion of consistency only at the ‘““meta” level (in the inference rules), NML centres around the
introduction of consistency into the object language. The first incarnation of NML [McDermott &
Doyle 1980] consists of a standard first-order logic, augmented with an ‘““M’ operator, roughly
equivalent to the familiar ¢ {{- = ”. The set of theorems is defined as the intersection of all of the
fixed-points of an operator, NM. Essentially, NM produces the logical closure of the original
theory together with as many assertions of the form Mg as possible. The set of theorems can be
contrasted with the extensions of a default theory, each of which is a fixed-point. This indicates
that non-monotonic theoremhood is, in some sense, a more conservative or restrictive concept
than extension membership. Moore [1983a] suggests that this difference can be understood by
viewing fixed-points as sets of beliefs an agent might come to hold given his premises, while the
intersection of the fixed-points determines what an outside observer could infer about the agent’s
beliefs knowing only his premises. In fact, the extensions of default theories and the fixed-points
of non-monotonic theories are incomparable in general. The two formalisms often agree, as would

intuitively be expected, given that any default:

A:B,..,B,,

w

can be approximated in NML by:
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ANMB,\--\MB,>w.

There are, however, default theories which have extensions even though the corresponding non-

monotonic theories have no fixed-points, and vice versa (see [Reiter 1980a| for examples).

Davis [1980] suggests that it might be impossible to assign a reasonable semantics to the M
operator were it included in the object language. McDermott and Doyle point out that MP, intui-
tively read as “P is consistent”, is not necessarily inconsistent with =P! Moore [1983a] observes
that this is caused by the lack of any prohibition, in the fixed-point construction, against =P and
MP being contained in a single fixed-point. Thus, in Moore’s terms, =P may be believed without
the statement “—~P is believed” (-MP or L—P) being believed. This allows weaker interpretations

to be placed on M than the intended ‘‘is consistent’’. These and other problems led to the recast-

ing of the theory in terms of a more classical modal logic [McDermott 1982].!® The resulting non-
monotonic S5 is unfortunately redundant, since it is no more powerful than S5. Because of this,
McDermott suggests falling back to non-monotonic S4 or non-monotonic T. This suggestion is
peculiar, since McDermott acknowledges that the characteristic axiom of S5 (-LP D L-~LP) -if P
is not believed, it is believed not to be believed — seems appropriate for any belief system. How-

ever, the collapse of non-monotonic S5 was seen to force this retreat.

Moore [1983a, b] argues that this retreat is ill-motivated. He goes on to show that the col-
lapse of non-monotonic S5 is actually due to the axiom LP D P, which says that whatever is
believed is true. While this axiom is appropriate for knowledge, Moore claims that a non-
monotonic system is actually dealing with belief, and that an axiom stating the infallibility of an

agent should be ezpected to lead to peculiar consequences.

Aside from the question of their appropriateness, McDermott presents no proofs of the con-
sistency of non-monotonic T and S4. Such proofs are a necessary step in the development of non-

monotonic T and S4.

In the second paper on NML, McDermott [1982] acknowledges the restrictiveness of believ-
ing only those formulae in the intersection of all the fixed-points of a theory. He proposes a
“brave robot” which would believe all of the formulae of some particular fixed-point. Such an
approach is required in order to provide an intuitively satisfactory semantics for Mp: “p is con-

sistent with what 1s believed”.

The availability of the ‘““M” terms in the language has advantages and disadvantages. For

example, it can be shown that sentences of the form:
p D Mg

where p and ¢ are arbitrary formulae, are either redundant or inconsistent [Etherington & Mercer,
1982, unpublished notes]. (This follows because the “theorems” of any NML theory must include
all formulae Mp which are not inconsistent.) Such sentences cannot be formed in default logic,

but are readily available in NML (as they are in Sandewall’s formalism).

13 A discussion of modal logics is beyond the scope of this proposal. See [Hughes and Cresswel 1972] for
an introduction.
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On the positive side, the default rules can be manipulated by the theory. For example, in

the normal default theory with no axioms and the defaults:

A:B -A:B
B’ B

nothing can be inferred about B. The corresponding non-monotonic theory:

{ANMB> B,~A N\ MB> B}

implies MB and MB > B, from which B can be inferred. This appears to be more in accord with

normal commonsense reasoning.

Finally, Lp = p is a thesis of NML. While most modal logicians would agree that “p is prov-
able” implies ““p is true”, the converse is usually not accepted. Hughes and Cresswell {1972, p28]
conclude that “no intuitively plausible modal system” would have such a thesis. This indicates

that there may be fundamental problems with NML.

2.2.4. Autoepistemic Logic

Moore [1983a, b] provides a detailed criticism and reconstruction of NML. He begins by dis-
tinguishing between default reasoning and “autoepistemic” reasoning. The latter is defined to be
what goes on in an ideally rational agent reasoning about her own beliefs. It is this type of reason-

ing — not default reasoning — that NML attempts to model, according to Moore.

Moore sees a NML axiom of the form:
Vz.Bird(z) N\ M{(Can-Fly(z)) > Can—Fly(z) (15)

as saying not “Typical birds can fly”, as McDermott and Doyle interpret it, but rather “The only

birds which do not fly are those known not to fly”. Read in this way, axioms such as {15) become

statements about the state of an agent’s knowledge, not about typical individuals.1*

Having made this distinction, Moore points out that default and autoepistemic reasoning are
nonmonotonic for different reasons. Default reasoning is tentative, and thus defeasible. It pro-
vides plausible grounds for holding certain beliefs, but these beliefs may have to be retracted
should those grounds prove to have been merely plausible, rather than true. Autoepistemic rea-
soning makes only valid inferences. Provided that the premises are true, the conclusions follow
with all of the force of logic behind them. Non-monotonicity enters because autoepistemic state-
ments are contezt-sensitive or tndezical. They explicily refer to the entire knowledge context that
contains them. Thus, their meaning changes depending on what is known. Obviously, what fol-

lows from not knowing a will hold when «a is not known, but may not hold if « is learned.

Moore argues that the possible sets of beliefs an ideally rational agent can hold based on a

consistent set of premises, A, are those sets, T, such that

M Similar arguments can be applied to default logic and other consistency-based non-monotonic for-
malisms. :
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T= Th(AU {LPlPe T} U {~LP|P ¢ T}),

where LP means ““P is believed”. These sets he calls the stable expansions of A. A stable expan-
sion includes the premises, accurately characterizes what is and what is not believed, and includes
no beliefs not supported by the premises. Moore shows that stable expansions contain all and only
those formulae which are true in every interpretation which satisfies all of the premises and makes
LP true for every formula, P, in the expansion. The important thing to notice here is that if the
premises (which may contain implications from what is/is not believed) are true, and the set of
beliefs corresponds to the beliefs contained in a particular expansion, then all of (and only) the
formulae in that expansion can be true. This intuitively corresponds to the idea that the different
conclusions one can draw from incompletely specified knowledge will be completely determined by

what one chooses to believe.

Unlike NML, autoepistemic logic (AEL) is a propositional modal logic. No provision is made
for individual variables or quantifiers. Moore {1984, personal communication] suggests that it
should be a relatively easy matter to extend AEL to its first-order counterpart, provided that the
M operator is applied only to closed formulae. This means that no M occurs within the scope of a
quantifier, so the problems of “quantifying in’’ to the scope of a modality are avoided. Unfor-
tunately, many of the statements one would like to make using a first-order version of AEL
involve quantifying in. For example, to say “All of the a’s are known” seems to require an axiom

of the form:
Vz. a(z) La(z)

(in NML, this would be written as Vz. M=a(z) D —a(z)), but the free ‘z’ in ‘La(z)’ is captured by
the universal quantifier outside the modal context. The problems of quantifying in are an impor-
tant topic in the study of modal logics (c.f. [Linsky 1971]}, but the problem has yet to be studied

in depth from the perspective of non-monotonicity.

Like many other non-monotonic reasoning systems, AEL was presented non-constructively
[Moore 1983a, b]. Neither the semantic basis nor the syntactic realization of that semantics pro-
vided a mechanism for enumerating the theorems of a given theory. Moore [1984] has recently
developed an alternative semantic characterization based on the familiar Kripke-style possible-
worlds structures. In this semantics, it is possible to enumerate all of the interpretations (each
model is finitely specifiable and, if the language is finite, there are only finitely many), decide
which of these are models, and determine what is true in those. Moore 1984, personal communi-
cation] points out that, for theories with few propositional constants, this is an easy task. One
might hope for a more direct means of arriving at the theorems of an autoepistemic theory, but

this remains an open problem.

2.2.5. KFOPC

Levesque {1982, 1984] approaches the problem of incomplete information differently.
Instead of immediately addressing the task of completing the incompleteness, he considers what

an incomplete knowledge-base might be expected to know about its own knov(rledge, and what one
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might reasonably ask or tell such a knowledge base. This entails questions of what constitutes a
reasonable answer to a query under incompleteness, and what an incomplete knowledge base can
be expected to know after being told a particular fact. After developing a logical framework in
which to talk about (incomplete) knowledge, Levesque discusses ways in which this framework

can be applied to completing knowledge bases.

In formalizing knowledge (or “rational belief”’), Levesque [1982] makes three basic assump-

tions about the nature of knowledge bases. These are:

1) Consistency: The knowledge in a knowledge base is self-consistent. There is some possible
state-of-affairs that makes everything that is known true.

2) Competence: Every unknown sentence is false in some world compatible with everything that is
known. Le., all logical consequences of what is known are known.

3} Closure: The knowledge base has complete and accurate self-knowledge. Any sentence which
deals only with the state of the knowledge base will be known to be true or false accordmg as
it is true or false, respectively, for the knowledge base.

These assumptions lead to a first-order modal logic of knowledge (KFOPC), roughly similar
to “weak” S5 [Stalnaker 1980]. This logic characterizes the beliefs of an ideally rational agent
capable of reflecting on her own beliefs. Any sentence which is not known is known to be unk-
nown {and vice versa), knowledge is logically closed, and the agent believes in the veracity of her
beliefs. This last statement does not mean that every belief is true, merely that the agent believes
all of her beliefs to be true.

One of the most surprising aspects of this system is that, although KFOPC allows one to
tell/ask the knowledge base things that cannot generally be phrased in first-order logic, the query
and update mechanisms, and the knowledge base itself, are all first-order representable. Levesque
presents a function that translates any update or query into an equivalent first-order sentence
with respect to a particular knowledge base. Unfortunately, the mapping is not a partial recur-
sive function: In the general case, choosing first-order representability means that effectiveness
must be traded for some heuristic component. Levesque does not explore whether there are

effective subcases.

Non-monotonicity enters KFOPC in two ways. The first, most obvious, comes from the
assumption of closure. That is, if KB does not know P, it knows this (i.e., KB |— K—~KP).
Clearly, though, KB U {P} |~ KP, and hence KB U {P} {- K—~KP. As Levesque points out, ~KP
means only that P is not currently known, not that it will never be known. Levesque’s solution to
this problem is to have self-knowledge come only from introspection: from implicit, rather than
explicit, statements. Such a KB will never contain statements of the form —-KP:

“... any assertion will be a statement about the world and not the KB. If the assertion
talks about what is known ... it i1s only doing so to help make a statement about the
world. Thus, there is no way to tell a KB about itself... . This is to be expected, howev-
er, since a KB has been assumed to have complete and accurate knowledge of itself at
any time.”

The non-monotonicity of statements about lack of knowledge is not particularly problematic when

treated in this way.
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A second form of non-monotonicity arises when lack of knowledge is used as a premise in

deductions. For example, the “Flying Birds” default can be expressed in KFOPC as:
Vz. Bird(z) \ ~K~Fly(z) D Fly(z) (16)

— any bird not known not to fly can fly. Such statements allow conclusions about what is true in
the world to be based on what is not known by the current knowledge base. Since the state of the
knowledge base can change, non-monotonicity can extend to encompass more than purely intros-

pective statements.

This representation of defaults in KFOPC is subject to the problems of interaction that
plague normal default theories [Reiter & Criscuolo 1983). For example, the fact that Australian

birds are non-fliers by default can be written:

Vz. Australian—bird(z) D Bird(z)
Vz. Australian—bird(z) \ ~KFly(z) D —~Fly(z)

but Australian birds can also be conjectured to fly by virtue of being birds, through (16). Again,

the logic provides no means of deciding between these alternatives.

A more serious problem arises when the knowledge base knows that some unknown indivi-
dual is atypical. For example, the knowledge base:
Bird(B1),
Bird(B2),
—Fly(B1) V —Fly(B2)
is tnconsistent with the default (16) because there is a bird (Bl or B2), not known not to fly,
which nonetheless does not fly. In fact, this type of reasoning is not really default reasoning at
all, but what Moore [1983a] calls ““Autoepistemic Reasoning”. What is really involved is a valid
form of inference: from the premise that all exceptional cases are known to the conclusion that an
individual, not known to be exceptional, is typical. If all of the exceptional cases are not known,
as in the above example, then the “default’’ is simply false. This means that defaults cannot sim-
ply be stated as axioms, since the logic is too rigid to allow for occasional violations by particular
individuals.
Levesque addresses these problems by “preprocessing” the defaults. This is done by means
of a mapping on defaults that rejects any which are contradicted by the knowledge base or which,
given the current state of the knowledge base, conflict with another default. All conflicting

defaults are rejected.

This leads to a strongly conservative interpretation of defaults. If two defaults cannot be
applied together because they are mutually inconsistent, neither will be applied. Not having any
grounds for deciding between them, KFOPC chooses to reject both. This is similar to non-
monotonic logic [McDermott & Doyle 1980], which sanctions only those beliefs in every fixed-
point of its theories. In contrast, default logic [Reiter 1980] and auto-epistemic logic [Moore
1983a] sanction multiple sets of beliefs, one supporting each of the alternatives. Circumscriptive
default reasoning conjectures the disjunction of the two alternatives. The only defaults assumed

in KFOPC are those which are assumable independently of all other defaults.
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Levesque discusses some interesting techniques for circumventing these difficulties in certain
cases. To avoid the problem of interacting defaults without requiring defaults to explicitly allow
for exceptional cases, Levesque suggests a represe:nté.tion scheme involving a ““typical’-predicate-
forming operator, V:k. If P is a predicate letter, 7:kP(%) is interpreted as saying that Z" is typical
with respect to the k*" aspect of Pness. The properties of typical individuals are stated as first-
order axioms. For example, the KB:

Vz. V:1Bird(z) D Fly(z)

Vz. V:1Bird(z) D ~Australian—bird(z)

Vz. Australian—bird(z) D Bird(z)

Vz. V:1Australian—bird(z) D —Fly(z)
says that all birds typical in aspect 1 of “Birdness” fly and are not Australian-birds, while
V:1Australian-birds are birds which do not fly. Such axioms do not state default properties of
classes of individuals. Rather, they state properties that all typical individuals of those classes
must (or must not) have. Default reasoning is performed by conjecturing that individuals are typi-
cal. For example, the statements:

Vz. Bird(z) \ ~K~V:1Bird(z) D V:1Bird(z) : (17)

Vz. Australian—bird(z) \ ~K—V:1Australian—bird(z) D V:1Australian—bird(z) (18)
say that — unless known otherwise — birds and Australian birds are typical in the specified aspects.
If Tweety is a bird not known not to fly (nor be otherwise atypical in aspect 1), (17) says that she
1s typical in aspect 1, and hence flies. An Australian bird, Oscar, on the other hand, is known to
be an atypical bird in aspect 1, so (17) is inapplicable. The default (18) is applicable, however, so
V:1Australian—bird(Oscar) can be conjectured, and hence —Fly(Oscar).

To prevent defaults which are contradicted for particular individuals (or classes) from being
rejected outright, axioms can be added which explicitly state that those individuals (or members

of those classes) are atypical in the relevant aspects. For example, given the knowledge base:

Quaker(john), Vz. V Quaker(z) O Pactfist(z),
Republican{george), Vz. VRepublican(z) D —Pacifist(z),
Quaker(nizon) /\ Republican(nizon),

Vz. Quaker(z) \ ~K—~V Quaker(z) D V Quaker(z) v (19)
Vz. Republican(z) \ ~K~V Republican(z) D V Republican(z) (20)

the defaults, (19) and (20), stating that Republicans and Quakers are typical Republicans and
Quakers, respectively, are not applicable for any individual because they are mutually contradic-
tory for nizon. nizon violates the defaults: he is not known to be an atypical Quaker, so (19)
sanctions V Quaker(nizon); similarly, (20) sanctions V Republican(nizon); but these conclusions
are mutually inconsistent. Under the conservative interpretation of defaults, KFOPC rejects both
(19) and (20) for this knowledge-base. Hence, john and george cannot be concluded to be typical,
and so Pacifist(john) and —Pacifist(george) cannot be concluded. To remedy this, axioms stating

that the typical Republican is not a Quaker (and vice versa) can be added:
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Vz. V Quaker(z) D —~Republican(z)
Vz. VRepublican(z) D ~Quaker(z) .

With these additional facts, nizon no longer constitutes a violation of the defaults, since
K-V Republican(nizon) \ K-~V Quaker(nizon)

follows from the knowledge base.

Typical-predicates can also be used to specify a precedence-hierarchy among multiple,

potentially-conflicting, defaults. For example, the axioms:

Vz. V:lstudent(z) D undergrad(z)
Vz. V:2student(z) D undergrad(z) V MSc(z)
Vz. V:3student(z) D undergrad(z) V MSc(z) V PhD(z)

together with the defaults:
Vz. student(z) N\ ~K-V:kstudent(z) D V:kstudent(z) for k = 1,2,3. (21)

will result in a theory that will assume student's are undergrad’s if possible, otherwise MSc’s if

possible, and otherwise PhD’s if possible.

Levesque gives numerous examples showing that these strategies can be combined to obtain
remarkably subtle control of the interactions between defaults, without modifying the structure of
the defaults themselves. All that is required is the addition of new axioms. He cites three advan-

tages of this formalization of default reasoning:

1) A default need not be discarded and replaced when a subclass that typically fails to satisfy the
default is discovered. Additional axioms can be added, stating the inapplicability of the
default for members of that subclass.

2) The knowledge given to the knowledge base is more structured. Instead of arbitrary defaults,
properties of typical individuals are listed.

3) Only a single type of default (e.g., (21)) need be considered, and only one of these for each
typical-predicate, /:kP.

Levesque’s use of typical-predicates as a representation scheme for defaults corresponds
directly to McCarthy’s subsequent use of abnormality-predicates. There is a straightforward map-
ping between Levesque’s axiomatizations using V-predicates and McCarthy’s using ab-predicates.
The defaults, Vz. Px \ ~K—V:kPz D V:kPz, then correspond to minimizations of the correspond-
ing abnormality-predicates. It is not yet known whether this mapping constitutes a translation,
whether the two approaches lead to the same conjectures for corresponding default theories.
There are striking similarities, however. For example, tangled hierarchies, wherein members of
one class may typically — but not always — be members of another, are problematic in both para-
digms. McCarthy’s “Gangster and Canaries” example, discussed earlier, requires additional
KFOPC rules, beyond those required by the straighforward abnormality/typicality representation,
to express priorities or preferences for particular kinds of atypicality. Capturing these priorities in
KFOPC appears to involve a loss of clarity and naturalness of representation similar to that

incurred by McCarthy’s introduction of priorities into circumscriptive abnormality theories.
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In spite of Levesque’s insights into representing default knowledge, default reasoming in
KFOPC remains largely unexplored. Similarly, the application of Levesque’s ideas on typical-
{(abnormal-) predicates to default reasoning based on other formalisms has only begun. Both of
these areas promise to provide important insights into reasoning about incompletely specified

worlds, and deserve further exploration.

2.2.6. Objections to Non-Monotonic Formalisms

Kramosil [1975] claims to have shown that any formalized theory which allows unprovability
as a premise in deductions must either be ‘“meaningless”, or no more powerful than the

“proofs”

corresponding first-order theory without rules involving such premises. He presents two
to support his claim. Careful examination shows that the first result follows from a definition of
“formalized theory” which expressly excludes any theory which exhibits the types of behavior
common to non-monotonic theories. The second result is based on an incorrect definition of
“proof” and hence of “theoremhood” and is itself meaningless. As the paper stands, it shows only
that non-monotonic theories must behave differently than monotonic theories in those cases where

the former can derive results unobtainable using the latter.

Kramosil was not the only one to be uncomfortable with opening the ‘“Pandora’s Box” of
non-monotonicity. Sandewall [1972] notes that the ““Unless” operator has ‘“‘some dirty logical pro-

perties”. Considering the example:

A
A N\ Unrless(B) > C
A N\ Unless(C) > B
he observes that either B and C can be theorems, but, in general, not both simultaneously. Reiter

[1978b] makes a similar observation in an early paper, stating that:

Such behavior. [is| clearly unacceptable. At the very least, we must demand of a default
theory that it satisfy a kind of ‘Church-Rosser’ property: No matter what the order in
which the theorems of a theory are derived, the resulting set of theorems will be unique.

It appears that the Churcli-Rosser property is a necessary casualty if non-monotonicity is
accepted.

A further problem which must be faced by those embracing consistency- or unprovability-
based approaches to non-monotonicity is that the non-theorems of a first-order theory are not
recursively enumerable. This means that the rules of inference in theories involving the {/~ opera-
tor cannot be effective in general. It follows that the theoxlems are not recursively enumerable. By
contrast, in monotonic logics,. the rules of inference MUST be effective and the theorems MUST

be recursively enumerable.

Finally, the very non-monotonicity which makes such theories interesting means that
“theorems” may have to be retracted if the assumptions on which they are based are refuted

(either by new knowledge or changes in the state of the world). To be useful, a2 non-monotonic
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reasoning system must be able to remember which assumptions underly each theorem and be able

to unwind the potentially complex chain of deductions founded on retracted justifications.



CHAPTER 3

Default Logic

If the wheel is fixed,

I would still take a chance.

If we’re treading on thin ice,
Then we might as well dance.

L= Jesse Winchester

In this chapter, we explore default logic in some detail. We present a model-theoretic
semantics for arbitrary default theories, thus rectifying a major deficiency. The remaining sec-
tions investigate the causes of incoherence in certain default theories. This leads to a strong
sufficient (although not necessary) syntactic condition for the existence of extensions for particular

theories.

3.1. The Semantics of Default Theories

In his development of default logic, Reiter provided a fixed-point characterization of the
extensions of a default theory, but no model-theoretic semantics for the logic. Etherington [1982,
1983] observes that the semantics can be viewed in terms of restrictions of the set of models of the
underlying theory. Jukaszewicz [1985] formalizes this intuition for normal default theories.
Because of the well-behaved nature of these theories, this is relatively straightforward. The
resulting semantic characterization amounts to considering the Tarskian semantics of each of the
partial extensions constructed by proceding monotonically toward an extension by satisfying, at
each step, the next applicable normal default (according to some arbitrary ordering of the
defaults) by making its consequent true. If, after each default in the sequence has been con-
sidered, no more defaults from D are applicable, the resulting set, together with the first-order
theory, W, yields an extension. Since each step affirms a formula consistent with those affirmed
previously, the set of models contracts monotonically. The intersection of the sets of models from

each stage is precisely the set of models of the extension.

This semantics can perhaps best be envisaged as a transition network, whose nodes are sub-
sets of M, the set of all models of W, with arcs labelled by defaults, as follows: From the node

corresponding to a set of models N, for every § = -‘-1—/;74 € D, an arc labelled § leads (i) back to N

if no model in N satisfies f or some satisfy —c, or (ii) to the node corresponding to the set:

-42 -
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{ N| Ne N and N |= 8}, otherwise. Each leaf - a node all of whose outbound links loop back —
reachable from M corresponds to the set of models of some extension of A. Furthermore, the set
of models of each extension of A corresponds to such a leaf node. The set of arc-labels for every

path from root to leaf gives the generating defaults for the extension corresponding to the node.

This approach does not apply directly to non-normal defaults, since the property of semi-
monotonicity which guarantees its success holds only for normal defaults [Reiter 1980a, theorem
3.2]. Lukaszewicz partially addresses this problem by presenting a translation scheme from non-
normal defaults to normal defaults. He argues that, of single-justification defaults, only normal
and semi-normal defaults have reasonable interpretations. Non-semi-normal defaults are therefore
translated to semi-normal defaults by conjoining the consequent to the justification:

a: B L BN~

b 9

The translation from semi-normal to normal, which is somewhat more controversial, involves
replacing the consequent with the justification:
a: N7 Lo BN~
v BN

This makes sense, [iukaszewicz argues, so long as a’s which are also ’s are typically #’s. That is,

so long as one could reasonably augment the theory with

alAv:B

B

One can imagine situations where this is not appropriate. For example, a system for legal
reasoning might want to have a rule suggesting that those with motives who might be guilty
should be suspects:

has-motive(z) : guilty(z)

suspect(z) ’

It is clearly reasonable to translate this to:

has—motive(z) : suspect(z) N\ guilty(z)
suspect(z)

allowing that there may be reasons not to include someone on the list of suspects even without
knowing their innocence. It is not reasonable to follow through by asserting the guilt of all
suspects:
has-motive(z) : suspect(z) N\ guilty(s) ,
suspect(z) N\ guilty(z) )

Thus, while the semantics Jukaszewicz outlines covers many cases, there is reason to want a

semantics which covers more than normal defaults. To this we now turn.

Because of the failure of semi-monotonicity for non-normal theories, simply applying one
default after another will not, in general, lead to extensions. It is necessary to ensure that the
application of each default does not violate the justifications of already-applied defaults. If we

augment [ukaszewicz’s semantics by encoding some information in each state about the set of
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defaults which led to a particular state, we can determine whether a node is on a viable path

toward an extension. The precise details are these:

Definition: Satisfiability, admissibility, and applicability

a:pf

w

Let X be a set of models; I' a set of formulae; o, f, and w formulae, and § = a

default. Then

i) ais X-satisfiable (X-valid) iff Jz€ X. z}= (Vze X. 2= a)
ii) I'is X-admissible (X permits T) iff VyeT.dze X. zf= v
iif) § is X-applicable iff o is X valid and £ is X-satisfiable. |

Definition: Result of a default

Let X, ', and 6 be as above. Then the result of § in (X, I') is:

(X, T) if 6 is not X-applicable and I' is X-admissible,
X, T) = ; ((X-{N| NE&= -w}), (T U {B})) if § is X-applicable and I' is X-admissible, and

| otherwise. |

Definition: Result of a sequence of defaults

Let X and T' be as above, and let <§> be a sequence of defaults. Then the result of <6;>
1s:
<6>({X, T)= (N X; UT,) where {Xo =X, I'o=T; and
(Xiyp Tipn) = 6(X, T, i2>0. R

Definition: Stability

Let Y be a non-empty set of models, I' a set of formulae, and A = (D, W) a default theory.
Then (Y, T) is stable for A iff

(1) (Y, I)=<6>(X,{ }) for X={M| M}= W}, and some {§} C D,

(2) Vése D. (Y, T)=(Y,T), and

(3) T is Y-admissible. | |

In other words, a set of models and a set of constraints is stable for a default theory, (D, W),
if they are the result of some sequence of defaults in D applied to the set of models of W and no

constraints, if no default in D produces any change in this result, and the constraints are satisfied
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by the set of models. Note that condition (2), together with the definition of “‘result” means that
condition (3) is redundant. We include it for conceptual clarity. The soundness and complete-

ness results for this semantics are given by Theorems 3.1 and 3.2, respectively.

Theorem 3.1 — Soundness

If E is an extension for A, then there is some set I' such that

({MM |= E}, T) is stable for A. [ |

Theorem 3.2 — Completeness

If (X, T) is stable for A then X is the set of models for some extension of A.
(I.e., Th(X) is an extension for A.) [ |

Returning to the transition network analogy, the nodes are now pairs consisting of a subset
of M and a subset of the justifications of the defaults in D. Now A’s extensions correspond to
those leaf nodes, (X, I'), where X permits I'. We say that such nodes are viable. If all leaf nodes
are _|, the theory has no extensions. Again, the generating defaults for the extension Th(X) are
those defaults labelling arcs on any path from (M, { }) to (X, '), for any '’

Example 3.1

Consider the default theory:

A [1): 5,- A:BAnC ,,_Aichon), Wz{A}]

This produces the following transition network.

({M| M= A} { )

v N

{M| M= AB}, {BN-C}) ({M| M= A,CY {CN\ -B})

Both leaves are viable, so the theory has two extensions, Th({A4, B}) and Th({4, C}). i
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Example 3.2

The incoherent theory:

a-[{i-52}b 0

gives rise to:

({M|ME PV-PL{ })

)
(M| Mi= 4}, (~4))
)
)
r

in which the leaf is not viable. Hence this theory has no extension. [ |

It is instructive to compare this model-set restriction semantics with the minimal-model
semantics of closed-world reasoning presented in chapter 2. There, the semantics of the closure of
a theory was defined in terms of a restriction of the set of models of the underlying theory,
according to the principle of minimization. The model-set restriction semantics for default logic
similarly provides a principle for determining subsets of thé models of a first-order theory which
characterize acceptable belief-sets, on the basis of maximal satisfaction of the set of defaults.
There are several significant differences, however. Firstly, rather than an ordering on individual
models, this semantics imposes an ordering on sets of models. Secondly, the ordering is defined in
terms of accessibility via a sequence of defaults, rather than strictly in terms of intrinsic features
of the models themselves. Finally, each extension is determined by a single extremum of the ord-

ering, rather than by the set of all extrema.

The first of these differences results because the extensions of a default theory — unlike the
models of a first-order theory — are not complete. They do not decide every formula. Because they
incompletely specify the world, sets of models — rather than single models — are required to allow
for undecided formulae. Using situations [Barwise and Perry 1983] - incomplete model-
descriptions — instead of sets of models might lead to a closer correspondence. Intuitively, cer-

tainly, one can simply view the model-sets as partial model-descriptions without ill effect.

The second deviation results from the fact that defaults are general inference rules. Conse-
quently, the submodel(-set) relation is potentially more complex for default logic. Lifschitz’
[1984] recent work allowing arbitrary pre-orders as well as simple subset orderings may void this

difference, but the question remains open.

The fact that individual extrema determine extensions is the result of the “brave” (in
McDermott’s [1982] terminology) character of default logic. Reiter’s presentation of default logic
defined each extension as an acceptable set of beliefs, with the intention that a reasoner would
somehow ‘‘choose” a single extemsion within which to reason about the world. Other non-

monotonic formalisms (see chapter 2) are based on “cautious” approaches which accept a default
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conclusion only if it occurs in all acceptable sets of beliefs. One can easily construct a variant of
default logic which pursues a “cautious” course. (The converse is not obviously true for all “cau-
tious” systems, as we see in chapter 8.) Such a system would define the theorems of a default
theory to be those formulae true in all extensions, with the obvious change to the semantics: the

theorems would then be defined as those formulae true in all models of all viable leaves.

8.2. Coherence of Default Theories

Extensions play a fundamental role in default logic. An extension is a set of beliefs which
are in some sense “‘justified” or ‘“reasonable” in light of what is known about a world. Formally,
extensions are attractive because they are both grounded and complete: A formula enters an
extension, E, only if it is in W, if it is provable from other formulae in E, or if it is the consequent
of a default whose prerequisites are in E and whose justifications are not denied by E; further-
more, every formula which meéets these requirements is in E. The first of these restrictions
prevents extensions from containing spurious, unsupported beliefs. The second ensures that
justified beliefs are not ignored. These restrictions are analogous to those which define the

_theorems of a first-order theory.

Since the individual extensions of a default theory are both grounded and complete, it is
quite natural to require any default inference system to restrict its conclusions to a single common
extension. If no extension of a theory contains a formula, then it is not in any acceptable set of
beliefs associated with that theory. If conclusions are drawn from different extensions, they may
be incompatible. Consider the blocks-world example from the previous chapter. In that example,
both ~Block(A) and —Block(B) are reasonable assumptions. They are drawn from different exten-

sions, however, and concluding both leads to inconsistency.

Since reasonable conclusions must reside in an extension of the default theory under con-
sideration, it is clearly important to know whether every theory has extensions. Simply put, the

answer is “No”. For example, the theory:

w={}

- (%)

has no extension. Such theories are tncoherent; they support no reasonable set of beliefs about the
world. Beyond pointing out the existence of incoherent theories, the most useful answer would
include a syntactic characterization of which theories have or do not have extensions. While no
such characterization is known, there are sufficient conditions which guarantee extensions. We

present three such conditions below, in order of increasing utility.

A theory, ({ }, W), with no defaults has a unique extension, Th{W), the logical closure of
the underlying first-order theory. Of course, this is a trivial default theory. We mention it only to
emphasize that, since default logic is a superset of first-order logic, the required results obtain for

the area of overlap.
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The distinctions between commonly encountered types of defaults lead to more enlightening

results. Any default of the form:

a:pf
B

is said to be normal. Normal defaults are sufficient for knowledge representation and reasoning in

many naturally occurring contexts. In fact, they can express any rule whose application is subject
only to first-order prerequisites and the consistency of its conclusion with the rest of what is
believed. Rules like:

“Assume a bird can fly unless you know otherwise.”’, or

““Assume a thing is not a block unless it is required to be.”

translate easily into normal defaults:

Bird(z) : Can—fly(z) nd : = Block(z)
Can—fly(z) 2 —~Block(z)

The consequent of a normal default is equivalent to its justification. Intuitively, this makes
the default inapplicable where the consequent has been denied. Such defaults cannot introduce
inconsistencies, they cannot refute the justifications of other, already applied, normal defaults, nor
can they refute their own justifications. This gives rise to well-behaved theories. Any theory

involving only normal defaults (a normal theory) must have at least one extension [Reiter 1980al.

Any default of the form:

a: BNy
B
is said to be semi-normal Semi-normal defaults differ from normal defaults by having
justifications which entail but are not entailed by their consequents. The assurances of well-
behavedness associated with normal theories do not carry over to theories with semi-normal

defaults. For example, the theory:

w={}

D= tAN-B :BA-C :CN-A (1)
- A B’ c

has no extension. This appears to be a somewhat artificial example, inasmuch as we have been
unable to find a natural situation which fits this pattern. Which semi-normal theories, then, are
assured of extensions? Do all “natural” theories have extensions? Perhaps pathological examples
are merely formal curiosities? We do not purpert to answer these questions — partly because of
the difficulty of delimiting the class of ‘“‘natural” theories. There is, however, a large class of
semi-normal theories which are coherent. We characterize this class, which appears to be sufficient

for many common applications, in the next section.
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3.3. Ordered Default Theories

There appears to be a unifying characteristic among default theories without extensions.

Consider again the theory:

w={}

o (4)

which has no extension. The only reasonable candidates are E, = Th({ }) or E; = Th({—A}). A
1s consistent with E—}'I, so to be an extension E_l must contain —A, which it does not. Similarly, A is
inconsistent with E,, so E—z cannot contain ~A. The problem is that the default’s justification is
denied by its consequent; not applying the default forces its application, and vice versa. Returning
to the semi-normal theory (1), we see that applying any one default leaves one other applicable.
Applying any two, however, results in the denial of the non-normal part of the justifications of at
least one of them. Any set small enough to be an extension is too small; any set large enough is
too large. This behaviour is characteristic of theories with no extension; the requirement that
extensions be closed under the default rules forces the application of defaults whose consequents
lead to the denial of justifications of other applied defaults.

The exact source of the problem can be further isolated by recalling that all normal theories
have extensions. Since the justification and consequent of normal defaults are identical, no appli-
cable default can refute the justifications of an already applied default: applied normal defaults
have already asserted their justifications. This means that any normal default capable of refuting
those justifications is inapplicable, since its justifications have already been refuted. It follows
that that part of the justification which distingnishes non-normal defaults from normal defaults is
integrally involved in making a theory incoherent. Restricting our attention to semi-normal
default theories, we see that once a default has been applied, only those conjuncts of its
Jjustification not entailed by its consequent are susceptible to refutation by other defaults. These
conjuncts play a key role in the discussion below.

The conflict between closure under defaults and consistency of justifications can occur only
if some formula depends on the absence of another and at the same time may serve to support the
" inference of that formula. In the theory (1) above, for example, A depends on the absence of B, B
on that of C, and C on that of A. Hence inferring A would block the inference of C, allowing the

inference B, which would invalidate the inference of A, and similarly for B and C.

The examples presented so far have involved defaults in their simplest form:

a: BN N Ba

w

where a, w and f; are all literals (i.e., atomic formulae or negations of atomic formulae). The
problem of determining dependencies is more complicated when @, w and f§; are allowed to be
arbitrary first-order formulae. For example, the consequent of a default may be an implication;

applying that default would introduce new dependencies. The essential idea remains the same,
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however: determine whether the dependencies involve potentially unresolvable circularities. The
following definitions outline a syntactic method for determining whether such circulanties exist

within a semi-normal theory.

Definition: <« and K

Let A = (D,W) be a closed,! semi-normal default theory. Without loss of generality,
assume all formulae are in clausal form. The partial relations, < and <« , on

Literals X Literals, are defined as follows:

(1) fae Wthena= (o, V..Va,), forsomen>1.
For all a;, a; € {ay,...,an}, f oy F o let oy KL .

(2) ¥ée Dthenb= g———ﬂ‘# Let ay, ... a;, By, --. Bs, and 7y, ... 7, be the literals of the

clausal forms of a, f, and 4, respectively. Then
(i) If o€ {ay...a;} and B; € {By....0} let o5 L G .
(i) If v € {Yy--rvehs B € {Bu--sBs} and % & {ByyensB} let vy < 6.
(iii) Also, 8= By N ...\ Py, for some m > 1.
Foreachi<m, g = (,V ..V Bim) » wherem; > 1.

Thus if 85, Bix € {ﬂl,p---:ﬂm,mm} and Bi; # Bix let -8;; L Bix-

(3) The expected transitivity relationships hold for << and <. [Ie,
(i) Ifa < fand f <K ythen o X 1.
(i) fa <« fand B <« v then o <« 4.
(iif) If @ << fand f K yor o X fand f < v then o <« 1. [ |

The definition 1is complex, but the intention is that o K fora <« f if there
is any way that a could figure in an inference of B in the theory as it stands. The
intuition behind parts (1) and (2.ii) is that any disjunction of n literals can be
interpreted as an implication of any one of those literals. Eg.,
(@1 V...V a,) =[(may Ao A~y A~y Ao\ —e) D a; ] The special prominence we have
alluded to for the conjuncts in a justification not entailed by the consequent is reflected in part
(2.i1) by the use of the distinguished ‘‘ << ” relation. The negation, —; , occurs in part (2.ii) since

it is not knowing —y; which makes ~; consistent.

! The definition is readily extensible to open theories using a technique given in [Reiter 1980a].
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Definition: Orderedness

A semi-normal default theory is said to be ordered if and only if there is no literal, «, such
that o < a. [ |

An ordered theory has no potentially unresolvable circular dependencies. The theory in
example (1) is not ordered, since B << A, C << B, and A < C; hence A << A. The theory:
W={}

D={:A/\—-B : BN\ =D :(CDD)/\—-A} (2)
A B (C> D)

is also not ordered. The defaults give rise to the following relationships:
{B<« A}, {D<« B}, and {CL D, -DKL~C, A< -C A<« D}

respectively. Hence A < D <« B <« A.

The significance of orderedness for semi-normal default theories is shown by Theorem 3.3.

Theorem 3.8 — Coherence

If a semi-normal default theory is ordered, then it has at least one extension. |

Normal theories are clearly ordered, since only non-normal defaults give rise to ‘“ << ” rela-
tionships. Thus the coherence of all normal theories is a corollary of Theorem 3.3. This is
encouraging inasmuch as it suggests that orderedness is not merely a special purpose gimmick but,

rather, it subsumes an existing, widely applicable characterization.

It is important to notice that orderedness is only a sufficient condition for existence of
extensions. Non-ordered theories have potentially unresolvable circularities but, for one reason or
another, these circularities do not always interfere. The theory (2) is not ordered, but it does
have an extension: Th({B, (C D D)}). The circularity would cause problems, however, if C were
added to W: the resulting theory has no extensions. In other cases, two or more potential circular-
ities may cancel each other out. At present, we do not know whether the given condition can be
strengthened to one which is both necessary and sufficient for the coherence of semi-normal

theories and yet is still decidable.

3.4. Constructing Extensions

Having delineated a large class of theories which have extensions, we turn to the problem of
generating extensions. Reiter [1980a] shows that extensions need not be recursively enumerable,
and that it is not generally semi-decidable whether a formula is in any extension of a theory.

Faced with such pessimism, further exploration might seem pointless. Still, there are tractable
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subcases.

Etherington [1982] presents a procedure which can generate all the extensions of an arbi-
trary finite default theory.? The procedure centres on a relaxation style constraint propagation
technique. Extensions are constructed by a series of successive approximations. Each approxima-
tion, H;, is built up from the first-order components in W by applying defaults, one at a time. At
each step, the default to be applied is chosen from those, not yet applied, whose prerequisites are
“known” and whose justifications are consistent with both the previous approximation and the
current state of the current approximation. When no more defaults are applicable, the procedure
continues with the next approximation. If two successive approximations are the same, the pro-

cedure is said to converge.

The choice of which default to apply at each step of the inner loop may introduce a degree
of non-determinism. Generality requires this non-determinism, however, since theories do not
necessarily have unique extensions. Deterministic procedures can be constructed for theories which
have unique extensions, or if full generality is not required.

4

: ﬂ) is defined to be 7.

In the presentation of the procedure, below, CONSEQUENT(
v

Hy— W; 570
repeat
Je= 7+ hge—= W, GDg—{}; 10

repeat
Dy { 28 & D) (b 1), (b - 8 (Fha b ) }

if ~null(D; - GD;) then
choose § from (D; - GDy);
GDy, — GD; U {6};
hiyy — by U {CONSEQUENT(6)}; endif;
t— 14+ 1;
until null(Dy_, - GD,,);
H = hiy
until H; = H;

To see how this procedure works, consider the theory:

W= {4}

2 A finite theory is one with only finitely many variables, constant symbols, predicate letters, and de-
faults. No function symbols are allowed, except the O-ary function symbols, the constants. These restrictions
make the universe of discourse (or Herbrand Universe) finite, ensuring only a finite number of closed in-
stances of open defaults.
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D= A:B A:C B:D B:-DA-C
B B' ¢’ D’ -D ’

which has the unique extension, Th({A4,B,C,D}). The procedure can generate any of the following

sequences of approximations:

Hy={A}

H1={A’B’_‘D’C} H0={A} H0={A}
H,={A,B,C} H,={A,C,B,D} H,={A,B,C,D}
H={A,B,D,C} Hy=H, Hy=H,

H=H,

{The formulae in each approximation are listed in the order in which they are derived.) In the
first sequence of approximations, =D occurs in H; because it can be inferred in h, before C is

inferred in hs.

Etherington [1982] proves:
There is a converging computation such that H, = H,, and Th(H,) = E if and only if E is
an eztension for the default theory (D,W).
In other words, the procedure can return every extension, and only extensions are returned. This
result falls short in two respects: First, while the procedure can converge on every extension, there
are appeals to non-provability. In general, such tests are not computable, since arbitrary first-

order formulae are involved. There are computable subcases, however. If the set:

WU {a[ "‘;ﬂep} U {ﬁl “;ﬁep}

belongs to a decision class for first-order provability, extensions are computable. Propositional
theories and function-free, monadic theories fall into this class, as do finite theories, provided W is

also finite.

The second shortcoming is that some finite theories admit non-converging computations.
The procedure may never terminate even though the theory has an extension and each step is
computable. In such cases, the procedure cycles forever between two or more distinct H’s. For-
tunately this cyclic behaviour seems to be caused by features similar to those which make theories
incoherent. We have characterized certain classes of ordered theories for which the procedure is
more well-behaved. Theorem 3.4 shows that one such class is the class of ordered, network

theories.

Definition: Network Default Theory

A default theory, A = (D, W), is a network theory iff it satisfies the following conditions:
(1) W contains only:
a) Literals (i.e., Atomic formulae or their negations), and
b) Disjuncts of the form (a V B) where a and f§ are literals.

(2) D contains only normal and semi-normal defaults of the form:

a:f a: AN . N1y

or

B P
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where «, f, and «; are literals. |

Theorem 3.4 — Convervence

For finite, ordered, network theories, the procedure given above always

converges on an extension. [ |

We will have more to say about network theories in the next chapter.

We conjecture that Theorem 3.4 can be generalized to apply to arbitrary ordered semi-

normal theories, but we have no proof. The proof may require a more restrictive definition of D; in

the procedure, viz

D, = {a;ﬂ ED|aechk, (kU H,) i~ ﬁﬁ}

instead of:

D; = {"‘;ﬂenlaeh,-,hiv— B Hi - ﬂﬂ}

but it can be shown that all the results of [Etherington 1982] and those of this chapter still hold

for the stronger version, so this should present no problem.

For normal theories, an even stronger result can be proved:

Theorem 3.5 — Strong Convergence

For finite normal theories, the procedure given above always converges on an

extension immediately — i.e., Th(H;) is always an extension. [ |



CHAPTER 4

Inheritance Networks with Exceptions

A centipede was happy, quite,

Until a frog, in fun,

Said, ““Pray, which leg comes after which?”
This raised his mind to such a pitch

He lay distracted in a ditch,

Considering how to run.

One of the problems with the non-monotonic formalisms we have discussed to this point is‘
their intractability. Default logic, in the general case, is not even semi-decidable. Because of the
need to build systems which have good computational properties, many researchers have sacrificed
formal precision. While this has sometimes led to very fast ‘‘inference” mechanisms, there has

often been little more than vague intuitions about exactly what these mechanisms infer.

As the field matures and systems capable of assuming responsibility for such things as
nuclear reactors and medical diagnosis are touted as ‘““on the horizon”, it becomes increasingly

important that it be understood what such systems “consider” justifiable inferences.

The argument has long been made that, because of the general intractability of formal sys-
tems, it is unreasonable to consider them for practical applications. This is taken as support for
the use of systems such as semantic networks which, although not completely understood, can
compute quickly. This argument falls down on two points. The first is that most of these fast
inference algorithms are applicable to a limited class of problems. It could well be that — for these
problems — formal systems such as default logic are just as tractable, and fast implementations
may be possible. Secondly, even if formal systems are not implemented directly in an inference
system, they may be useful as specification tools. In this way, an implementation could either be
shown always to reach justified conclusions or, at the very least, to deviate in well-understood
ways from justified conclusions. In the former case, the fast algorithm could actually be viewed as
an implementation of an appropriately-restricted version of the general formal system; in the latter
case, at least would-be purchasers of such systems could make enlightened decisions about the

risks involved.

In this chapter, we employ default logic to outline a specification for “inheritance” reasoning
in the presence of exceptions. Semantic networks have been widely adopted as a representational
mechanism for AL In such networks, “inference” is equated with inheritance of properties by
nodes from their superiors. Recent work has considered the effects of allowing exceptions to inheri-
tance within networks [Brachman 1982; Etherington and Reiter 1983; Fahlman 1979; Fahlman et
al 1981; Touretzky 1982, 1984a; Winograd 1980]. Such exceptions represent either explicit or

- 55 -
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implicit cancellation of the normal property inheritance which networks enjoy.

In the absence of exceptions, an inheritance network is a taxonomy organized by the usual
IS-A relation, as in Figure 4.1. Schubert {1976] and Hayes [1977] have argued that such networks

correspond quite naturally to certain theories of first-order logic. E.g.,

NAUTILUS(Fred) V. MOLLUSC(z) > INVERTEBRATE(z)
V. NAUTILUS(z) > CEPHALOPOD(z)

Yz. CEPHALOPOD(z) > MOLLUSC(z)

Such a correspondence can be viewed as providing the semantics which “semantic” networks had
previously lacked [Woods 1975].

INVERTEBRATE

INSECT MOLLUSC ARACHNID

CEPHALOPOD BIVALVE

N

NAUTILUS CUTTLEFISH

;

Fred

Figure 4.1 — Fragment of a taxonomy.
The significant features of this semantics are these:

(1) Inheritance is a logical property of the representation. Given that NAUTILUS(Fred),
MOLLUSC(Fred) is provable from the given formulae. Inheritance is the repeated applica-
tion of modus ponens.

(2) The node labels of such a network are unary predicates: e.g., NAUTILUS(*), INVER-
TEBRATE(?).

(3) No exceptions to inheritance are possible. If Fred is a nautilus, he must be an invertebrate,
regardless of any other properties he enjoys.

Unfortunately, this correspondence no longer applies when exceptions to inheritance are
allowed. The logical properties of networks change drastically when exceptions are permitted. For
example, consider the following facts about elephants:

(1) Elephants are gray, except for albino elephants.

(2) Al albino elephants are elephants. '
Common-sense reasoning about ‘‘elephants’” allows one, given an individual elephant not known
to be an albino, to infer that she is gray. Subsequent discovery — perhaps by observation — that
she is an albino elephant forces the retraction of the conclusion about her grayness. Thus,
common-sense reasoning about exceptions is non-monotonic; new information can invalidate pre-

viously derived facts. This non-monotonicity precludes the use of first-order representations, like
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those used for taxonomies, for formalizing networks with exceptions.

We establish a correspondence between networks with exceptions and network default
theories. This correspondence provides a formal semantics and a notion of correct inference for
such networks. As was the case for taxonomies, inheritance emerges as a logical feature of the
representation. Those properties Pi,...,P, which an individual, 5, inherits prove to be precisely
those for which P;(5),...,P,(}) all belong to a common extension of the default theory. Should the
theory have multiple extensions — an undesirable feature, as we shall see — then b may inherit
different sets of properties depending on which extension is chosen. We consider two radically

different remedies for this problem.

To see how defaults might be used to represent networks with exceptions, consider the

elephant example, which can be represented by the default theory:

W= {V:c. Albino-Elephant(z) D Elephant(z)}

D= Elephant(z) : Gray(z) )\ -~ Albino—Elephant(z)
Gray(z) ’

It is easy to see that if we are told only Elephant(Fred) then, so far as we know,
Gray(Fred) \ ~Albino—Elephant(Fred) is consistent; hence Gray(Fred) may be inferred. Given
only Albino—Elephant(Sue) one can conclude Elephant(Sue) using first-order knowledge, but
Albino—Elephant(Sue) ‘‘blocks” the application of the default, preventing the derivation of
Gray(Sue), as required.

We adopt a network representation with seven link types. Other approaches to inheritance

may omit one or more of these, but our formalism subsumes these. The seven link types,* with

their translations to default logic, are:

(1) Strict IS-A: A.———.B: A’s are always B’s. Since this is universally true, we identify it
with the first-order formula: Vz. A(z) > B(z). _

(2) Membership: ao———.A: The individual ¢ belongs to the class A. We represent this
with the first-order fact A(a).

(3) Strict ISN'T-A: A.—4H#».B: A’s are never B's.
Again, this is a universal statement, identified with: Vz. A(z) D —~B(z).

(4) Non-membership: .A: The individual a does not belong to the class 4. We
represent this with the first-order fact —A(a).

(5) Default IS-A: A. >.B: Normally A’s are B’s, but there may be exceptions.
To provide for exceptions, we identify this with a default:

1 Note that strict and default links are distinguished graphically by solid and open arrowheads, respec-
tively.
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A(z) : B(z)

B(a)

(6) Default ISN'T-A: A.-H}>.B: Normally A’s are not B’s, but exceptions are allowed.
Identified with:

A(z) : —~B(1)
—B(z)

(7) Exception: A.------ >
The exception link has no independent semantics; it serves only to make explicit the excep-
tions, if any, to the above default links. There must always be a default link at the head of
an exception link; the exception then alters the semantics of that default link. There are two
types of default links with exceptions; their graphical structures and translations are shown

in Figure 4.2.
B A(z) : B(z) A =Cy(z) N\ ... A =C(z)
B(z)
A
SR
A Cl Cn
B A(z) : =B(z) N\ -Ci(z) N\ ... N\ =Cyf2)
- B(z)
AN -
g ~ h ~ ~
A Cl Cn

Figure 4.2 — Links with exceptions.
We illustrate with an example from [Fahlman et al 1981].

Molluscs are normally shell-bearers.
Cephalopods must be Molluscs but normally are not shell-bearers.
Nautili must be Cephalopods and must be shell-bearers.

Our network representation of these facts is given in Figure 4.3.
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Shell-bearer

Mollusc

Cephalopod

Nautilus

Figure 4.8 — Network representation of our knowledge about Molluscs.

The corresponding default logic representation is:

_ f M(z) : Sb{(z) A ~C(z) C(z): -~Sb(z) \ ~N(z)
b= { Sb(=) ’ -Sb(z) } ’

W= {(z) C(z) > M(z), (z). N(z) D C(z), (). N(z) > Sb(2) }

Given a particular Nautilus, this theory has a unique extension in which it is also a Cephalopod, a

Mollusc, and a Shell-bearer. A Cephalopod not known to be a Nautilus will turn out to be a Mol-

lusc with no shell.

It is instructive to compare our network representations with those of NETL [Fahlman et al
1981]. A basic difference is that in NETL there are no strict links; all IS-A and ISN’T-A links are
potentially cancellable and hence are defaults. Moreover, Fahlman et al allow explicit exception
(*UNCANCEL) links only for ISN’T-A (*CANCEL) links. If we restrict the graph of Figure 4.3 to
NETL-like links, we get Figure 4.4(a), which is essentially the graph given by Fahlman.

a) Shell-bearer b) Shell-bearer

Mollusc . > Mollusc .
T4 1
Cephalopod ; | Cephalopod .
[ 1

/
7’

Nautilus Nautilus

Figure 4.4 — NETL-like network representations of our knowledge
about Molluscs.

The network in Figure 4.4(a) corresponds to the defaults:
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Mz) : Sb(z) C(z): M(z) N(z): C(3)

Sb(z) M(z) C(z) '’
C(z) : ~Sb(z) \ -N(z) N(z): Sb(z)
-.5b(z) ’ Sb(x)

As before, a given Nautilus will also be a Cephalopod, a Mollusc, and a Shell-bearer. A Cephalo-
pod not known to be a Nautilus, however, gives rise to fwo extensions, corresponding to an
ambivalence about whether or not it has a shell. While counter-intuitive, this merely indicates
that an exception to shell-bearing, namely being a Cephalopod, has not been explicitly
represented in the network. The ambiguity can be resolved by making the exception explicit, as
in Figure 4.3. On the other hand, representations which do not permit exception links to point to

IS-A links cannot make this exception explicit in the graphical representation.

Other versions of NETL (and many other inheritance reasoners) do not allow explicit excep-
tion links at all. If only default IS-A and ISN’T-A links are allowed, the representation of the
Nautilus example becomes that of Figure 4.4(b), which corresponds to the defaults:

M(z) : Sb(z) C(z): M(z) N(z): C(z)
Sb(z) ’ M(z) c(z)
C(z) : ~Sb(z)  N(z): Sb(z)
=Sb(z) Sh(z)

In such theories, there is a further ambiguity about whether a Nautilus is a Shell-bearer.

How then do such systems conjecture that a Cephalopod is not a Shell-bearer, without also
conjecturing that it is a Shell-bearer? Such ambiguities are typically resolved by means of an
inference procedure which prefers shortest paths. Interpreted in terms of default logic, this “shor-
test path heuristic” is intended to favour one extension of the default theory. Thus, in the net-
works of Figure 4.4, the paths from Cephalopod to —Shell-bearer are shorter than those to Shell-
bearer so that the former win. Unfortunately, this heuristic is not sufficient to replace the
excluded exception type in all cases. Reiter and Criscuolo [1983] and Etherington [1982] show
that it can lead to conclusions which are unintuitive or even invalid — 1.e., not in any extension.
Fahlman et al [1981] and Touretzky [1981, personal communication; 1982] have also observed that
shortest path algorithms can lead to anomalous conclusions. They describe attempts to restrict
the form of networks to exclude structures which admit such problems. One effect of these res-
trictions appears to be to permit only networks whose corresponding default theories have unique

extensions.

An inference algorithm for network structures is correct only if it can be shown to derive
conclusions all of which lie within a single extension of the underlying default theory. This cri-
terion rules out shortest path inference for unrestricted networks. This is unfortunate, since shor-

test path inference has been popular for its relative efficiency and ease of implementation.

On a more positive note, any network constructed using the seven link-types given above
corresponds to a network default theory. By insisting that any network constructed must
correspond to an ordered theory, the coherence of a network knowledge representation system can
be assured. For such systems, the procedure given in chapter 3 is a correct and always converging

inference algorithm.
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It turns out that orderedness can be assured without reference to the full complexity of the
mechanism described in chapter 3. It is easy to see that any acyclic network gives rise to an
ordered theory. The same is true if only the subgraph consisting of all IS-A links and explicit
exceptions thereto has no cycles involving at least one exception link, or if there are no explicit

exceptions to IS-A links.

Theorem 4.1

Any network in which the subgraph of IS-A links and explicit exceptions thereto is acy-
clic corresponds to an ordered theory.

Corollary 4.2

Any acyclic network corresponds to an ordered theory. | ]

Corollary 4.3

Any network with no explicit exceptions to IS-A links
corresponds to an ordered theory.

Corollary 4.4

The networks mentioned in theorem 4.1 and corollaries
4.2 and 4.3 are coherent.

In addition to pointing out the inadequacies of shortest path inferencing and to providing
sufficient conditions for coherence and a correct inference mechanism, the formal reconstruction of
inheritance we have presented clarifies some of the outstanding problems in network inference.

One of these, how to perform inferences in parallel, is considered in the next section.

4.1. Parallel Network Inference Algorithms

The computational complexity of inheritance problems, combined with some encouraging
examples, has sparked interest in the possibility of determining inheritance in parallel. Fahlman
[1979] has proposed a massively parallel machine architecture, NETL. This architecture assigns
one processor to each predicate in the knowledge base. “Inferencing” is performed by nodes pass-
ing ““markers” to adjacent nodes in response to their own state and that of their immediate neigh-
bours. Fahlman suggests that such architectures could achieve logarithmic speed improvements

over traditional serial machines.

The formalization of inheritance networks as default theories suggests, however, that there
might be severe limitations to this approach. For example, correct inference requires that all con-
clusions share a common extension. For networks with more than one extension, inter-extension
interference effects must be prevented. This seems impossible for a one pass parallel algorithm
with purely local communication, especially in view of the inadequacies of the shortest path

heuristic.
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Even in knowledge bases with unique extensions, structures requiring an arbitrarily large
radius of communication can be created. For example [Etherington 1982], the default theories
corresponding to the networks in Figure 4.5 each have unique extensions. A network inference
algorithm must reach F before propagating through B in the first network and conversely in the
second. The salient distinctions between the two networks are not local; hence they cannot be
utilized to guide a purely local inference mechanism to the correct choices. Similar networks can

be constructed which defeat marker-passing algorithms with any fixed radius.

/\' F /\ -, B
o\ A
N R

A

E

Figure 4.5 — Problems for local inheritance algorithms.

This has prompted Touretzky [1981, personal communication; 1984a] to characterize a res-
tricted class of network structures which admit parallel inferencing algorithms. In part, his res-
trictions appear to exclude networks whose corresponding default theory has more than one exten-
sion. Unfortunately, it is unclear how these restrictions affect the expressive power of the result-
ing networks. Moreover, Touretzky [1982, personal communication; 1983] has shown that it is not
possible to determine on a parallel marker-passing machine whether a network satisfies these res-

trictions.

Provided the network in question corresponds to an ordered theory, a form of limited paral-
lelism can be achieved without sacrificing correctness. The key to this result lies in partitioning
the network into subnetworks which are suitable for parallel processing. Essentially, each node in
the network is numbered according to the number of exception links apon which it depends. This
assigns each node to the lowest “level’” possible while preserving the ordering amongst the nodes
induced by the “ << ” and *° < ” relations. Since the network is ordered, this can be done in
paralle}, in finite time proportional to the longest chain in the network. Processing then proceeds
in k parallel steps, where k is the number of the highest level to which nodes were assigned. At
step n, all links having exceptions which were asserted at step n—1 are disabled. The resulting
sub-network, consisting of all remaining links impinging on nodes at levels less than or equal to n,
is processed in parallel, ignoring exception links, with markers propagating from nodes asserted at
step n-1. The “nodes asserted at level 0’ are those in Th{W). These correspond to the nodes for
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which the network is “activated”’. The result after step k is an extension.?

There are two caveats associated with this procedure: If both positive and negative markers
reach a node in the same step, one must be chosen. Either choice will lead to an extension; we do
not consider other ramifications of such choices here. Second, the algorithm assumes that all strict
links propagate instantaneously. If this is not the case, each step in the algorithm must be fol-
lowed by propagation along strict links, resolving conflicts as above. Note that conflicts are always
resolved by changing assignments at the current level.

Provided that the inviolability of strict links is maintained, that default links are active only
if their prerequisites are asserted and their justifications have not been denied, and that no node
and its negation are asserted together (conflict resolution), any reasonable propagation algorithm
(parallel or otherwise) may be used at each step.>

To illustrate the construction, we apply it to the moderately complex network of Figure 4.6.
Rather than restrict ourselves to a particular parallel propagation algorithm at each step, we

present a table showing all possibilities.

,ﬁ/

NS 2y
W2

A

Figure 4.6— A multi-level inheritance graph.

The corresponding default theory, simplified to the propositional case and “activated’’ for A, is:

W= {A, (AD>B),(AD C)}

D= A:-D A:~-F B:D C:F B:E FE:-H
- -D’ ~F ' D' F' E’ =H

2 This construction is that used in the proof of Theorem 3.3, where it is shown to yield an extension.

3 To see this, it is necessary only to note that each step is, effectively, dealing with a normal theory.
Arguments similar to those used in the proof of Theorem 3.5 can be used to show that the order of propaga-
tion is immaterial.
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E:GN-D G:H E:IN-F
G ! H '’ I !

I:-JN-H
-J

The defaults above have been grouped according to the level to which their consequents are

assigned (see Table 4.1). Table 4.2 shows the possibilitiés at each step; alternatives are

Level | Literals

1 A,B,C,D,-D, E, F, -F, -H
G HI
3 =J

Table 4.1 — Levels of literals.

shown in separate columns, with major rows corresponding to steps in the algorithm.

Step 1 A, B,C E, -H
D, F D, -F -D, F -D, —-F
Step 2 | 1 | @ LG
Step 3 R -J
Table 4.2 — Possible outcomes using different propagation schemes.

Thus the algorithm can, depending on the nature of the parallel marker propagation procedure,
find:

Eo= Th(WU {4, B, C, E, ~H, D, F})

E, = Th{(WU {A, B, C, E,-H, D, ~F, I, -J})

E,= Th(WU {4, B, C, E, -H, -D, F, G})

Es;= Th(WU {4, B, C, E, ~H, =D, -F, I, G, ~J})
all of which are extensions. Significantly, no choice of parallel marker-passing procedure will
enable the algorithm to find the theory’s other two extensions:

E,= Th(WU {A, B, C, E, H D, F, G})

E;= Th(WU {4, B, C, E, H, -D, -F, G, I})
because —H is at level 1 and so can (and must) be inferred at step 1. H, being at level 2, is thus
precluded before it can be inferred. We have not yet characterized the biases which this inability

to find all extensions would induce in a reasoner.

Another potential problem with this approach stems from the fact that many network infer-
ence systems ‘‘prefer” one link-type over another (e.g., negation may override assertion). By
breaking the network into sub-networks which are processed in turm, the ability to globally assert
these preferences may be lost. We have three responses to this. Firstly, if network structure is
restricted, in the manner suggested by Touretzky [1981, personal communication|, so that result-

ing theories have unique extensions, the above algorithm produces the same results as any correct
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procedure. Secondly, many of these preferences are not well-defined, and break down when
pressed (c.f. race conditions in [Fahlman et al 1981]). The inability to exhibit incorrect behaviour
can hardly be called a Liability. Finally, given a well-defined preference scheme, it must preserve
correctness: all inferences must lie in a single extension. If such a scheme exists which cannot be
implemented within the confines outlined above, some other inference procedure will be required.
Given the problems already observed with parallelism, we doubt that a parallel or quasi-parallel,

single-pass, marker-passing algorithm can be found which takes global considerations into account
(at least in unrestricted networks).*

Touretzky [1984a] has recently developed a well-defined notion of preference, which we dis-
cuss in the next section. The above algorithm does not necessarily produce the conclusions this
scheme sanctions, but Touretzky observes that there appears to be no parallel marker-passing

algorithms which respect this preference-order for all networks.

4.2. Theory Preference

The formalisation of inheritance, above, uses semi-normal links to represent default links
with explicit exceptions. We argue that such explicit exceptions are generally necessary to ensure
that the resulting theory has a unique extension. This is important for systems whose inference
-mechanism is incapable of guaranteeing that all the conclusions it draws from the network

: répresentation lie within a single extension of the corresponding default theory. Otherwise, the

correctness of the system’s “beliefs” must be questionable.

Touretzky [1984a, 1984b| argues that our reformulation of inheritance in terms of semi-
normal defaults is inappropriate for two reasons. Firstly, adding new information to the
knowledge-base requires modification of the defaults already in the knowledge-base. These
become increasingly complex as the knowledge-base grows. Secondly, the translation of a link
depends on other links in the network. The translation, Touretzky claims, ignores the essentially
“hierarchical” nature of inheritance networks, which he views as their chief asset — both in terms

of representational conciseness and computational efficiency.

These criticisms suggest that a {common) misapprehension about default logic has occurred.
It is commonly believed that a default logic based reasoning system must be able to find any of
the extensions of a default theory, and must view them all as equally acceptable sets of beliefs. In
fact, while extensions are all acceptable, the logic says nothing about preference of one to another.
It has always been assumed that an agent would ‘““choose” one extension or another, but nothing
has been said about how such choices should be made. There is no reason not to {and, perhaps,
good reason to) exploit extra-logical properties of the knowledge-base (e.g., hierarchical structure)

to establish preferred extensions.

4 Cottrell [1985] has experimented with a multi-pass, “connectionist”, parallel architecture which shows
some promise here, although no correctness proofs have been forthcoming. Connectionist architectures are
beyond the scope of this thesis, however.
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To our knowledge, the first algorithm capable of correctly reasoning with an inheritance net-
work in parallel was that presented in the preceding section (see also [Etherington 1983]).
Because of the partitioning of the network, the algorithm is incapable of finding some extensions
of some default theories; it is not complete. This algorithm is correct; all of its conclusions lie
within a single extension. However, it does not necessarily produce the preferred extension, based
on the intuitive semantics for inheritance networks.

“inferential

Touretzky [1984a] has developed a more sophisticated algorithm, based on the
distance” topology. This inferential distance algorithm is applicable to networks without explicit
exception links, and is correct, in the sense that all of its conclusions lie within a single extension.
Furthermore, the inferential distance concept is based on the principle that ambiguous inheritance
should be, when possible, resolved by appealing to the subclass/superclass relation which forms

the basis of inheritance.

Inferential distance is somewhere between the “brave” and ‘““cautious” ends of the spectrum
of non-monotonic reasoning systems. Essentially, if an individual could inherit property P by vir-
tue of the fact that she IS-A B, and property —P because she IS-A C, then the ambiguity is
resolved as follows: If C IS-A B and not vice versa, inherit ~P; otherwise, if B IS-A C and not
vice versa, inherit P, otherwise, inherit neither. Conceptually, the inferential distance algorithm
eliminates those extensions which do not satisfy the hierarchical nature of the representation, then

draws those conclusions which hold in all of the remaining extensions.

This approach captures the semantic intuition (properties associated with subclasses should
override those associated with superclasses) which is the fundamental raison d’2tre for inheritance
‘representations. It also avoids the pitfalls of incorrect behaviour which curse shortest-path infer-

ence algorithms, as evidenced by Theorem 4.5.

Theorem 4.5

In the absence of “no-conclusion” links, all of the ground facts returned by Touretzky’s
inferential distance algorithm lie within a single extension of the default theory which
corresponds to the inheritance graph in question. [ |

To illustrate the inferential distance algorithm, consider the network from Figure 4.4(b}).
Because Nautius is a subclass of Cephalopod, which is a subclass of Mollusc, inferential distance
gives the desired results: Nautili are Shell-Bearers, while Cephalopods not known to be Nautdli are
not. In the network of Figure 4.7, neither Republican nor Quaker is a subclass of the other. Thus

inferential distance sanctions no conclusions about whether Nizon is a Pacifist.
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. Pacifist

Quaker / SSSSX Republican

Nixon

Figure 4.7— A genuinely ambiguous inheritance graph.

Theorem 4.5 only begins to explore the connections between Touretzky’s work and that
reported in chapters 3 and 4 of this thesis (and in [Reiter 1980a]). We have shown that ground
facts returned by inferential distance — e.g., “Clyde is an elephant”, or ‘““Clyde is not grey” -
belong to a common extension of the corresponding default theory. Inferential distance also sanc-
tions normative conclusions, such as ‘““Albino-elephants are [typically] herbivores”. We have not
explored the relationship such statements inferred under inferential distance bear to the underly-

ing default theory.

Touretzky also allows what he calls ““no-conclusion” links. These links allow inheritance to
be blocked without explicit cancellation. Default logic has no analogue for the no-conclusion link,
and we have excluded them from consideration here. It appears that it would be straightforward
to add a similar capacity to default logic, assuming that such links actually prove useful. The
proof of theorem 4.5 suggests that its generalization to networks with no-conclusion links vis-a-vis

such an extended default logic would present no problems.

Touretzky [1984a] provides a detailed exploration of the properties of inferential distance
inheritance reasoning, including a constructive mechanism for determining the ‘grounded expan-
sions’ (analogous to extensions) of a network. Many of his results bear a superficial similarity in
form and proof to those in [Reiter 1980a] and in chapter 3 of this thesis. His proofs rely on partial
acyclicity conditions which seem similar to the orderedness conditions we describe. We have
speculated (as has Touretzky) that the results in [Touretzky 1984a) and those contained herein

may prove to be closely related.

Finally, Touretzky [1984a, 1985] explores the applications of inferential distance to “inherit-
able relations”, citing examples such as

Citizens dislike crooks.

Elected crooks are crooks.

Gullible citizens don’t dislike elected crooks.
In this example, citizens generally dislike elected crooks, but Fred, the gullible citizen, doesn’t dis-
like Dick, the elected crook. A complete treatment of the relation between Touretzky’s work and
default logic should try to extend the correspondence presented here to include Touretzky’s

inferential distance treatment of inheritable relations.

Touretzky shows that, in general, parallel marker-passing algorithms cannot derive the con-
clusions sanctioned by the inferential distance algorithm. He also shows that an arbitrary net-
work can be “conditioned”, by adding logically-redundant links, in such a way that a parallel

marker-passing algorithm can return correct results. Unfortunately, this conditioning, which must
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be performed each time the network is modified, is expensive (Touretzky [1984a] gives a
polynomial-time algorithm which adds O(N?) links in the worst case) and is apparently not amen-

able to parallel marker-passing implementation [Touretzky 1982, personal communication; 1983].

We conclude that, for conditioned networks, there are correct (in the sense we have
described) parallel, marker-passing algorithms for determining inheritance in the presence of
exceptions. Such algorithms can be viewed as fast inference algorithms for reasoning with the

tractable class of default theories which correspond to conditioned networks.



CHAPTER 5

Predicate Circumscription

In this chapter we focus on predicate circumscription, as presented in [McCarthy 1980].
Our objective is to establish various results concerning the consistency of this formalism, and to
describe some limitations of its ability to conjecture new information. One such limitation is that
predicate circumscription cannot account for the standard kinds of default reasoning. Another
limitation relates to equality; predicate circumscription yields no new ground facts about the
equality predicate for a large class of first-order theories. This has important consequences for the

so-called “‘unique names’’ and “domain closure’’ assumptions.

5.1. Formal Preliminaries

~ Predicate circumscription was discussed in detail in chapter 2. We repeat some of the
technical details here for convenience. The semantic intuition underlying predicate circumscrip-
tion is that closed-world reasoning about one or more predicates of a theory corresponds to truth
in all models of the theory which are minimal in those predicates. Specifically, let T(Py,...,P,) be
a first-order theory, some (but not necessarily all) of whose predicates are P = {P,,...,P,}. A
model M of T is a P-submodel of a2 model M' of T iff the extension of each P; in M'is a subset of
its extension in M’, and M and M’ are otherwise identical. M is a P-minimal model of T iff every
P-submodel of M is identical to M.

For finite theories, T(Py,...,P,), McCarthy [1980] proposes realizing predicate circumscrip-

tion syntactically by adding the following axiom schema to Tt
[T(<I>-1,...,<I>,,)v N AVE (225 P,a]] > AVE (PZ5 83)

Here 9,,...,®,, are predicate variables with the same arities as P,...,P,, respectively. T(®y,...,®,)
is the sentence obtained by conjoining the sentences of T, then replacing every occurrence of
P,,..,P,in T by &,,...,8,, respectively. The above schema is called the (joint) circumscription
schema of Py,...,P, in T. Let CLOSUREpR(T) — the closure of T with respect to P = {Py,...,P,} —
denote the theory consisting of T together with the above axiom schema. McCarthy formally
identifies reasoning about T under the closed-world assumption with respect to the predicates P
with first-order deductions from the theory CLOSUREp( T).

McCarthy [1980] shows that any instance of the schema resulting from circumscribing a sin-

gle predicate P in a sentence T{P) is true in all {P}-minimal models of T. This generalizes

-89 -
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directly to the joint circumscription of multiple predicates; we omit the proof of this. We use
this generalization extensively in the proofs of the results of this chapter. Because predicate cir-
cumscription is applicable only to finitely axiomatizable theories, we will restrict our attention to

such theories.

5.2. On the Consistency of Predicate Circumscription

The minimal model semantics of predicate circumscription guarantees that CLOSUREp(T)
is consistent whenever T has P-minimal models. This suggests that certain consistent first-order
theories lacking minimal models may have inconsistent closures. Indeed, this can happen, as we

now show.

Example 5.1 — An inconsistent circumscription

Consider the following consistent theory:

Jz. Nz A Vy. [Ny D z # suce(y)]
Vz. Nz D Nsuce(z)
. Vzy. suce(z) = suce(y) Dz=9y |

In any model of T, the extension of N contains a sequence of elements isomorphic to the
natural numbers. An {IN}-submodel can always be constructed by deleting a finite initial
segment of this sequence. Hence every model of T has a proper {IN}-submodel, so T has
no {IN}-minimal models.

Circumscribing IN' in this theory, and letting ®z be [Nz A Jy. z = succ(y)} /\ Ny} yields
Vz.Nz> Jy. [Ny Az = succ(;{]f which contradicts the first axiom. H\ '

In view of this example, it is natural to seek classes of first-order theories for which predi-
cate circumscription does not introduce inconsistencies. The “well-founded” theories form such a’
class. We say that a first-order theory is well-founded iff each of its models has a P-minimal sub-
model for every finite set of predicates P. Any consistent well-founded theory obviously has at
least one P-minimal model. Since every instance of the circumscription schema of P in a theory

T is true in all P-minimal models of T, we have:

Theorem 5.1

If T is a consistent well-founded theory, then CLOSURER( T) is consistent for any set P of
predicates of T. I.e., predicate circumscription preserves consistency for well-founded
theories. |

Which theories are well-founded? We know of no complete syntactic characterization, but a
partial answer comes from a generalization of a result on universal theories due to Bossu and

Siegel [1985|. A first-order theory is universal iff the prenex normal form of each of its formulae
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contains no existential quantifiers.

Theorem 5.2

Universal theories are well-founded. .

In view of Theorem 5.1, we know that predicate circumscription preserves consistency for

universal theories:

Corollary 5.3

If T is a consistent universal theory, then CLOSUREp(T) is consistent for any set P of
predicates of T. ]

Notice that the class of universal theories includes the Horn theories, which have attracted

considerable attention from the PROLOG, Al, and Database communities.

Lifschitz [1985b] has generalized theorem 5.2 to include the class of “almost universal”
theories. A theory is almost universal in P iff it has the form VZ. A, where A does not contain
positive- occurrences of P € P within the scope of quantifiers. Almost universal theories include

universal theories as well as the “separable” theories of Lifschitz [1985a] (see § 2.1.5.2).

5.3. Well-Founded Theories and Predicate Circumscription

4

The property of well-foundedness, taken together with the ‘“‘soundness” of predicate cir-
cumscription with respect to the set of minimal models allows us to characterize the powef of
predicate circumscription. This leads to some rather surprising results. In this section we
describe some limitations of predicate circumscription with respect to well-founded theories. The
first such result is that predicate circumscription yields no new positive ground instances of any of

the predicates being circumscribed.

Theorem 5.4

Suppose that T is a well-founded theory, P € P is an n-ary predicate, and &,,...,& are n-

tuples of ground terms. Then
CLOSUREp(T) | P&, V..V P&, <= T |- Pa, V..V Pg,. B

On reflection, this is not too surprising, since circumscription is intended to minimize the exten-
sions of those predicates being circumscribed. New positive instances of such predicates should

not arise from this minimization.
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A more interesting — even startling — result is that no new ground instances, positive or

negative, of uncircumscribed predicates can be derived by predicate circumscription.

Theorem 5.5

Suppose that T is a well-founded theory, P ¢ P is an n-ary predicate, and @,...,d} are n-
tuples of ground terms. Then

(i) CLOSUREp(T) |— P&, V...V PG, <= T]—P"IV .V Pg,, and

(i) CLOSUREYT) |- -P& V..V ~P&, <> T} —-Pa V..V -Pa,. |

In summary, Theorems 5.4 and 5.5 tell us that the only new ground literals that can be con-
jectured by predicate circumscription of well-founded theories are negative instances of one of the
predicates being circumscribed. An unfortunate consequence of this result is that the usual kinds
of default reasoning cannot be realized by predicate circumscription. To see why, consider the
standard Al example concerning whether birds fly, given that “by default” birds fly. The

relevant facts may be represented in various ways, two of which follow:

1) In this representation, all of the exceptions to flight are listed explicitly in the axiom sanction-
ing the conclusion that birds can fly.

Vz. Bird(z) \ —Penguin(z) N\ ~Ostrich(z) N\ —Dead(z) A..D Can—Fly(z)
In addition, there are various IS-A axioms, as well as mutual exclusion axioms:

Vz. Canary(z) D Bir 3
Vz. Penguin( ze D Bird(z)

Vz. ~(Canary(z) N\ Pengum
~(Penguin(z) N\ Ostrich(z

2) In this representation, due to McCarthy [1986], a new predicate, ab, standing for “abnormal”,
is introduced. One then states that ““normal” birds can fly:

Vz. Bird(z) \ —ab(z) D Can—Fly(z)

The abnormal birds are listed:

Vz. Penguin(z) D ab(z)

Vz. Ostrich(z) D ab(2)

Finally, one includes the IS-A and mutual exclusion axioms as in (1) above.

Both representations (1) and (2) are universal, and hence well-founded, theories. Therefore,
if Bird(Tweety) is given, Theorems 5.4 and 5.5(i) tell us that the default assumption
Can—Fly( Tweety) cannot be conjectured by predicate circumscription.

Careful readers of [McCarthy 1980} might find Theorems 5.4 and 5.5 inconsistent with the
results in Section 7 of that paper. In the blocks-world example presented there to illustrate predi-
cate circumscription, the ground instance on(A,C,result{move(A,C),s0)) can be derived by cir-
cumscribing a different predicate, Az.prevents(z,move(A4,C),s;). This appears to violate Theorem

5.5(i). This discrepancy stems from the fact that in formulating the circumscription schema for



-73 -

this example, McCarthy uses specializations of some of the original axioms (1.e., the axioms which
specify what can prevent a move from succeeding), and omits one of the axioms (i.¢., the axiom
which states that if nothing prevents a move from succeeding, the move will be successful). Thus,
only part of the theory enters into the circumscription for his example, whereas Theorems 5.4 and

5.5 suppose that the entire theory is used in proposing a circumscription schema.

5.4. Equality

We now consider some limitations of predicate circumscription with respect to the treat-
ment of equality. These limitations will be seen to have consequences for two special cases of
closed-world reasoning, namely deriving the ‘““unique names assumption’’ and the “domain closure

assumption”’.

5.4.1. The Unique-Names Assumption

When told that Tom, Dick and Harry are friends, one naturally assumes that ‘Tom’, ‘Dick’
and ‘Harry’ denote distinct individuals: Tom # Dick, Tom # Harry, Dick # Harry. For a more
general example, consider a setting in which one is told that Tom’s telephone number is the same
as Sue’s, and that BilP’s number is 555-1234, which is different from Mary’s number. Thus, we
have:

tel-no(Tom) = tel-no(Sue)

tel-no(Bill) = 555-1234
tel-no(Mary) # 555-1234

One would naturally assume from this information that tel-no(Tom) # 555-1234, and that tel-
no(Tom) # tel-no(Mary).

In general, the unique-names assumption is invoked whenever one can assume that all of the
relevant information about the equality of individuals has been specified. Al pairs of individuals
not specified as identical are assumed to be different. This assumption arises in a number of set-
tings, for example in the theory of databases [Reiter 1980b], and in connection with the semantics
of negation in PROLOG [Clark 1978]. Vittually every Al reasoning system, with the exception of
those based on theorem-provers, implicitly makes this assumption. Because of Clark’s results, we
know that this is also the case for PROLOG based Al systems.

Unique-names axioms are also important for closed-world reasoning using predicate cir-
cumscription. For example, if all we know is that Opus is a Penguin, we can circumscriptively
conjecture Vz. Penguin(z) = z = Opus. We cannot use this to deduce —Penguin( Tweety), how-

ever, unless we know Opus # Tweety.

How then can we formalize reasoning under the unique-names assumption? The natural
first attempt is to circumscribe the equality predicate in the theory under consideration. To that
end, we shall assume that the theory T contains the following axioms which define the equality

predicate, =, for the theory:
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Ve.z=12
sz. T=yDy=1z
Viyz.z=yNy=2zDz=2
V2Tt 21 = Y N\ o N 2= y \ P(z4,...,2,)
D P(yy,-..,¥,), for each n-ary predicate symbol P of T.
VI, Tyt 1= N .- N2, = ¥,
D fz1,--%n) = f(Y1s---+¥a), for each n-ary function symbol fof T.

When T is finite, it is therefore possible to circumscribe the equality predicate, since the resulting

schema is finite. The next result informs us that doing so yields nothing new.

Theorem 5.6 (Reiter)

Let T be a first-order theory containing axioms which define the equality predicate, =.
Then T |~ CLOSURE(-y(T). |

In view of this result, one might attempt to capture the unique names assumption by jointly
circumscribing several predicates of the theory, not just the equality predicate. We do not know
whether there are any theories for which this might work, but it cannot succeed for well-founded
theories. No new ground equalities or inequalities can be derived by circumscribing a well-

founded theory, regardless of the predicates circumscribed.

Theorem 5.7

Suppose that T is a well-founded theory containing axioms which define the equality predi-
cate; «q,...,0p; Py---,P% are ground terms, and P is a set. of some of the predicates of T.
Then

(i) CLOSUREp(T) }— (ia,.: B) == ThH (ia,-: ), and

(i) CLOSURER(T) |- ( ‘__\Za; £B) <= T} (ia,-# By |

Corollary 5.8

Suppose that T is a well-founded theory containing axioms which define the equality
predicate; P is an n-ary predicate; and o, ...,ag ,gl,...,ﬂk are ground terms. Then

CLOSURER(T) |~ ~Play...e) = T (Vo B) or TH-P(By,....fo) - |

Returning to the ‘‘Penguin” example above, we see that predicate circumscription cannot
conjecture = Penguin{ Tweety) unless it is known that Opus £ Tweety; otherwise we could derive
Opus # Tweety from CLOSURE({ Penguin{Opus)}), contradicting Theorem 5.7.
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This last restriction is somewhat puzzling. The model-theory fixes the domain and the
interpretations of constants and function symbols when determining minimal models. Given the
soundness of predicate circumscription with respect to this model-theory, it is easy to see why
identity is not influenced by the set of minimal models. If the equality predicate is interpreted as
a congruence relation, rather than as identity (i.e., if non-normal models are allowed, where pairs
of distinct domain elements are permitted to be in the extension of ‘=’), the situation is less clear.
Essentially, it can be shown that, for any pair of terms for which one might hope to circumscrip-
tively conjecture (in)equality, there are minimal models which support either side of the issue. So
much for the semantic explanation. There remain two questions. What feature of the cir-
cumscription schema gives rise to this anomaly? What does this tell us about circumscription? A
partial answer to the first question is that Leibniz’ principle of substitutivity — equals are every-
where intersubstitutible preserving truth — makes a stronger statement about equality than the

circumscription schema. The second question remains unanswered.

In a recent paper, McCarthy [1986] proposes a circumscriptive approach to the unique-
names assumption by introducing two equality predicates. One of these is the standard equality
predicate, but restricted to arguments which are names of objects. The other equality predicate,
¢(z,y), means that the names z and y denote the same object. e is axiomatized as an equivalence
relation which does not, however, satisfy the full principle of substitution, in contrast to ‘‘normal”
equality. This failure of full substitutivity for the predicate e prevents our Theorems 5.6 and 5.7
from applying to e. Benjamin Grosof (personal communication) has independently proposed a
similar approach to the unique-names assumption. He has also observed that our Theorem 5.6

applies to McCarthy’s [1986] more general notion of circumscription.

5.4.2. The Domain Closure Assumption

The domain-closure assumption is the assumption that, in a given first-order theory T, the
universe of discourse is restricted to the smallest set which contains those individuals mentioned
in T, and which is closed under the application of those functions mentioned in 7. Domain cir-
cumscription [McCarthy 1977, 1980] is a proposed formalization of this assumption. McCarthy
[1980] suggests that domain circumscription might be reduced to predicate circumscription. This

is in fact false, as shown by Theorems 5.9 and 5.10.

The simplest setting in which the domain-closure assumption can arise is for a theory with a
finite Herbrand Universe {cy,...,c,}. In this case we might want to conjecture the domain-closure
aziom for this theory: Vz. z = ¢; V...V z = ¢,. Such an axiom is important for the theory of first-
order databases [Reiter 1980b]. No such axiom can arise from predicate circumscription for well-

founded theories.
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Theorem 5.9

Suppose that T is a well-founded theory; ¢,,...,t, are ground terms; and P is a set of some
of the predicate symbols of 7. Then
CLOSUREp(T) -Vz. 2=, V.Vz=t, <>
THVzz=4V.Vz=1t,. |

Theorem 5.10

If T is a well-founded theory and T has a model with some domain, D), then so does
CLOSUREp(T). |

5.4.3. Some Misconceptions

There are a number of common misconceptions about the use of predicate circumscription,
which we discuss briefly, below.

It has been proposed that arbitrary formulae could be circumscribed using predicate cir-
cumscription by including a new predicate letter and a definition declaring it to be equivalent to

the expression to be circumscribed. This will not work, in general.

Theorem 5.11

If T |~ V%. Pz = &7 for some expression ®Z; not involving predicate letters from P, then

T |- CLOSUREgp(T).

This result seems to be related to Doyle’s [1984] comments on implicit definability. Since the
theory already contains a definition for P, circumscription cannot further constrain P. As it is
generally undecidable whether T |~ Vz. Pz'= ®% for a particular ® (let alone all ®), it follows

that one cannot decide which predicates to circumscribe.

Corollary 5.12

It is generally undecidable whether CLOSUREp( T) is stronger than T. [ |

It is widely (and correctly) believed that CLOSUREp({3z. Pz}) f= 3/z. Pz (i.e., there is a
unique P). There appears to be some misunderstanding about how this is achieved, however.
After some experimentation, the idea of skolemization comes to mind and, indeed,
CLOSUREp(Pa) = 3!z. Pz (actually Vz. Pz = z = a). Skolemization, however, can change the



-77 -

set of minimal models of a theory (and hence the results of circumscription). To see this, notice
that in Example 5.1, T has no minimal models, but the skolemized form of T is universal and
hence well-founded. There has been a tendency to believe that the skolemized form of a theory T
is equivalent to T, which is false. In fact, skolemization preserves satisfiabdity, not derivability;
the existence of models, not the set of models. The actual circumscriptive derivation of J/z. Pz
from Jz. Pz involves the substitution of a binary predicate for ®z, viz z = u, where u is a variable
distinct from z.

The skeleton of a correct circumscriptive derivation in a natural deduction system of

J’z. Pz from Jz. Pz follows:

1 [@z. @2 A (V2. @z D Pr)} D (Vz. Pz D> ®z)] CLOSURE(py(Jz.P1)
2 [Bz.z=1u) A (Vz. 2= uD P1)]

> (Vz. Pz > z = u)] 1, [z = u/P4]

3 Vu |3z z=1u) A (Vz. 2= uzD Pz]
D (Vz. Pz D z = 4)] 2, universal generalization

4 Jz. Pz given
5 Pa hypothests
6 [3z.z=¢e)A (Vz. 2= 0a D P3)

5 (Vz. Pz > z = a)] 3, universal instantiation
7 Pa>d (Vz.PzrDz=aq) 6, tautology
8 VaProz=a 5,7, tautology
9 PaA(Vz.PzDz=aq) 5,8, tautology
10 Jy. PyN\ (Vz. Pz D> z=1y) 4,5,9, existential generalization
11 J!z. Pz 10, definition

There have been implicit [McCarthy 1980] and explicit |[Genesereth and Nilsson 1987]
suggestions that the way around some of the limitations of predicate circumscription might be to
circumscribe only “relevant” portions of the theory. The idea is that, by weakening T(®) - hence
eliminating some of the conditions that ¢ must satisfy — perhaps some more useful results will
obtain. Obviously, one must be careful; circumscribing P in Pa, leaving out Pa will produce
Vz. ~Pz. This, being inconsistent with Pa, is perhaps too useful. One idea is to distinguish,
amongst the positive literals in each clause of the theory, one which the clause is said to be
“about”. Then only those clauses “about” P are taken into account in forming T(®). This may

indeed allow positive facts to be derived. For example, consider

Vz. Bird(z) \ ~Penguin(z) D Flies(z)
T = { Bird(Tweety), Penguin{Opus), Opus £ Tweety
Vz. Penguin(z) D Bird(z)
If the first axiom is taken to be about Flies, then we get

®0pus A\ [Vz. &z D Pz > [Vz. Pz D ¥

when we circumscribe (in this fashion) Penguin in T. From this we can derive
Vz. Penguin(z) = z = Opus and Flies(Tweety)! There are two drawbacks with this approach,
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however. The first is that its semantics are unknown. They are not those of predicate cir-
cumscription, and there is no known model-theory or “soundness” result corresponding to that for
predicate circumscription. Thus it is not clear what this approach computes. More seriously,
consistency is not necessarily preserved; the first axiom of T is also “about” Penguins, in the
sense that T" = (T U {—Flies( Tweety)}) |— Penguin( Tweety). Taking the above approach to cir-

.y * - - - -
cumscribing T will result in an inconsistency.

5.5. What to Circumscribe?

One obvious problem with using circumscription in a given setting is knowing just what to
circumscribe. Some of our results provide clues in this direction. (Corollary 5.12 shows that clues
are the best that can be hoped for, in general.) Theorem 5.5 tells us that if we wish to use predi-
cate circumscription to conjecture —P(&) in some well-founded theory then we must include P
among the predicates being circumscribed. Theorems 5.4 and 5.5 tell us that predicate cir-
cumscription will not do at all if we wish to conjecture P(&), as is the case for most forms of
default reasoning, so that we must appeal to some other mechanism, such as McCarthy’s more

general form of circumscription, discussed in the next chapter.



CHAPTER 6

Generalizations of Circumscription

6.1. Formula Circumscription

McCarthy [1986] has recently formulated a generalization of predicate circumscription,
called formula circumscription. This generalization provides for the minimization of arbitrary
first-order expressions rather than simple predicates. It also provides for the treatment of desig-
nated predicates as variables of the minimization. In this version of circumscription some of the
limitations of Theorem 5.5 no longer apply. Thus, as some of McCarthy’s examples show, it is
possible to circumscribe a predicate P, treating another predicate @ as variable, and derive new
positive and negative ground instances of @. In particular, McCarthy’s new formalism appears

adequate for the treatment of some forms of default reasoning, as his examples show.

Many of the limitations of predicate circumscription stem from the fact that only those
predicates being minimized are allowed to vary. Formula circumscription retains many of the
attractive features of its predecessor, without some of its limitations. McCarthy’s definition of the
formula circumscription of E(P,z) in the theory T(P) takes the form of the second-order axiom,
(22).

T(P) AV&. T(®) A [VZ E(®,3) > E(P,3)] > [VZ E(P,3) > E(&,3)] (22)

where E(P,zZ) is any well-formed expression whose free individual variables are among
Z'= z;,...,2p and in which some of the predicate variables P = {P,,...,P,} occur free; E(®,7) is the
result of replacing each free occurrence of the predicate letters, P; in E(P,z) with predicate vari-

ables, ®,, of the same arity.

Not everyone is convinced of the need for second-order logic for circumscription [Perlis and
Minker 1986]. A first-order schema version of formula circumscription, (23}, is obtained by delet-

ing the second-order quantifier, V®.
T(P) A\ T(2) A [V=: E(®,3) > BP3) > (V2 BP,3) > B®3)] (29)
We will sometimes write CLOSURE(T; P; E(P,z)) for either axiom (22) or schema (23), indicat-

ing minimization of the expression E(P,z), with the predicates P treated as variable, in the

theory, T.

McCarthy presented only a syntactic characterization of formula circumscription.
Motivated by a belief in the importance of semantic characterizations for reasoning systems, and
by the striking consequences of exploring the semantics of predicate circumscription, we explored

the possibility that an appropriate generalization of the minimal-model semantics of predicate
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circumscription would characterize formula circumscription.! This led us to a form of the general-
ized minimal-model semantics which has since been used in the explication of a variety of closed-

world reasoning formalisms (see §2.1). The precise details are given below.

Definition: M < HP‘E)M'

Let T(P) be a finitely axiomatized (first- or second-order) theory, some (but not neces-
sarily all) of whose predicates are those in P; let E(P,Z) be a formula whose free variables
are among I = 1y,...,%,, and in which some of the predicate variables P = {P,,...,P}
occur free; and let M, M' be models of T. We say M is an E(P,z)-submodel of M’ (writ-
ten M < E{P,E)M') iff

(i) |M =M,

(ii) If tis a term, then [t|p = |t|pe

(iti) If @ ¢ P is a predicate letter of T, then |Q|p= |Qla¢, and

() B S B N

Definition: E(P,z)-Minimal Model
A model, M, of T is E(P,z)-minimal iff T has no model, M, such that M’ < apzM and

~(M< ﬂP,?)M,)' L

That this is the correct semantics is suggested by Theorems 6.1 and 6.2. Theorem 6.2 is
applicable only to the first-order-schema version of formula circumscription; Theorem 6.1 applies

both to that and to second-order formula circumscription.

Theorem 6.1 — Soundness

CLOSURE(T; P; E(P,7)) is satisfied by every E{P,z)-minimal model of T. B

Theorem 6.2 — Finitary Completeness (Perlis and Minker)

If all models of T have finite extensions for each P € P (modulo equality), then M
satisfies every instance of CLOSURE(T; P; E(P,z)) only if M is an E(P,z)-minimal
model of T.

! Lifschitz [1985, personal communication] argues that the model-theory for second-order logic provides
sufficient semantics for the generalized forms of circumscription. While this may be true, the explicit notion
of minimality leads to useful insights, as is indicated in the sequel.
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Perlis and Minker [1986] actually prove a slightly stronger result, applicable if all models for
CLOSURE(T,; P; E(P,z)) have finite extensions for each P € P. Of course, no general complete-
ness result could be forthcoming. There is a unique {up to isomorphism) minimal model for the
standard axiomatization of the natural numbers, but there is no recursive first-order axiomatiza-
tion which uniquely characterizes this model. If circumscription were complete, it could be used

to conjecture such a first-order axiomatization.

It is worthwhile determining which of the differences between predicate circumscription and
formula circumscription are really necessary. As McCarthy has suggested, the minimization of

arbitrary expressions is not.

Theorem 6.3

The ability to minimize arbitrary expressions, E{P,Z), instead of simple sets of predi-
cates, 1s an inessential extension, provided predicates other than those being minimized
are allowed to vary.

Theorem 6.3 tells us that it suffices to circumscribe predicates. To see this, observe that one can

simply extend the language with a new predicate symbol, ¥ and add the axiom:
V7. y7= E(P,7)
to the theory. Circumscribing ¢Z in the extended theory with P U {4} variable results in a con-

servative eztension (no new theorems over the original language are derivable) of the circumscrip-

tion of E(P,7) in the original theory.

6.2. Generalized Circumscription

McCarthy’s formula circumscription has lately been generalized by Lifschitz [1984], exploit-

ing pre-orders, as discussed in §2.1.5.2. Lifschitz’ generalized form is:
TX) AVX'. T(X") A (X' < gX) D (X < gX) (24)

where < p denotes the pre-order on tuples of (predicate, function, and individual) variables
induced by a reflexive, transitive relation, R. We call this generalized circumscription, and write
CLOSURE(T; X; R) for (24) or the corresponding first-order schema. This formulation allows for
arbitrary ordering relations to drive the minimization, and provides for the denotations of terms

(constant and function letters) to be affected by the minimization process.

The extended minimal-model semantics outlined above is amenable to this further generali-
zation. The most significant change from the forms we have seen to this point is that the denota-
tions of some constant and function terms may change between a model and its submodels. The

appropriate definitions are:
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Definition: M < (xpM’

Let T(P) be a finitely axiomatized (first- or second-order) theory, whose predicate, func-
tion and constant letters include (but need not be limited to) those in X; let R be a binary
relation on tuples of type X; let < g be the pre-order induced by R; and let M, M’ be

models of T. Then Mis an (X,R)-submodel of M’ (written M < (x pM') iff
(i) M = |M],
(i) If tis a term and ¢ ¢ X, then |t = |t|p¢
(i) If @ ¢ X is a predicate letter of T, then |Q|p= |Q|s’, and
(iv) <|X|[a X|pr>€R. [ |

Definition: (X,R)-Minimal Model
A model, M, of T is (X,R)-minimal iff T has no model, M, such that M’ < (x pM and
4

We have shown that generalized circumscription is sound vis-a-vis the set of minimal models

specified by this model theory.

Theorem 6.4 — Soundness

CLOSURE(T; X; R) is satisfied by every (X,R)-minimal model of 7. |

We do not know whether there is an analogue of Theorem 6.2 (finitary completeness) for general-

1zed circumscription.

The provision for variable terms leads to some surprising results. These include new posi-
tive equality statements, and the provability of new positive or negative ground facts in predi-

cates not included among those specified as variable.

Proposition 6.5

If terms are allowed to vary, then new ground equality statements
may result from generalized circumscription.

Proposition 6.6

If terms are allowed to vary, then new ground facts involving predicates
Q ¢ X may result from CLOSURE(T; X; R).
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Example 6.1

Consider the theory T = {Pa, Pb, Qb }. CLOSURE(T; {P, a}; {P}) is
PaANPbAQbAVE Vu [®u Db A (Vz. &z D Pz)] O (Vz. Pz D d3)

Instantiation with [z = b/®z] and [b/u] gives Vz. Pz D z = b, from which we can infer
a = b and hence Qa. l

6.3. Well-Founded Theories

As with all of the forms of minimal-model semantics we have discussed in this thesis, that
for generalized circumscription provides for certain elements to differ between a model and its
submodels while others remain fixed. Despite Theorems 6.2-6.4, it is not necessarily clear that the
syntactic manipulations of generalized (or formula) circumscription respect the intent expressed
by this semantic characterization. It is conceivable that all models reflecting a particular
configuration of supposedly fixed attributes might have no minimal submodels. The semantics
then fails to guarantee that circumscription will not affect these supposedly “inviolable” facets. It
is natural to question whether there is any property analogous to the well-foundedness property
we discussed for predicate circumscription, which would address this concern. In fact, as we shall

see, there is such a notion. Let us redefine the term ‘“‘well-founded” as follows:

Definition — Well-Foundedness

The theory, T, is well-founded with respect to (X,R) iff every model of T
has an (X, R)-minimal submodel.

This definition is slightly weaker than that given in chapter 5, where we required that every
model of T have a P-minimal submodel for every finite tuple of predicates, P. This weaker
definition, relativized to (X,R), is sufficient for deciding whether a particular circumscription is
well-behaved. The more direct generalization of the definition of chapter 5 is so strong that it

excludes all theories.

Proposition 6.7 (Lifschitz)

Universal theories are not necessarily well-founded if
constants are allowed to vary.
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Example 6.2 (Lifschitz)

The natural-number example of Example 5.1, with the existentially specified individual

replaced by the constant ‘0’:

INO A Vz. Nz D suce(z) #0
Vz. Nz D Nsuce(z)
Vzy. suce(z) = suce(y) Dz=1y

is not well-founded with respect to minimization of IN with {IN, 0} variable. Since the
denotation of 0 is allowed to change from model to submodel, the infinite chains of models

presented in Example 5.1 serve to show that this theory has no minimal models. [ |

Proposition 6.8

No class of theories is well-founded with respect to all pre-orders. |

Example 6.3

Consider the theory with no proper axioms, and minimize the expression
E(P,z) = Pz N\ [Vz. =Pz} A\ [Jz. Pz \ ~Psz]. Consider a model in which P is interpret-
ed by the natural numbers, and s by the successor function. Clearly any non-empty ini-
tial subset of the natural numbers produces a proper submodel, but the model with the
empty interpretation for P makes E true everywhere.

Proposition 6.8 and Example 6.3 can best be understood in terms of Theorem 6.3. Minimization

of E(P,z) in T is equivalent to minimization of ¢z, with {¢, P} variable, in
T = {Vz. Yz = [Pz A[Vz. =Pz} A [Jz. Pz A\ ﬁPsz]] }

which does not belong to any of the known classes of well-founded theories (because P occurs
positively within the scope of existential quantifiers). In some sense, allowing arbitrary pre-orders

enables one to “import” arbitrary axioms into the theory.

With these examples in mind, we will restrict our attention in the sequel to the case of sim-
ple minimization of some of the predicates of X. In other words, we will consider a generalization
of joint predicate circumscription, in which other predicates and terms may be allowed to vary.
We will write < (xp) for the pre-order determined by the joint minimization of each of the predi-
cates in P, allowing the predicates and terms of X to vary. (X is assumed to contain all of the
predicate symbols of P.)

The question remains, ‘““Are there any theories which are well-founded?” Fortunately, the
answer is “Yes”. (This result has been proved independently (using rather different techniques)
by Lifschitz [1985].)
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Theorem 6.9

If T is a universal theory, and X, P are finite tuples of predicate letters,
then T is well-founded with respect to < (xp) .

The existence of well-founded theories proved most distressing in the context of predicate
circumscription. What are the repercussions of Theorem 6.9 for generalized circumscription?
Certainly, they are less pessimistic. Generalized circumscription affords much greater control over
which aspects of models must remain fixed when constructing submodels. This means that gen-
eralized circumscription is not driven, willy-nilly, to avoid conclusions which lead to the deriva-
tion of new positive information. Thus, for well-founded theories, generalized circumscription
allows useful conclusions to be drawn without sacrificing a clear semantic intuition of exactly

what is open to conjecture. Also on the positive front, we have Corollary 6.10:

Corollary 6.10

If T is consistent and well-founded with respect to (X, P),
then CLOSURE(T; X; P) is consistent.

It is natural to question the extent to which the negative results of chapter 5 apply to gen-
eralized circumscription. It is clear that, in the case where only the minimized predicates are
allowed to vary, that all the results in chapter 5 continue to hold, since in this case generalized
circumscription reduces to predicate circumscription. Furthermore, Theorem 5.4 and an appropri-

ate version of Theorem 5.5 continue to hold, even with variable predicates.

Theorem 6.11

If T is well-founded with respect to (X, P); P€ P is an n-ary predicate; X a set of
predicate letters; and @y,...,@; are n-tuples of ground terms; then

CLOSURE(T; X; P) |— P&, V..V P@, <= T} Pa, V...V Pa;. |

Theorem 6.12

If T is well-founded with respect to (X, P); X is a set of predicate letters; P¢ P U X
is an n-ary predicate; and &),...,0 are n-tuples of ground terms; then

(i) CLOSURE(T; X; P) |- P&, V..V Pey <= T | P& V..V P&, and

(i) CLOSURE(T; X; P) |- -Pa, V..V ~Pa, <= T} -Pa,V..V-Pa,. I}
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The fact that the model-theory outlined in §6.2 for generalized circumscription (even with
variable terms) restricts the submodel relationship to models with identical domains suggests that
generalized circumscription (and a fortiors formula circumscription) cannot be used to conjecture

domain closure axioms. For well-founded theories, this is the case.

Theorem 6.13

If T is well-founded for (P,R) and T has a model with domain, D,
then so does CLOSURE(T(P);P;R).

Thus neither generalized circumscription without variable terms nor formula circumscription sub-
sumes domain circumscription.

Equality appears to remain problematic if only predicates are variable, but we have not pro-

ven an analogue of Theorem 5.7. Theorem 5.6 continues to apply even if terms are allowed to

vary.

Theorem 6.14

If T is a first-order theory containing axioms which define the equality
predicate, =, then T |— CLOSURE(TX,{=}) .

It appears that unique names axioms are derivable (for theories with finite domains) given
variable terms, however [Lifschitz 1984]. Unfortunately, we have seen that variable terms can be
problematic. The general formulation of closed-world reasoning about equality using generalized

circumscription with variable terms remains an open question.

Also open are the questions of analogues of Theorems 5.4 and 5.5 vis & vis arbitrary pre-
orders and/or variable terms. Because of the failure of well-foundedness for these forms of cir-
cumscription, the tools we have used in this chapter and in chapter 5 do not apply to these more

general problems. Proposition 6.6 suggests that such analogues may not be forthcoming.



CHAPTER 7

Domain Circumscription

In chapter 2, we discussed the motivation for and one realization of domain circumscription.

In this chapter, we investigate the formalism more thoroughly.

Domain circumscription [McCarthy 1977, 1980; Davis 1980] is intended to be a syntactic
realization of the model-theoretic domain-closure assumption. It provides a mechanism for con-
jecturing domain-closure axioms, eliminating the need to explicitly state them. To circumscribe

the domain of a sentence, A, the schema:
Aziom(®) A\ A® D Vz. &(z) (25)

is added to A. Aziom(®P) is the conjunction of Pa for each constant symbol o and
Vz...2, [®z; Ao\ P2, D Bfs,...3, for each n-ary function symbol f. A?® is the result of rewriting
A, replacing each universal or existential quantifier, ‘Vz.’ or ‘Jz., in A4 with ‘Vz.®z >’ or

‘Jz.9z /\ ’, respectively.

7.1. A Revised Domain Circumscription Axiom Schema

As was noted in §2.1.5.3, the appropriate model-theoretic characterization for domain-
closure involves restriction of models to progressively smaller domains, preserving agreement over
common terms. This notion of submodel corresponds roughly to the standard notion of “substruc-
ture”. Tt is slightly stronger, however, in the sense that substructures are not required to be
models of the theory in question.

Davis (1980] shows that every instance of (25) is true in all minimal models of the original
sentence A. This result is correct for most theories. However, inconsistency results when cir-
cumscribing universal theories (theories whose prenex normal forms contain no leading existential

quantifiers) with no constant symbols. For example, consider the relational theory:
A={Vz Pz}.

Because there are no constant or function symbols, Aziom(®) is empty, so the domain cir-

cumscription schema for A is:
[Vz. &z D> Pz] > Vz. &z.

Mercer [1984, personal communication] has noted that substituting —Pz for ®z gives:
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[Vz. Pz] S5 Vz. Pz

which is cléarly inconsistent with A.

The root of this problem is that, for such theories, ¢ can be chosen to be universally false.
Models of first-order theories must have at least one domain element, so the conjecture that
everything is a ® (and hence there is nothing) is inconsistent. Having isolated the problem, we
have developed a simple, easily motivated solution. Since models must have non-empty domains,
those ®’s which are identically false must be excluded. To achieve this, the conjunct Jz. &z is

added to the left-hand-side of the circumscription schema (25), giving:
Jz. 2z \ Aziom(®) \ A® D Vz. &(z) (26)

Davis’ proof is easily corrected and amended to apply to this revised schema. Schemas (25) and
(26) are equivalent in all but the problematic cases outlined above. If A contains a constant sym-
bol, a, then ®a occurs on the left of (25), and this entails 3z. ®z. Similarly, if A has any leading
existential quantifiers, then Jz. ®z already occurs in (25). In those cases where Jz. ®z is not
entailed by the left-hand-side of (25), (25) results in inconsistency. The revised schema may still
take a consistent theory with no minimal models to an inconsistent circumscription (for an

example, see [Davis [1980]}, but so long as A has a minimal model, (26) preserves consistency.

Theorem 7.1 — Soundness

Every instance of schema {26) is true in every minimal model of the original
theory.

7.2. Some Properties of Domain Circumscription

In this section we consider some properties of domain circumscription, We examine their
consequences with respect to using domain circumscription to formalize the domain-closure
assumption. To better illustrate the properties of domain circumscription, we refer to the follow-

ing example.

Example 7.1

Let T = {Pa,Pc,Qb,Qc}. T has the following minimal models. (We use the corresponding
boldface letter for the interpretations of constant terms, and «, B, and < represent the

equivalence classes {a, ¢}, {b, ¢}, and {a, b, c}, respectively.)

M;: M) = {a, b, ¢}
lP‘Ml = {a, c}
[@lax, = {b, ¢}
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|=|Ml = {(a,a), (b,b), (e,c)}

My |My| = {e, b}
|Plag, = {a}
|@lag, = {b, o}
|=|M3 = {(a,a), (b,b), (¢,c), (a;c), (c,a)}

Mz |My| = {a, £}
[Plag, = {a, £}
|@lr, = {8}
I=la, = {(a,a), (b,b), {c,c), (b,c), (e,b)}

Mg |My| = {~}
lPIM‘= {7}
|Qln, = {7}

I=IM‘= {(a:a)i (b’b)': (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b)} .

Several important features are evident in the above example. First, every model of T has
one of M, — M, as a minimal submodel. As with other forms of circumscription and their
corresponding notions of minimality, it is interesting to know whether there is a class of theories
each of whose models has a minimal submodel (s.e., well-founded theories). It is for such theories
that domain circumscription corresponds most closely with one’s intuitions. In the case of domain
circumseription, the mathematical logic literature provides a sufficient condition (c.f. [Barwise
1977, p 62]).

Proposition 7.2 (JoéTarski Theorem)

Universal theories (possibly with function symbols) are well-founded for domain cir-
cumscription.

It is also clear that theories with only finite models are well-founded.

Second, because the domain circumscription schema is satisfied by every minimal model,
domain circumscription does not produce any new ground-term equalities or inequalities, for well-

founded theories. (The same limitation also applies to predicate and formula circumscription.)
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Theorem 7.3

If T is a well-founded theory which contains axioms which define the equahty predicate,
=, and ay,.. e Bu---sPn are ground terms, then

(i) T|—(va, B) <> DC(T)I—(Va, 8)
(i) Ti—('__l_lla.'# B) <= DC(T) }—(;/laf# 2 n

The automatic generation of all possible ground term inequalities to capture the unique-names

assumption [Reiter 1980b} remains a thorny issue in knowledge representation.

Third, the ambiguity of the usual statement of the domain-closure assumption is revealed.
Only M, has the minimum number of individuals necessary to satisfy T (i.e., 1), yet each of M; —
M has only individuals named (and hence required to exist) by 7. Domain circumscription cap-
tures a weak sense of the domain-closure assumption which does not decide between these
interpretations. Based on common applications of the domain-closure assumption (typically in
conjunction with some form of unique-names assumption), this weak sense appears to be the pre-

ferred sense.

While new ground equality statements are not generally forthcoming, the results of domain
circumscription do interact with the equality theory in interesting ways. The circumscription of
T in Example 7.1 entails a= 6 A b= c D 3zVy. z =y, for example. The circumscription of
{3z. Pz, Jdz. Qz} entails dz. Pz A\ Qz D JzVy. 2= y. Such formulae seem to precisely capture
the difference between the various minimal models of the original theory. In fact, a completeness
result for domain circumscription can be obtained. This result guarantees that, for theories with
only finite models {among others), the set of minimal models of the original theory constitutes
exactly the set of models of the circumscribed theory. Such a precise characterization is very
encouraging. The proof of this result is analogous to Perlis and Minker’s [1986] finitary complete-

ness proof for predicate and formula circumscription.

Theorem 7.4 — Finitary Completeness

If T is a finitely axiomatizable theory, and every model of T is finite, then only the
minimal models of T satisfy every instance of schema (26) for T.

In the statement of Theorem 7.4, the requirement that all of 7°s models be finite is stronger

than necessary. The theorem holds even if only the models which satisfy schema (26) are finite.

Corollary 7.5

If T is a finitely axiomatizable theory, and every model of T U schema (26) is finite,
then only the minimal models of T satisfy every instance of schema (26) for T.
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7.3. Related Formalisms

McCarthy [1980] claims that domain circumscription is a special case of predicate cir-
cumscription, in that the domain circumscription schema for a theory, A, can be derived by predi-
cate circumscription of a theory, A’, which is a conservative extension of A. In view of this, it
might appear that interest in domain circumscription is pointless. Apart from the fact that
domain circumscription is a more direct and somewhat simpler approach to domain-closure, and
that the model theory of domain circumscription perhaps better captures our intuitions about the
conjectures involved, there is another reason to reject this argument for abandonment.
McCarthy’s demonstration of this subsumption actually rests on a strengthened form of predicate
circumscription which allows axioms of the original theory to be ignored during the circumscrip-
tion process. As we noted in chapter 5, this form of circumscription does not always preserve con-
sistency, even for theories with minimal models. Ordinary predicate circumscription cannot, in
general, yield the domain circumscription-schema. In fact, this is fortunate, since the form of
domain circumscription McCarthy was trying to emulate introduced inconsistencies into some

theories with minimal models.

QOur revised form of domain circumscription, which preserves consistency for minimally
modelable theories, is still not obtainable using predicate circumscription. In chapter 5, we
showed that predicate circumscription is too weak to conjecture domain-closure axioms. Since
domain circumscription can conjecture such axioms, it follows that it is not subsumed by its
predicate cousin. In chapter 6, we showed that neither formula circumscription nor generalized
circumseription without variable terms subsumes domain circumscription, in general. Qur seman-
tic characterization suggests that it is unlikely that any form of generalized circumscription can
conjecture domain-closure axioms. It appears, therefore, that domain circumscription continues

to fill a niche among the various mechanisms for closed-world reasoning.



CHAPTER 8

Connections Between Default Logic and Circumscription

In chapter 3, we observed that the model-set semantics for default logic bears a superficial
resemblance to the minimal-model semantics of the various forms of circumscription. Chapters 5
and 6 considered the feasibility of doing default reasoning using circumscription. We now con-

stder the relationships between default logic and circumscription in more detail.

The natural question is whether either form subsumes the other. Is there a direct correspon-

dence between default theories and circumseription, or vice versa?

Proposition 8.1

Default logic can reach conclusions which cannot be obtained
by generalized circumscription without variable terms.

Example 8.1

The default theory {—afTb-},{ }| has a unique extension, containing o # b. In
a

chapter 6, we showed that generalized circumscription without variable terms cannot con-

jecture new inequalities. [ |

The converse of proposition 8.1 is apparently false. Assuming that CLOSURE(T; X; R) is
consistent, the theory

{—Ii | I'is an instance of CLOSURE(T; X; R) } T
obviously produces the required results. Perhaps this is not what one has in mind when one asks

if default logic can capture circumscription, however! We will return to this question in later sec-

tions.

-92 .
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8.1. “Translation” from Default Logic to Circumscription

In view of proposition 8.1, the title of this section might seem paradoxical. There has been
some work on partial translations, however. Grosof [1984] presents two equivalent translation
schemes for normal default theories, one involving ‘ab’ predicates (discussed in §2.2.2), the other

involving minimizing arbitrary expressions. We discuss the former.

The translation scheme carries the first-order axioms, W, over unchanged. For each closed

R ﬁi, the axiom a; \ =f; D ab(1) is added. Then ab is circumscribed in the

normal default,

resulting theory, varying ab and each predicate which occurs in any of the f;s. Grosof observes
that this “translation” actually differs from default logic in a number of respects. First, the
equality predicate is not affected by the circumscriptive theory. Grosof proposes to exclude
defaults about equality to remedy this, but this is insufficient. Any default which affects equality
will not behave “correctly” in the circumscriptive theory. A further difference is that the cir-
cumscriptive theory inherits circumscription’s “cautious” nature. The multiplicity of extensions

of a default theory are reflected in disjunctive statements in the translated theory. Finally,
a: B
B

, since the translation allows the conjecture of —~a from —f, something Grosof appears not

Grosof’s translation of the normal default actually more closely corresponds to the default

ctadf
aDf

to have noticed. Even allowing for these discrepancies, Grosof presents no more than intuitive

arguments and examples in support of the correctness of the translation scheme.

Imielinski [1985] takes the complementary tack of defining a translation scheme to be ade-
quate if the theory and its translation produce precisely the same conclusions, and furthermore
the translation scheme is “modular”. Modularity requires that the translation of the defaults and

first-order facts must be independent.

Imielinski views the translation of a set of defaults to consist of a collection of first-order
facts and a pre-order relation. Both of these must be determined from the defaults alone, without
reference to the specific facts at hand. This is a desirable property, since one does not wish to
have to recompute one’s representation of knowledge (in addition to the necessary adjustments to

the set of one’s conjectures) every time a new fact is learned.

Given these strictures, Imielinski is able to prove that even normal defaults are not modu-

larly translatable to generalized circumscription. There are some defaults which do have modular
ta A\ ﬂ)
B

These results highlight the necessity of the fundamental distinction between the model-set-

translations, however. These are the semi-normal defaults without prerequisites (e.g.,

restriction semantics of default logic (see chapter 3) and the minimal-model semantics of cir-
cumscription. The prerequisites of the defaults are required to be provable. This is a global
characteristic of the set of models. The submodel relation, however, is only able to consider pairs
of models. Prerequisite-free defaults fit nicely into circumscription precisely because they are
prerequisite-free. There are no (global) provability requirements, only consistency requirements.

Consistency can be determined by the existence of a single model, so can be locally determined.
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There remains the question of whether the requirement of identical sets of theorems is too

strong. Imielinski’s theorem, proving that normal default theories are not modularly translatable,

rests on the fact that any modular translation of the default AEB, where the sets {A, B} and

{A, ~B} are both consistent, will necessarily yield 4 > B as a theorem (assuming W}~ -B).
While this may be true, if an extension contains A or B, it will also contain 4 D B. It appears
that the offending implication is offensive only in those cases where it cannot be used to deduce
anything “useful”. More convincingly, we have noted that default logic is a “brave” reasoner
while circumscription is “cautious”. It seems reasonable to expect that a circumscriptive transla-
tion of default logic would reflect this cautious nature, perhaps returning those facts true in all
extensions. Finally, circumscriptive conjectures apply to all individuals, whereas those resulting
from open defaults apply only to individuals with names in the language. It might be reasonable
to expect that circumscriptive versions of default theories with open defaults would therefore

prove stronger conjectures (at least for theories without domain closure axioms).

These considerations suggest that Imielinski’s results might be taken as a “worst case”
scenario, leaving open the possibility of acceptable translation schemes for defaults with prere-

quisites, given a weaker notion of ‘“acceptable”. We do not further consider this possibility here.

8.2. Translations from Circumscription to Default Logic

The other side of the coin we have been examining is whether default logic can be used to
perform circumscription (in any but the trivial sense mentioned at the beginning of this chapter).
The previous section outlined a number of the very different capabilities of the two formalisms:
brave vs cautious, effects on equality, global (provability) vs local (consistency) comparisons in
the model-theory (proof-theory), and statements about ‘“unnamed” individuals. In all but the last
of these categories, default logic came out on the stronger end. This suggests that the search for a
direct implementation of circumscription in default logic might be more successful that the con-
verse attempt. The answer to this is, ““Yes, and no.”. There is one facet of generalized cir-
cumscription which is completely absent from default logic. That is the ability to specify which
predicates are to be allowed to vary during the circumscription process. In default logic, there is
no way to restrict the repercussions of the defaults to some particular set of predicates (and/or

individuals). Thus we have Theorem 8.2.

Theorem 8.2

If THVz.z=a;V.Vz=a,and T} o; ¥# a;, fori# s for ground terms ay,...a,;
and X includes all of the predicates of L; then those formulae true in every extension of

A= { : _‘Ifz }, T| are precisely those entailed by CLOSURE(T; X; {P}). [ |
=Pz
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Corollary 8.3

If £ is an extension of A, then every model of E is an
(X,{P})-minimal model of T.

Corollary 8.4

If Mis an (X,{P})-minimal model of T, then M is a model
for some extension of A. |

Corollary 8.5

A captures the brave circumscription of P in T with every predicate variable. [ |

Notice that Theorem 8.2 requires that T have unique-name axioms as well as domain-
closure axioms. If we drop the requirement for unique-name axioms, then the default theory
becomes stronger than the circumscriptive theory, in the sense that Corollary 8.3 continues to
hold but Theorem 8.2 and Corollary 8.4 do not. We have not yet determined whether these
results generalize to the joint minimization of several predicates. Because of the limitation of
open defaults to named individuals, none of the results generalize to theories without domain-

closure axioms.

Proposition 8.6

If T does not entail a domain-closure axiom, and T }/~ Vz. =Pz, then every
extension for A has models which are not (X, { P})-minimal.

Even more pessimistic is the result that fixed predicates preclude such a straightforward transla-

tion of circumscription to default logic, even for closed-domain, unique-name theories.

Theorem 8.7

There are theories, T, such that T} Vz.z=a;V.Vz=a,and T} a;# ay,
: Pz } .
» T{ precisely

for i # j and yet no combination of the extensions of A = { 2
-Pz

characterizes the (X, {P})-minimal models of T ]
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We experimented with an extended version of default logic which allowed for the
specification of “fixed” predicates. Although we were able to show that the results in [Reiter
1980a, chapters 2 and 3] hold for this logic, and - for finite theories — the obvious generalization
of the model-set restriction semantics of chapter 3 applies, we abandoned this approach when it
proved incapable of yielding an analogue for Theorem 8.2 in the presence of fixed predicates.
(The best that could be guaranteed was that those ground literals in P contained in all extensions
were true in all minimal models. This is significantly weaker — sufficiently so that we doubt that

the (abundant) extra machinery required is worthwhile.

Example 8.2

Let Tbe {Vz.z=aVz=b,a# b =Pa/\ ~PbD Qa} and let Q be fixed.
The P-minimal models of T are (loosely represented):

{ Pa, = Pb, —=Qa}
{~Pa, Pb, ~Qa)
{~Pa, =Pb, Qa}

There are no ground literals in P true in every P-minimal model. However,
CLOSURE(T; {P}; {P}) I~ (d=. Pz= Qa) A\ (~Pa V -Pb) .

In other words, one can circumscriptively conjecture that there is exactly one P if Qa,
and none otherwise.

Gelfond and Przymusinska [1985] prove the weak result alluded to above for their version of
Minker’s generalized closed-world assumption, which allows fixed predicates. Gelfond, Przymu-
sinska, and Przymusinski [1985] prove a much stronger result for their extended closed-world

assumption.

Proposition 8.8 (Gelfond, Przymusinska, and Przymusinski)

A structure, M, is a model for ECWA(T) iff it is a minimal model for T. [ ]

At first glance this might suggest that there should be some analogous result for some default
theory. It appears that the ECWA actually achieves this power by the subterfuge discussed near
the beginning of this chapter, by adding every instance of the circumscription schema. This is

certainly the case in the absence of variable predicates.
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Proposition 8.9

If there are no variable predicates (Z =‘ }), then ECWA(T) adds to T every instance
of the circumscription schema. :

It seems that any generalized translation from circumscription to default logic (for finite
theories) — if such a thing exists, short of adding defaults for each instance of the circumscription
schema — requires more power than the closed-world default provides. The existence of an

appropriate translation remains open.



CHAPTER 9

Open Problems

Don’t confront me with my failings ...
I have not forgotten them.

— Jackson Browne

Throughout the thesis, a catalogue of open problems has been compiled. Rather than recap-
itulate this list of specific problems, this chapter addresses a broader, philosophical perspective.
We consider a general research programme, instead of a litany of isolated potholes in need of
filling.

Although there has been considerable activity in the area of non—monotén_ic reasoning, along
with some remarkable successes, very little attention has been focussed on the dynamics of non-
monotonicity. As this promises to be a particularly fruitful avenue of investigation, this chapter
addresses two aspects of this problem: how new information is assimilated into a theory involving

assumptions, and how non-monotonic inference rules are acquired and employed.

These two areas are intimately related. A major goal for future research should be to
develop a unifying framework which makes their interrelationships more apparent. This point of
view may be expected to provide new insights into both non-monotonic reasoning and updates.
Furthermore, much of the work that has been done treating these problems in isolation can, hope-.

fully, be reinterpreted to advantage from this more general standpoint.

9.1. Principles of Non-Monotonic Reasoning

The important issue of non-monotonicity which remains unaddressed is not primarily how
conclusions are obtained given some facts and some non-monotonic inference rules. Rather, the
question is how non-monotonic rules are formulated, determined to be applicable, and applied.
This question can be illustrated by considering the circumscriptive examples of §2.1.5.2. Given a
representation of the facts about the ‘‘world”’, certain predicates must be circumscribed, other
predicates specified as variable, appropriate substitutions discovered, and then the required con-
jectures are obtained. As much of the problem lies in these “ancillary” tasks of deciding what
and how to circumscribe as in the closed-world reasoning achieved by actually performing the cir-
cumscription. To date, most of the work in non-monotonic reasoning (including this thesis) has

focussed more on developing mechanisms for performing certain specialized reasoning tasks than

- 08 -
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on underlying principles or even an understanding of when and how to employ the mechanisms

once they are developed.

The central question is: can we discover ways to make non-monotonic reasoning automatic
and/or goal-directed? Ie., are there features of particular problems which can guide the comple-
tion of an incomplete knowledge-base, without external intervention, to solve those problems? A
first approximation to a theory of non-monotonic theory construction was outlined by Reiter
[1978a]. He explained non-monotonic reasoning in terms of the closed-world assumption. Reiter’s
idea was that reasoners might assume their knowledge about relevant aspects of the situation to
be complete. Closed-world reasoning sanctions exactly those conclusions true in a world com-

pletely characterized by what is known.

Such a clear, simple, uniform characterization of non-monotonic reasoning appeals to intros-
pective intuitions about the simplicity and naturalness of commonsense reasoning. Unfortunately,
it proved simplistic as well as simple. Not every knowledge state uniquely characterizes a state of
the world. Assuming the real world is that world characterized by what is known is a dubious
step when no world is so characterized! Research since 1978 has focussed on mechanisms which
avoid the shortcomings of the naive interpretations of the CWA. Little effort has been directed to
finding a corresponding intuitive explication of the underlying principles.

The minimal-model semantics which we have discussed in one form or another throughout
this thesis does not qualify as the intuitive explication we seek, for two reasons. The first — and
perhaps less compelling — is that not all theories have minimal models, and it is undecidable
whether a particular theory has a minimal model. Certain theories — quite unexpectedly — turn
out not to have minimal models. For example, we have shown that the theory:

Jz. Nz A\ Vy. Ny D z £ succ(y)
Vz. Nz > Nsuce(z)
Vzy. suce(z) = suce(y) Dz=1y,

has no minimal models. This is because any model has a chain of N’s isomorphic to the natural
numbers, N. But this chain has a subchain, also isomorphic to N, which satisfies the axioms.
Hence every model has a proper submodel, and there are no minimal models. But, since every
model contains a segment isomorphic to N, and since there are models exactly isomorphic to IN,
surely commonsense dictates that IN is an acceptable minimal model? Minimum-model semantics

force the minimization process to go beyond the bounds of commonsense in this case.

More tellingly, minimal-model semantics enter the picture after much of the non-monotonic
reasoning process is complete. Only after it has been decided what expression is to be mimimized,
and the connections between the minimized expression and the rest of the world have been deter-
mined so that variable predicates can be chosen, can the semantic characterization tell us what
world(s) the non-monotonic theory characterizes. The semantics sheds no light on these other

dimensions of the commonsense reasoning process. Hence, it is not the characterization we seek.

What evidence is there that there is any underlying principle? Might not the difficulty in
finding such a principle stem, in part, from its non-existence? Of course, the only guarantee that
the principle we seek exists will be its demonstration. There is evidence which suggests that some

sort of uniform rules might underlie commonsense reasoning. One indication is the existence of
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approximations which fill the role of the sought-after rule in limited cases. The CWA is one such
rule. Others include minimal-model semantics {for theories with minimal models), the model-set-
restriction semantics for default logic, and the inferential distance concept in semantic network
reasoning systems. A final example is “Occam’s Razor”, a hypothesis-ranking rule which suggests

that the simplest explanation for any phenomenon is the best.

Of course, there may be no uniform underlying principles. So be it. That is, in itself,
interesting. Besides, if humans use no uniform procedures at all, we can still hope to uncover
heuristics which can help guide the task of commonsense reasoning. For example, even a way to
automatically determine, for some class of theories, which expressions to circumscribe and/or
which predicates to vary based on the goal at hand and the current knowledge state would be a

significant contribution.

9.2. Update

The problems of updating theories with information inconsistent with their current state are
obviously problems of non-monotonic inference: such new facts must force the retraction of previ-
ously accepted facts if consistency is to be preserved. A second major open problem is to develop
a view of updates which integrates them with other forms of non-monotonic reasoning. Instead of
blind addition and deletion — which obviously will not work — or the proliferation of alternate
theories — which increases uncertainty — it seems appropriate to view updates as new information

which leads to the reasoned assertion or retraction of facts.

The exact form that this research might take is unclear. The final result will likely be

heavily influenced by work in five areas:

1) Relevance Logic JAnderson and Belnap 1975|: in Relevance Logic, contradictions do not
automatically lead to chaos. The repercussions of the various facts in an inconsistent theory
can be explored without introducing ““artifacts’ of the inconsistency. This seems like an ideal
environment for investigating the effects of contrary updates.

2) Counterfactuals and Hypotheticals [Rescher 1964, 1976; Lewis 1973]: These branches of philoso-
phy deal with what would be true in a world which differs from the real world in that (at
least) certain specified facts hold. The update problem can easily be construed in these terms.
One might therefore expect this work to shed light on updating.

3) Change-recording, correcting, and knowledge-adding updates: Wilkins [1983] and Keller [&
Wilkins 1984a, b] distinguish different kinds of updates depending on whether the update
expresses a change in the state of the world, an error in the database, or simply new
knowledge. In a database with incomplete information, an update can be expected to have
different semantics depending on to which of these categories it belongs.

4) Non-monotonic reasoning systems appear to provide useful theoretical tools for examining the
repercussions of updates. Updates contrary to what was inferred by default can be made to
automatically exclude these offending defaults after the update. Reiter [1980a] has considered
updates to default theories in limited circumstances. He shows that certain classes of updates
are knowledge-conserving; they do not force the rejection of any conclusions.

5) Belief Revision Systems: The assumption-based approach to belief revision [Martins 1983, de
Kleer 1984| provides an attractive book-keeping system for dealing with straightforward reper-
cussions of changing sets of assumptions. Reiter and Grosof [1985, personal communications]



-101 -

have each worked on formalizing these systems in default logic.

Non-monotonic reasoning and update are intimately connected: non-monotonic reasoning is
non-monotonic precisely because of its behaviour when confronted by updates. In fact, it is possi-
ble to view what we have been calling non-monotonic reasoning as a monotonic, valid, form of
inference. Any update which forces assumptions to be retracted can be construed as contrary to
the original knowledge-base (1.e., assumptions are viewed as entailed by the knowledge-base under
a modified entailment relation [Israel 1980, Nutter 1983).) Under this view, non-monotonicity

becomes strictly a problem of dealing with contrary updates.

The problem of updates is also important within the context of non-monotonic reasoning.
Given a system for drawing non-monotonic inferences, one is faced with the problem of adapting
to new information. Even updates which do not represent a change in the state of the world are
problematic when non-monotonicity is involved. The obvious problem is that contrary informa-
tion may have been previously inferred by default. In such cases, the conflict can perhaps be
detected. The default inference can then simply be revoked (if the system remembers its default
genesis) or various consistency restoration techniques can be applied to reject some set of

“offending” beliefs.

The update problem in non-monotonic theories is compounded by the fact that inferences
may have been based on the absence of what is now being asserted. In such circumstances, there
may be no inconsistencies to signal the necessity of belief revision. Unless the assumptions under-
lying facts in the knowledge-base can be examined for compatability with updates in the same
way that the facts themselves are, nothing can prevent the knowledge-base from being “cata-
pulted” into self-supporting ~ but otherwise unjustifed — belief sets. For example, the default
theory: »

- (5] (s

leads to the beliefs P and R. Unless care is taken, belief in R may support belief in P after Q is
asserted, even though R was originally inferred because of a lack of belief in Q. Work on truth-
maintenance systems [Doyle 1979; Doyle and London 1980] has shed some light on these prob-

lems.

In a related vein, there are issues of how knowledge representation languages should be
designed to address these issues. Work on both database theory and non-monotonicity has tended
to deal with tenseless languages, viewing the knowledge-base as a snap-shot of some state-of-
affairs. Update is seen as an atomic process of transforming from one snap-shot to the next, with
the state of the knowledge-base defined only before and after — not during — the update. Other

“states” and

work in Al has embraced time - either reservedly, by adopting “‘situations’ or
“fluents” which transform the world from one state to another [McCarthy & Hayes 1969; Moore
1979], or wholeheartedly, by adopting a full-blown temporal logic [McDermott 1981; Allen 1984],
or somewhere in between. Perhaps the best way to deal with non-monotonicity is monotonically,

by representing the state of an agent’s beliefs at a particular time.



CHAPTER 10

Conclusions

I don’t understand it. I don’t even understand
the people who understand it.

— Queen Juliana of The Netherlands

10.1. Default Logic and Inheritance

We presented a correspondence between default theories and inheritance networks with
exceptions, analogous to that outlined by Hayes [1977] between first-order theories and
exception-free inheritance networks. This correspondence allowed us to specify minimum correct-
ness criteria for any inheritance-determining algorithm, identifying the notion of correct inference
with that of derivability within a single extension of the corresponding default theory. These cri-
teria show that proposed parallel marker-passing implementations of inheritance networks with
exceptions are not feasible for general theories. Correct behaviour would require that severe (and
difficult to define) constraints be placed on the structure of the inheritance networks they could

represent and reason with.

Given a notion of correct inference, it became possible to question whether inheritance net-
works with exceptions are always coherent, in the sense of always representing a reasonable set of
beliefs. Inheritance graphs are typically acyclic. We showed that acyclic networks are coherent
and, in fact, that weaker criteria are sufficient to ensure coherence. This led to a generalization of
the notion of acyclicity which can be applied to default theories, called ‘‘orderedness”. The
ordered theories constitute a natural class of theories all of which have at least one extension. We
provided an inference algorithm for ordered inheritance networks with exceptions which is prov-

ably correct with respect to this concept of derivability.

Our formulation suggests that it may not be possible to correctly realize massively parallel
marker-passing hardware of the kind envisaged by NETL which is applicable to arbitrary inheri-
tance graphs. It appears that the best that can be achieved for such networks is a restricted,
quasi-parallel inference algorithm. We have sketched such an algorithm, but have shown that not
every set of conclusions justified by the network is accessible to it. It remains to be seen whether
the limitations imposed by the algorithm are acceptable. Fortunately, these pessimistic observa-
tions do not preclude parallel architectures for suitably restricted networks. We have shown that
Touretzky’s inferential distance algorithm produces correct conclusions. Touretzky shows how to
restrict a network so that parallel marker-passing produces the same conclusions as the inferential
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distance algorithm. We conclude that, for such restricted networks, parallel marker-passing is

correct.

We have shown default logic to be a useful tool for formalizing the reasoning processes
involved in Al systems. Such a specification provides a method for evaluating correctness and a
metric by which various approaches can be measured and compared. A default logic specification
of a system can provide both a more complete visualization of how the system performs and a
guarantee that that performance is coherent. To facilitate such applications, we have presented a
number of results on default logic. These include a semantics for arbitrary single-justification
default theories, a characterization of a large class of theories for which coherent reasoning is
always possible (i.e., theories which always have at least one extension), and a totally correct

inference algorithm for a subclass of these theories.

It might be — and has been — argued that a declarative formalism such as default logic is
inadequate for the tasks of knowledge representation and reasoning. While we clearly disagree
with this position, we expect default logic to be useful even to “proceduralists”. Even if some
system were fundamentally more than the sum of its declarative content, default logic could be
used to formalize that declarative content. The non-declarative ‘“‘control” information could then
be treated as an inference algorithm for the resulting default theory. The correctness of the system
would be determined by whether this inference algorithm was correct with respect to the proof

theory of default logic.

Defaults, in one form or another, are extremely common in AL Reiter [1978b, 1980a]
discusses a wide variety of common situations to which they can be applied, including several Al
knowledge representation schemes. Many of these may be amenable to analysis using an approach
similar to that which we have used for inheritance networks. If some are not, two possibilities
arise: the features not so amenable may prove incorrect or inessential, or they may point out

shortcomings of default logic. Either result would raise interesting questions.

10.2. Predicate Circumscription

Although a model-theory for predicate circumscription has been available since 1980;
together with an attendant soundness result, very little was known about the strengths and
weaknesses of predicate circumscription until recently. We explored the constraints imposed by
circumscription’s model-theory and were surprised to find them very rigid indeed. Previous
expectations for predicate circumscription had been very high; examples in the literature had
pushed the technique beyond the safety of its semantic justifications, and this fact had gone unno-

ticed.

Predicate circumscription (and formula circumscription) can lead to inconsistent conjectures
when applied to theories without minimal models. In retrospect, this is not surprising, but it does
not appear to have occurred to anyone until we discovered an example. This is perhaps attribut-
able to the schematic nature of predicate circumscription. Not every substitution produces incon-

sistency, so unless an inconsistent substitution is discovered, circumscription of theories without
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minimal models may appear simply ineffectual. The existence of theories with inconsistent cir-
cumscriptions suggests that one must be careful to circumscribe only those theories with minimal

models. Alas, it is undecidable which theories have minimal models.

We have characterized a class of theories, which we call well-founded, which always have
minimal models. We then explored the properties of predicate circumscription vis-a-vis these
well-founded theories. We discovered that the semantic characterization of predicate circumscrip-
tion — so intuitively appealing on the surface — rigidly constrained the effectiveness of circumscrip-
tion in conjecturing new ground facts. The only ground facts which predicate circumscription can
conjecture are negative instances of one of the predicates being circumscribed — and then only
insofar as such conjectures provide no new information about the extensions of non-circumscribed

predicates. Furthermore, the equality predicate is somehow resistant to predicate (and formula)

circumscription.

10.3. Generalizations of Circumscription

The success of our model-theoretic investigations into predicate circumscription (pessimistic
though the results were) suggested that a similar exploration of the various generalized forms of
circumscription might also prove worthwhile. McCarthy [1986] did not provide a model-theory
for formula circumscription, however. The first task for this investigation, thus, was to develop a -
model-theory. The model-theory presented is a generalization of that of predicate circumscrip-
tion, with appropriate changes to accomodate the introduction of variable predicates. The
minimization of expressions, rather than predicates, also forces modifications to the definitions of
submodel and minimal model. The soundness {and, for certain classes of theories, completeness)

of formula circumscription with respect to this model-theory has been proven.

Universal theories always have minimal models regardless of the predicates varied or minim-
1zed. For these theories, the consistency of generalized circumscription is assured. In fact, the
proof shows that every model of a universal theory has at least one minimal submodel. As a
corollary of this, generalized circumscription of universal theories does not affect the extensions of
any predicates not designated as variable. For such theories, the repercussions of c¢ircumscription
do not extend beyond those predicates explicitly indicated as liable to change.

Lifschitz [1984, 1985a,b] has developed extensions to circumsecription allowing constants andi
functions to be treated as variables during the minimization process, and allowing arbitrary pre-
orders to be specified; minimization proceeds according to this pre-order. Suitable modifications
to the generalized circumscription model-theory, which accommodate these extensions, were
presented. Lifschitz’ innovations were shown to be sound with respect to this model theory. We
examined the effects of some of these formulations on the existence of minimal models, on con-

sistency, and on the types of conjectures which can be obtained.
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10.4. Domain Circumscription

McCarthy [1980] claims that domain circumscription is a special case of predicate cir-
cumscription. We showed that the demonstration actually rests on a strengthened form of predi-
cate circumscription which does not always preserve consistency, even for theories with minimal
models. We showed that none of predicate circumscription, formula circumscription, or general-
ized circumscription without variable terms supercedes domain circumscription, in general. We
conjectured that even variable terms are unlikely to suffice to make generalized circumscription

subsume domain circumscription.

In fact, the domain circumscription schema presented by McCarthy [1980] and Davis [1980]
is also too strong. Certain theories with minimal models turn out to have inconsistent domain cir-
cumscriptions. After isolating the problem, we outlined a straightforward correction which
preserves the appealing semantic characterization presented by Davis [1980], and proved its

correctness.

We have also noted the ambiguity of the domain-closure assumption, as it is usually stated.
We argue that the most common disambiguation agrees with the results obtained from domain
circumscription. Also, we conjectured that the completeness of domain circumscription for certain

classes of theories might be provable.

10.5. Relations Between Circumscription and Default Logic

We have considered the relationship between default logic and circumscription. We showed
that, in some cases, the closed-world default coincides with circumscription; that, in a particu-
larly useless way, default logic subsumes circumscription; and that default logic is capable of

affecting the equality theory while predicate, formula, and domain circumscription are not.

We showed that the introduction of fixed predicates and applications to open domains each

provide circumscription with capabilities not available using simple closed-world default theories.

Finally, we used semantic comparisons to highlight a number of the essential differences
between the two approaches. This allowed us to suggest that some of the work on translations
between the two formalisms may not have noticed the essential characteristics which should be

carefully considered in determining adequacy conditions for translations.
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APPENDIX A

Proofs of Theorems

Background Information

There are a few definitions and results due to Reiter [1980a] on which we draw freely in the

following proofs. We reproduce them here for the reader’s convenience.

1) Theorem 0.1 [Reiter 1980a, Theorem 2.1

E is an extension for A = (D, W) if and only if E = U E;, where

i=0

E, = W, and for i>0
Eip = Th(E) U {w | & Bep ac E;, and -8 ¢ E}*

w

2) The Generating Defaults for E with respect to A are defined as:

%P cp|acE -f¢E)

w

GD(E,A) = {

3) If D is a set of defaults, then CONSEQUENTS (D) is defined, as one would expect, as:

CONSEQUENTS (D) = {w | 22 c D}

w

4) Theorem 0.2 [Reiter 1980a, Theorem 2.5]
If E is an extension for A = (D, W), then
E = Th(W U CONSEQUENTS (GD(E,A)))-

5) Theorem 0.3 [Reiter 1980a, Corollary 2.2]
If E is an extension for A = (D, W), then E is consistent if and only if W is.

In the proofs of results from chapters 3 and 4, we will usually assume that formulae are in
clausal form: s.e., expressed as a conjunction of disjunctions of literals. We define the functions

CLAUSES () and LITERALS (') as follows:
K= (B V..V :Bl,ml) AN AN(Bur V...V ﬂm.mm) then
CLAUSES (8) = {(BV o V fim) | 1< i< m)
LITERALS(f) ={fy; | 1<i<m 1<j<m}

Abusing the notation somewhat we sometimes use CLA USES (T), where T is a set of formulae, to

! Note the explicit reference to E in the definition of E; ;.
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refer to U CLAUSES (7).
yer

We will define other notation as it is required.

Definition: Satisfiability, admissibility, and applicability

Let X be a set of models; T' a set of formulae; a, 5, and w formulae, and § = a;ﬁ a

default. Then

i) «ais X-satisfiable (X-valid) iff Jx e X. x = « (VxeX xEa)
ii) T is X-admissible (X permits T) iff VoeTl. Ixe X xE= v
iii) 6 is X-applicable iff o is X valid and B is X-satisfiable. |

Definition: Result of a default

Let X, T, and 6 be as above. Then the result of § in (X, T) is:

(X, '} if 6is not X-applicable and T is X-admissible,
5(X,T) = { ((X - {N|N k= -~w}), (T U {B})) if 6 is X-applicable and T is X-admissible, and
| otherwise. |

Definition: Result of a sequence of defaults

Let X and I be as above, and let <§;> be a sequence of defaults. Then

<5>(X,T) = (N X;, UT,;) where {Xo =X; Ty=T; and
(Xitn Tipr) = 6(X, T), i20. |

Definition: Stability

Let Y be a non-empty set of models, I' a set of formulae, and A = (D, W) a default
theory. Then (Y, I') is stable for A iff

(1) (WD) =<6>(X,{})for X={M|M{E W}, and some {§} C D,

(2) Vs6eD.5§(Y,T)=(Y,T), and
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(3) T is Y-admissible. [ ]

Theorem 3.1 — Soundness

If E is an extension for A, then there is some set T' such that
({M|M &= E}, I') is stable for A.

Proof

Define GD = {5 —2:Bep | «a€E, -f¢ E } From theorem 0.2, we have
w

E= Th(W U GD). There are 2 cases:
GD={}:

Then E = Th(W). Clearly <>(X,{ }) = (Y,{ }). Consider 6 = *£ € D. If a is Y-valid
w

and B is Y-satisfiable, then E |- a, E {~ -8, so § € GD, which is a contradiction. Hence

§(X,{ ) = (Y.{ })- Clearly { } is Y-admissible. Hence (Y,{ }) is stable with respect to A.
GD#{ }:

Let {6;,...} be any ordering of GD. Define §'; by §';, = 6;, where j is the smallest integer such

that 6; is <6'q...6";;>(X,{ })-applicable, and 6; ¢ {6'g,..,6'i1}, where 0 < i < n.
It can easily be seen that this is well-defined, and uses all of <§>. Obviously, if
I' = JUSTIFICATIONS({6';}), then § € D implies §(Y,I') = (Y,I'). It remains to show that
<6'>(X,{ }) = (Y,T). Itis easily proved that <6's..8'>(X,{ }) = (X;,T;), where X; is the set of
all models for Th(W U {w'q,...,w";}) ~ where the w'{’s are the consequents of the respective §'ys —
and T; = JUSTIFICATIONS({6'q,...,6'}).

Hence <§'>(X,{ }) = ({M|M &= (Th(W U GD))}, JUSTIFICATIONS(GD))

= ({M|M k= E}, JUSTIFICATIONS(GD))
= (Y, JUSTIFICATIONS(GD)) .

Clearly JUSTIFICATIONS(GD)) is Y-admissible. Hence (Y,I') is stable for A.

QED Theorem 3.1

Theorem 3.2 — Completeness

If (Y, T') is stable for A then Y is the set of models for some extension of A.
(Le, {w | Vy € Y. y = w} is an extension for A.)
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Proof

Since (Y,I') is stable, (Y,I') = <6>(X,{ }) where X = {M |M = W} and {§} € D. Without loss
of generality, let <&> be infinite. (If finite, replicate §.). Define (X;I;) as follows:
(XeTo) = (X,{ }), and fori > 0, (X4 1,Ti41) = 6i(XpT3). Then Y= N X, and T = UT,

t Since (Y,T) is stable, for any default, § = a:f € D, either § is not Y-applicable, or w is Y-
w

valid and # € I'. In either event, I’ is Y-admissible.

o;: B
wy

if a; € Fy, and —f; ¢ Fy, then Fiyy = Th(F; U {w;}). Otherwise F;; = F;.

Assume §; = . Let F; be the set of X;-valid formulae. We show that Fy = Th(W) and that

This is trivial for Fp. Assume it is true for F;, and consider F;;. Since I' is Y-admissible, each I};
is Xj-admissible. If a; € F;, then a; is Xj-valid. If -8, ¢ F;, then f; is X-satisfiable. Hence
XH—I = Xi - {N l N F —‘wi}, and Fi+1 = '.]'.‘h(Fl U {w,}). Otherwise Xi+1 = Xi) SO Fi-f—l = Fi'

o
Let E= UF; Clearly Y= {M|M }= E}. It remains to show that E is an  extension for A.

i=1

Define Eg = W, and Eyyy = Th(E) U {w | 22 €D, a € E, ~f¢ E}. Weshow E= U E,

w i=0

oo o0
UECE= UF;

i=0 i=0
Clearly Eq C Fo C E. Assume E; C E, and consider w € E;;,. Trivially, if w € Th(E)), w € E.

Otherwise, there is a default, 6 = 22 € D, such that « € E; and —f ¢ E. Since o € E;, and
w

E; C E, a is Y-valid. Similarly, fis Y-satisfiable. By (1), w is Y-valid, so w € E.

E= E.:

1

F; C

IcCs
ICs

[e o] [va] o0
Clearly Fo= Th(W) CE, C UE; Assume F;C U E; and consider F;,;,. Since UE; is

i=0 i=0 i=0

[=e) ©0
closed and F; € U E;, it suffices to show that o; € F;, and ~8; ¢ F;, whence w; € U E;.
i=0 i=0

If o; € F;, and ~f ¢ F; then §; is X;-applicable. Since (Y,I') is stable, I' is Y-admissible. But
{B}EETinnC T, 0 Eff- =, 80 -4 ¢ E. o€ F;C UE; so0 o; € E;, for some j.

i=0

Thus E is an extension for A, by Theorem 0.1.
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QED Theorem 3.2

Lemma 38.3.1

If Ef (i > 0) is an extension for the default theory A; = (D;, EH) and E = W, then the
following are equivalent:
(1) a€E
2) B}«
(3) (WU U CONSEQUENTS(GD(ES, A))) + «
=0

Proof

(1) c€E <> Efo

This follows from the fact that E' is an extension and thus logically closed.
. i
(2) Ef—a < (WU U CONSEQUENTS(GD(E', A))) —«
=0

If E is an extension for A, then by Theorem 0.2 we know that
E = Th(W U CONSEQUENTS (GD(E, A))).
Hence E' = Th(E*! U CONSEQUENTS (GD(E}, A))
= Th(Th(E2 U CONSEQUENTS (GD(E™, A,,)))
U CONSEQUENTS (GD(E!, Ay))
= Th(Th...(W U CONSEQUENTS (GD(E®, A,)))
U ... U CONSEQUENTS (GD(E}, A})))

Since Th(Th(A) U B) = Th(A U B),
E'= Th(W U U CONSEQUENTS (GD(E, A))) .

=0

From this, the result follows by the definition of Th.

QED Lemma 3.3.1
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Definition 3.3.2: <« and K

all formulae are in clausal form. The partial relations, << and <, on Literals X Literals, are

Let A = (D,W) be a closed, semi-normal default theory. Without loss of generality, assume

defined as follows:

(1)

(2)

)

Ifa e Wthena = (a; V...Va,), forsomen>1.
For all a;, o € {y,...,0n}, if &5 F 5, let -y L ;.
(Since: (o V...V ay) = [(may A A —ay N —ajqy N\ —ay) D g])

If §€ D then § = -"‘—%/\—" Let ay, ... &, Py - By and 4y ... 7, be the literals of the

clausal forms of &, f, and «, respectively. Then
(i) Ifa;€ {ay..,a} and B € {fy,...0:} let oy L B
(i) I % € {71t} Bi € {Bry-sBe} and 4 & {BryersBs} let —y < G .
(iii) Also, = B, N ... \ B, for some m > 1.
Foreachi<m, gi= (A1 V..V fim), wherem; > 1.
Thus if B;; , Bix € {Brp-Pmm_} and B # Pixlet =f;; K Biy .
The expected transitivity relationships hold for << and <. le.,
(i) Ifa< fand f K vthena K 1.
(i) Ifa <« fand B < v then a <« 7.
(i) f o < fand K yora K fand f < v then a <« 7. |

Definition 8.3.3: Orderedness

A semi-normal default theory is said to be ordered iff there is no

literal, o, such that o << o« . [ ]

Definition 38.3.4: Universe of A

For a closed, semi-normal default theory, A = (D, W), define the Universe of A, U(A), as

follows:

U(A) = {a | a € Literals and [ 3¢ [(a V €) € CLAUSES (W U CONSEQUENTS (D))]
or [(~a V &) € CLAUSES (W U CONSEQUENTS (D))]|}

U {a | Ja,Bi. -°‘7—’3 € D and o; € LITERALS (o) }

U {~% | Ja.B. 2‘—%M € D and ~ € LITERALS () }
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Observe that £ may be the null clause. [ |

Definition 8.8.5: [ : U(A) b N

For a closed, ordered, semi-normal default theory, A = (D, W), we define the function

[ :U(A) |+ N, as follows:

If ,8 € U(A) and o < B then [ (o) < I (f). o < f then [ (B) > I (a)+1.
If B€ U(A) and for no a € U{A) is (a < f) or (o X ) then ! (f) = 0.

Ifne N, e U(A), and I (B) > n then Ja € U(A). (¢ < ) and I () = n.

Since A is ordered, ! is well defined. Observe that ! is a total function on U(A) which assigns a
natural number to each literal in U(A). [(a) may be thought of as the length of the longest

chain of semi-normal defaults which could figure in an inference of a. [ |

Definition 3.3.6: IMAXJ IIvﬂN

If fis a closed formula, and the clausal form of g is
(B V...V ﬁl‘ml) AN A(Bma V.oV ﬂmmm)’

then define /max(f) = MAX(I (8))
han(B) = MIN(I (B,5)) - |

Lemma 3.3.7

If A = (D, W) is an ordered, closed, semi-normal default theory, then there is a partition,

{D;}, for D induced by:
VéeD. 6= .‘?‘_=%A1and Ivin(f) = iiff 6 € D; .

Proof

Clearly LITERALS (CONSEQUENTS ({6 € D})) C U(A), and { is total on U(A).
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Therefore: 1) V6& D. Vi Vj. (§€ D; \ § € D;) impliesi=j.

2) V6eD.Ji (6€D)).

QED Lemma 3.3.7

Corollary 3.3.8
If § € Dg, then § is a normal default.
Proof

If 6 = ﬁ—%/\—” € Dg then Iyoy(B) > Ivax(—7) > 0.

QED Corollary 3.3.8

Corollary 3.3.9
If i > 0 and D; # { }, there is at least one non-normal (i.c., semi-normal) default in D;.
Proof

If D; contains only normal defaults, then the minimality of [ guarantees

Lyan(CONSEQUENTS (D)) < i, which is a contradiction.

QED Corollary 3.3.9

Lemma 38.38.10

that

If T is consistent, if {yax(—B) < j, and if I (v) is defined for all y € LITERALS (T'), then

there is a linear resolution refutation of 8 from T if and only if there is a linear resolution

refutation of g from ¥, where ¥ C T and ¢ € ¥ iff {y;n(¥) < ).

Proof
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()

The proof is by construction of such a refutation.

Since T' is consistent, if there is a refutation of 8 from I', there is a refutation with top clause in

CLAUSES (f). Le.,

and Ry € CLAUSES (f), Co € T.

We proceed by induction on the steps in the refutation.
base

Assume B is in clausal form, 1.e.,

ﬂ = ﬂl /\ aen /\ ﬂn andl ﬂi = ﬂi,l V P V ﬂkn’ , for i = 1,...,Il .

By hypothesis, { (-f,,) < j. Without loss of generality, assume that Ry = g, = f;; V ... V B,
y that Co = Cq3 V ... V Cop , and that Cq resolves on By to produce R;. Thus Co; = -1,
so 1 (Cq;) < j and Iyan(Co) < j . It follows that Co€ ¥ .

Since for i>1, ~Co; < Cqy 5 ! (~Cos) < I(Cq1) < j . Thus, if Ry =Ry, V...V Ry, then
Vs. I(=Ry,) <j.

step
Assume that R;=R;; V..VR;, , that Vs.[(-R;) < j, and that Vr<i C,€ ¥ or
C, € {Ro-..,Ri1}. Consider the resolution of R; with C;. C;=C;; V... V Cim, - Without loss
of generality, assume C;; = —R;; . Hence [(C;;)=I(-R;;) < j and so Iyp(C;) < j . So
Ci€ ¥ or C; € {Rg,...,Ri}. Forr>1,1(-C;,) < I(Ciy) <j. Thus Vs. I (=Ryy ) <.

By induction, for every clause, C;, in the refutation of 8, C; € ¥ or C; is a descendent of ¥ U {5}.

Thus, there is a linear resolution refutation of 8 from V.

(<)

Trivial: Since ¥ C T', the refutation from ¥ serves as a refutation from T.
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QED lemma 3.3.10

Theorem 8.3 — Coherence

If A = (D, W) is an ordered, semi-normal default theory, then A has an extension.
Proof
If W is inconsistent, then A has the trivial extension, L. Hence assume W is consistent.

We proceed by constructing an extension, E for A. First, let {D;} be a partition of D induced by
I, as described in Lemma 3.3.7. Recall that by Corollary 3.3.8, if § € D, then § is a normal
default, and that by Corollary 3.3.9, for i > 0, D; must contain at least one semi-normal default,

say

5= a:ﬂ/\'y’
B

and Lyax(~7) < han(B).

We now construct an extension for A.

Let Ag= (Dg W). Since A is a normal default theory and W is consistent, Ay has a consistent
extension, say EC.
For i > 0, construct A; as follows:

Du':‘a:,ﬂ Ca: f D_Va:ﬂ/\’y - i1y

A; = (D;', E7Y)

Where E¥! is an extension for A; ;. Since each A, is a normal default theory, each A; has at least

oo .
one extension, E\. Let E = U E. Since W is consistent, so is E°, by Theorem 0.3. Since E!is an
=0

extension for (D;’, EY), E is consistent if Ei™ is, and E'! C E. By induction E is consistent. We

o0
now show that E is an extension for A. By Theorem 0.1, it is sufficient to show that E = U F;,
i=0
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where

Fo = W, and for i>0
Fiy1 = Th(F) U {w | a:p €D,a€eF;, and ~f ¢ E}.

w

(1) We first show that U F; C E.
i=0

a) Fp= W C E°C E.
b) Assume F; C E. We show that F;;, C E.

Fus=Th(R) U {8 | “ELT D acR, (-6V ) ¢ B)

i) Since F; C E and E is logically closed, Th(F;} C E.

ii) Consider f € {8 | —a—’;—/\l €D, a€F;, (-fV ) ¢ E}

Since a € F;, « € E, and hence o € E! for some j .

Since (=B V —1q) ¢ E, =y ¢ E'l, so0 -a—/;ﬁ € D;’".

But - ¢ E, so - ¢ Ei

Therefore, since EJ is an extension for A= (Dj', Ej‘l)) and o € Ei, g e Ei.
Therefore § € E.

By induction, U F; C E.
=0

(2) Finally, we show that EC U F;.
=0

A) Consider w € E% E%is an extension for Ag, so by Theorem 0.1 E® = U G; , where
i=0
Go = W, and for i>0

T w

Gi+l = Th(G‘l) U {w I € Do , x € Gi , and —w ¢ Eo}.

w

. o [o<]
It therefore suffices to show that U G; C U F;.
=0 i=0

a) Go= W =F,C UF,.
i=0

oo

b) Assume G; € U F;, and consider w € Gjy; .
i=0

aw

Gipp = Th(G) U {w | €Dy, @ € G;, ~w ¢ E%

i) If w € Th(G;) then w € U F; by hypothesis since U F; is logically closed.
=0 i=0

o w

EDo,aEGi,—\w¢E°}.

ii) Otherwise w € {w |
w

But: 1) fw€ Giy; and E>= U G;thenw € E°CE.

i=0

Since E is consistent, ~w ¢ E.

2) If a € G; then @ € U F; by hypothesis, so a € F, for some k.
i=0
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3) DoC D

o0
Thuswe Fy; € UF;.
i=0

o0 ©o )
By induction, U G; C U Fj;.
i=0 i=0

o o0
B) Assume B C U F;, and show B C U F;.
=0 i=0

o o]
Consider w € E!. E! is an extension for A; = (D,-', E"l), so ' = U G, where
i=0

Go = E, and for i>0
a:w

Gipa = Th(G) U {w | 2

€D, a € G;, and ~w ¢ B} .

. o0
a) By hypothesis, Go = E'™* C .U F,.

i=0

b) Assume G; C U F; and consider w € Gy, .
i=0

i) If w € Th(G;) then w € U F; by hypothesis since U F,; is logically closed.
i=0 i=0

2 Y eD),a€G;,and ~w ¢ E} .

i) Otherwise w € {w |
w

- N -
Since a € G;, we know that a € E'and a € U F;. Also, if w € G, then w € E!
=0
so w € E. Therefore ~w ¢ E, since E is consistent.
XY e Dj', then either - € D or J. M € D . Thus there
w w w

If 6§ =

are two cases:

. oo [e o)
a) Either x-w €D,ae UF;, and ~w ¢ E and hencew e U F,,
i=0 i=0
b)Org—%——/\—leD,ae UF;, and ~w ¢ E.
i=0

Clearly, if (-yV —w) ¢ E thenw € U F;.

i=0
Since w € E, it can be shown that (~yV ~w) € Eiff ~y € E.
We show that —y ¢ E.
Clearly Iyax(—7) < Imiv(w) = j. Assume ~«y € E. Then Jr>j. (—y € E).

By Lemma 3.3.1, (W U U CONSEQUENTS (GD(E}, A})) + —.
=0
Thus there is a linear resolution refutation of 4 from
I = (WU U CONSEQUENTS (GD(E}, A))).
=0

Observe  that if 6§€ GD(E} A) then 6e€D; and so
Iyn(CONSEQUENTS (6)) = i . By Lemma 3.3.10, the existence of a refuta-
tion of v from T, given lysx(—7) < j, implies that there is a refutation from
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¥ C T such that ¢ € ¥ « Iyn(A) < j. Thus there is a refutation from

-1 .
¥ = (WU U CONSEQUENTS(GD(E!, Ay))).
i=0
Hence ¥ |— —v and, by Lemma 3.3.1, ¥ |-~ iff Ei-! }——=v. Butif § & Dj'
then -~y ¢ E! and so EI' |-~y since E! is logically closed. Hence we

obtain a contradiction by assuming that -y € E, so -y ¢ E.

Thus (~yV ~w) ¢ Eandsow e UF;.

i=0
(o] oo o o]
We see that G;,; € U F;, and by induction U G; C U F;.
i=0 =0 =0
. oo
Therefore EE C U F;.
=0

o0
By induction, EC U F;.
=0

o0
Together, (1) and (2) show that E = U F;, so E is an extension for A.
=0

QED Theorem 3.3

Before presenting the proof of Theorem 3.4, we repeat the definition of the procedure to gen-
erate extensions given earlier. Superscripts have been added which serve only as reference points

in the proofs. They do not effect the computation.
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Ho— W; j <05
repeat
je=i+ 1 hf—W; GDj—{}; i—0;
repeat
D/~ (LD | (b - o), (4 1= A, (B 1= A )
if ~null(D} - GD{) then
choose § from (D} - GDj);
GDJ,; — GD} U {s};
hi{,; — hj U {CONSEQUENT(é)}; endif;
i—i+ 1
until null(D{, - GD{,);
H; = hi,
until H; = H;,

Lemma 3.4.1

If A is a finite default theory, then the algorithm can fail to converge only if one of the

approximations is repeated. Ile., for some j and some k > j+1, H; = Hy .

Proof
If A is finite, there are only a finite number of different combinations possible. Thus there are

only a finite number of distinct H;’s which can be constructed. If H; = H;,,, the algorithm con-

verges.

QED Lemma 3.4.1

Lemma 3.4.2

If A is a finite, semi-normal default theory, and W is consistent, then

H; - — Hi ff-—f.
Proof

Assume H; }— B, -B. Let 1, s be the smallest integers such that h} }— 8, hi}— -~p. Assumer < s,
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so hi, |~ 8. By hypothesis, hi }— §, =. Now hi = hi; U {w}, where

a:w/\y €D,a€hi, H, - (~w V —9), and hl, - (mw V).
w

But if h} |— B, -8, then (h}, U {w}) I B, =B so hi; |- —w and hence h}, }— (~w V —=7), which is

a contradiction. The proof is similar if s < r.

QED Lemma 3.4.2

Definition 3.4.3: Network Default Theory

A default theory, A = (D, W), is a network theory if it satisfies the following conditions:
(1) W contains only:
a) Literals (i.e., Atomic formulae or their negations), or
b) Disjuncts of the form (o V ) where a and § are literals.

(2) D contains only normal and semi-normal defaults of the form:

a:f or a: AN Ny

B B
where a, B, and ; are literals. [ |

Lemma 3.4.4

If A is a finite, ordered, network default theory, if W is consistent,
and if § is a literal, then H; ; — 8 — H; {/- -8.

Proof

0
Assume H; , }— B, and consider H; = U hj. Assume H; }— —. The proof proceeds by induction.
=0

base
h{ = W. Since H;; {/~ =B, clearly W {/~ —B. Therefore h{ {/~ 8.

step
Assume hj |/~ =B and hj,, I -f. hj,; = hj U {w}, where

a: 'Z)/\w € D, hl) +_ o, h.) bL (ﬁ'y \Y ﬁw), and Hj_l V‘ (_‘7 \ —'w)'
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Clearly, w £ —f or else H; ; {— —~w.
Note that:
i) H; contains only disjunctions of two literals.
ii) h) = W U CONSEQUENTS (GD})
iii) GDJ C D
iv) CONSEQUENTS(GD)}) C Literals.
Consider a linear resolution refutation of § (i.e., a proof of =) from h,j+1, with top clause f£.

We continue by induction on the structure of this refutation.

L
R, Ci
Ry Cy

base
w € Literals and w # —f so Cg # w. Clearly, Co# B. Thus Co€ hj. If Co € hj - W, then
Co € Literals. But then Co= —f which leads to the contradiction that h} {— -B. Thus
Cy € W. Clearly Cqy ¢ Literals, as above. Hence Cy= (—fV £), with £ € Literals. Thus
Ri=¢#F .
step
Assume: i) w & {Cyp,..., Crq}
ii) {Cqyery Cna} S W
iii) {Ry ..., Ru} € Literals.
Let R, =n € Literals. If C, = w then w=-n so WU {w} }~-8 but W C H;, and
H;; B, so H;, |~ B, =B, which contradicts Lemma 3.4.2. Clearly n # —f, so C, # f3, or
else W {——f which is false. Thus C,€ W. Clearly C, ¢ Literals, as above, hence
C.= (-n V A) with X\ € Literals. Therefore R,y = A # [].
So: 1) w¢ {Cey....Cn}
i) {Cg...,.Cy} C W
iii) {Ry,..,Rp4a} C Literals.

By induction, there is no such resolution refutation and the required result is proved.

QED Lemma 3.4.4
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Lemma 3.4.5

If A is a finite, ordered, network default theory, and {a;,...,a,} C Literals, then
Hi - (2, V... Vo) ifand only if W {— (o, V... V &) or H; }— ¢, for some j.
Proof

(«~) Trivial.

(—) Assume false, and consider a linear resolution proof of (a; V...V o) (i.e., a refutation of

(mas A ... A\ may)) from H;, with top clause Ry € {—ay,...,ma,}.

We know that Co€ H; U {-ay,...,may}, and that, for i>0, C;€ H; or C;€{R; | i<i} or
C; € {~ay,...,ma}. We proceed by induction.

base
Without loss of generality, assume Ro= —a;. Clearly o) ¢ {~ay,...,ma,}, or else
W= (a1 V... Vap), so Co ¢ {—ay,...,may}. Clearly Co £ a or else H; }— a; which contradicts
our assumption. Hence Cy = (a; V ) € W, for some ~ € Literals, and so Ry = vy £ 0.

step
Assume a) {Ry,..., Ry} € Literals
b) {Cg ey Cna} S W.
Let Ry, = n € Literals. If C,, = —n € {—ay,...,may} then W | (a; V ... V a,) which contradicts
our hypothesis. If C, = -n € H; U {Rg,...,Ry} then H;}-a; which also contradicts the
hypothesis. Hence C, = (-n V §) € W, with ¢ € Literals and R, = ¢ # [].

By induction, there is no such resolution refutation, and the lemma is proved.

QED Lemma 3.4.5
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Lemma 3$.4.6

If A is a finite, ordered, network default theory, and o € Literals, then H; |- a if and only
if W — o or 48 € Literals. I (f) < I(a), f€ H;,and W |~ (8D a).

Proof
(+) Trivial.

(—) Assume false and consider a linear resolution proof of a (i.e., a refutation of —a) from H; ,

with top clause —a. We proceed by induction.

RO = " CO
R, C,
Rk Ck
0

base
Clearly Cy# a or else a € H; and [ (a) < [(a) and W }— (o D ) which contradicts the
hypothesis. Hence Co= (V) € W, for « € Literals. By definition, I (-7} < (a).
R; = v# [ Clearly W |— (=7 D a).

step
Assume: a) {Cy,...,.Cy} C W
b} {Rg,-., Ry} € Literals
¢) I(-R) <'(a)
d) Wi (=R,D o)

Let R,=n I C,=-n€H; then Hi{a -neH, Wik (-nDa), and
I(-n) =1 (-R,) < !(a) which contradicts our assumption. If C, = -n = —-a then W |—
which is also a contradiction. Hence C, = (-n V ¢) € W, with ¢ € Literals, Ry, = € # [],
and [ (-Rypy) = 1 (—€) < I (-n) =1 (-Ry) < l(a). By modus ponens, W }— (=£ D a).

Thus there is no such refutation, and the result is proved.

QED Lemina 3$.4.6
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Lemma 3.4.7

If A is a finite, ordered, network default theory, and « € Literals, a ¢ H;, a ¢ H; , and
a € Hy for i<k<j, then
38 € Literals. (I (f) <1(a)) and B€ U H;AH,.

i<r<j
Proof
Let j be the least j>k such that o ¢ H; .
a /\ w /\ oee /\ Wy
Define Dy={6€D | 6= ! }

x

GDi= UGDIND,
=0

Clearly GDi* # { } and GDl{ = { }. Consider § € GDI™. Since 6§ ¢ GD/ three cases are possi-
ble:
1) H it (~w, V...V -w,). By Lemma 3.4.5, there is an w, , say w, such that H;_; |- —w.
By Lemma 3.46, there is a fe€H;; such that [(f) <I(w) and
W {— (8D w). But then!(f) < I(a). Clearly B ¢ H;,, so f is the required literal.
2) Hj{ (-~w; V...V ~w,). The argument for case 1 applies.
3) H; {/~ 4. By recursively applying the foregoing arguments to 4, we can construct a set of
7’'s which were in Hj; and are not in H;. The first of these to go into H; ; must also go

into Hj, unless H;_; U Hj contains a § << v, < a which was not in H; .

QED Lemma 38.4.7

Lemma 3.4.8

If A is a finite, ordered, network default theory, and a € Literals, « € H;, a € H; , and
o ¢ H, for i<k<], then either

1) Jp € Literals. (I(f) < I{a)) and B U H;AH,, or
i<r<j

2) JpB € Literals. ({(f) < I(a)) and f€ H;and ¢ H;.
Proof

Let k be the least k>i such that o ¢ Hy . Let j be the least j>k such that a« € H;.
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Consider 6 = 222 NP ¢ GDi. Clearly GDi £ { }, and 6 ¢ GDX
[ R

Cases: 1) Hy }——p, H; {{- =f. This gives the first of the required conditions, by Lemmas 3.4.5
and 3.4.6.
2) Hy, |8, H; |- -B. The argument for case 1 applies.
3) Hy{f-v H; |~ ByLemma3.4.6, 3y, L a. v, € H;, 11 ¢ Hy .
Cases: a) ; ¢ H;. This is the second of the required conditions.
b) 71 € H; . Repeating the above arguments for 7; yields a (possibly cyclic)
chain of 4s such that v, € Hy;, v € Hy . Consider the first -y, to go into

H,, . It must also go into Hy , which is a contradiction.

QED Lemma 3.4.8

Theorem 3.4 — Convergence

The procedure presented above always converges when applied to

a finite, ordered, network default theory.

Proof

By Lemma 3.4.1, non-convergence implies there is a cycle. Le., for some i and some j>1i,

H; = H; and H; # H;yy .

Choose « € U (H;AHy) such that o € Literals and for every f€ U (H;AHY), -(I (B) < ! (a)).
i<k<Sj i<k<j

Thus o is the “least” literal to change state between H; and H;. There are two cases:

(1) If « ¢ H; and o € Hy then, by Lemma 3.4.7, 38 € U (H;AHy). [ (8) < I (e), so a is not
i<k<j

the least such «, which is a contradiction.

(2) f @ € H;and o ¢ Hy then, by Lemma 3.4.8, either
a) JBe U (HiAH). (8 <! (a)

i<k<j
so « 18 not the least such o, which is a contradiction, or
which implies that H; # H; which is also a contradiction.

Therefore, there is no cycle, and so the procedure converges.
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QED Theorem 3.4

Theorem 3.5 — Strong Convergence

The procedure given above always converges immediately when applied to a

finite, normal default theory A = (D, W) - 1.e., Th(H,) is an extension.

Proof

Etherington [1982] shows that H, = H, if and only if Th(H,) is an extension for A. If W is incon-

sistent, then Th(H,) = L which is an extension for A. Hence assume W is consistent. To show

oo
that Th(H,) is an extension for A, we invoke Theorem 0.1 and show that Th(H,) = U E;, where
’ i=0

Eo—':W

E=Th(E)U {w | 2L D, acE;, ~w¢ Th(H)}.

w
[0 o] [se]
a) We first show that U E; C Th(H,} . Recall that H, = U h.
i=0 i=0
base
Clearly Eg= W = h{ C Th(H,) .
step

. Assume E; C Th(H;) and consider w € E;, .
i) If w € Th(E;) then w € Th(H,) , by hypothesis and closure.

i1) Otherwise w € {w | a;w €D, a €k, ~w¢ Th(H;)}. Therefore H; }/- —w. Hence

Hy {/- ~w since Ho= W C H,. Also, @ € E;, so a € Th(H,), by hypothesis. It follows
by [Etherington 1982, Lemma 3.3] that H; }— w.
Hence E;;; C Th(H,).

b) Finally, we show that Th(H;) C UE,.

=1

Since U E, is logically closed, it suffices to show that H; C U E_.

=1 r=1
base
o0
Clearly h = W=E,C UE,.
r=1

step

©0
Assume that h! € U E_, and consider h}, .
r=1
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h; = h! U {w}, for some w € CONSEQUENTS (D}).

©0 oo
Since hi! € U E, by hypothesis, we need only show that we U E,.

=1 =1

Since w € CONSEQUENTS (D}), for some § = 2~*. € D, a € h{,

Ho ‘V— W, a.nd hil ‘V— W,
(o]
By hypothesis, since a € h}, a € UE,, so a € E; for some j.
r=1

Since w € hi}; C H,, it follows by Lemma 3.4.2 that H, |/~ —w.

But then by definition of E;;,, w € E;4; € U E,.

=1
Combining (a) and (b), we have the desired result.

QED Theorem 3.5
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Theorem 4.1

Any network in which the subgraph of IS-A links and exceptions thereto

is acyclic corresponds to an ordered theory.
Proof

P a: =Ny AN o
The links corresponding to a D 8, il 'B, and A n T give rise to o K —-f

-p -8

and y; << —f. There are no links which make a transition from negative to positive or negative

to negative, so such links cannot participate in any cycle leading to w <« w for any w. What

remains are IS-A links and exceptions thereto.

QED Theorem 4.1

Theorem 4.5

In the absence of no-conclusion links, all ground facts returned by Touretzky’s inferential
distance algorithm lie within a single extension of the default theory corresponding to the

inheritance network in question.
Proof

We prove that all the ground facts in any ‘‘grounded expansion” of the network lie within a single
extension. From this the result follows. As a notational shortcut, we will use &P to stand for +P

or —P (or, occasionally, for P or —=P). The intended meaning should be clear from context.

Let I' be a network in Touretzky’s sense. Let ® be a grounded expansion for I'. Define
facts(®) = {<+oa,=P> € €(®) | « is an individual token}, and
facts'(®) = {Pa | <+o,+P> € facts(®)} U {~Pa | <+o,~P> € facts(®)}.

If <+a,=P> € facts(P) then for some Py,..,P,, we have <+a,+Py,...,.+P,, P> € &, by

definition. Hence, by [Touretzky 1984a, theorem 23|, <+a,+P;> .., <+a,+P,>,

<+a,£P> € facts(®). Thus Pja,..., Pya, £Pa € facts'(®). Furthermore, <+P,+Py,> € ®

for 1 = 1,...,n-1, and <+P,,+P> € ®, by [Touretzky 1984a, theorem 2.3]. Hence they are all in
Pz : Pz Pz: 4Pz

I by [Touretzky 1984a, theorem 2.2]. Hence P and <P, € D.

We claim that facts'(®) is inconsistent iff W is. By definition, W = {£Ra | <+a,=R> €T,
where o is an individual token}. Therefore, W is inconsistent iff <+oa,+R>, <+a,—R> € T, for

some  and I'.
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The right-to-left direction of the claim is trivial. For the left-to-right direction, assume that
facts'(®) is inconsistent. Then Ra, ~Ra € facts'(®) so <+a,+R>, <+a,~R> € facts(d), so
oy = <+o,¥1,.-,¥5,+ B> and 03 = <+a,zy,...,25 ,~R> € . So @ contradicts oy and 0, , and P is
inconsistent. Hence I' is inconsistent, by [Touretzky 1984a, theorem 2.8]. Furthermore, neither
oy nor g, 1s inheritable in @, so both are in I, since ® is a grounded expansion of I'. But then
j=k=0, so <+a,+R> and <+o,-R> €. Hence, Ra, ~Ro € W, so W inconsistent. Now if
facts'(®) inconsistent, W is inconsistent, so A has a unique extension, Th(L) 2 facts'(®). In the

sequel, we assume facts'(®) consistent.

We show that E'= Th(facts'(q))) is an extension for A’'=(D',W), where

Po : £P
normal default theories, there will be an extension, ED E' for A, since
D' C CLOSED-DEFAULTS(A) [Reiter 1980a, theorem 3.2].

D' = | <+a,+Py..,xP> € @, 1< i<lc}. Then, by the semi-monotonicity of

As usual, we show that E' = U E,

=0

oo
E'D> UE;: Consider w=xRa€ Eg= W= {tRa | <+a,:R> € T}. Then

=0
<+a,tR> €T C &, so <+a,£R> € facts(®), so £Ra € facts'(®). For the inductive step,
assume FE;C E', and consider we€ Ey,. If we& Th(E), then we€ E'. Otherwise,

Po: P«

we {Pya|b= € D', Pa € E;, and -Pg,0 ¢ E'}. Since 6§ € D', we have

P,;ch
<+a,+Py,..,£P> € @, for some k > 1+1. Hence <+a,+P>, <+a,£P; ;> € ©, since P isa
grounded expansion. So P, £P; . a € facts'(®).

E' C UE;: Consider *Ra € facts'(®). Then <+o,+Ry,..,+R;£R> € &. By [Touretzky

=0
1984a, theorem 2.3], <+o,+R;> .., <+o,+R>, <+a,xR> € facts(P), so
Ria,..., Rp, £Ra € facts'(®). If <+a,+R,> € &, then <+a,+R;> €T, by [Touretzky

o0
1984a, theorems 2.3, 2.2], so Rja€ WC U E; For the inductive step, assume
=0

Ra: R«

oo oo
R ,..., Rpe € U E;, for k<j. We show that Ry, ;a0 € U E. Now § = e D'
=0

=0 Reqiox

Since Rz € CJOOE,-, Ria€ E, for some 1. Since <+a,+Ry,...,+ R 1> €D,
<+o,Rpy> € C'(=<I>) 80 <+a,Rpy1> € facts(®), so Ryyix € facts'(®). By the consistency of T,
E' - “ Ry, so Ryypa € Egyy. So Ry € §0E,- for 1 < k< n, by induction. Similarly for

+Ra.

Thus E' = U E,. So E' is an extension for A’, by Theorem 0.1.
=0
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QED Theorem 4.5
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The proof of Theorem 5.1 follows immediately from McCarthy’s proof of the soundness of

predicate circumscription and the definition of well-foundedness.

Theorem 5.2
Universal theories are well-founded.
Proof
The proof is identical to that of Property 1.3.2 in {Bossu and Seigel 1985]. The definition of sub-
model used there is less restrictive than that used here, but this does not alter the form of the

proof.

QED Theorem 5.2

Theorem 5.4

If T is a well-founded theory, &@y,...,&@ are n-tuples of ground terms, and P € P, is an n-ary

predicate, then
CLOSURER(T) |— P& V..V Pa <= T} Pa,V..VPa,.
Proof

The right-to-left direction is immediate. We prove the contrapositive of the left-to-right direc-
k k
tion. Assume that CLOSUREp(T) |— .VIP&',-‘ and T £~ .VlPEz’;. Then T has a model, M, in

which P&, is false, for all 4 = 1,...,k. Since T is well-founded, there is a P-minimal submodel, M’,
of M. Furthermore, since the circumscription is true in all P-minimal submodels, P&; is true in
M, for some 1 < s < k. But then M is not a P-submodel of M, and this contradicts the fact
that M' is a P-minimal submodel of M. Therefore CLOSUREp(T) }/- P&, V...V Pa, .

QED Theorem 5.4

Theorem 5.5

If T is a well-founded theory, @},...,&k are n-tuples of ground terms, and P ¢ P is an n-ary
predicate, then

(i) CLOSUREP(n l—' P&'l V..V P&'k <= T l— P&'l V..V P&'k ’ and
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(ii) CLOSUREp(T) |- —P&, V..V ~Pa, <= T |- ~Pa, V..V ~Pa,.

Proof

(i) The right-to-left direction is immediate. We prove the contrapositive of the left-to-right
k

direction. Assume T |/~ V P&;. Then there is a model, M, for T in which P&, is false, for all
=1

i=1,...,k. Since T is well-founded, there is a P-minimal submodel, M’, of M. By the definition of
submodel, the interpretation of P remains the same in M and M’, since P ¢ P. Hence Pa; is false

in M', for all 4=1,...,k. Since the circumscription schema is satisfied by all minimal models,

k
CLOSUREp(T) {- _VlPEz',- . The proof for (ii) is similar.

QED Theorem 5.5

In the proofs of Theorems 5.6 and 5.7 we use the following notational conventions:

1. SCHEMA(T,P) is the circumscription schema resulting from circumscribing the predicates of
PmmT

2. CLOSURE{)(T) = T. (The closure of T with respect to the empty set of predicates is
defined to be T itself.)

0
3. If Mis a model, N\ Q,istruein M. (The empty conjunction is vacuously true in all models.)
=1

Theorem 5.6 (Reiter)

If T is an arbitrary, finitely-axiomatized theory containing axioms which define

the equality predicate, =, then T |— CLOSUREy(T).
Proof

Consider the schema resulting from circumscribing ‘="in T:
SCHEMA(T,{‘="}) = [T(®) N Vzy. P2y D z=y| D Vzy. 2 = y D dzy

First, observe that |— (Vz. ¥zz) D (Vzy. z = y D Vzy) for any predicate letter, ¥. Furthermore,
Vz.®zz is one of the conjuncts of T(®) in SCHEMA(T,{‘=%) since Vz. £ = z must be an axiom
of any theory with equality. Thus if any instance of T(®) is true in a model of T, so is the
corresponding instance of Vzy. z = y O ®zy. Hence, every instance of SCHEMA(T,{‘="}) is true
in every model of T, so T |~ CLOSURE(.-4(T).

QED Theorem 5.6
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Theorem 5.7

If Tis a well-founded theory containing axioms which define the equality predicate;

and &, B are tuples of ground terms; then

() CLOSUREp(T) @ =p <= T|a =4, and
(i) CLOSUREp(T) & # B<= T|a+§.

Proof

() This is a corollary of Theorems 5.4 and 5.5(i).

(ii) The right-to-left direction is immediate. To prove the left-to-right direction, we consider the
composition of P. If ‘=" does not occur in P, the result follows directly from Theorem 5.5(i). If
P = {=}, the result follows from Theorem 5.6. Finally, consider P = P' U {‘=%, for an arbi-
trary set of predicates P’ = {Py,...,P,} not including equality. By Theorem 5.5(ii),

CLOSUREp(T)|—@ £ B <= Tla + 8

We show that
CLOSURER(T) @ #f <= T3 # 8.
We have

SCHEMA(T,P') = [T((Dl,...,d)n) A (A (V7 855 P‘.zj)]i

) L\l (Vz. Pz D ®7)

SCHEMA(T,P) = [T(@l,...,@mm A(A (V2 225 P2)

N (Vzy. Yzy Dz = y)]; D [;{1 (V2. P> ®z2) AN Vzy.2=y D \Il:cy]f.

Assume CLOSUREp(T) |-@ # B, and T}-@ # B. It follows that CLOSUREp«(T) {-a # B.
Any model of T in which every instance of SCHEMA(T,P) is true is also a model for
CLOSUREp(T). Hence & # f is true in that model. Furthermore, there is some model of T in
which every instance of SCHEMA(T,P') is true and & # f is false. We show that in every
model of T in which every instance of SCHEA/IA(T,P') is true, every instance of SCHEMA(T,P)
is also true. First observe that |~ (Vz. Uzz) D (Vzy. 2= y D ¥zy) for any predicate letter, V.
Furthermore, Vz. Uzz is one of the conjuncts of T(®,,...,0,,¥) in SCHEMA(T,P). Thus if any
instance of T(®y,...,8,,¥) is true in a model of T, so is the corresponding instance of
Vzy. 2= y D Yzy. Let M be a model of T where every instance of SCHEMA( T,P') is true. Con-
sider an instance, I, of SCHEMA(T,P), with the predicates ®,' and ¥’ substituted for ¥, and ¥,

respectively. There are two cases:
n
1) A (VZ Pz > 9;'7) is true in M. By the observation above, either T(®,’,...,®,', ¥') is
=1
false in Mor Vzy. z = y D W'zy is true. In either case, Iis true in M.

2) A(VZ.PZ>%,'7) is false in M But then T(¥,'..,8,") is false or
=1
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A (Vz. ®,/ > P3Z) is false, since every instance of SCHEMA(T,P') is true in M. In

the latter case I is also true in M In the former «case, if
[T(®,",..,®," , ¥') A Vzy. ¥'zy D z = y] is false in M, then I is true. Otherwise, by the
observation above, VYzy. z = y O ¥'zy is true and, hence, so is Vzy. £ = y = ¥'zy. But
T(<I>1',...,<I>n',\li ') is the result of substituting ¥’ for some of the occurrences of ‘=
(®,',...,0,"), so T(®,',...,0,",¥') is false, because T(®,’,...,®,’) is, and this is a con-

tradiction.

> in

Thus, for every model of T, if SCHEMA(T,P') is true, so is SCHEMA(T,P). But then & # f is
true in every model of CLOSUREp/(T). Hence CLOSUREp/(T) |~ @ # B, which is a contradic-
tion, since T {/~ & # B. We conclude that CLOSUREp(T) I~ @ # B.

QED Theorem 5.7

Corollary 5.8

If Tis a well-founded theory containing axioms which define the equality predicate, P is an
n-ary predicate, and @ is an n-tuple of ground terms, then CLOSUREpR(T) |— —~Pa implies
Tl-a # B for all ground n-tuples B such that T |—— P3.

Proof

Otherwise CLOSUREp(T) |—@ # Fand T3 # B which contradicts Theorem 5.7.

QED Corollary 5.8

Theorem 5.9

If T is a well-founded theory; «y,...,a, are ground terms; and P is a set of some of the

predicate symbols of T; then

CLOSURER(T) -Vz.z2=a,V.Vz=0a,<=> THViz=0,V.NVNz=0,.

Proof

The right-to-left direction is immediate. For the left-to-right direction, assume that
T} Vzz=0,V..Vz=0a, Then T has a model which falsifies Vz.z =, V..V z = a,. Since
T is well-founded, this model has a P-minimal submodel. But Vz.z= o, V...V z = «a, is false in
this submodel, because the extension of the equality predicate in this submodel must be a subset
of its extension in the original model. Since the circumscription is true in all minimal models,
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CLOSUREp(T) {f- Vz.z=a; V.V z=a,.

QED Theorem 5.9

Theorem 5.10

If T is a well-founded theory, and T has a model with some domain, D,
then so does CLOSUREp( T).

Proof
McCarthy [1980] shows that CLOSUREp(T) is true in all minimal models. Since T is well-
founded, every model has a minimal submodel. By the definition of submodel, the domain of a

minimal submodel of M is the same as that of M.

QED Theorem 5.10

Theorem 5.11

If T} V. PZ = 7 for some expression ®Z, not involving predicate letters from P,

then T |— CLOSUREp(T).
Proof
T(¥), on the left-hand side of the circumscription schema, includes Vz. ¥Z = ®7. But any
choice of model, M, and predicate, ¥, which satisfies the LHS clearly already satisfies the RHS,

Vz. P? D UT, since every model of T satisfies V7. &7 = P7.

QED Theorem 5.11
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Definition: Formula Circumscription

The circumscription of the formula E(P,T) in the theory T, with the predicates P treated

as variable, is given by:

T(P) A V®. T(®) A\ [VZ. E(@,3) > E(P,3)] > [Vz. E(P,5) > E(®,7)]

Definition: M < E(P,aM'

Let T(P) be a finitely-axiomatized (first- or second-order) theory, some (but not neces-
sarily all) of whose predicates are those in P; let E(P,Z) be a formula whose free variables
are among % = 1,,...,Z,, and in which some of the predicate variables P = {P,,...,P}
occur free; and let M, M' be models of T. We say M is an E(P,z)-submodel of M' (writ-
ten M < HP’E)M') iff

(i) |M = M,

(ii) If t is a term, then |¢|p,= |t|ar ,

(ii) If Q ¢ P is a predicate letter of T, then |Q|yy = |Q|a¢ , and

() |BP2) 1w C B W

Definition: E(P,z)-Minimal Model

A model, M, of T is E(P,z)-minimal iff T has no model, M', such that
M < E(P_)Ma.nd _i(M< ﬂP_)M)

Theorem 6.1 — Soundness

CLOSURE(T; P; E(P,':E‘))r is satisfied by every E(P,Z)-minimal model of T

Proof

The proof follows McCarthy’s [1980] proof of the soundness of predicate circumscription. Con-
sider a minimal model, M, and an instantiation, with some predicate, ®, of the schema (or
second-order axiom) which makes the left-hand side true and the RHS false. Then by the second
conjunct of the LHS, |E(P,7)|pC |E(®,Z)|p+ But then a proper submodel, M’, could be con-
structed by letting P agree with ®. But this contradicts the fact that M is minimal.

QED Theorem 6.1
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Theorem 6.3

The ability to minimize arbitrary expressions, E(P,Z), instead of simple sets of predi-
cates, i3 an inessential extension, provided predicates other than those being minimized
are allowed to vary.

Proof

We show that the theory, T, can be extended by adding a new predicate symbol, ¥, and the
definition V7. ¥z = E(P,7), and that circumscribing ¥ in the extended theory, T', with P vari-

able is equivalent to circumscribing E(P,Zz) in the original theory. ILe., that

T [78) A V2. B0 > B3] > 1v2 Bp2 > He) (27)

and

T' A [T(¢,¢) A [VZ. 97 = E®,3)] A [VZ. ¢7 D \pz‘]] > [Vz. U7 > 47 (28)

are equivalent over the language of T.

To see that (27) entails (28), let M be a model which satisfies (27). Since (27) does not mention
V¥, we can interpret ¥ as we choose. Therefore, let |¥|y = |E(P)|). Clearly, M= (28). Con-
versely, let M satisfy (28), and let ®,¥ be a tuple of predicate variables satisfying the LHS of (28).
Clearly, T' |~ T, and T'(®) |— T(®). By substitution of equivalents, we get the rest of (27), so

ME (27).

QED Theorem 6.3

Definition: Generalized Circumscription

Let X be a tuple of predicate, function, and/or constant symbols, and let R be a binary
relation on tuples of type X. The generalized circumscription of X in the theory, T,
according to the pre-order, < g, induced by R is given by:

T(X) AVX'. T(X') A (X' < pX) > (X < X)

Definition: M < (xpM’

Let T(P) be a finitely axiomatized (first- or second-order) theory, whose predicate, func-
tion and constant letters include (but need not be limited to) those in X; let R be a binary
relation on tuples of type X; let < g be the pre-order induced by R; and let M, M' be

models of T. Then Mis an (X,R)-submodel of M’ (written M < (x pM') iff

() M =M,
(i) If tis a term and ¢t ¢ X, then [t|,,= |t|pr,


file:///t/fj

- 143 -

(i) If Q ¢ X is a predicate letter of T, then |@Qla= |Q|p» and
(iv) <|X|p X|>€R. |

Definition: (X,R)-Minimal Model
A model, M, of T is (X,R)-minimal iff T has no model, M’, such that

M' < (xgMand ~(M< (xpM').
Theorem 6.4 — Soundness

CLOSURE(T; X; R) is satisfied by every (X,R)-minimal model of T.

The proof 1s similar to that of Theorem 6.1, except that the interpretations of each of the variable

terms must also be set. [ |

Definition: Well-Foundedness

The theory, T, is well-founded with respect to (X, R) iff every model of T has
an (X,R)-minimal submodel. [ |

Theorem 6.9

If T is a universal theory, and X, P are finite tuples of predicate letters,
then T is well-founded with respect to < (xp) -

Proof

We show that any chain of submodels of a model of T has a lower bound among the submodels of

that model. It follows by Zorn’s lemma that every model has a minimal submodel.

Let M,,... be a chain of models of T, ordered under the submodel relation. If the chain is finite, it

has a lower bound, hence assume it is infinite.

Let {d,,...} be the elements of |M,|. Extend the language of T, L, to L' by adding a new constant
symbol, d;, for each d;. Let T'= TU {Pd|for all i, M;}= Pd} U {-Pd|for some
i M, = Pd}.
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Assume T' is inconsistent. Then, by compactness, so is a finite subset. But then some M; must
set each Pd in this finite set accordingly, so M;{= T, which is a contradiction, since the chain
{M;} is ordered. Hence T' is consistent, so T' has a model, M’.

Now we can add the diagrams {over all ground terms of L') of the equality predicate and all fixed
predicates from M, to T’ to get T''. By the above argument, T'' must be consistent. Hence
there is an M'' such that M’ = T''. By virtue of the fact that M'' satisfies the diagram of the
equality predicate from M, , we can isomorphically embed the domain of M, into M'’. (Because
T'' contains the diagrams of the equality predicate over all ground terms of L', it is clear that
the resulting substructure is closed under and preserves the functions.) Finally, since T' DT,

M'ET

Since T is a universal theory, the restriction, M, of M'' to [Mo| is a model of T. Clearly
M< xpM;, for all 1, so M is the lower bound we require.

QED Theorem 6.9

Theorem 6.11

If T is well-founded with respect to (X, P); P € P is an n-ary predicate; X is a set of
predicate letters; and &@;,...,&, are n-tuples of ground terms; then

CLOSURE(T; X; P) |~ Pa@, V..V P&, <= T |- P&, V..V P&,. [ |

Theorem 6.12

If T is well-founded with respect to (X, P); X is a set of predicate letters; P¢ P U X
is an n-ary predicate; and &j,...,& are n-tuples of ground terms; then

(i) CLOSURE(T; X; P) |— P&, V..V Pay<+=> T} P&, V..V P&, and
(ii) CLOSURE( T, X;P) b-Pa,V.V-Pa,<— T|-Pa,V.V-Pa,. [ §
Theorem 6.13

If T is well-founded for (P,R) and T has a model with domain D, then so does
" CLOSURE(T(P);P;R).

Theorem 6.14

If T is a first-order theory containing axioms which define the equality predicate, =, then
T |~ CLOSURE(T;X;{=}). %
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The proofs of Theorems 6.11, 6.12, 6.13, and 6.14 are essentially alphabetic variants of those of
Theorems 5.4, 5.5, 5.10, and 5.6, respectively. We do not repeat them here.
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Theorem 7.1 — Soundness

" Every instance of the revised domain circumscription schema for a theory, T, is true in
all minimal models of T.

Proof

The proof is identical to that presented in [Davis 1980, p75], except that, in the proof of the

lemma, the revised schema guarantees that D is non-empty and hence N is well-defined.

QED Theorem 7.1

Theorem 7.3

If T is a well-founded theory which contains axioms which define the equality predicate,
=, and ajy,.. 0n s Bi,.-.,By are ground terms, then

(i) TI—(Va =p) = DC(TH—(Va = 5)
(ii) T}-(Va F B) < DC(T)I—(Va.#ﬂ,)

Proof

Every model of a well-founded theory has a minimal submodel. Let M' be a model of T. Let
M < M' be a minimal submodel of M'. Thus M and M’ agree on all ground terms, and M is the
restriction of M’ to a smaller domain. But then clearly they must have the same set of ground
(in)equalities, since new equalities imply that M is not a restriction of M', and new inequalities
imply that |M| does not contain the interpretation of some of the ground terms (since M is a res-

triction of M'), which is false.

QED Theorem 7.3

Theorem 7.4 — Finitary Completeness

If T is a finitely axiomatizable theory, and every model of T is finite, then only the
minimal models of T satisfy every instance of the domain circumscription schema for 7,

DC(T).
Proof
Assume every model of T is finite. Consider some non-minimal model, M. We assume that every

instance of DC(T) is true in M and arrive at a contradiction.
M is finite, with m elements in its domain. Since M is not minimal, there is a submodel, N < M,
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with n < m domain elements. Let ®z be z = z, V...V z = z, where the z/s are variables. We can
instantiate these z's in M to be the n elements which survive the submodeling to N. Clearly
Jz. &z is true, as is AXIOM(®). A® must be true, as follows: Consider an arbitrary expression,
Uz V2. Uz D [Vz. &z 5 ¥z, and the existentials given by T must be satisfied in N (since Nis a
model). Furthermore, ® is true for all of |N]. Thus [Jz. ¥z] € T will mean that J4z. ®z \ Uz
will be true in M. But since n < m, Vz. &z is clearly false in M, so we have a falsifying instance
of the schema.

QED Theorem 7.4

Corollary 7.5

If T is a finitely axiomatizable theory, and every model of DC(T) is finite, then only the
minimal models of T satisfy every instance of DC(T).

Proof

DC(T) is true in all minimal models, so there are no infinite minimal models. DC(7) false in all
infinite models, so only finite non-minimal models remain to be eliminated. Every finite model
has a minimal submodel (there can’t be an infinite chain of proper submodels). The argument for

Theorem 7.4 serves to rule out non-minimal finite models.

QED Corollary 7.5
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Theorem 8.2

If THVz.z=0,V.Vz=a,and T|-o;# o , fori# j for ground terms ay,...,o,;

and X includes all of the predicates of L; then those formulae true in every extension of

A= { : _;;z ] , T| are precisely those entailed by CLOSURE(T; X; {P}).

Proof

Lemma 8.2.1 shows that every model for any extension of A is (X,{P})-minimal. Lemma 8.2.2
shows that every (X,{P})-minimal model of T is a model for some extension of A. From these

the result follows.

QED Theorem 8.2

Lemma 8.2.1

If TVz.z=0q,V..Vz=aqa, for ground terms ay,...,a,; and X includes all of the

i} —Pz
i

predicates of L; then any model of any extension of A = { i oPs ];, TJ is an (X,{P})-
{ 4 i

minimal model for T.

Proof

Any model, M for an extension, E, for A has domain |[M] = U {[opd. Assume that M is not
=1

minimalk Then there is an M'<M Without. loss of generality, assume
|Plar= {ay,...;an | 0<k < n}, and |Plp/ = {@y,...a, | 0 < r<k}. (k>0 or there is no M'<M)
Now, given the existence of M’, it is clear that E i/~ Pay, so = Pay must be in E, so M = E, which

is a contradiction. Hence, M is minimial.

QED Lemma 8.2.1

Lemma 8.2.2

f THVez=q,V.Vz=a,and T|-a,# aj, fori# j for ground terms a,..,o,;
and X includes all of the predicates of L; then any (X,{P})-minimal model for T is a

- Pz

model of some extension of A = { : —'Pz], Ti.
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Proof

We construct the extension, E, from the minimal model, M. Clearly M= T. If M= —Pq;, put
—1Pa,~

ra

in GD(E,A). Obviously, TU CONSEQUENTS(GD(E,A)) then entails Pa; for each o
such that Pa;¢ CONSEQUENTS(GD(E,A)). (Otherwise M is not minimal). The existence of M
guarantees that E |} Pa; for the als which make up GD. Thus

E= Th(TU CONSEQUENTS(GD(E,A)) is an extension for A. Clearly M {= E.

QED Lemma 8.2.2

Proposition 8.6

If T does not entail a domain-closure axiom, and T {/ Vz. =Pz, then every extension for
A has models which are not (X, { P})-minimal.

The proof of this proposition lies in the observation that one can always set - Pa for some domain
element o which does not correspond to any term in the language. Since T does not entail a

domain closure axiom, a model with such an element will always exist. |

Theorem 8.7

There are theories, 7T, such that T}|-Vz.z=q,V.Vz=0a,and T -

{ _‘—lliz }, T ) precisely

for 1 £ y and yet no combination of the extensions of A =

characterizes the (X, {P})-minimal models of T.

The proof of this theorem follows from Example 8.2. [ |

Proposition 8.9

If there are no variable predicates (Z = { }), then ECWA(T) adds to T every instance

of the circumscription schema.

- The proof of this follows directly from of the third corollary to Gelfond, Prsymusinska, and
Prsymusinski’s [1985] theorem 1. | |
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APPENDIX B

Dictionary of Symbols

Definition

Set membership

Set non-membership

Set union

Set intersection

The empty set

Set difference: ¥ —-I' = {a |a € ¥ and o ¢ T}
Symmetric set difference: ¥ AT = (¥ -T) U (T -~ ¥)

First-order provability
First-order non-provability
Logical entailment

Logical non-entailment
Logical implication
Logical negation

Logical and

Logical or

Logical equivalence
Existential quantifier
Universal quantifier
Preceding quantifier’s scope extends over 1st enclosing formula.

The null clause
Contradiction

Logical closure operator

“It follows that” or “Implies”
If and only if

Strong precedence relation on Literals X Literals
Weak precedence relation on Literals x Literals
Function mapping

The first-order langnage (1.¢., all well-formed formulae)
The set of all Natural numbers

The set of all atomic formulae and their negations
Marks end of definition, example, or theorem
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APPENDIX C

Useful Logical Definitions

Clause — A clause is a finite disjunction of literals.
Closed Forumula — A formula is closed iff it contains no free variables.
Ground - An expression (literal, term, or formula) is ground iff it contains no variables.

Herbrand Universe — If T is a universal theory, then the Herbrand Universe of T is
H(T) = {f"(ty,--,ts) | f* is an n-ary function-letter of T, and ¢y,...,t, € H(T)}. (This is well-

defined because the O-ary function-letters (or constants) provide the base for the recursion.)

Herbrand Base - If T is a universal theory, then the Herbrand Base of T is
fI(T) = {P™(ty,...,t) | P*is an n-ary predicate-letter of T, and ¢,,...,¢, € H{T)}.

Herbrand Interpretation — If T is a universal theory, then a Herbrand Interpretation, I, of T is
a subset of T°s Herbrand base, IA{(T) Those atomic formulae P*(ty,...,t,) € I are interpreted

as true in I, all others are interpreted as false.

Herbrand Model — If T is a universal theory, then a Herbrand Model of T is a Herbrand
interpretation of T which satisfies every formula in T, according to the usual definition of

satisfaction by an interpretation.

Horn - A set of clauses, T, is Horn iff every clause in T contains at most one positive literal.

Literal - A literal is an atomic formula or the negation of an atomic formula.

Skolemized form — The Skolemized form of a theory is the theory obtained by converting to
prenex-normal form then progressively, from the right-most quantifier, replacing each
existentially quantified variable by a new function-symbol taking as arguments each of the

variables captured by quantifiers occurring further to the left. The process of obtaining the

skolemized form of a theory is called skolemization.
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