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Abstract 

We develop a model-based approach to reasoning, in 
which the knowledge base is represented as a set of 

models (satisfying assignments) rather then a logical 
formula, and the set of queries is restricted. We show 
that for every propositional knowledge base (KB) 
there exists a set of characteristic models with the 
property that a query is true in KB if and only if 
it is satisfied by the models in this set. We fully char- 
acterize a set of theories for which the model-based 
representation is compact and provides efficient rea- 
soning. These include some cases where the formula- 
based representation does not support efficient rea- 
soning. In addition, we consider the model-based ap- 
proach to abductive reasoning and show that for any 
propositional KB, reasoning with its model-based rep- 
resentation yields an abductive explanation in time 
that is polynomial in its size. 

Introduction 
A widely accepted framework for reasoning in intelli- 
gent systems is the knowledge-based system approach 
(McCarthy 1958). Knowledge, in some representa- 
tion language is stored in a Knowledge Base (KB) 
that is combined with a reasoning mechanism. Rea- 
soning is abstracted as a deduction task of determin- 
ing whether a sentence o, assumed to capture the 
situation at hand, is implied from KB (denoted KB 
j= a). However, computational considerations render 
this logical-based representation, as well as many other 
forms of reasoning (Selman 1990; Roth 1993), as not 
adequate for common-sense reasoning (Levesque 1986; 
Shastri 1993). 

In this work we embark on the development of a 
model-based approach to common sense reasoning. It 
is not hard to motivate a model-based approach to 
reasoning from a cognitive point of view and indeed, 
most of the proponents of this approach to reasoning 
have been cognitive psychologists (Johnson-Laird 1983; 
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Johnson-Laird & Byrne 1991; Kosslyn 1983). In the 
AI community this approach can be seen, in a very 
general sense, as a derivative of Levesque’s notion of 
“vivid” reasoning, and is very related to the approach 
developed in (Kautz, Kearns, & Selman 1993). 

The problem KB j= cy can be approached using the 
following model-based strategy: 

Test Set: A set r of assignments. 

Test: If there is an element x E I’ which satisfies KB, 
but does not satisfy a, deduce that KB &t= a; Other- 
wise, KB b CY. 

Clearly, (since KB b cr iff every model of KB is also a 
model of a) this approach solves the inference problem 
if I’ is the set of all models of KB. A model-based ap- 
proach becomes useful if one can show that it is pos- 
sible to use a fairly small set of models as the Test 
Set, and still perform reasonably good inference, un- 
der some criterion. 

We define a set of models, the characteristic models 
of the knowledge base, with the property that perform- 
ing the model-theory test on them suffices to deduce 
that KB b Q, for a restricted set of queries. We prove 
that for a fairly wide class of representations, this set is 
sufficiently small, and thus the model-based approach 
is feasible. The notion of restricted queries is inherent 
to our approach. Since we are interested in formalizing 
common-sense reasoning, we take the view that a rea- 
soner need not answer efficiently all possible queries. 

For a wide class of queries we show that exact rea- 
soning can be done efficiently, even when the reasoner 
keeps in KB only an “approximate” representation (as 
a set of characteristic models) of the “world”. We 
show that the theory developed here generalizes the 
model-based approach to reasoning with Horn theo- 
ries, studied in (Kautz, Kearns, & Selman 1993), and 
captures even the notion of reasoning with approxi- 
mate theories (Selman & Kautz 1991). In particular, 
our results characterize the Horn theories for which the 
approach in (Kautz, Kearns, & Selman 1993) is useful, 
and explain the phenomena observed there, regarding 
the relative sizes of the logical formula representation 
and model-based representation of KB. We also give 
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other examples of expressive families of propositional 
theories, for which our approach is useful. 

In addition, we consider the problem of performing 
abduction using a model-based approach and show that 
for any propositional knowledge base, using a model- 
based representation yields an abductive explanation 
in time that is polynomial in the size of the model- 
based representation. Some of our technical results 
make use of a new characterization of Boolean func- 
tions, called the Monotone Theory, introduced recently 
by Bshouty (Bshouty 1993). Due to the limited space, 
some of the proofs are omitted. These can be found in 
the full version of the paper (Khardon & Roth 1994b). 

Summary of Results 
We now briefly describe the main applications of the 
model-based approach developed in this paper. 

We consider two types of queries with which rea- 
soning is efficient. Queries are called relevant if they 
belong to the propositional language that represents 
the “world”. Queries are called common if they belong 
to some set LE of eficient propositional languages (see 
Definition 5). These include for example Horn queries, 
and log nCNF queries. 

Our results can be grouped into 3 categories that 
can be informally described as follows: 
(1) Every function with a small DNF representation 
and either a small CNF representation or a CNF rep- 
resentation (of any size) in LE has a small set of char- 
acteristic models. 

For these functions, model-based deduction is cor- 
rect and efficient for relevant and for common queries. 
(2) The set I’“, of characteristic models with respect to 
a propositional language $, describes the least upper 
bound of f with respect to G. 

Model-based deduction, using I’“, is correct and ef- 
ficient for common queries. 
(3) For the functions defined in (1)) efficient and correct 
model-based abduction can be performed. 

We note that our algorithms do not solve NP- 
complete problems. Most hardness results for reason- 
ing assume that KB is given as a CNF formula. The 
fact that we can perform reasoning efficiently relies on 
the fact that we change the knowledge representation 
into a more accessible form (another knowledge repre- 
sentation which enables reasoning, yet for some reason 
is considered less interesting, is DNF). 

Monotone Theory 
In this section we introduce the notations, definitions 
and results of the Monotone Theory of Boolean func- 
tions (Bshouty 1993). 

We consider a Boolean function f : (0, l}n + (0, 1). 
An assignment simply means an element of { 0,l)“. 
A model of f is a satisfying assignment of f i.e., x 
such that f(x) = 1. Throughout the paper, when no 
confusion can arise, we identify f with the set of its 
models, namely f-‘(l). That is, f b g if and only if 

f c g. Assignments in (0, 1)” are denoted by x, y, Z, 
and xi denotes the ith coordinate of x E (0, 1)“. 

Definition 1 (Order) We denote by 5 the usual par- 
tial order on the lattice (0, l}“, the one induced by the 
order 0 < 1. That is, for x,y E (0, l}“, x 5 y if and 
only if Vi,xi 5 gi. For an assignment b E (0, 1)” we 
define x Lb y if and only if x @ b 5 y @ b (where @ is 
the bitwise addition modulo 2). 

Intuitively, if ba = 0 then the order relation on the ith 
bit is the normal order; if bi = 1, the order relation is 
reversed and we have that 1 <bi 0. 
The monotone extension of z E (0, 1)” with respect to 
b is: 

Mb(z) = {X 1 X Lb 2). 

The monotone extension off with respect to b is: 

Mb(f) = (2 1 x Lb z, for some z E f}. 

The set of minimal assignments off with respect to b 
1s: 

minb(f) = {z 1 z E f, such that ‘dy E f,z $b y}. 

The following claims list some properties of Mb. 
Claim 1 Let f, g : (0, 1)” ---t (0, 1) be Boolean func- 
tions. The operator Mb satisfies the foldowing proper- 
ties: 
(i) If f & 9 then Mb(f) c M&7)- 
(ii) Mb(f A 9) s Mb(f) A Mb(g)- 
(iii) Mb(f V 9) = Mb(f) V Mb(g). 

Claim 2 Let z E f. Then, for every b E (0, l}“, there 
I%&% U E m&(f) such that Mb(z) s Mb(u). 

characterization of the From Claims 1 and 
monotone extension 
Claim 3 The monotone extension off with respect to . . b 2s: 

Mb(f) = v Mb(Z) = v Mb(Z). 
ZEf ZE n-h(f) 

Clearly, for every assignment b E (0, l}“, f C Mb(f). 
Moreover, if b $ f, then b # Mb(f) (since b is the 
smallest assignment with respect to the order $). 
Therefore: 

f = A Mb(f) = /j J%(f)- 
bE{O,lln Wf 

Definition 2 (Basis) A set B is a basis for f if f = 
AbEB Mb(f). B is a basis for a c/ass of functions 3 
if it is a basis for all the functions in 3. 

Using this definition, the representation 

f = A Mb(f) = /j v Mb(z) (1) 
bEB beB ,7ernin&) 

yields the following necessary and sufficient condition 
describing when x E (0, 1)” is positive for f: 
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Corollary 1 l;et B be a basis for f, x E (0,l)“. 
Then, x E f (i.e., f(x) = 1) if and only if for ev- 
ery basis element b E B there exists z E minb(f) such 
that x >b z. 

The following claim bounds the size of the basis of 
a function f: 

Claim 4 Let f = cl A c2 A - . - A & be a CNF rep- 
resentation for f and let B be a set of assignments in 
(0, l}n. If every clause Ci is falsified by some b E B 
then B is a basis for f. In particular, f has a basis of 
size 5 k. 

The set of floor assignments of an assignment x, with 
respect to the order relation b, denoted 1 x 1 b, is the set 
of all elements % <b x such that there does not exist y 
for which % <b y <b % (i.e., % is strictly smaller than x 
relative to b and is different from x in exactly one bit). 

The set of local minimal assignments off with re- 
spect to b is: 

min;l(f) = {x 1 2 E f, and&E [x]b, Y @fh 
Clearly we have that minb( f) E mini(f) and therefore 
the following lemma bounds the size of minb( f). 
Claim 5 Let f = D1 V 02 V - -. V .& be a DNF 
representation for f. Then for every b E (0, l}“, 

Imin3f)l I k* 
Example: Let f have the CNF representation: 

f= (x~vx2vx3)A((2~v x2vx*)A(~vz5vx3v24) 

The function f has 12 (out of the 16 possible) satis- 
fying assignments. The non-satisfying assignments of 
f are: {OOOO,OOOl, 0010,1101}. Using Claim 4 we get 
that the set1 B = {0000,1101} is a basis for f. 

The sets of minimal assignments with respect to 
this basis are: minuass(f) = {1000,0100,0011} and 
minrrsr(f) = {1100,1111,1001,0101}. These can be 
easily found by drawing the corresponding lattices and 
checking which of the satisfying assignments of f are 
minimal. It is also easy to check that f can be repre- 
sented as in equation (1) using the minimal elements 
identified. 

Deduction with Models 
We consider the deduction problem KBb a. KB is 
the knowledge base, which is taken to be a proposi- 
tional expression (i.e., some Boolean function2), and 
cy is also a propositional expression. The assertion 
KBb a means that every model x E { 0, 11” which 
satisfies KB, must also satisfy CY. 

_ _ 

‘An element o f 0, l}n denotes an assignment to the { 
variables xl,. . . ,xn (i.e., 0011 means xl = 12 = 0, and 
x3 = x4 = 1). 

2 We use interchangeably the terms propositional expres- 
sion and Boolean function. Similarly, a family of Boolean 
functions is used interchangeably with a propositional lan- 
guage. A family of Boolean functions is uniquely charac- 
terized as a set of all functions with a given basis. 

In this section we define a special collection I’ of 
characteristic models of KB and show that performing 
the model-based test on I? yields correct deduction. We 
fully characterize I’ in terms of the Boolean function 
KB and the query a. 

Exact Deduction 
Definition 3 Let F be a class of functions, and let B 
be a basis for 3. For a knowledge base KB E 3 we 
define the set r = I’:, of characteristic models to be 
the set of all minimal assignments of KB with respect 
to the basis B. Formally, 

rB KB = U&B{% E minb(~(B)}. 

Before showing that I? has the required properties we 
discuss the size of the model-based representation. The 
following result is immediate from Claim 5. 
Lemma 1 Let B be a basis for the knowledge base KB, 
and denote by IDNF(KB)I the size of its DNF repre- 
sentation. Then, the size of a model-based representa- 
tion of a knowledge base KB is 

Ir&I 5 x (minb(KB)I 5 IBI. jDNF(KB)I. 
bEB 

We note that this bound is not tight. There are cases 
where this bound is exponential and I? is small. 
Theorem 1 Let KB,cr E 3 and let B be a basis for 
3. Then KB b cx iflfor every u E r&) a(u) = 1. 

Proof: Clearly, I’ = T& C KB and therefore, if 
there exists % E I’ such that o(z) = 0 then KB k 
(Y. For the other direction assume that for all u E 
r, CY(U) = 1. w e will show that if y EKB, then a(y) = 
1. From Corollary 1, since B is a basis for o and for 
all u E I’ o(u) = 1, we have that 

Vu E r, Vb E B, 3v u,b E minb(a) s.t. 21 Lb %,b. (2) 

Consider now a model y EKB. Again, Corollary 1 im- 
plies that 

Vb E B, 3% E minb(I<B) s.t. y zb %. (3) 
By the assumption, since minb(l<B) E r, all the ele- 
ments % identified in Equation 3 satisfy o and there- 
fore, as in Equation 2 we have that 

Vz E minb(KB), 3 vz,b E m&(a) s.t. % >_b V,,b. (4) 

Substituting Equation 4 into Equation 3 gives the re- 
quired condition on y EKB: 

v’b E B, +(,),b E minb(a) set. Y >b v(z),b 

which implies, by Corollary 1, that o(y) = 1. q  

The above theorem assumed that KB and a could 
be described by the same basis B. This requirement is 
somewhat relaxed in the following theorem. 
Theorem 2 Let KB be a propositional theory with ba- 
sis B and let cy be a query with basis B’. Then KB k cy 
if and only if for every u E rpBB’, (w(u) = 1. 
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Proof: It is clear, from Eq. 1 and the fact that for 
all g and b, g C Mb(g), that B U B’ is a basis both for 
KB and cr. Therefore, Theorem 1 implies the result. 

Example: (continued) The set I’ built for our ba- 
sis is: I? = {1000,0100,0011,1100,1111,1001,0101). 
Note that it includes only 7 out of the 12 satisfying 
assignments of f. Since model-based deduction does 
not make mistakes on queries implied by f we concen- 
trate in our examples on queries not implied by f. 
To exempiify Theorem 1 consider the query crl = 
-- 
x2 x3 + x4. This is equivalent to x2 V x3 V 24 which 
is falsified by 0000 so our B is a basis for cr. Reason- 
ing with I’ will find the counterexample 1000 and will 
therefore conclude f F or. 
The query cy2 = 11x3 --f ~2x4 is equivalent to 
5 V 12 V 23 V x4 which is not falsified by our basis 
therefore model-based deduction might be wrong. In- 
deed reasoning with I’ will not find a counterexample 
and will conclude f + 02 (it is wrong since the assign- 
ment 1010 satisfies f but not cr2). 

Next, to exemplify Theorem 2 consider adding a basis 
element for CQ. This element is 1010. The set of addi- 
tional minimal elements in I’ is { lOlO}, and reasoning 
with I? would be correct on (~2. 

Approximate Theories 
We now consider the case in which the set of char- 
acteristic models of KB is constructed with respect 
to a basis B that is not a basis for the knowledge 
base KB. This representation coincides with the no- 
tion of a least upper bound of a theory, introduced 
in (Selman & Kautz 1991; Kautz & Selman 1991; 
1992) in the context of knowledge compilation. 
Definition 4 (Least Upper-bound) Let 3,G be 
families of propositional languages. Given f E 3’ we 
say that flub E 6 is a G-least upper bound of f ifsT 
f & flub and there is no f’ E s such that f C f’ C flub. 

These bounds are called I;-approximations of the 
original theory f. The next theorem characterizes the 
G-LUB of a function and shows that it is unique. 
Theorem 3 Let f be any propositional theory and G 
a class of all propositional theories with basis B. Then 

flub = /j Mb(f)- 
bEB 

Proof: Define g = AbEBMb(f). we need to prove 
that (1) g C f, (2) g E G 
that f C f7C flub. (1) 

and (3) there is no f’ E C2 such 
is immediate from Claim 1. To 

prove (2) we need to show that B is a basis for g. 
Indeed, 

/j Mb(g) = A Mb( /j Mb(f)) 
QEB bEB bEB 

c (A Ma(f)) A( /j Mb,‘+&(f)) 
bEB bi#bj 

= g/\( A MbiMbj(f)) C g* 
brfbj 

Since in general g C /\Mb(g) we get that 
l\bEB Mb(g) = g and therefore g E S. Finally, to 
prove (3) assume that there exists f’ E G such that 
f C f’. Then, 

i? = A Ma(f) c A Ma(f’) = f’, 
&B bEB 

where the last equality results from the fact that f’ E 
6. Therefore, g = flub. 

The following theorem can be seen as a generaliza- 
tion of Theorem 1, in which we do not require that 
the basis B is the basis of KB. A weaker version of 
the corollary that follows, for the case in which S is 
the class of Horn theories, is discussed in (Kautz & 
Selman 1991; Cadoli 1993). 
Theorem 4 Let KB E 3, a E 6 and let B be a basis 
for 6. Then KB /= cy if and only if for every u E 
rB KBY a(u) = l- 
Proof: We have shown in Theorem 3 that 

I-&b = /j M@-B) = A v Mb(Z). 
bEB b@ zErk&,(KB) 

By Theorem 1, since Q(U) = I for every u E I;, , 
we have that Ii’Blvb b cy and therefore KB b (Y. On 
the other hand, since r;B C KB, if for some u E 
rB KB, a(U) = 0, KB /$ CY. 
Corollary 2 Reasoning with the least upper bound 
(with respect to the language s) of a theory KB is 
correct for all queries in S. 

Example: (continued) The Horn basis for our 
example is: BH = { 1111,1110,1101,1011, Olll} 
(see Claim 6). The minimal elements with re- 
spect to 1101 were given before. Each of 
1111,0111,1011,1110 satisfies f and therefore for each 
of these, minb(f) = b and together we get that I’:” = 
{1111,0111,1011,1100,1001,0101,1110}. 

For the query cy2 = XI x3 + x2x4, which is not Horn, 
reasoning with lY’yH will be wrong. For the Horn query 
a2 = x1 x3 + x2, reasoning with I’yH will find the 
counterexample 1011 and therefore be correct. 

Applications 
In the previous section we developed the general theory 
for model-based deduction. In this section we discuss 
applications of this theory. In particular we apply it 
to the case of Horn knowledge base and show that ear- 
lier work on a model-based approach, in the narrower 
context of Horn knowledge bases (Kautz, Kearns, & 
Selman 1993) coincides with our theory. 

Our basic result (Theorem 1) assumed that the 
knowledge base and the query share the same basis. 
A query with this property is called a relevant query. 

We say that queries which are taken from some 
propositional family with a known basis, are common 
queries. In particular, queries are common if they be- 
long to a set LE of eficient propositional languages. 
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Definition 5 The set LE of efficient propositional 
languages is the set of languages for which there is a 
small (polynomial size) fixed basis. 

Important examples of efficient languages are: (1) 
Horn-CNF formulas, (2) reversed Horn-CNF formulas 
(CNF with clauses containing at most one negative lit- 
eral), (3) h-quasi-Horn formulas (a generalization of 
Horn theories in which there are at most Ic positive 
literals in each clause), (4) Ic-quasi-reversed-Horn for- 
mulas and (5) 1ognCNF formulas (CNF in which the 
clauses contain at most O(logn) literals). Any formula 
that can be represented as a CNF with clauses from 
any combination of the above is also in LE. The first 
four can be derived from Claim 6 and the last from 
Claim 7 (weight(u) denotes the number of 1 bits in u). 

Claim 6 The set BH = (u E (0, 1)” 1 weight(u) 2 
n - 1) is a basis for any Horn CNF function. 

Claim 7 ((Bshouty 1993)) There is a polynomial 
size basis for the set of log n CNF theories. 

In the case of common or relevant queries, reasoning 
involves the evaluation of a propositional formula on 
a polynomial number of assignments. This is a very 
simple and easily parallelizable procedure. Moreover, 
Theorem 4 shows that in order to reason with common 
queries, we need not use the basis of KB at all, and it 
is enough to represent KB by the set of characteristic 
models with respect to the basis of the query language 
(one of the languages in LE). Claim 6 and Claim 7 to- 
gether with Lemma 1 and Theorems 1,2,3 and 4 imply 
the following general applications of our theory: 

Theorem 5 Any function f : (0, 1)” ---) (0, 1) that 
has a polynomial sized representation in both DNF and 
CNF form can be described with a polynomial size set 
of characteristic models. 

Theorem 6 Any f : (0, l}n --+ (0, 1) with (any size) 
CNF representation in LE and a polynomial size DNF 
representation can be described with a polynomial size 
set of characteristic models. 

Theorem 7 Let KB be a knowledge base (on n uari- 
ables) that can be described with a polynomial size set 
I’ of characteristic models. Then, for any relevant or 
common query, model-based deduction using I’, is both 
correct and eficient. 

Theorem 8 Let KB be a knowledge base (on n vari- 
ables) that can be described with a polynomial size 
DNF. Then there exists a fixed, polynomial size set of 
models I?, such that for any common query, a model- 
based deduction using I?, is both correct and eficient. 

Horn Theories 
We consider the case of Horn formulae and show that 
in this case our notion of characteristic models coin- 
cides with the notion introduced in (Kautz, Kearns, & 
Selman 1993). 

Furthermore, our results explain the relation be- 
tween sizes of the model-based and the formulae-based 
represent at ions. In (Kautz, Kearns, & Selman 1993) 
examples are given for large Horn theories with a small 
set of characteristic models and vice versa, but it was 
not yet understood when and why it happens. Our 
results imply that the set of characteristic models of 
a Horn theory is small if the size of a DNF descrip- 
tion for the same theory is small. The other direction 
is however not true (i.e., there are Horn theories with 
a small set of characteristic models but an exponen- 
tial size DNF). In the full version we explain this phe- 
nomena in more detail. Let chara be the set of 
models defined in (Kautz, Kearns, & Selman 1993). 
Theorem 9 Let KB be a Horn theory and BH = (u E 
(0,l)” 1 weight(u) 2 n - 1). Then, charH(KB) = 
rBH KB' 

We note, that in (Kautz, Kearns, & Selman 1993) 
the deduction theorem was extended to answer any 
query (and not just a restricted set of queries as we do 
here). This extension relies on a special property of 
Horn formulae and does not hold as is in the general 
case. In the full version of the paper we explain this 
phenomena too. 

Abduction with Models 
We consider in this section the question of perform- 
ing abduction using a model-based representation. In 
(Kautz, Kearns, & Selman 1993) it is shown that for a 
Horn theory KB, abduction can be done in polynomial 
time using characteristic models. In this section we 
show that if we add a few base assignments to our ba- 
sis, the algorithm presented there works in the general 
case too. 

Abduction is the task of finding a minimal expla- 
nation to some observation. Formally, the reasoner is 
given a knowledge base KB (the background theory), 
a set of propositional letters A, (the assumption set), 
and a query letter q. An explanation of Q is a minimal 
subset E E A such that 
1. KBA((&~z)bq)and 

2. KBA(AZEEz) # Qi. 
Thus, abduction involves tests for entailment and con- 
sistency, but also a search for an explanation that 
passes both tests. 
Theorem 10 Let KB be a background propositional 
theory with a basis B, let A be an assumptions set and 
q be a query. Let BH = {x E (0, ljn(weight(z) 2 
n - 1). Then, using the set of characteristic models 
r = rpBBH one can find an abductive explanation of 
q in time polynomial in II’1 and IAI. 
Proof: We use the algorithm Explain suggested in 
(Kautz, Kearns, & Selman 1993) for the case of a Horn 
knowledge base and show that in order for it to work in the 
general case it is sufficient to add the Horn basis BH and 
the characteristic models relative to this basis. 
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The abduction algorithm Explain starts by enumerating 
all the characteristic models. When it finds a model in 
which the query holds, (i.e., q = 1) it sets E to be the 
conjunction of all the variables in A that are set to 1 in 
that model. (This is the strongest set of assumptions that 
are valid in this model.) 

The algorithm then performs the entailment test (( 1) in 
the definition above) to check whether E is a valid expla- 
nation. This test is equivalent to testing the deduction KB 
b (q V (Vt,=~f)), that is a deductive inference with a Horn 
clause as the query. According to Theorem 2 this can be 
done efficiently with I’FBBB”. 

If the test succeeds, the assumption set is minimized in 
a greedy fashion by eliminating variables from E and using 
the entailment test again. It is clear that if the algorithm 
outputs a minimal assumption set E (in the sense that 
no subset of E is a valid explanation, not necessarily of 
smallest cardinality) then it is correct. It remains to show 
that if an explanation exists, the algorithm will find one. 
To prove this, it is sufficient to show that in such a case 
there exists a model 2 E I’ in which both the bit q and a 
superset of E are set to 1. 

The existence of z is a direct consequence of including 
the base assignment b = In in the basis. This is true as 
relative to b we have 1 <b 0 for each bit. Therefore if there 
exists an explanation y, either it is a minimal assignment 
relative to b, or 32 Lb y and x is in F. 

Conclusions and Further Work 
This paper develops a formal theory of model-based 
reasoning. We show that a simple model-based ap- 
proach can support exact deduction and abduction 
even when an exponentially small portion of the model 
space is tested. Our approach builds on (1) the charac- 
terization of a set of models of the knowledge base that 
captures all the information needed to reason with (2) 
a restricted set of queries. We prove that for a fairly 
large class of propositional theories, including theories 
that do not allow efficient formula-based reasoning, the 
model-based representation is compact and provides 
efficient reasoning. 

The restricted set of queries, which we call relevant 
queries and common queries, can come from a wide 
class of efficient propositional languages, (and include, 
for example, quasi-Horn theories and log nCNF), or 
from the same propositional language that represents 
the “world” . We argue that this is a reasonable ap- 
proach to take in the effort to give a computational 
theory that accounts for both the speed and flexibility 
of common-sense reasoning. 

The usefulness of the approach developed here is ex- 
emplified by the fact that it explains, generalizes and 
unifies many previous investigations, and in particular 
the fundamental works on reasoning with Horn models 
(Kautz, Kearns, & Selman 1993) and Horn approxima- 
tions (Selman & Kautz 1991; Kautz & Selman 1991; 
1992). We are currently studying extensions of this 
theory for first order logic formalizations, and applica- 
tion of the theory to planning. 

This work is part of a more general framework which 
views learning as an integral part of the reasoning pro- 
cess. We believe that some of the difficulties in con- 
structing an adequate computational theory to reason- 
ing result from the fact that these two tasks are viewed 
as separate. In (Khardon & Roth 1994a) we discuss the 
issue of “learning to reason” and illustrate the impor- 
tance of the model-based approach for this problem. 
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