
Reasoning with Multi-version Ontologies:
A Temporal Logic Approach

Zhisheng Huang and Heiner Stuckenschmidt

AI Department, Vrije Universiteit Amsterdam, The Netherlands
{huang, heiner}@cs.vu.nl

Abstract. In this paper we propose a framework for reasoning with
multi-version ontology, in which a temporal logic is developed to serve
as its semantic foundation. We show that the temporal logic approach
can provide a solid semantic foundation which can support various re-
quirements on multi-version ontology reasoning. We have implemented
the prototype of MORE (Multi-version Ontology REasoner), which is
based on the proposed framework. We have tested MORE with several
realistic ontologies. In this paper, we also discuss the implementation
issues and report the experiments with MORE.

1 Introduction

When an ontology is changed, the ontology developers may want to keep the
older versions of the ontology. Although maintaining multi-version ontologies
increases the resource cost, it is still very useful because of the following benefits:

– Change Recovery. For ontology developers, the latest version of an ontol-
ogy is usually less stable than the previous ones, because the new changes
have been introduced on it, and those changes and their consequences have
not yet been fully recognized and evaluated. Maintaining the previous ver-
sions of the ontology would allow the possibilities for the developers to with-
draw or adjust the changes to avoid unintended impacts.

– Compatibility. Ontology users may still want to use an earlier version
of the ontology despite the new changes, because they may consider the
functionalities of the earlier version of the ontology are sufficient for their
needs. Furthermore, multi-version ontologies may have different resource re-
quirement. Ontology users may prefer an earlier version with less resource
requirement to a newer version with higher resource requirement.

The list above is not complete. We are going to discuss more benefits in the next
section. Those benefits can justify to some extent that multi-version ontologyman-
agement and reasoning systems are really useful. The change recovery requires that
the system provides a facility to evaluate the consequences raising from ontology
changes and a tool to compare multi-versions of the ontology. Selecting a compat-
ible version needs a system that can support a query language for reasoning on a
selected version of the ontology. This requires a query language which can express

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 398–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reasoning with Multi-version Ontologies 399

the temporal aspects of the ontology changes. Intuitivelymultiple versions of an on-
tology can be considered as a temporal sequence of change actions on an ontology.
That serves as our departure point in this paper. In this paper we will investigate
how temporal logics serve as the semantic foundation ofmulti-version ontology rea-
soning. We propose a framework of reasoning with multi-version ontologies which
is based on a temporal logic approach. We will show that the temporal logic can
provide a solid semantic foundation which serve as an extended query language
to detect the ontology changes and their consequences. We have implemented the
prototype of MORE (Multi-version Ontology REasoner), which extends existing
systems for querying Description Logic Ontologies with temporal operators that
support the maintenance of multiple versions of the same ontology. We discuss the
implementation of the MORE prototype and report the preliminary experiences
with applying MORE to realistic ontologies.

This paper is organized as follows: Section 2 provides a brief survey on ontology
evolution and versioning. Section 3 discusses the problem of multi-version ontol-
ogy reasoning. Section 4 presents a temporal logic for reasoning with multi-version
ontologies. Section 5 shows how the proposed temporal logic can serve as a query
language for reasoning with multi-version ontologies. Section 6 discusses the im-
plementation issues of MORE and reports the experiments with MORE. Section
7 discusses related work, further work, and concludes the paper.

2 Solved and Open Problems in Ontology Evolution

Database schema evolution is an important area related to the problem of ontol-
ogy evolution. In the following, we summarize some of the basic requirements for
schema evolution andversioning that have been stated in connectionwith the prob-
lem of schema evolution for object orienteddatabases that aremost relevant for the
problem of ontology evolution.

Evolvability. The basic requirement in connection with schema evolution is the
availability of a suitable apparatus for evolving the schema in terms of change
operations and a structure for representing changes.

Integrity. An important aspect of schema evolution is to preserve the integrity of
the database during change. Syntactic conflicts may occur for example due to
multiply defined attribute names in the same class . Further, semantic conflicts
can appear if changes to the schemabreak up referential integrity or if the mod-
ification of an integrity constraints makes it in compatible with another one.

Compatibility. The literature mentions two aspects of compatibility: downward
compatibility means that systems that were based on the old version of the
schema can still use the database after the evolution. Upward compatibility
means that system that are built on top of the new schema can still access the
old data.

In principle, the issues discussed above are also relevant for the problem of ontology
evolution. In the following, we summarize recent work that addressed the different
aspects mentioned above for the special case of ontologies.

400 Z. Huang and H. Stuckenschmidt

Evolvability. The evolvability of ontologies has been addressed by different re-
searchers by defining change operations and change representations for on-
tology languages. Change operations have been proposed for specific ontol-
ogy languages. In particular change operations have been defined for OKBC,
OWL [12] and for the KAON ontology language [15]. All approaches distin-
guish between atom and complex changes. Different ways of representing on-
tological changes have been proposed: besides the obvious representation as
a change log that contains a sequence of operations, authors have proposed
to represent changes in terms of mappings between two versions of the same
ontology [13].

Integrity. The problem of preserving integrity in the case of changes is also
present for ontology evolution. On the one hand the problem is harder here as
ontologies are often encodedusing a logical languagewhere changes canquickly
lead to logical inconsistency that cannot directly be determined by looking at
the change operation. On the other hand, there are logical reasoners that can
be used to detect inconsistencies both within the ontology and with respect to
instance data. As this kind of reasoning is often costly, heuristic approaches
for determining inconsistencies have been proposed [16, 12]. While deciding
whether an ontology is consistent or not can easily be done using existing tech-
nologies, repairing inconsistencies in ontologies is an open problem although
there is some preliminary work on diagnosing the reasons for an inconsistency
which is prerequisite for a successful repair [14].

Compatibility. The problem of compatibility with applications that use an on-
tology has received little attention so far. The problem is that the impact of
a change in the ontology on the function of the system is hard to predict and
strongly depends on the application that uses the ontology. Part of the prob-
lem is the fact that ontologies are often not just used as a fixed structure but
as the basis for deductive reasoning. The functionality of the system often de-
pends on the result of this deduction process and unwanted behavior can oc-
cur as a result of changes in the ontology. Some attempts have been made to
characterize change and evolution multiple versions on a semantic level [10, 9].
This work provides the basis for analyzing compatibility which currently is an
open problem.

We conclude that at the current state of research the problem of defining the ba-
sic apparatus for performing ontology evolution in terms of change operations and
representation of changes is understood. Open questions with respect to ontology
evolution mainly concern the problem of dealing with integrity problems and with
ensuring compatibility of the ontology with existing applications. The basic prob-
lem that has to address in the context of both of these topic lies in the logical na-
ture of many ontology specifications. We therefore need methods that work a the
semantic level and are aware of logical implications caused by changes. The for-
mal characterization of ontology evolution provided by Heflin is a step in the right
direction, but it does not provide any concrete methods for supporting evolution
that are necessary to resolve existing problems with respect to dealing with incon-
sistency or determining compatibility.

Reasoning with Multi-version Ontologies 401

3 Multi-version Management: An Open Problem

The aim of this work is to provide basic support for solving the open problems in
ontology evolution, in particular with respect to the problem of compatibility to
existing applications. As argued above, in order to support compatibility an anal-
ysis of changes on a syntactic and structural level is not sufficient as the function
of applications often depends on the result of reasoning processes.

Our goal is to provide ontology managers and users with a tool that helps to
detect effects of changes in ontologies and select versionsbased on their propoerties.
Another more ambitious goal for the future is to also provide support for predicting
such effects before the ontology has actually been changed [7]. In this section, we
introduce the general idea of providing tool support for this purpose and identify
relevant use cases for the technology.

3.1 Application Scenarios

The development of our method is based on the assumption that different versions
of an ontology are managed on a central server. In a commercial setting, ontologies
are normally created and maintained on a development server. Stable versions of
the ontology are moved to a production server which publishes the corresponding
models and therefore plays the role of the central server. Further Compatangelo
et al propose a blackboard architecture [5] that also allows the centralized man-
agement of different ontology versions in distributed environments and makes our
approach applicable also in the distributed setting. Based on this general assump-
tion, there are a number of quite relevant application scenarios for the versionman-
agement technology sketched above. In the following, we provide a number of use
cases for Multi-version Reasoning including typical relevant questions about the
relation between statements in different versions of an ontology.

Semantic Change Log. The ontology provider wants to inform the users of the
ontology about changes in the new version. The idea is that the new version of
the ontology is added to the system which automatically computes all changes
with respect to a certain facts. A typical case would be that all subsumption
relations are checked. The system outputs a list of obsolete subsumption rela-
tions and a list of new subsumption relations.

Version Selection. The user needs an ontology with particular properties for his
application.Hewants to knowwhich version of ontology fits his specific require-
ments best. For this purpose, the user defines a number of statements that he
wants to hold. The systems identifies the latest version of the ontology in which
the required statements hold.

Evolution Planning. Based on customer feedback and requests, the ontology
provider wants to determine useful and harmful changes to plan the future
evolution of the ontology. In particular this includes determining necessary
changes that will make it possible to derive certain wanted statements and
the analysis of different development choices using defeasible reasoning
techniques.

402 Z. Huang and H. Stuckenschmidt

3.2 The General Approach

The different use cases described above have quite different requirements with re-
spect to inferences that have to be supported. The common feature of all use cases,
however, is that they require to reason in the individual ontologies and about the
whole set of versions and their relations to each other. While there are existing
tools for reasoning with ontologies (i.e. Description Logic Reasoners), being able
to reason about different versions is an open issue. In our approach, we mainly ad-
dress this issue of reasoning about the set of all versions. We do this based on the
notion of a version space. A version space is a graph in which different versions of
the same ontology form the nodes. Edges represent change operations that led to
a new version. We use modal logic to make statements about version spaces, in-
terpreting each version of the ontology as a possible world and change operations
the accessibility relation. Queries about a concrete set of versions can now be for-
mulated as a formula in modal logics and model checking techniques can be used
to determine whether the version space at hand has the properties specified in the
query. In order to determine the facts that hold in a particular world, we use an
existing reasoner to derive statements implied by a certain version of the ontology.

The choice of the concrete approach and in particular, the concrete logic to
be used to reason about the version space strongly depends on the requirements of
the use case. When we look at the three use cases mentioned above, we can see that
they have quite different requirements with respect to the expressive power of the
query language. The semantic change log only need a very simple logic enabling us
to compare differentworlds and the statements that hold in each of them.Aswewill
see below, this can be done using a simple temporal logic. Version selection requires
explicit references to possible worlds that represent certain versions. This kind of
expressiveness is provided by hybrid modal logics [2]. In contrast to the other use
cases, evaluation planning requires explicit representations of change operations
in the logical language. This requirement is met by dynamic logics [8] that would
be appropriate for this use case.

In the remainder of this paper, we discuss a concrete implementation of the gen-
eral approach outlined above. This concrete implementation addresses the first of
the use cases, namely the semantic change log and makes a number of simplifying
assumptions in terms of the structure of the version space and the types of state-
ments about an ontology that can be used in queries about the version space. These
simplifying assumptions are not general limitations of the approachbut address the
practical needs of our work in the context of the SEKT Project. In future work, we
will extend the MORE system to also meet the requirements of the other use cases.

4 A Temporal Logic for Multi-version Ontology Reasoning

Temporal logics can be classified as two main classes with respect to two differ-
ent time models: linear time model and branching time model. The linear time
logics which express properties over a single sequence of states. This view is suit-
able for the retrospective approach to multi-ontology reasoning where we assume

Reasoning with Multi-version Ontologies 403

a sequence of versions. Branching time logics express properties across different se-
quences of states. This feature would be needed for the prospective approachwhere
we consider different possible sequences of changes in the future. The linear tem-
poral logic LTL is a typical temporal logic for modeling linear time, whereas the
computation tree logic CTL is a typical one for modeling branching time [3, 4].

Temporal logics are often future-oriented, because their operators are designed
to be ones which involve the future states. Typical operators are: the operator
Futureφ which states that ’φ holds sometimes in the future with respect to the
current state’, and the operatorAlwaysfφ which states that ’φ always holds in the
future with respect to the current state’, and the operator φUntilψ which states
that ’φ always holds in the future until ψ holds’. For a discrete time model, the op-
erator Nextφ is introduced to state that φ holds at the next state with respect to
the current state. For the retrospective reasoning, we only need a temporal logic
that only talks about the past. Namely, it is one which can be used to compare
the current state with some previous states in the past. It is natural to design the
following past-oriented operators, which correspond with the counterparts of the
future oriented temporal operators respectively:

– the previous operator states that a factφ holds just one state before the current
state the current state.

– the sometimes-in-the past operator states that a fact φ holds sometimes in the
past with respect to the current state.

– the always-in-the-past operator states that φ holds always in the past with re-
spect to the current state.

In this paper, we use a linear temporal logic, denoted as LTLm, which actually is
a restricted linear temporal logic LTL to past-oriented temporal operators.

4.1 Version Spaces and Temporal Models

In the following, we will define the formal semantics for the temporal operators by
introducing an entailment relation between a semantic model (i.e., multi-version
ontologies) and a temporal formula. We consider a version of an ontology to be a
state in the semantic model. We do not restrict ontology specifications to a partic-
ular language (although OWL and its description logics are the languages we have
in mind). In general, an ontology language can be considered to be a set of formulas
that is generated by a set of syntactic rules in a logical language L.

We consider multi-versions of an ontology as a sequence of ontologies which are
connected each other via change operations. Each of these ontologies has a unique
name. This is different from the work in [10], in which an ontology is considered
as one which contains the set of other ontologies which are backwards compatible
with. We have the following definition.

Definition 1 (Version Space). A version space S over an ontology set Os is a
set of ontology pairs, namely, S ⊆ Os × Os.

We use version spaces as a semantic model for our temporal logic, restricting our
investigation to version spaces that present a linear sequence of ontologies:

404 Z. Huang and H. Stuckenschmidt

Definition 2 (Linear Version Space). A linear version space S on an ontology
set Os is a version space which is a finite sequence of ontologies

S = {〈o1, o2〉, 〈o2, o3〉, · · · , 〈on−1, on〉}

such that i �= j ⇒ oi �= oj . Alternatively we write the sequence S as follows:

S = (o1, o2, · · · , on)

We use S(i) to refer the i th ontology oi in the space. For a version space S =
(o1, o2, · · · , on), We call the first ontology S(1) in the space the initial version of
the version space, and the last ontology S(n) the latest version of the version space
respectively.

We introduce an ordering ≺S with respect to a version space S as follows:

Definition 3 (Ordering on Version Space). o ≺S o′ iff o occurs prior to o′ in
the sequence S, i.e., S = (· · · , o, · · · , o′, · · ·).

It is easy to see that the prior version relation ≺S is a linear ordering.

4.2 Syntax and Semantics of LTLm

The Language L+ for the temporal logic LTLm can be defined as an extension
to the ontology language L with Boolean operators and the temporal operators as
follows:

q ∈ L ⇒ q ∈ L+
φ ∈ L+ ⇒ ¬φ ∈ L+
φ, ψ ∈ L+ ⇒ φ ∧ ψ ∈ L+
φ ∈ L+ ⇒ PreviousVersionφ ∈ L+
φ ∈ L+ ⇒ AllPriorVersionsφ ∈ L+
φ, ψ ∈ L+ ⇒ φSinceψ ∈ L+

Where the negation ¬ and the conjunction ∧ must be new symbols that do not ap-
pear in the languageL to avoid the ambiguities.Define the disjunction∨, the impli-
cation →, and the bi-conditional↔ in terms of the conjunction and the negation as
usual. Define ⊥ as a contradictory φ∧¬φ and as a tautology φ∨¬φ respectively.

Using these basic operators, we can define some addition operators useful for
reasoning about multiple versions. We define the SomePriorVersion operator in
terms of the AllPriorVersions operator as

SomePriorVersionφ =df ¬AllPriorVersions¬φ

The always-in-the-pastAllPriorVersionsoperator is onewhichdoes not consider
the current state. We can define a strong always-in-the-pastAllVersions operator
as

AllVersionsφ =df φ ∧ AllPriorVersionsφ,

which states that ’φ always holds in the past including the current state’.

Reasoning with Multi-version Ontologies 405

Let S be a version space on an ontology set Os, and o be an ontology in the set
Os, we extend the entailment relation for the extended language L+ as follows:

S, o |= q iff o |= q, for q ∈ L.
S, o |= ¬φ iff S, o �|= φ.
S, o |= φ ∧ ψ iff S, o |= φ, ψ.
S, o |= PreviousVersionφ iff 〈o′, o〉 ∈ S such that S, o′ |= φ.
S, o |= AllPriorVersionsφ iff for any o′ such that o′ ≺S o, S, o′ |= φ.
S, o |= φSinceψ iff ∃(o1 . . . oi)(〈o1, o2〉, . . . , 〈oi−1, oi〉 ∈ S and oi =o)

such thatS, oj |= φ for 1 ≤ j ≤ i and S, o1 |= ψ.

For a linear version space S, we are in particular interested in the entailment rela-
tion with respect to its latest version of the ontology S(n) in the version space S.
We use S |= φ to denote that S, S(n) |= φ. Model checking has been proved to be
an efficient approach for the evaluation of temporal logic formulas [4]. In the imple-
mentation of MORE, we are going to use the standard model checking algorithm
for evaluating a query in the temporal logic LTLm. Therefore, we do not need a
complete axiomatization for the logic LTLm in this paper.

5 LTLmas aQueryLanguage

There are two types of queries: reasoning queries and retrieval queries. The former
concerns with an answer either ’yes’ or ’no’, and the latter concerns an answer with
a particular value, like a set of individuals which satisfy the query formula. Namely,
the evaluation of a reasoning query is a decision problem, whereas the evaluation of
a retrieval query is a search problem. In this section, we are going to discuss how we
canuse the proposed temporal logic to support both reasoning queries and retrieval
queries.

5.1 Reasoning Queries

Using the LTLm logic we can formulate reasoning queries over a sequence of on-
tologies that correspond to the typical questions mentioned in Section 3.

Areall facts still derivable? This question canbeanswered for individual facts using
reasoning queries. In particular, we can use the query φ ∧ PreviousVersionφ to
determine for facts φ derivable from the previous version whether they still hold
in the current version. The same can be done for older versions by chaining the
PreviousVersion operator or by using the operator AllVersions to ask whether
formulas was always true in past versions and is still true in the current one
(AllVersionsφ).

What facts are not derivable anymore? In a similarway,we can askwhether certain
facts are not true in the new version any more. This is of particular use for making

406 Z. Huang and H. Stuckenschmidt

sure that unwanted consequences have been excluded in the new version. The cor-
responding query is ¬φ ∧ PreviousVersionφ. Using the AllPriorVersions op-
erator, we can also ask whether a fact that was always true in previous versions is
not true anymore.

What facts are newly derivable from the new version? Reasoning queries can also
be used to determine whether a fact is new in the current version. As this is true if it
is not true in the previous version, we can use the following query for checking this
φ ∧ ¬PreviousVersionφ. We can also check whether a new fact never holded in
previous versions using the following query φ ∧ ¬SomePriorVersionφ.

What is the last version that can be used to derive certain facts? Using reasoning
querieswe can checkwhether a fact holds in a particular version.As versions are ar-
ranged in a linear order, we can move to a particular version using the
PreviousVersion operator. The query PreviousVersionPreviousVersionφ
for instance checks whether φ was true in the version before the previous one. The
query φSinceψ states that φ always holds since ψ holds in a prior version.

A drawbackof reasoningqueries lies in the fact, that they can only check a prop-
erty for a certain specific fact. When managing a different versions of a large ontol-
ogy, the user will often not be interested in a particular fact, but ask about changes
in general. This specific functionality is provided by retrieval queries.

5.2 Retrieval Queries

Many Description Logic Reasoners support so-called retrieval queries that return
a set of concept names that satisfy a certain condition. For example, a children con-
cept c′ of a concept c, written child(c, c′), is defined as onewhich is subsumed by the
concept c, and there exists no other concepts between them. Namely,

child(c, c′) =df c′ � c∧ � ∃c′′(c′ � c′′ ∧ c′′ � c ∧ c′′ �= c ∧ c′′ �= c′).

Thus, the set of new/obsolete/invariant children concepts of a concept on an ontol-
ogy o in the version space S is defined as follows

newChildren(S, o, c) =df {c′|S, o |= child(c, c′)∧¬PreviousVersion child(c, c′)}.

obsoleteChildren(S, o, c) =df {c′|S, o |= ¬child(c, c′)∧PreviousVersion child(c, c′)}.

invariantChildren(S, o, c) =df {c′|S, o |= child(c, c′)∧PreviousVersion child(c, c′)}.

The same definitions can be extended into the cases like parent concepts, ancestor
concepts, descendant concept and equivalent concepts. Those query supports are
sufficient to evaluate the consequences of the ontology changes and the differences
among multi-version ontologies. We will discuss more details in the section about
the tests on MORE.

Reasoning with Multi-version Ontologies 407

5.3 Making Version-Numbers Explicit

Temporal logics allowus to talk about temporal aspects without reference to a par-
ticular time point. For reasoning with multi-version ontologies, we can also talk
about temporal aspects without mentioning a particular version name. We know
that each state in the temporal logic actually corresponds with a version of the on-
tology. It is not difficult to translate temporal statements into a statement which
refers to an explicit version number. Here are two approaches for it: relative version
numbering and absolute version numbering.

Relative version numbering. The proposed temporal logic is designed to be
one for past-oriented. Therefore, it is quite natural to design a version numbering
which is relative to the current ontology in the version space. We use the formula
Version0φ to denote that the property holds in the current version. Namely, we
refer to the current version as the version 0 in the version space, and other states
are used to refer to a version relative to the current version, written as Version−i

as follows:

Version0φ =df φ.

Version(−i)φ =df PreviousVersion(Version(1−i)φ).

The formula Version−iφ can be read as ’the property φ holds in the previous i-th
version’.

Absolute version numbering. Given a version space S with n ontologies on it,
i.e., |S| = n − 1. For the latest version o = S(n), it is well reasonable to call the
i-th ontology S(i) in the version space the version i of S, denoted as Versioni,S .
Namely, we can use the formula Versioni,Sφ to denote that the property φ holds
in the version i in the version space S. Thus, we can define the absolute version
statement in terms of a relative version statement as follows:

Version(i,S)φ =df Version(i−n)φ.

Explicit version numbering provides the basis for more concrete retrieval queries.
In particular, we now have the opportunity to compare the children of a concept c in
two specific ontologies i and j in the version space S. The corresponding definitions
are the following:

newChildren(S, c)i,j =df {c′|S |= Version(i,S) child(c, c′)∧¬Version(j,S) child(c, c′)}.

obsoleteChildren(S, c)i,j =df {c′|S |=¬Version(i,S) child(c, c′)∧Version(j,S) child(c, c′)}.

invariantChildren(S, c)i,j =df {c′|S |= Version(i,S) child(c, c′)∧Version(j,S) child(c, c′)}.

Again, thesamecanbedone forotherpredicates likeparent-,ancestorordescendant
concepts.

408 Z. Huang and H. Stuckenschmidt

6 Implementation ofMORE

We implemented a prototypical reasoner for multi-versionontologies calledMORE
basedon theapproachdescribedabove.The system is implementedas an intelligent
interface between an application and state-of-the art description logic reasoners
(compare Fig.1) and provides server-side functionality in terms of an XML-based
interface for uploading different versions of an ontology and posing queries to these
versions. Requests to the server are analyzed by the main control component that
also transforms queries into the underlying temporal logic queries if necessary. The
main control element also interacts with the ontology repository and ensures that
the reasoning components are provided with the necessary information and coor-
dinates the information flow between the reasoning components. The actual rea-
soning is done by model checking components for testing temporal logic formulas
that uses the results of an external description logic reasoner for answering queries
about derivable acts in a certain version.

Fig. 1. Architecture of MORE

The MORE prototype is implemented in Prolog and uses the XDIG interface
[11], an extended DIG description logic interface for Prolog1. MORE is designed
to be a simple API for a general reasoner with multi-version ontologies. It sup-
ports extended DIG requests from other ontology applications or other ontology
and metadata management systems and supports multiple ontology languages, in-
cluding OWL and DIG [1]2. This means that MORE can be used as an interface
to any description logic reasoner as it supports the functionality of the underlying
reasoner by just passing requests on and provides reasoning functionalities across
versions if needed. Therefore, the implementation of MORE will be independent
of those particular applications or systems. A prototype of MORE is available for
download at the website: http://wasp.cs.vu.nl/sekt/more.
1 http://wasp.cs.vu.nl/sekt/dig
2 http://dl.kr.org/dig/

Reasoning with Multi-version Ontologies 409

6.1 Experiments with MORE

We have tested the current implementation of the MORE system on different ver-
sions of real life ontologies fromdifferentdomains. In the following,webriefly report
experiments we performed on detecting changes in the concept hierarchy of the fol-
lowing two ontologies.

The OPJK Ontology. The OPJK Ontology (Ontology of Professional Judicial
Knowledge) is a legal Ontology that has been developed in the SEKT project3 to
support the content-based retrieval of legal documents[3]. We used five different
versions of the ontology from different stages of the development process. Each of
these version contains about 80 concepts and 60 relations.

The BiosSAIL Ontology. The BioSAIL Ontology which was developed within the
BioSTORM project4. It has been used in earlier experiments on change manage-
ment reported in [12]. The complete data set consists of almost 20 different versions
of the ontology. We take three versions of the BioSAIL ontology for the tests re-
ported below. Each version of BioSAIL ontology has about 180 classes and around
70 properties.

Thosetwoontologieshavebeentestedwithdifferenttemporal reasoningqueries.
Weconcentratedonretrievalqueriesaboutthestructureoftheconcepthierarchy. In
particular, we used retrieval queries with explicit version numbering as introduced
in section5.3. InFig.2we showthe results for thequeries about thenewandobsolete
child, parent, ancestor, and descendant relations in the concept hierarchy.

It has to be noted that the result are not the result of a syntactic analysis of the
concept hierarchy, but rely on description logic reasoning. This means that we also
detect cases where changes in the definition of a concept lead to new concept re-
lations that are only implicit in the Ontology. The results of these queries can be
found at http://wasp.cs.vu.nl/sekt/more/test/. In a semantic change log, of
course, the concrete changesbetween theversionswill be represented.Weaggregate
the results due to space limitations. What we can immediately see from these num-
bers alone is that the versions become more stable over time. Especially in the case
of the legal ontology, the number of changes from one version to the other becomes
significantly lower over time. This can be seen as a sign of maturity.

Besides this change log functionality, arbitrary temporal queries using the oper-
ators introduced in this paper can be formulated and executed. The only limitation
is the interfacetotheunderlyingDLreasoner, thatcurrently isonly implementedfor
queries about the concept hierarchy.This can easily be extended to any functional-
ity provided by the RACER system [6]. A list of the template queries for temporal
reasoning queries are available at the MORE testbed, which can be downloaded
from the MORE website. The average time cost for each temporal reasoning query
is about 7 seconds for the OPJK Ontology and 3 seconds for the BioSAIL ontology
on a PC with 2Ghz CPU 512 MB memory under Windows 2000.

3 http://www.sekt-project.com/
4 http://smi-web.stanford.edu/projects/biostorm/

410 Z. Huang and H. Stuckenschmidt

Results for the BioSAIL Ontology
Version(from) Version(to) NC OC NP OP NA OA ND OD Total
BioSAILv16 BioSAILv20 136 10 123 49 228 104 227 32 909
BioSAILv20 BioSAILv21 54 1 42 21 193 32 192 1 536

Results for the OPJK Ontology
Version(from) Version(to) NC OC NP OP NA OA ND OD Total
ontoRDF ontoRDF2 82 25 53 10 141 16 141 74 542
ontoRDF2 ontoRDF3 82 17 49 13 144 17 144 21 487
ontoRDF3 oblk 49 43 36 20 70 20 54 85 377
oblk opjk 4 7 2 1 8 6 8 18 54

NC = New Children concept relation, OC = Obsolete Children concept relation, NP =
New Parent concept relation, OP = Obsolete Parent concept relation, NA = New Ances-
tor concept relation, OA = Obsolete Ancestor concept relation, ND = New Descendant
concept relation, and OD = Obsolete Descendant concept relation.

Fig. 2. MORE Tests on Concept Relations

7 Discussion and Conclusions

In this paper, we discussed the integrated management of multiple versions of the
same ontology as an open problem with respect to ontology change management.
We proposed an approach for multi-version management that is based on the idea
of using temporal logic for reasoning about commonalities and differences between
differentversions.For thispurpose,wedefine the logicLTLm thatconsists ofopera-
tors for reasoningaboutderivable statements indifferentversions.Weshowthat the
logic can be used to formulate typical reasoning and retrieval queries that occur in
the context ofmanagingmultiple versions.Wehave implementedaprototypical im-
plementation of the logic in terms of a reasoning infrastructure for ontology-based
systems and successfully tested it on real ontologies.

Different from most previous work on ontology evolution and change manage-
ment our approach is completely based on the formal semantics of the ontologies
under consideration. This means that our approach is able to detect all implica-
tions of a syntactic change. In previous work, this could only be done partially in
terms of ontologies if changes and heuristics that were able to predict some, but not
all consequences of a change. Other than previous work on changes at the semantic
level which were purely theoretical,we have shown that out approachcan be imple-
mented on top of existing reasoners and is able to provide answers in a reasonable
amount of time. In order to be able to handle large ontologies with thousands of
concepts, we have to think about optimization strategies. Existing work on model
checking has shown that these methods scale up to very large problem sets if opti-
mized in the right way. This makes us optimistic about the issue of scalability.

Oneof the reasons for the efficiencyof the approach is the restriction to the retro-
spective approach, that only considers past versions. This restriction makes linear
time logics sufficient for our purposes. A major challenge is the extension of our ap-
proach with the prospective approach that would allow us to reason about future

Reasoning with Multi-version Ontologies 411

versions of ontologies. This direction of work is challenging, because it requires a
careful analysis of a minimal set of change operators and their consequences. There
are proposals for sets of change operators, but these operators have never been an-
alyzed form the perspective of dynamic temporal logic. The other problem is that
taking the prospective approach means moving from linear to branching time logic
which has a serious impact on complexity and scalability of the approach.

Acknowledgements. We want to thank Pompeu Casanovas and Nuria Casellas
Caralt for providing the OPJK ontology, and thank Michel Klein for providing the
BiosSAILOntology for the tests.Thework reported in this paperwas partially sup-
ported by the EU-funded SEKT project(IST-506826).

References

1. SeanBechhofer,RalfMöller, andPeterCrowther. TheDIGdescription logic interface.
In International Workshop on Description Logics (DL2003). Rome, September 2003.

2. P. Blackburn and M. Tzakova. Hybrid languages and temporal logic. Logic Journal
of the IGPL, 7(1):27–54, 1999.

3. V.R. Benjamins P. Casanovas, J. Contreras, J. M. López-Cobo, and L. Lemus. Iuris-
ervice: An intelligent frequently asked questions system to assist newly appointed
judges. In V.R. Benjamins et al, editor, Law and the Semantic Web, pages 205–522.
Springer-Verlag, London, Berlin, 2005.

4. Edmund M. Clarke, OrnaGrumberg, and Doron A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

5. E. Compatangelo, W. Vasconcelos, and B. Scharlau. Managing ontology versions
with a distributed blackboard architecture. In Proceedings of the 24th Int Conf. of
the British Computer Societys Specialist Group on Artificial Intelligence (AI2004).
Springer-Verlag, 2004.

6. Volker Haarslev and Ralf Möller. Description of the racer system and its applications.
In Proceedings of the International Workshop onDescription Logics (DL-2001), pages
132–141. Stanford, USA, August 2001.

7. PeterHaase,FrankvanHarmelen,ZhishengHuang,HeinerStuckenschmidt,andYork
Sure. A framework for handling inconsistency in changing ontologies. In Proceedings
of ISWC2005, 2005.

8. D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of Philo-
sophical Logic Volume II — Extensions of Classical Logic, pages 497–604. D. Reidel
Publishing Company: Dordrecht, The Netherlands, 1984.

9. J. Heflin and J. Hendler. Dynamic ontologies on the web. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence (AAAI-2000), pages 443–449.
AAAI/MIT Press, Menlo Park, CA., 2000.

10. J. Heflin and Z. Pan. A model theoretic semantics for ontology versioning. In Pro-
ceedings of ISWC2004, pages 62–76, Hiroshima, Japan, 2004. Springer.

11. Zhisheng Huang and Cees Visser. Extended DIG description logic interface support
for PROLOG. Deliverable D3.4.1.2, SEKT, 2004.

12. M. Klein. Change Management for Distributed Ontologies. Phd thesis, Vrije Univer-
siteit Amsterdam, 2004.

13. N.F. Noy and M.A. Musen. The prompt suite: Interactive tools for ontology merging
and mapping. International Journal of Human-Computer Studies, 59(6):983–1024,
2003.

412 Z. Huang and H. Stuckenschmidt

14. S. Schlobach and R.Cornet. Non-standard reasoning services for the debugging of de-
scription logic terminologies. In Proceedings of IJCAI2003, Acapulco, Mexico, 2003.
Morgan Kaufmann.

15. L. Stojanovic. Methods and Tools for Ontology Evolution. Phd thesis, University of
Karlsruhe, 2003.

16. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies. In
Proceedings of IJCAI2003, Acapulco, Mexico, 2003. Morgan Kaufmann.

	Introduction
	Solved and Open Problems in Ontology Evolution
	Multi-version Management: An Open Problem
	Application Scenarios
	The General Approach

	A Temporal Logic for Multi-version Ontology Reasoning
	Version Spaces and Temporal Models
	Syntax and Semantics of LTLm

	LTLm as a Query Language
	Reasoning Queries
	Retrieval Queries
	Making Version-Numbers Explicit

	Implementation of MORE
	Experiments with MORE

	Discussion and Conclusions

